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Abstract

The purpose of this paper is to investigate whether Harris’s articulation scheme1

(HAS) also holds in emergent languages. HAS is thought to be a universal property2

in natural languages that articulatory boundaries can be obtained from statistical3

information of phonems alone, without referring to word meanings. Emergent4

languages are artificial communication protocols that arise between agents in a5

simulated environment and have been attracting attention in recent years. It is6

considerd important to study the structure of emergent languages and the simi-7

larity to natural languages. In this paper, we employ HAS as an unsupervised8

word segmentation method and verify whether emergent languages arising from9

signaling games have meaningful segments. Our experiments showed that the10

emergent languages arising from signaling games satisfy some preconditions for11

HAS. However, it was also suggested that the HAS-based segmentation boundaries12

are not necessarily semantically valid.13

1 Introduction14

Communication protocols emerging among artificial agents in a simulated environment are called15

emergent languages [Lazaridou and Baroni, 2020]. It is important to investigate their structure to16

recognize and bridge the gap between natural and emergent languages, as several structural gaps have17

been reported [Kottur et al., 2017, Chaabouni et al., 2019]. For instance, Kottur et al. [2017] pointed18

out that emergent languages are not necessarily compositional. Such gaps are undesirable because19

major motivations in this area are to develop interactive AI [Foerster et al., 2016, Mordatch and20

Abbeel, 2018, Lazaridou et al., 2020] and to simulate the evolution of human language [Kirby, 2001,21

Graesser et al., 2019, Dagan et al., 2021]. Previous work examined whether emergent languages22

have the same properties as natural languages, such as compositionality [e.g., Kottur et al., 2017],23

grammar [van der Wal et al., 2020], entropy minimization [Kharitonov et al., 2020], and Zipf’s law of24

abbreviation (ZLA) [e.g., Chaabouni et al., 2019].1 Word segmentation would be another direction to25

understand the structure of emergent languages because natural languages not only have construction26

from word to sentence but also from phoneme to word [Martinet, 1960]. However, previous studies27

have not gone so far as to address word segmentation, as they treat each symbol in emergent messages28

as if it were a “word” [Kottur et al., 2017, van der Wal et al., 2020], or ensure that a whole message29

constructs just one “word” [Chaabouni et al., 2019, Kharitonov et al., 2020].30

The purpose of this paper is to study whether Harris’s articulation scheme (HAS) [Harris, 1955,31

Tanaka-Ishii, 2021] also holds in emergent languages. HAS is a statistical universal in natural32

languages. Its basic idea is that we can obtain word segments from the statistical information of33

phonemes, but without referring to word meanings.2 HAS can be used for unsupervised word34

1ZLA states that the more frequently a word is used, the shorter it tends to be [Zipf, 1935].
2Note that this is different from the famous distributional hypothesis [Harris, 1954].
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Figure 1: Illustration of a signaling game. Section 3.1 gives its formal definition. In each play, a
sender agent obtains an input and converts it to a sequential message. A receiver agent receives the
messsage and converts it to an output. Each agent is represented as an encoder-decoder model.

segmentation [Tanaka-Ishii, 2005] to allow us to study the structure of emergent languages. In35

addition, it should be promising to apply such unsupervised methods, since word segments and36

meanings are not available beforehand in emergent languages.37

The problem is whether emergent languages have meaningful segments. If not, then it means that we38

find another gap between emergent and natural languages. In this paper, we pose several verifiable39

questions to answer whether their segments are meaningful.40

To simulate the emergence of language, we adopt Lewis’s signaling game [Lewis, 1969]. This41

game involves two agents called sender S and receiver R, and allows only one-way communication42

from S to R. In each play, S obtains an input i ∈ I and converts i into a sequential message43

m = S(i) ∈M. Then, R receives m ∈M and predicts the original input. The goal of the game is44

the correct prediction R(m) = i. Figure 1 illustrates the signaling game. Here, we consider the set45

{m ∈M | m = S(i)}i∈I as the dataset of an emergent language, to which the HAS-based boundary46

detection [Tanaka-Ishii, 2005] is applicable. The algorithm yields the segments of messages.47

Our experimental results showed that emergent languages arising from signaling games satisfy48

two preconditions for HAS: (i) the conditional entropy (Eq. 2) decreases monotonically and (ii)49

the branching entropy (Eq. 1) repeatedly falls and rises. However, it was also suggested that the50

HAS-based boundaries are not necessarily meaningful. Segments divided by the boundaries may not51

serve as meaning units, while words in natural languages do [Martinet, 1960]. It is left for future52

work to bridge the gap between emergent and natural languages in terms of HAS, by giving rise to53

meaningful word boundaries.54

2 Harris’s Articulation Scheme55

In the paper “From phoneme to morpheme” [Harris, 1955], Harris hypothesized that word boundaries56

tend to occur at points where the number of possible successive phonemes reaches a local peak in a57

given context. Harris [1955] exemplifies the utterance “He’s clever” that has the phoneme sequence58

/hiyzclev@r/.3 The number of possible successors after the first phoneme /h/ is 9: /w,y,i,e,æ,a,@,o,u/.59

Next, the number of possible successors after /hi/ increases to 14. Likewise, the number of possible60

phonemes increases to 29 after /hiy/, stays at 29 after /hiyz/, decreases to 11 after /hiyzk/, decreases61

to 7 after /hiyzkl/, and so on. Peak numbers are found at /y/, /z/, and /r/, which divides the phoneme62

sequence into /hiy/+/z/+/klev@r/. Thus, the utterance is divided into “He”, “s”, and “clever”.63

Harris’s hypothesis can be reformulated from an information-theoretic point of view by replacing64

the number of successors with entropy. In the following sections, we review the mathematical65

formulation of the hypothesis as Harris’s articulation scheme (HAS) and the HAS-based boundary66

detection [Tanaka-Ishii, 2005]. HAS does involve statistical information of phonemes but does not67

involve word meanings. This is important because it gives a natural explanation for a well-known68

linguistic concept called double articulation [Martinet, 1960]. Martinet [1960] pointed out that69

languages have two structures: phonemes (irrelevant to meanings) and meaning units (i.e., words and70

morphemes). HAS can construct meaning units without referring to meanings.71

2.1 Mathematical Formulation of Harris’s Hypothesis72

While Harris [1955] focuses on phonemes for word boundary detection, Tanaka-Ishii [2021] suggests73

that the hypothesis is also applicable to units other than phonemes. Therefore, in this section, a set74

3There may be other representations for the phonemes, but we follow Harris’s notation.
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of units is called an alphabet X as a purely mathematical notion that is not restricted to phonemes.75

Tanaka-Ishii [2005] uses characters for the same purpose. Moreover, Frantzi and Ananiadou [1996]76

and Tanaka-Ishii and Ishii [2007] investigate the detection of collocation from words.77

Let X be an alphabet and Xn be the set of all n-grams on X . We denote by Xi a random variable78

of X indexed by i, and by Xi:j a random variable sequence from Xi to Xj . The formulation79

by Tanaka-Ishii [2005] involves two kinds of entropy: branching entropy and conditional entropy80

[Cover and Thomas, 2006].4 The branching entropy of a random variable Xn after a sequence81

s = x0 · · ·xn−1 ∈ Xn is defined as:82

h(s) ≡ H(Xn | X0:n−1 = s) = −
∑
x∈X

P (x | s) log2 P (x | s), (1)

where P (x | s) = P (Xn = x | X0:n−1 = s). Intuitively, the branching entropy h(s) means how83

many elements can occur after s or the uncertainty of the next element after s. In addition to h(s),84

the conditional entropy of a random variable Xn after an n-gram sequence X0:n−1 is defined as:85

H(n) ≡ H(Xn | X0:n−1) = −
∑
s∈Xn

P (s)
∑
x∈X

P (x | s) log2 P (x | s), (2)

where P (s) = P (X0:n−1 = s). The conditional entropy H(n) can be regarded as the mean of86

h(s) over n-gram sequences s ∈ Xn, since H(n) =
∑

s∈Xn P (s)h(s). H(n) is known to decrease87

monotonically in natural languages [Bell et al., 1990]. Thus, for a partial sequence x0:n−1 ∈ Xn,88

h(x0:n−2) > h(x0:n−1) holds on average, although h(s) repeatedly falls and rises depending on a89

specific s. Based on such properties, Harris’s articulation scheme (HAS) is formulated as:590

If there is some partial sequence x0:n−1 ∈ Xn (n > 1)
s.t. h(x0:n−2) < h(x0:n−1), then xn is at a boundary.

(3)

2.2 Boundary Detection Algorithm Based on Harris’s Articulation Scheme91

In this section, we introduce the HAS-based boundary detection algorithm [Tanaka-Ishii, 2005]. Let92

s = x0 · · ·xn−1 ∈ Xn. We denote by si:j its partial sequence xi · · ·xj . Given s and a parameter93

threshold, the boundary detection algorithm yields boundaries B.6 It proceeds as follows:94

1: i← 0; w ← 1; B ← {}95

2: while i < n do96

3: Compute h(si:i+w−1)97

4: if w > 1 and h(si:i+w−1)− h(si:i+w−2) > threshold then98

5: B ← B ∪ {i+ w}99

6: end if100

7: if i+ w < n− 1 then101

8: w ← w + 1102

9: else103

10: i← i+ 1; w ← 1104

11: end if105

12: end while106

Since our targets are emergent languages, the outputs of the boundary detection algorithm do not107

necessarily mean articulatory boundaries. Instead, we call them hypothetical boundaries (hypo-108

boundaries) and refer to the segments split by hypo-boundaries as hypo-segments. Note that there109

are other similar methods such as Kempe [1999]. We chose Tanaka-Ishii [2005] because it performs110

well not only for English but also for Chinese, which has many one-character words. Emergent111

languages might also have such words. With this algorithm, Tanaka-Ishii and Jin [2008] reported112

F-score = 83.6% for word boundary detection from phonemes in English and F-score = 83.8%113

for word boundary detection from characters in Chinese. They are considerably high scores for114

unsupervised settings.115

4The term “branching entropy” is from Tanaka-Ishii and Jin [2008], but the definition per se is quite basic.
5Although this is called hypothesis in Tanaka-Ishii [2005], Tanaka-Ishii and Jin [2006] and Tanaka-Ishii and

Ishii [2007], we refer to it as scheme following the recent publication [Tanaka-Ishii, 2021].
6The original algorithm involves another parameter maxlen to ensure w < maxlen for practical reasons. We

omit it because the message length in emergent languages is fixed in this paper (see Section 3).
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3 Emergent Language Arising from Signaling Game116

We have to define environments, agent architectures, and optimization methods for language emer-117

gence simulations. This paper adopts the framework of Chaabouni et al. [2020]. We define an118

environment in Section 3.1, specify the agent architecture and optimization methods in Section 3.2,119

and also give an explanation of the compositionality of emergent languages in Section 3.3.120

3.1 Signaling Game121

An environment is formulated based on Lewis’s signaling game [Lewis, 1969]. A signaling game G122

consists of a quadruple (I,M, S,R), where I is an input space,M is a message space, S : I →M123

is a sender agent, and R : M → I is a receiver agent. The goal is the correct reconstruction124

i = R(S(i)) for all i ∈ I. While the input space I and the message spaceM are fixed, the agents125

S,R are trained for the goal. An illustration of a signaling game is shown in Figure 1. Following126

Chaabouni et al. [2020], we define I as an attribute-value set Dnatt
nval

(defined below) andM as a set127

of discrete sequences of fixed length k over a finite alphabet A:128

I ≡ Dnatt
nval

, M≡ Ak = {a1 · · · ak | aj ∈ A}. (4)

Attribute-Value Set Let natt, nval be positive integers called the number of attributes and the129

number of values. Then, an attribute-value set Dnatt
nval

is the set of ordered tuples defined as follows:130

Dnatt
nval

= {(v1, . . . , vnatt) | vj ∈ {1, . . . , nval}} . (5)

This is an abstraction of an attribute-value object paradigm [e.g., Kottur et al., 2017] by Chaabouni131

et al. [2020]. Intuitively, each index j of a vector (v1, . . . vj , . . . , vnatt
) is an attribute (e.g., color),132

while each vj is an attribute value (e.g., blue, green, red, and purple).7133

3.2 Architecture and Optimization134

We follow Chaabouni et al. [2020] as well for the architecture and optimization method.135

Architecture Each agent is represented as an encoder-decoder model (Figure 1): the sender decoder136

and the receiver encoder are based on single-layer GRUs [Cho et al., 2014], while the sender encoder137

and the receiver decoder are linear functions. Each element i ∈ Dnatt
nval

has to be vectorized so that it138

can be fed into or output from the linear functions. Formally, each i = (v1, . . . , vnatt
) is converted139

into the natt × nval-dimensional vector which is the concatenation of natt one-hot representations of140

vj . During training, the sender samples messages probabilistically. During the test time, it samples141

them greedily so that it serves as a deterministic function. Similarly, the receiver’s output layer,142

followed by the Softmax, determines natt categorical distributions over values {1, . . . , nval} during143

training. During the test time, natt values are greedily sampled from the distributions.144

Optimization The agents are optimized with the stochastic computation graph [Schulman et al.,145

2015] that is a combination of REINFORCE [Williams, 1992] and standard backpropagation. The146

sender is optimized with the former, while the receiver is optimized with the latter.147

3.3 Compositionality of Emergent Languages148

An attribute-value set Dnatt
nval

by Chaabouni et al. [2020] is an extension of an attribute-value setting149

[Kottur et al., 2017] introduced to measure the compositionality of emergent languages. While the150

concept of compositionality varies from domain to domain, researchers in this area typically regard151

it as the disentanglement of representation learning. Kottur et al. [2017], for instance, set up an152

environment where objects have two attributes: color and shape, each of which has several possible153

values (e.g., blue, red, ... for color and circle, star, ... for shape). They assumed that if a language154

is sufficiently compositional, each message would be a composition of symbols denoting the color155

value and shape value separately. This concept has been the basis for subsequent studies [Li and156

Bowling, 2019, Andreas, 2019, Ren et al., 2020, Chaabouni et al., 2020].157

7Although the game is extremely simple, it is suitable to avoid some pitfalls. Lowe et al. [2019] pointed out
that agents may not communicate effectively in more complex games than in a signaling game. Bouchacourt and
Baroni [2018] suggested that agents fail to capture conceptual properties when I is a set of images.
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Topographic Similarity Topographic Similarity (TopSim) [Brighton and Kirby, 2006, Lazaridou158

et al., 2018] is the de facto compositionality measure in emergent communication literature. Suppose159

we have distance functions dI , dM for spaces I,M, respectively. TopSim is defined as the Spearman160

correlation between distances dI(i1, i2) and dM(S(i1), S(i2)) for all i1, i2 ∈ I s.t. i1 ̸= i2. This161

definition reflects an intuition that compositional languages should map similar (resp. dissimilar)162

inputs to similar (resp. dissimilar) messages. Following previous work using attribute-value objects163

[e.g., Chaabouni et al., 2020], we define dI as the Hamming distance and dM as the edit distance.164

Because this paper is about message segmentation, we can consider two types of edit distance. One165

is the “character” edit distance that regards elements a ∈ A as symbols. The other is the “word”166

edit distance that regards hypo-segments as symbols. Let us call the former C-TopSim and the latter167

W-TopSim.168

4 Problem Definition169

Figure 2: Illustration of ques-
tions.

The purpose of this paper is to study whether Harris’s articulation170

scheme (HAS) also holds in emergent languages. However, this171

question is too vague to answer. We first divide it into the following:172

Q1. Does the conditional entropy H decrease monotonically?173

Q2. Does the branching entropy h repeatedly fall and rise?174

Q3. Do hypo-boundaries represent meaningful boundaries?175

Q3 is the same as the original question, except that Q3 is slightly176

more formal. However, we have to answer Q1 and Q2 beforehand,177

because HAS implicitly takes it for granted that H decreases mono-178

tonically and h jitters. Although both Q1 and Q2 generally hold in179

natural languages, neither of them is trivial in emergent languages.180

Figure 2 illustrates Q1, Q2, and Q3.181

It is straightforward to answer Q1 and Q2 as we just need to calculate182

H and h. In contrast, Q3 is still vague to answer, since we do not183

have prior knowledge about the boundaries of emergent languages and do not even know if they have184

such boundaries. To mitigate it, we posit the following necessary conditions for Q3. Let G be a game185

(Dnatt
nval

,Ak, S,R). If the answer to Q3 is yes, then:186

C1. the mean number of hypo-boundaries per message should increase as natt increases,187

C2. the size of the vocabulary (set of all hypo-segments) should increase as nval increases,188

C3. W-TopSim should be higher than C-TopSim.189

About C1 and C2 An attribute-value set Dnatt
nval

was originally introduced to measure composi-190

tionality. Compositionality, in this context, means how symbols in a message separately denote the191

components of meaning. In our case, each segment, or word, can be thought of as a certain unit192

that denotes the attribute values, so that the number of words in a message should increase as the193

corresponding attributes increase. Therefore, if the answer to Q3 is yes, then C1 should be valid.194

Likewise, the size of the vocabulary should be larger in proportion to the number of values nval,195

motivating C2. Here, we mean by vocabulary the set of all hypo-segments. Note that the message196

length is fixed, because otherwise the number of hypo-segments would be subject to variable message197

length as well as (natt, nval), and the implication of results would be obscure.198

About C3 C3 comes from the analogy of the linguistic concept called double articulation [Martinet,199

1960]. In natural languages, meanings are quite arbitrarily related to the phonemes that construct200

them. In contrast, the meanings are less arbitrarily related to the words. The phonemes do not denote201

meaning units but the words do. In our case, for example, the attribute-value object (RED, CIRCLE)202

seems less compositionally related to the character sequence “r,e,d,c,i,r,c,l,e”, while it seems more203

compositionally related to the word sequence “red,circle.” This intuition motivates C3.204

Based on conditions C1, C2, and C3, Q3 is restated as follows: (Q3-1) Does the mean number of205

hypo-boundaries per message increase as natt increases? (Q3-2) Does the vocabulary size increase206

as nval increases? (Q3-3) Is W-TopSim higher than C-TopSim?207
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5 Experimental Setup208

5.1 Parameter Settings209

Input Space natt and nval have to be varied to answer Q3-1, Q3-2, and Q3-3, while the sizes of210

the input spaces |I| = (nval)
natt must be equal to each other to balance the complexities of games.211

Therefore, we fix |I| = 4096 and vary (natt, nval) as follows:212

(natt, nval) ∈ {(1, 4096), (2, 64), (3, 6), (4, 8), (6, 4), (12, 2)}. (6)

Message Space The message length k and alphabet A have to be determined for a message space213

M = Ak. We set k = 32, similarly to previous work on ZLA [Chaabouni et al., 2019, Rita et al.,214

2020, Ueda and Washio, 2021] that regards each a ∈ A as a “character.” Note that k = 32 is set much215

longer than those of previous work on compositionality [Chaabouni et al., 2020, Ren et al., 2020, Li216

and Bowling, 2019] that typically adopts k ≒ natt as if each symbol a ∈ A were a “word.” We set217

A = {1, 2, . . . , 8}. Its size |A| should be as small as possible to avoid the problem of data sparsity218

when applying boundary detection, and to ensure that each symbol a ∈ A serves as a “character.”219

In preliminary experiments, we tested |A| ∈ {2, 4, 8, 16} and found that learning is stable when220

|A| ≥ 8.221

Architecture and Optimization We follow Chaabouni et al. [2020] for agent arthitectures and222

optmization methods. The hidden size of GRU [Cho et al., 2014] is set to 500, following Chaabouni223

et al. [2020]. All data from an input space I = Dnatt
nval

are used for training. This dataset is upsampled224

to 100 times following the default setting of the code of Chaabouni et al. [2020]. The learning rate is225

set to 0.001, which also follows Chaabouni et al. [2020]. Based on our preliminary experiments to226

explore stable learning, a sender S and a receiver R are trained for 200 epochs and the coefficient of227

the entropy regularizer is set to 0.01.228

Boundary Detection Algorithm The boundary detection algorithm involves a parameter threshold.229

Since the appropriate value of threshold is unclear, we vary threshold as follows:230

threshold ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}. (7)

5.2 Implementation, Number of Trials, and Language Validity231

We implemented the code for training agents using the EGG toolkit [Kharitonov et al., 2019].8 EGG232

also includes the implementation code of Chaabouni et al. [2020], which we largely refer to. They are233

published under the MIT license. For now, our code is available on Anonymous GitHub.9 For each234

(natt, nval) configuration, agents are trained 8 times with different random seeds. Each run took a few235

hours with a single GPU.10 In the following sections, an emergent language with a communication236

success rate of more than 90% is called a successful language.237

6 Results238

As a result of training agents, we obtained 7, 8, 6, 8, 7, and 6 successful languages out of 8 runs for239

configurations (natt, nval) = (1, 4096), (2, 64), (3, 16), (4, 8), (6, 4), and (12, 2), respectively.240

6.1 Conditional Entropy Monotonically Decreases241

To verify Q1, we show the conditional entropy H(n) (Eq. 2) in Figure 3. In Figure 3, the conditional242

entropies of the successful languages (solid red lines) decrease monotonically. This confirms Q1243

in successful languages. Interestingly, the conditional entropies of emergent languages derived244

from untrained senders do not necessarily decrease, shown as dashed blue lines in Figure 3.11 The245

monotonic decrease in conditional entropy emerges after training agents.246

8https://github.com/facebookresearch/EGG
9https://anonymous.4open.science/r/HAS-7F4C/

10NVIDIA A100.
11One might think that the conditional entropy cannot increase by its definition. However, this is not the case

in our setting (see Appendix A for more details).
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Figure 3: Conditional entropy H(n). Dashed
blue lines represent H(n) of languages from un-
trained agents that finally learned successful lan-
guages, while solid red lines represent H(n) of
successful languages.

Figure 4: Example transition sequences of the
branching entropy h in a message “3,8,4,...,4,4,4”
in a successful language for (natt, nval) =
(2, 64).

6.2 Branching Entropy Repeatedly Falls and Rises247

Next, to answer Q2, we computed the branching entropy h(s) (Eq. 1) of the successful languages248

and applied boundary detection. As an example, we show a few actual transitions of h(s) in Figure 4,249

in which y-axis represents the value of h(s) and x-axis represents a message “3,8,4,...,4,4,4”. The250

message is randomly sampled from a successful language when (natt, nval) = (2, 64). The boundary251

detection algorithm with threshold = 1 yields three hypo-boundaries that are represented as dashed252

black lines in Figure 4. Blue, yellow and green lines with triangle markers represent the transitions253

of h(s) that yield hypo-boundaries. Note that the (i+ 1)-th transition of h(s) does not necessarily254

start from the i-th hypo-boundary, due to the definition of the algorithm. For instance, the second255

transition overlaps the first hypo-boundary. While the conditional entropy decreases monotonically256

as shown in Figure 3, the branching entropy repeatedly falls and rises in Figure 4. Moreover, we257

show the mean number of hypo-boundaries per message in Figure 5. Figure 5 indicates that for258

any (natt, nval) configuration, there are hypo-boundaries if threshold < 2, i.e., the brancing entropy259

repeatedly falls and rises. These results validate Q2.260

6.3 Hypo-Boundaries May Not Be Meaningful Boundaries261

Next, we investigate whether Q3-1, Q3-2, and Q3-3 hold in successful languages. The results in262

the following sections falsify all of them. Thus, Q3 may not be true: hypo-boundaries may not be263

meaningful boundaries.264

Mean Number of Hypo-Boundaries per Message See Figure 5 again. The figure shows that265

the mean number of hypo-boundaries per message does not increase as natt increases. It does not266

decrease, either. This result falsifies Q3-1. Even when natt = 1, there are as many hypo-boundaries267

as other configurations.268

Vocabulary Size Figure 6 shows the mean vocabulary sizes for each (natt, nval). The vocabulary269

size does not increase as nval increases, which falsifies Q3-2. However, focusing on (natt, nval) ∈270

{(2, 64), (3, 16), (4, 8), (6, 4)} and 0.25 ≤ threshold ≤ 1, there is a weak tendency to support C2. It271

suggests that hypo-segments are not completely meaningless either.272

C-TopSim vs W-TopSim Figure 7 shows C-Topsim and W-Topsim for each (natt, nval) and273

threshold.12 Note that C-TopSim is TopSim with “character” edit distance and W-TopSim is TopSim274

with “word” edit distance. In Figure 7, threshold = −∞ corresponds to C-TopSim, while the others275

12Note that TopSim can only be defined when natt > 1.
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Figure 5: Mean number of hypo-boundaries per
message in successful languages. threshold varies
according to Eq. 7. Each data point is averaged
over random seeds and shaded regions represent
one standard error of mean (SEM).

Figure 6: Vocabulary size in successful lan-
gauges. threshold varies according to Eq. 7. Each
data point is averaged over random seeds and
shaded regions represent one SEM.

Figure 7: C-TopSim and W-TopSim in successful
languages. threshold = −∞ corresponds to C-
TopSim, while other threshold correspond to W-
TopSim. Each data point is averaged over random
seeds and shaded regions represent one SEM.

Figure 8: hypo-boundary-based W-TopSim com-
pared to random-boundary-based W-TopSim in
successful languages for (natt, nval) = (2, 64).
Each data point is averaged over random seeds
and shaded regions represent one SEM.

correspond to W-TopSim. 13 Our assumption in Q3-3 was C-TopSim < W-TopSim. On the contrary,276

Figure 7 shows a clear tendency for C-TopSim > W-TopSim, which falsifies Q3-3. Hypo-boundaries277

may not be meaningful. However, they may not be completely meaningless, either. This is because the278

hypo-boundary-based W-TopSim is higher than the random-boundary-based W-TopSim in Figure 8.279

Here, we mean by random boundaries the boundaries chosen at random in the same number as280

hypo-boundaries in each message. Other (natt, nval) configurations show similar tendencies (see281

Appendix B).282

6.4 Further Investigation: Word Length and Word Frequency283

The results so far are related to compositionality of emergent languages [e.g., Kottur et al., 2017]. In284

this section, we further associate our results with previous discussions on Zipf’s law of abbreviation285

(ZLA) in emergent languages [Chaabouni et al., 2019, Rita et al., 2020, Ueda and Washio, 2021].286

ZLA is known as a statistical property in natural languages that the more frequently a word is used,287

13If we were to apply boundary detection with threshold = −∞, it would regard every data point in a message
as a boundary. In other words, W-TopSim with threshold = −∞ would be identical to C-TopSim. We adopt
this notation in order to represent C-TopSim and W-TopSim in a unified manner in a single figure.
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the shorter it is [Zipf, 1935]. By considering hypo-segments as “words,” we can check whether288

hypo-segments follow ZLA. Figure 9 shows the hypo-segment lengths sorted by frequency rank for289

(natt, nval) = (1, 4096).14 If hypo-segments follow ZLA ideally, they should show a monotonic290

increase. The distribution of the lengths of the hypo-segments shows a clear ZLA-like tendency for291

threshold ∈ {0, 0.5}, although the tendencies are less clear for the other threshold.15 It means that292

hypo-segments follow ZLA with an appropriate threshold value. Other (natt, nval) configurations293

show similar tendencies (see Appendix C).294

7 Discussion295

Figure 9: Hypo-segment lengths sorted by fre-
quency rank for (natt, nval) = (1, 4096). Each
data point is averaged over random seeds and
shaded regions represent one SEM.

In Section 6.1, we showed that the conditional296

entropy H(n) decreases monotonically in emer-297

gent languages, confirming Q1. In Section 6.2,298

we demonstrated that the branching entropy h(s)299

repeatedly falls and rises in emergent languages,300

which confirms Q2. It is an intriguing result,301

considering the discussions of Kharitonov et al.302

[2020], who showed that the entropy decreases303

to the minimum for successful communication304

if the message length k = 1. In contrast, our305

results suggest that the (branching) entropy does306

not simply fall to the minimum when the mes-307

sage length k is longer. However, in Section 6.3,308

our results indicate that the hypo-boundaries309

may not be meaningful since Q3-1, Q3-2, and310

Q3-3 were falsified.311

Nevertheless, hypo-boundaries may not be completely meaningless either. This is because the312

hypo-boundary-based W-TopSim is higher than the random-boundary-based W-TopSim. It suggests313

that HAS-based boundary detection worked to some extent. In addition, the hypo-segments show314

ZLA-like tendencies with certain threshold values. This is a suggestive result because we neither315

imposed a length penalty on messages [Chaabouni et al., 2020], modeled the laziness/impatience of316

agents [Rita et al., 2020], nor modeled short-term memories [Ueda and Washio, 2021]. Of course, it317

is important to note that it may be just an artifact, analogous to the fact that even a monkey typing318

sequence divided by the “white space” follows ZLA [Miller, 1957].319

This paper showed that there is a gap between emergent and natural languages in terms of word320

segmentation. There are some potential methods to bridge the gap. For example, several methods321

have been proposed to facilitate the compositionality of emergent languages, such as iterated learning322

[Ren et al., 2020], the ease-of-teaching paradigm [Li and Bowling, 2019], and concept game [Mu and323

Goodman, 2021]. The regularizations for ZLA mentioned above might also help for this purpose.324

These are left for future work.325

8 Conclusion326

In this paper, we investigated whether Harris’s articulation scheme (HAS) also holds in emergent327

languages. Emergent languages are artificial communication protocols emerging between agents,328

while HAS is a statistical universal in natural languages. HAS can be used for unsupervised word329

segmentation. Our experimental results suggest that although emergent languages satisfy some330

prerequisites for HAS, HAS-based word boundaries may not be meaningful. Our contributions are331

(1) to focus on the word segmentation of emergent languages, (2) to pose verifiable questions to332

answer whether emergent languages have meaningful segments, and (3) to show another gap between333

emergent and natural languages. It is left for future work to bridge the gap between emergent and334

natural languages in terms of HAS.335

14We picked up only threshold ∈ {0.5, 1.5, 2} and adopted a log-log graph for readability.
15The plot shows the zigzagging behavior for threshold = 1.5 and most of the hypo-segment lengths hit the

message length k = 32 for threshold = 2.
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information or offensive content? [No] We only used artificial data for experiments.542

5. If you used crowdsourcing or conducted research with human subjects...543

(a) Did you include the full text of instructions given to participants and screenshots, if544

applicable? [N/A]545

(b) Did you describe any potential participant risks, with links to Institutional Review546

Board (IRB) approvals, if applicable? [N/A]547

(c) Did you include the estimated hourly wage paid to participants and the total amount548

spent on participant compensation? [N/A]549
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