
Under review as a conference paper at ICLR 2021

EXPLICIT PARETO FRONT OPTIMIZATION
FOR CONSTRAINED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many real-world problems require that reinforcement learning (RL) agents learn
policies that not only maximize a scalar reward, but do so while meeting constraints,
such as remaining below an energy consumption threshold. Typical approaches for
solving constrained RL problems rely on Lagrangian relaxation, but these suffer
from several limitations. We draw a connection between multi-objective RL and
constrained RL, based on the key insight that the constraint-satisfying optimal
policy must be Pareto optimal. This leads to a novel, multi-objective perspective for
constrained RL. We propose a framework that uses a multi-objective RL algorithm
to find a Pareto front of policies that trades off between the reward and constraint(s),
and simultaneously searches along this front for constraint-satisfying policies. We
show that in practice, an instantiation of our framework outperforms existing
approaches on several challenging continuous control domains, both in terms
of solution quality and sample efficiency, and enables flexibility in recovering a
portion of the Pareto front rather than a single constraint-satisfying policy.

1 INTRODUCTION

Deep reinforcement learning (RL) has shown great potential for training policies that optimize a single
scalar reward. Recent approaches have exceeded human-level performance on Atari (Mnih et al.,
2015) and Go (Silver et al., 2016), and have also achieved impressive results in continuous control
tasks, including robot locomotion (Lillicrap et al., 2016; Schulman et al., 2017), acrobatics (Peng
et al., 2018), and real-world robot manipulation (Levine et al., 2016; Zeng et al., 2019).

However, many problems, especially in the real world, require that policies meet certain constraints.
For instance, we might want a factory robot to optimize task throughput while keeping actuator forces
below a threshold, to limit wear-and-tear. Or, we might want to minimize energy usage for cooling a
data center while ensuring that temperatures remain below some level (Lazic et al., 2018).

Such problems are often encoded as constrained Markov Decision Processes (CMDPs) (Altman,
1999), where the goal is to maximize task return while meeting the constraint(s). Typical approaches
for solving CMDPs use Lagrangian relaxation (Bertsekas, 1999) to transform the constrained opti-
mization problem into an unconstrained one. However, existing Lagrangian-based approaches suffer
from several limitations. First, because the relaxed objective is a weighted-sum of the task return and
constraint violation, this assumes a convex Pareto front (Das & Dennis, 1997). In addition, when the
constraint is difficult to satisfy, in practice policies can struggle to obtain task reward. Finally, such
approaches typically produce a single policy that satisfies a specific constraint threshold. However,
the exact constraint threshold may not be known in advance, or one may prefer to choose from a set
of policies across a range of acceptable thresholds.

We aim to achieve the goal of CMDPs (i.e., finding a constraint-satisfying policy that maximizes
task return) while avoiding these limitations, by introducing a novel, general framework based on
multi-objective MDPs (MO-MDP). A MO-MDP can be seen as a CMDP where the constrained
objectives are instead unconstrained. Our key insight is that if we have access to the Pareto front, then
we can find the optimal constraint-satisfying policy by simply searching along this front. However,
finding the entire Pareto front is unnecessary if only a relatively small portion of the policies along
the Pareto front meet the constraints. Therefore, we propose to also simultaneously prioritize learning
for the preferences (i.e., trade-offs between reward and cost) that are most likely to produce policies
that satisfy the constraints, and thus cover the relevant part of the Pareto front.

1

Under review as a conference paper at ICLR 2021

To our knowledge, there is no existing framework for applying multi-objective RL algorithms to
constrained RL problems. Our main contribution is a general framework that enables this, by learning
which preferences produce constraint-satisfying policies. This framework can be combined with
any multi-objective RL algorithm that learns an approximate Pareto front of policies. Our second
contribution is to extend a state-of-the-art multi-objective RL algorithm, multi-objective maximum a
posteriori policy optimization (MO-MPO) (Abdolmaleki et al., 2020), to learn the Pareto front in a
single training run. We use this extension of MO-MPO within our framework, and call the resulting
algorithm constrained MO-MPO. We show in practice, constrained MO-MPO outperforms existing
approaches on challenging continuous control tasks with constraints.

2 RELATED WORK

Constrained reinforcement learning. Constrained RL algorithms seek policies that meet the
desired constraints at deployment time. Most approaches use Lagrangian relaxation (Bertsekas,
1999). Recent Lagrangian-based approaches claim convergence to constraint-satisfying (Tessler et al.,
2019) or optimal (Paternain et al., 2019) solutions, but this is debatable (Szepesvari, 2020). Recent
works seek to stabilize this optimization by approximating the reward and cost functions with convex
relaxations (Yu et al., 2019) or by utilizing derivatives of the constraint function (Stooke et al., 2020).
Other works have applied Lagrangian relaxation to mean-value constraints (Tessler et al., 2019),
convex set constraints (Miryoosefi et al., 2019), and local constraint satisfaction (Bohez et al., 2019).

Existing Lagrangian approaches involve linear scalarization, however, and thus cannot find solutions
that lie on concave portions of the true Pareto front (Das & Dennis, 1997). In contrast, we build on a
multi-objective RL algorithm that does not rely on scalarization, and in practice, our approach can
indeed find constraint-satisfying solutions on a concave Pareto front (see Sec. 5.1, humanoid walk).

Safe reinforcement learning. In safe RL, the aim is to achieve constraint satisfaction not only
during deployment, but also during learning (Garcı́a & Fernández, 2015). Recent works for deep RL
modify the policy improvement step to guarantee that the policy will never violate constraints during
training (Achiam et al., 2017; Berkenkamp et al., 2017; Chow et al., 2018; 2019; Yang et al., 2020;
Zhang et al., 2020). These approaches require, however, that the initial policy meets (or almost meets)
the constraints. Otherwise, performance degrades substantially and constrained policy optimization
(CPO) (Achiam et al., 2017), for example, performs worse than Lagrangian-based approaches (Ray
et al., 2019). The aim of our work is to find better solutions for constrained RL, rather than safe RL.
We discuss in Sec. 6 how our method can be extended to reduce constraint violation during training.

Multi-objective reinforcement learning. Our approach is built on ideas from multi-objective RL
(MORL), which consists of single-policy and multi-policy approaches. Single policy methods learn
a policy that is optimal for a given setting of reward preferences. Most rely on linear scalariza-
tion (Roijers et al., 2013), which restricts solutions to the convex portions of the Pareto front and can
be sensitive to reward scales. Non-linear scalarizations have been proposed (Tesauro et al., 2008;
Van Moffaert et al., 2013; Golovin & Zhang, 2020), but these are harder to combine with value-based
RL and have seen limited use in deep RL. Recently, Abdolmaleki et al. (2020) introduced MO-MPO,
where the preferences represent per-objective constraints on the policy improvement step. MO-MPO
does not rely on scalarization and is thus invariant to reward scales.

Multi-policy MORL aims to find a set of policies that covers the whole Pareto front. Recent
approaches learn a manifold in parameter space that optimizes the hypervolume of the Pareto front
(Parisi et al., 2016; 2017). While such approaches could be combined with our framework, their
scalability to deep RL remains to be shown. Other works combine single policy approaches with a
general objective to optimize hypervolume (Xu et al., 2020). The instantiation of our framework is
similar in spirit to such two-level methods, but applied to a different problem setting.

3 BACKGROUND AND NOTATION

3.1 CONSTRAINED MARKOV DECISION PROCESSES

A constrained Markov Decision Process (CMDP) consists of states s ∈ S, actions a ∈ A, an initial
state distribution p0(s), a transition function p(s′|s, a), reward functions {rk(s, a)}Kk=0, constraint

2

Under review as a conference paper at ICLR 2021

thresholds {ck}Kk=1, and a discount factor γ ∈ [0, 1]. The (K + 1) reward functions consist of a task
reward r0 and constrained rewards r1:K ; we will refer to these together as objectives.

A policy π(a|s) maps from a given state to a distribution over actions. The optimal solution to a
constrained MDP is a policy that maximizes the expected return for the task reward r0, while ensuring
that the expected return for all constrained rewards r1:K satisfy their respective thresholds:

max
π

Eπ
[∑

t

γtr0(st, at)
]

s.t. Eπ
[∑

t

γtri(st, at)
]
≥ ci ∀i = 1, ...,K , (1)

where Eπ is shorthand for the expectation over trajectories when following the policy π, given a fixed
initial state distribution. Here the constraint thresholds are lower bounds, without loss of generality.

The value function V πk (s) of a policy π is its expected return for objective rk when starting from state
s. The action-value functionQπk (s, a) denotes the expected return for objective rk after taking action a
in state s and thereafter acting according to the policy: Qπk (s, a) = rk(s, a)+ γEs′∼p(s′|s,a)[V πk (s′)].

Most approaches for solving CMDPs are based on Lagrangian relaxation, where the constrained
problem is turned into the following unconstrained optimization problem:

min
λ≥0

max
π

Eπ
[∑

t

γtr0(st, at)
]
+

K∑
k=1

λk

(
Eπ
[∑

t

γtrk(st, at)
]
− ci

)
. (2)

These approaches alternate between optimizing for the Lagrange multipliers λk and the policy π.

While our multi-objective perspective on constrained RL aims to achieve the goal of CMDPs—finding
a constraint-satisfying policy that maximizes task return—it does not directly solve (1). Nonetheless,
we will show our approach outperforms those that directly solve (1) via Lagrangian relaxation.

3.2 MULTI-OBJECTIVE REINFORCEMENT LEARNING

In order to achieve the goal of CMDPs, we propose to leverage advances in multi-objective RL. A
multi-objective MDP (MO-MDP) is defined in the same way as a CMDP, except without constraint
thresholds. Because there are multiple unconstrained objectives, there is not a single optimal policy.
Instead, there is a set of optimal policies, called the Pareto front. A policy is Pareto optimal if there is
no other policy that improves its return for one objective without decreasing return for another.

Preferences. Each policy on the Pareto front is the optimal policy for a particular setting of
preferences (i.e., desired trade-off over objectives).1 This is typically encoded via a preference vector
ε, in which each element εk represents the relative importance of the corresponding objective rk.

Connection to CMDPs. Given a CMDP {S,A, p0, p, r0:K , c1:K , γ}, consider the corresponding
MO-MDP {S,A, p0, p, r0:K , γ}. Regardless of the thresholds c1:K , the optimal policy for the CMDP
must lie on the Pareto front for this corresponding MO-MDP.2 Thus, if we knew the Pareto front, we
could simply search along it to find the constraint-satisfying policy that maximizes task return.

Multi-objective Maximum a Posteriori Policy Optimization (MO-MPO). Whereas most MORL
algorithms are based on linear scalarization, MO-MPO takes a distributional approach to training
policies. For each policy improvement step, MO-MPO first computes a non-parametric policy for
each objective rk that improves the (parametric) policy with respect to that objective, subject to a
non-negative constraint εk on the KL-divergence between the improved and old policies. Then, the
policy is updated via supervised learning on the sum of these non-parametric policies. Intuitively,
εk defines the influence of objective rk on the final policy; an objective with larger εk has more
influence. However, MO-MPO can only train policies for a single preference setting ε. Sec. 4.1
explains how we extend MO-MPO to train preference-conditioned policies π(a|s, ε), in order to use
it in our framework. We choose to extend MO-MPO because it does not suffer from the limitations of
linear scalarization, and has been shown to outperform such approaches (Abdolmaleki et al., 2020).

1This assumes that the choice of preference encoding does not restrict optimal solutions to the convex
portions of the Pareto front. Although linear scalarization does not satisfy this requirement, other kinds of
preference encodings do, for instance Chebyshev scalarization (Van Moffaert et al., 2013) or the per-objective
KL-divergence constraints in MO-MPO, described later in this section.

2This is because if the optimal policy for the CMDP is not Pareto optimal, then there must exist another
policy that obtains higher task return while meeting the constraints, which leads to a contradiction.

3

Under review as a conference paper at ICLR 2021

4 APPROACH

Problem Statement. For a given CMDP, we seek to find the preference vectors ε in the correspond-
ing MO-MDP that produce constraint-satisfying action policies π(a|s, ε). To do this, we want to find
the distribution π(ε) that maximizes the probability that the action policies satisfy the constraints.3

Overview of Framework. Our framework enables applying multi-objective RL algorithms to solve
constrained RL problems. It is inspired by the observation that for any CMDP, there exist preference
settings ε for the objectives that lead to the desired constraint-satisfying solutions. We propose to find
these preference settings by optimizing for a hierarchical policy πψ(ε)πθ(a|s, ε) that first selects a
preference setting ε and then takes an action conditioned on ε. We also maintain a policy evaluation
function Qπk (a, s, ε) for each objective.

To train this policy, we decouple learning the preference policy πψ(ε) from learning the action policy
πθ(a|s, ε). Formally, we alternate between optimizing two sub-problems:

1. Learn a new action policy πnew(a|s, ε) given the current distribution of preferences πold(ε).
2. Learn a new preference policy πnew(ε) given the current action policy πold(a|s, ε) .

We aim to converge to an optimal policy π∗(ε)π∗(a|s, ε) that not only satisfies the constraints but is
also Pareto optimal. Note that we can use different time scales for alternating between Steps 1 and 2.
One extreme is to first fully optimize for a Pareto front curve given an initial preference distribution,
and then fully optimize for solutions that satisfy the constraints. In our experiments we take the other
extreme: we alternate between taking one learning step on πψ(ε) and πθ(a|s, ε) independently.

For Step 1, any multi-objective RL algorithm capable of training preference-conditioned policies can
be used. Sec. 4.1 describes how we use MO-MPO for Step 1, which requires non-trivially extending
it to train preference-conditioned policies. For Step 2, the notion of learning a preference policy is
the core novel component of our framework: this is what enables us to apply multi-objective RL
algorithms to constrained RL problems. Sec. 4.2 describes how to do this.

4.1 LEARNING PREFERENCE-CONDITIONED ACTION POLICIES (STEP 1)

In this section, we explain how we extend MO-MPO (Abdolmaleki et al., 2020) to learn preference-
conditioned policies for the current preference distribution πold(ε).

MO-MPO can only train policies π(a|s) for a single preference ε, so it cannot be directly used.
This section describes how we extend MO-MPO to train a single policy πθ(a|s, ε) conditioned on
preference parameters ε ∼ πold(ε), that represents the entire Pareto front. This is a non-trivial
extension, that requires making both the action policy and Q-functions preference-conditioned, and
replacing the scalar temperature with a preference-conditioned temperature network, as well as
modifying the underlying MO-MPO optimization principles. We also introduce hindsight relabeling
of preferences to stabilize off-policy learning and improve sample efficiency.

Our extended version is a policy iteration algorithm with two steps:

• Policy evaluation: learn preference-conditioned Q-functions for all objectives.
• Policy improvement: improve the preference-conditioned policy according to Q-functions.

Preference-conditioned policy evaluation. In this step, we train a separate Q-function per
objective (coined Q-decomposition by Russell & Zimdars 2003), to evaluate the current policy
πold(ε)πold(a|s, ε) under the state distribution µ(s). To learn the Q-function, for each learning
step we sample L transitions from the replay buffer {si, ai, {rki }Kk , s′i}Li . Since our Q-functions
Qπk (a, s, ε) are also conditioned on preferences, we use hindsight relabeling to augment the states
with preference parameters sampled from the current preference policy εi ∼ πold(ε), resulting in
transitions {[si, εi], ai, {rki }Kk , [s′i, εi]}Li . Any policy evaluation algorithm can be used to learn these
Q-functions. We use distributional policy evaluation with 5-step return (Barth-Maron et al., 2018).

Preference-conditioned policy improvement. The policy improvement step assumes a state
distribution µ(s), per-objective Q functions Qold

k (s, a, ε), the current action policy πold(a|s, ε), and
the current preference policy πold(ε). It consists of two sub-steps: 1) finding per-objective improved

3Without loss of generality, we consider a state-independent preference policy π(ε) when deriving the update
rules. In Sec. 5.3, we show our approach can also be used to learn state-dependent preference policies π(ε|s).

4

Under review as a conference paper at ICLR 2021

action distributions, and 2) distilling these distributions into a new preference-conditioned action
policy via supervised learning.

Finding per-objective distributions: To find per-objective improved action distributions qk(a|s, ε),
we optimize the following RL optimization problem for each objective:

max
qk

Eπold(ε)µ(s)

[∫
a

qk(a|s, ε)Qold
k (s, a, ε) da

]
(3)

s.t. Eµ(s)
[
KL(qk(a|s, ε)‖πold(a|s, ε))

]
< εk ∀ ε ∼ πold(ε) .

We can solve this problem in closed form to obtain

qk(a|s, ε) ∝ πold(a|s, ε) exp
(Qold

k (s, a, ε)

ηωk
(εk)

)
, (4)

where ηωk
(εk) is a preference-dependent temperature function for objective rk, and is parameterized

by ωk. This temperature function is obtained by minimizing the following dual function:

g(ωk) = Eπold(ε)µ(s)

[
ηωk

(εk)
(
εk + log

∫
a

πold(a|s, ε) exp
(Qold

k (s, a, ε)

ηωk
(εk)

)
da
)]
. (5)

In practice, we maintain a single function ηω(ε) with shared parameters ω for all objectives.4

To approximate the expectations over the preference distribution and state distribution, we draw L
states from the replay buffer and L preferences ε from the preference policy πold(ε). To approximate
the integrals over a, for each (s, ε) pair we sample M actions from the current policy πold(a|s, ε).
Learning a new parameterized action policy: After obtaining per-objective improved policies, we use
supervised learning to distill these distributions into a new parameterized policy:

max
θ

K∑
k=0

Eπold(ε)µ(s)

[
KL(qk(a|s, ε)‖πθ(a|s, ε))

]
s.t. Eπold(ε)µ(s)

[
KL(πold(a|s, ε)‖πθ(a|s, ε))

]
< β,

subject to a trust region with bound β > 0 for more stable learning. To solve this optimization, we
use Lagrangian relaxation as described in Abdolmaleki et al. (2018; 2020).

4.2 LEARNING PREFERENCE POLICIES (STEP 2)

We will now explain how to optimize the preference distribution πψ(ε) for selecting action policies
πold(a|s, ε) with better constraint satisfaction. To achieve this, we define a fitness function fk that
evaluates satisfaction of constraint threshold ck, given the current action policy πold(a|s, ε) and
Q-function Qold

k (s, a, ε). The fitness function should be chosen based on the problem and form of
the constraint. In our empirical evaluation, for equality constraints we use a fitness function that
penalizes the difference between the expected Q-values and constraint threshold, and for inequality
constraints it penalizes the amount the expected Q-values fall under the threshold:

f eq
k (ε) = −

∣∣∣Eµ(s)[Qold
k (s,Eπold(a|s,ε)[a], ε)

]
− ck

∣∣∣ (6)

f ineq
k (ε) = min

(
0, Eµ(s)

[
Qold
k (s,Eπold(a|s,ε)[a], ε)

]
− ck

)
. (7)

Given a chosen fitness function, we now can use any off-the-shelf RL algorithm to optimize the
preference policy πψ(ε), initialized by πold(ε), to maximize the fitness function. See Appendix D for
more details on the general procedure underlying our algorithm (Appendix, Algorithm 1).

5 EXPERIMENTS

We find that our approach of Pareto front optimization applied to MO-MPO (i.e., constrained MO-
MPO), finds solutions that are on par with those found by MORL algorithms (Appendix C.1). In

4The optimization problem in (3) generalizes the one in MO-MPO, which assumes fixed KL-constraints ε, to
a distribution πold(ε) over KL-constraints. Thus (4) and (5) can be derived by following steps analogous to those
given in Abdolmaleki et al. (2020).

5

Under review as a conference paper at ICLR 2021

our experiments, we compare constrained MO-MPO against existing RL algorithms for constrained
MDPs: for a number of challenging continuous control tasks, we analyze the quality of policies
found for a range of constraint thresholds. Unless otherwise mentioned, we use (6) as the fitness
function. For action policies we use Gaussian distributions parameterized by neural networks, and for
the preference policy in constrained MO-MPO, we use a discrete distribution. Architecture details
and learning hyperparameters are described in Appendix A.

Domains. We evaluate our approach in two continuous control domains. First, we use the humanoid
run and walk tasks from DeepMind Control Suite (Tassa et al., 2018). This domain has a challenging
21-dimensional action space. The agent receives a shaped reward for running at 10 m/s or walking at
1 m/s. The constraint is imposed on the expected negative control norm (i.e., −‖a‖2), which roughly
captures the “energy” expended by the agent. This is relevant for real-world settings (e.g., in robotics
or control tasks), where energy consumption often needs to be taken into account.

We also evaluate on the level-two point mass tasks from the Safety Gym suite (Ray et al., 2019),
which we refer to as point goal, button, and push. The agent receives a sparse reward for either
reaching a goal location or pushing a box to a goal. The constraint is imposed on the expected
per-episode cost, which is incurred by running into or over objects. There are several types of objects,
each with its own cost. Unless otherwise mentioned, the constraint is with respect to the total cost.

Pareto plots. When we plot learned Pareto fronts for the tasks (e.g., in Fig. 1, top), the x-coordinate
is average per-episode negative cumulative cost and the y-coordinate is average per-episode task
reward.5 For both axes, higher values are better. All trained policies for the same task are evaluated
on the same set of randomly-initialized environments. For constrained MO-MPO policies, we sample
a new preference at the beginning of each episode, rather than at every timestep.

Baselines. As a baseline we consider Lagrangian relaxation; because of its simplicity and effective-
ness it is a common choice (Ray et al., 2019; Stooke et al., 2020). To ensure a fair comparison with
our approach, we use MPO to train policies to optimize the Lagrangian dual objective (2). We obtain
state-of-the-art results on Safety Gym tasks with this MPO-Lagrangian baseline (Appendix C.2).

5.1 QUALITY OF SOLUTIONS

We evaluated our approach and the baseline for constraint thresholds linearly spaced in the range
[−4,−1] for humanoid run, [−2,−0.5] for humanoid walk, and [−15,−2] for point tasks. For
constrained MO-MPO, the preference policy π(ε) is initialized to uniform and is a discrete distribution
over 100 linearly-spaced values starting at 10−5 and up 0.15 for humanoid run, 0.3 for humanoid
walk, and 0.2 for the point tasks. Results are shown in Fig. 1.

We observe the biggest difference in performance for humanoid walk: the Lagrangian baseline only
finds policies at the extremes, whereas our approach finds constraint-satisfying solutions that achieve
non-zero task reward. This may be because the ground-truth Pareto front for this task is concave (Sec.
2). On humanoid run, point goal, and point button, the baseline and our approach find similar-quality
solutions for easier constraint thresholds, but as the constraint threshold becomes more difficult to
satisfy (i.e., smaller in magnitude), our approach dominates (Fig. 1, top row; Fig. 2a). The only
exception is point push, for which both approaches find similar-quality solutions for all constraint
thresholds. We hypothesize that this is because in this particular task, the cost does not conflict much
with the task objective, so it is easier to find high-task-reward solutions that incur small cost.

Our approach always finds policies that satisfy the constraints for humanoid, whereas the Lagrangian
baseline occasionally violates the constraint.6 For Safety Gym tasks, the policies found by both our
approach and the baseline slightly violate the constraints (Fig. 1, bottom row); this is due to Q-function
underestimates for the cost, rather than a limitation of the policy optimization (Appendix C.4).

5The action norm constraint for the humanoid tasks is per-timestep with 1000 timesteps per episode, so a
policy that exactly meets a constraint threshold of −2, has an average cumulative episodic cost of −2000.

6With longer training, these violations might disappear, but we do not expect the task reward to improve.
These violations are due to the relatively unstable behavior of the Lagrangian baseline: when the constraint
starts to be violated, this leads to a gradual increase in the Lagrange multiplier, and it takes some time for this to
propagate into changes in the policy. This can be seen empirically in Fig. 2b (top row) where the average cost
dips below (i.e., violates) the constraint threshold, indicated by the dotted line.

6

Under review as a conference paper at ICLR 2021

−1000 0
action norm cost

0

500

1000

ta
sk

re
w

ar
d

humanoid walk

−1000 0
action norm cost

humanoid run

MPO Lagrangian constrained MO-MPO

−10 0
total cost

0

5

10

15

ta
sk

re
w

ar
d

point goal

−10 0
total cost

point button

−10 0
total cost

point push

MPO Lagrangian constrained MO-MPO

−1000 0
action norm cost

0

500

1000

ta
sk

re
w

ar
d

humanoid walk

−2000 0
action norm cost

humanoid run

MPO Lagrangian constrained MO-MPO

−20 0
total cost

0

5

10

15

ta
sk

re
w

ar
d

point goal

−20 0
total cost

point button

−20 0
total cost

point push

MPO Lagrangian constrained MO-MPO

−4 −2 0
cost threshold

−4

−2

0

ac
tu

al
co

st

humanoid walk

−4 −2 0
cost threshold

humanoid run

−20 0
cost threshold

−20

−10

0

ac
tu

al
co

st
point goal

−20 0
cost threshold

point button

−20 0
cost threshold

point push

Figure 1: Top row: For harder-to-satisfy (i.e., lower magnitude) constraint thresholds, constrained
MO-MPO finds policies with higher task performance than those found by the Lagrangian baseline,
in all tasks except point push. Middle row: Across all constraint thresholds, constrained MO-MPO
performs at least as well as the baseline. The plots in the top and middle row are Pareto plots: for
both axes, higher values are better. Each dot corresponds to a separate policy trained for a particular
constraint threshold. Bottom row: Constrained MO-MPO and MPO-Lagrangian perform comparably
in learning policies that satisfy the constraints. Policies that lie in the red region (below the dotted
line) violate the constraint.

Our approach is also significantly more sample-efficient than the baseline. For instance on humanoid
run, constrained MO-MPO learns constraint-satisfying policies that reach reasonably high task
reward mid-way through training, whereas the majority of MPO-Lagrangian policies obtain zero
task reward at the same point (Fig. 3a, 3b). This could be because with two conflicting objectives,
MPO-Lagrangian cannot optimize for both objectives at once, whereas our approach can (Fig. 2b).

Multiple random seeds. We additionally ran experiments with five random policy initializations
per constraint threshold, for a subset of four thresholds. The results support the conclusions drawn
above. In particular, our approach significantly outperforms the baseline for the harder-to-satisfy
constraint thresholds, in four out of the five tasks (see Appendix C.3 for details).

Scaling to multiple constraints. We also investigated how well constrained MO-MPO scales to
multiple constraints, for a more difficult version of point goal (see Appendix B.2 for details). There
are two constraints: one on the cost of crossing over hazards, and one on bumping into vases. For
each type of cost, we fix its threshold at −2 and vary the other between −10 and 0. The baseline
fails to obtain task reward when the constraint for hazards is fixed at the challenging threshold of −2,
whereas constrained MO-MPO finds a range of solutions (Fig. 3c, right).

5.2 FLEXIBILITY

Since our approach decouples Pareto front optimization from Pareto exploration, by choosing the
appropriate fitness function, one can in theory recover any portion of the Pareto front. This is useful
because in practice, an RL practitioner may not know the true constraint, and will be better able to

7

Under review as a conference paper at ICLR 2021

−4 −3 −2 −1
constraint threshold

0

200

ta
sk

re
w

ar
d

im
p

ro
ve

m
en

t

(a)

0

1000
cost threshold -3.4 cost threshold -2.02 cost threshold -1.0

0.0 0.5
×109

0

1000

0.0 0.5
×109

0.0 0.5
×109

−2500

0

−2500

0

actor steps

av
g

ta
sk

re
tu

rn

av
g

ac
ti

on
n

or
m

(b)

Figure 2: Plots are for humanoid run. (a) The difference in average reward obtained by constrained
MO-MPO versus MPO-Lagrangian (positive values mean constrained MO-MPO performs better),
across sub-ranges of constraint thresholds and with standard error bars. Our approach significantly
outperforms the baseline for more difficult (lower magnitude) constraint thresholds. (b) Constrained
MO-MPO (bottom) is able to optimize for both objectives at once, whereas the baseline (top)
alternates between the two, leading to large drops in action norm cost. The horizontal dashed lines
indicate the cost threshold.

−2000 0
action norm cost

0

500

1000

ta
sk

re
w

ar
d

humanoid run, mid-training

(a)

−4 −2 0
cost threshold

−4

−2

0

ac
tu

al
co

st

humanoid run, mid-training

(b)

−40 −20 0
total cost

0

5

10

ta
sk

re
w

ar
d

fixed vases threshold

−50 0
total cost

fixed hazards threshold

(c)

Figure 3: (a) Pareto fronts and (b) constraint violations for humanoid run from the middle of training.
(c) Pareto fronts for point goal with two constraints. Refer to Fig. 1 for interpretation of colors.

choose which policy to deploy after observing a couple of options along the Pareto front. Typical
approaches to constrained RL find a single policy that meets the constraint exactly.7

On humanoid run, we evaluate constrained MO-MPO using (7) as the fitness function for several
inequality constraint thresholds. We find that our approach indeed learns a portion of the Pareto front
that satisfies the constraint (Fig. 4a). These plots are obtained by taking the preferences at regular
percentiles between 5th and 95th percentiles of the learned preference distribution, and evaluating the
policy conditioned on each of these preferences, on the same set of randomly-initialized environments.

5.3 STATE-DEPENDENT PREFERENCES

By using a state-dependent preference policy π(ε|s), we can extend our approach to satisfy constraints
per-initial-state, rather than in expectation.8 To do this, we train a neural network that maps the state to
a discrete distribution over preference settings. We implement this for the MPO-Lagrangian baseline
by making the Lagrange multiplier state-dependent as well, as introduced by Bohez et al. (2019);
this trains policies that satisfy the constraint per-state—there is no equivalent for the Lagrangian
approach that satisfies constraints per-initial-state.

We use both approaches to train policies for humanoid run, for the same settings of constraint
thresholds as in Sec. 5.1. Our approach finds constraint-satisfying policies that achieve higher task
reward than the baseline (Fig. 4b). The constraint violation is computed by summing the per-episode

7Although it is possible to extend the Lagrangian baseline by conditioning the policy on the threshold, given
that constrained MO-MPO finds better solutions, we choose to focus evaluation here on constrained MO-MPO.

8In our implementation, we sample a preference from the preference policy only at the start of every episode,
rather than per-timestep. If we did the latter, then we could satisfy per-state constraints.

8

Under review as a conference paper at ICLR 2021

−2000 0
action norm cost

0

500

1000

ta
sk

re
w

ar
d

cost ≥ -3.0

−2000 0
action norm cost

cost ≥ -2.0

−2000 0
action norm cost

cost ≥ -1.5

seed 0 seed 1 seed 2

(a)

−2000 0
action norm cost

0

500

1000

ta
sk

re
w

ar
d

humanoid run

0 25
action norm cost violation

humanoid run

MPO Lagrangian constrained MO-MPO

(b)

Figure 4: (a) Pareto plots for constrained MO-MPO on humanoid run for three inequality constraints,
with three random initializations for each. The vertical dashed lines indicate the cost threshold. (b)
Policies trained by constrained MO-MPO with per-initial-state constraint satisfaction obtain higher
task reward, while satisfying the constraints.

constraint violation, obtained by comparing the average per-timestep action norm cost for that episode
against the constraint threshold.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel framework for constrained RL, by leveraging the ability of multi-
objective RL algorithms to find Pareto-optimal solutions. This framework can be combined with any
algorithm that finds a Pareto front of solutions. Our empirical results show that an instantiation of this
framework, constrained MO-MPO, outperforms the commonly-used Lagrangian relaxation approach
in terms of solution quality, stability, and sample-efficiency. In particular, the Lagrangian approach
struggles to train policies that obtain task reward when the constraints are difficult to meet, or when
the ground-truth Pareto front is concave. Our framework also enables flexibility via the choice of
fitness function and can be extended to meet constraints per-initial-state, rather than in expectation.

One limitation of this work is that the support of the preference policy’s discrete distribution must
include preference setting(s) that satisfy the constraint threshold. In practice, this is straightforward
to do for MO-MPO, because the εk encode preferences in a way that is independent of the objectives’
reward scales. In future work, it is worth exploring other distributions for the preference policy that
would overcome this limitation, for instance a mixture of Gaussians.

Another limitation is this work cannot be applied directly to safe RL. We plan to extend our approach
to reduce the cost incurred during training, perhaps by initializing with a conservative distribution
over preferences, that prioritizes minimizing cost. Finally, we also plan to exploit the flexibility of
our framework to solve constrained RL problems with more than one unconstrained objective.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. In Proceedings of the Sixth International
Conference on Learning Representations (ICLR), 2018.

Abbas Abdolmaleki, Sandy H. Huang, Leonard Hasenclever, Michael Neunert, Francis Song, Martina
Zambelli, Murilo F. Martins, Nicolas Heess, Raia Hadsell, and Martin Reidmiller. A distributional
view on multi-objective policy optimization. In Proceedings of the 37th International Conference
on Machine Learning (ICML), 2020.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
Proceedings of the 34th International Conference on Machine Learning (ICML), 2017.

Eitan Altman. Constrained Markov Decision Processes. CRC Press, 1999. ISBN 9780849303821.

9

Under review as a conference paper at ICLR 2021

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva
TB, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributional policy gradients. In
International Conference on Learning Representations (ICLR), 2018.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In Advances in Neural Information Processing
Systems 30, 2017.

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 2 edition, 1999.

Steven Bohez, Abbas Abdolmaleki, Michael Neunert, Jonas Buchli, Nicolas Heess, and Raia Hadsell.
Value constrained model-free continuous control. arXiv preprint arXiv:1902.04623, 2019.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A Lyapunov-
based approach to safe reinforcement learning. In Advances in Neural Information Processing
Systems 31, pp. 8092–8101, 2018.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

I. Das and J. E. Dennis. A closer look at drawbacks of minimizing weighted sums of objectives for
pareto set generation in multicriteria optimization problems. Structural Optimization, 14:63–69,
1997.

Javier Garcı́a and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Daniel Golovin and Qiuyi Zhang. Random hypervolume scalarizations for provable multi-objective
black box optimization. In Proceedings of the 37th International Conference on Machine Learning
(ICML), 2020.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara
Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alex
Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Andrew
Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A research framework for distributed
reinforcement learning. arXiv preprint arXiv:2006.00979, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the Third International Conference on Learning Representations (ICLR), 2015.

Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, MK Ryu, and Greg Imwalle. Data
center cooling using model-predictive control. In Advances in Neural Information Processing
Systems 31, 2018.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39):1–40, 2016.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. In Proceedings of the Fourth International Conference
on Learning Representations (ICLR), 2016.

Sobhan Miryoosefi, Kianté Brantley, Hal Daume III, Miro Dudik, and Robert E Schapire. Reinforce-
ment learning with convex constraints. In Advances in Neural Information Processing Systems 32,
2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Simone Parisi, Matteo Pirotta, and Marcello Restelli. Multi-objective reinforcement learning through
continuous pareto manifold approximation. Journal of Artificial Intelligence Research, 57:187–227,
2016.

10

Under review as a conference paper at ICLR 2021

Simone Parisi, Matteo Pirotta, and Jan Peters. Manifold-based multi-objective policy search with
sample reuse. Neurocomputing, 263:3–14, 2017.

Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
reinforcement learning has zero duality gap. In Advances in Neural Information Processing
Systems 32, 2019.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-guided
deep reinforcement learning of physics-based character skills. ACM Transactions on Graphics, 37
(4), 2018.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforce-
ment Learning. 2019.

Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48(1):67–113,
2013.

Stuart Russell and Andrew L. Zimdars. Q-decomposition for reinforcement learning agents. In
Proceedings of the Twentieth International Conference on International Conference on Machine
Learning (ICML), pp. 656–663, 2003.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the
game of Go with deep neural networks and tree search. Nature, 529:484–503, 2016.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by pid
lagrangian methods. In Proceedings of the 37th International Conference on Machine Learning
(ICML), 2020.

Csaba Szepesvari. Constrained MDPs and the reward hypothesis. https://readingsml.
blogspot.com/2020/03/constrained-mdps-and-reward-hypothesis.html,
March 2020. Accessed: 1-October-2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

Gerald Tesauro, Rajarshi Das, Hoi Chan, Jeffrey Kephart, David Levine, Freeman Rawson, and
Charles Lefurgy. Managing power consumption and performance of computing systems using
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 1497–1504,
2008.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
Proceedings of the 7th International Conference on Learning Representations (ICLR), 2019.

Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. Scalarized multi-objective reinforcement
learning: Novel design techniques. In 2013 IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning (ADPRL), pp. 191–199. IEEE, 2013.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.
Prediction-guided multi-objective reinforcement learning for continuous robot control. In Proceed-
ings of the 37th International Conference on Machine Learning (ICML), 2020.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. Projection-based
constrained policy optimization. In Proceedings of the Eighth International Conference on
Learning Representations (ICLR), 2020.

Ming Yu, Zhuoran Yang, Mladen Kolar, and Zhaoran Wang. Convergent policy optimization for safe
reinforcement learning. In Advances in Neural Information Processing Systems 32, 2019.

11

https://readingsml.blogspot.com/2020/03/constrained-mdps-and-reward-hypothesis.html
https://readingsml.blogspot.com/2020/03/constrained-mdps-and-reward-hypothesis.html

Under review as a conference paper at ICLR 2021

Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser. Tossingbot:
Learning to throw arbitrary objects with residual physics. In Proceedings of Robotics: Science and
Systems (RSS), 2019.

Yiming Zhang, Quan Vuong, and Keith W. Ross. First order optimization in policy space for
constrained deep reinforcement learning. arXiv preprint arXiv:2002.06506, 2020.

12

Under review as a conference paper at ICLR 2021

A IMPLEMENTATION DETAILS

We use an asynchronous off-policy actor-learner setup. In this setup, actors fetch policy parameters
from the learner and act in the environment, writing transitions to the replay buffer. The learner
uses the transitions in the replay buffer to update the policies and Q-functions (and optionally the
temperature network and Lagrange multiplier network, depending on the approach). We implement
this setup in Acme (Hoffman et al., 2020), a framework for distributed RL. To make learning more
stable, we maintain a target network for each trained network; we use these target networks for
computing gradients, and update them after every 200 gradient steps. We use 32 actors for training.
We use Adam (Kingma & Ba, 2015) for optimization, with a learning rate of 10−4 unless otherwise
specified.

All policies and Q-functions are implemented as feed-forward neural networks. Our action policies
πθ output a Gaussian distribution with a diagonal covariance matrix, and our preference policies πψ
output a categorical distribution. We found that adding layer normalization followed by a hyperbolic
tangent (tanh) to the first layer of the policy and Q-function networks improves stability of learning.
For the Safety Gym point mass tasks, we train a separate Q-function per objective, with a shared first
hidden layer. For humanoid tasks, the Q-values for action norm cost are instead computed exactly
from the actions; thus these Q-values have a discount factor of zero.

The default hyperparameters we used for our experiments are reported in Table 1, and task-specific
hyperparameters are reported in Table 2. In our experiments, we trained policies with constrained
MO-MPO and the MPO Lagrangian baseline for a range of different constraint thresholds, these
thresholds are reported in Table 3. We consider the “harder” constraint thresholds (as plotted in Fig. 1,
top row) to be the 15 lowest-magnitude thresholds for the humanoid tasks, and the 7 lowest-magnitude
thresholds for the point mass tasks.

Gathering data. We gather data for the replay buffer via the actors. When the action policy πθ is
preference-conditioned, at the start of each episode, each actor first samples a preference ε′ from the
preference policy πψ , and then acts according to πθ(a|s, ε′) until the end of the episode. For the next
episode, the actor repeats this, sampling a new preference.

Evaluation. For humanoid tasks, we evaluate each trained policy on the same 100 randomly-
initialized environments. For Safety Gym tasks, we do the same on the same 500 randomly-initialized
environments. Table 4 reports how many actor steps policies are trained for, before evaluation. We
evaluate with a deterministic action policy πθ by using the mean of the Gaussian distribution over
actions. When the action policy is conditioned on preferences, at the beginning of each episode during
evaluation, we first sample a preference ε from the preference policy, and then execute the mean of
πθ(a|s, ε), sticking with the same sampled preference for the entire episode. However, when the
preference policy is state-dependent, we instead condition the action policy on the median preference
from πψ(ε|s), because we find that this leads to better satisfaction of per-episode constraints.

B EXPERIMENTAL DOMAINS

B.1 HUMANOID

We use the humanoid run and walk tasks from DeepMind Control Suite (Tassa et al., 2018).9 The
observation space is 67-dimensional and the action space is 21-dimensional. Observations consist of
joint angles, joint velocities, center-of-mass velocity, head height, torso orientation, and hand and
feet positions. Actions correspond to joint accelerations; the minimum and maximum action limits
are −1 and 1, respectively. Each episode is 1000 timesteps.

The unconstrained task reward is given by the environment: there is a shaped reward for maintaining
a horizontal speed (in any direction) of 10 m/s for humanoid run and 1 m/s for humanoid walk. The
shaped reward is equal to min(h/h∗, 1), where h is the speed of the agent and h∗ is the target speed,
both in m/s. The constrained reward is the negative l2-norm of the action vector: rcost(s, a) = −‖a‖2.
This can be thought of as limiting the energy usage of the agent.

9Available at github.com/deepmind/dm control.

13

Under review as a conference paper at ICLR 2021

Hyperparameter Default

Q-function network(s): Qk(s, a) or Qk(s, a, ε)
layer sizes (512, 512, 256)
support [−150, 150]
number of atoms 51
n-step returns 5
discount factor γ 0.99

action policy network: πθ(a|s) or πθ(a|s, ε)
layer sizes (256, 256, 256)
minimum variance 10−12

maximum variance unbounded

preference policy network: πψ(ε) or πψ(ε|s)
layer sizes for πψ(ε|s) (256, 256, 256)
layer sizes for temperature network ηω(ε) (256, 256, 256)
support for εtask [0.1, 0.1]
support for εcost [10−5, 0.15]
number of atoms 100

both policy networks and Q-function networks
layer norm on first layer? yes
tanh on output of layer norm? yes
activation (after each hidden layer) ELU

Lagrange multipliers: λ or g(λ|s)
layer sizes for g(λ|s) (256, 256, 256)
softmax on output? yes
initial Lagrange multiplier λ (before softmax) 0
Adam learning rate 10−5

MPO / MO-MPO for action policy network πθ
actions sampled per state 20
default εk 0.1
KL-constraint on policy mean, βµ 10−3

KL-constraint on policy covariance, βΣ 10−7

initial temperature η 5
Adam learning rate (for dual variables) 10−2

MPO / MO-MPO for preference policy network πψ
actions sampled per state 20
default εk 0.1
KL-constraint on policy, β 10−7

initial temperature η 5
Adam learning rate (for dual variables) 10−2

training
batch size 512
replay buffer size 106

target network update period 200

Table 1: Default hyperparameters for all approaches, with decoupled update on mean and covariance
of the action policy.

B.2 SAFETY GYM

We use the level-two point mass tasks in Safety Gym: goal, button, and push (Ray et al., 2019).10 The
action space is 2-dimensional, with minimum and maximum action limits of −1 and 1, respectively.
The observation space is 60-dimensional for point goal, and 76-dimensional for point button and
push. There are 1000 timesteps per episode. At the start of each episode, the entities (i.e., goal, agent,
obstacles) are randomly initialized.

10Available at github.com/openai/safety-gym.

14

Under review as a conference paper at ICLR 2021

Humanoid run

MPO / MO-MPO for preference policy network πψ
KL-constraint on policy, β 10−8

Humanoid walk

preference policy network: πψ(ε) or πψ(ε|s)
support for εcost [10−5, 0.30]

MPO / MO-MPO for preference policy network πψ
KL-constraint on policy, β 10−6

Safety Gym point goal, button, push

preference policy network: πψ(ε) or πψ(ε|s)
support for εcost [10−5, 0.20]

Table 2: Hyperparameters for humanoid and Safety Gym experiments that differ from the defaults in
Table 1.

Task Constraint thresholds

Humanoid run ccost ∈ linspace(−4.0,−1.0, 31)
Humanoid walk ccost ∈ linspace(−2.0,−0.5, 31)
Safety Gym point goal, button, push ccost ∈ linspace(−15,−2, 14)
Safety Gym point goal with two constraints chazard = −2, cvase ∈ linspace(−10, 0, 11)

cvase = −2, chazard ∈ linspace(−10, 0, 11)

Table 3: The constraint thresholds that policies are trained on for each task.

We use the default task configurations as used in Ray et al. (2019), for instance how many obstacles
are spawned, the regions in which entities can be spawned, the size of entities, and the type of
observations. The only difference is that we use sparse task reward instead of shaped task reward,
since the former is more realistic.

A sparse task reward of 1 is given in goal when the agent enters the goal area, in button when
the agent touches the target button, and in push when the agent pushes a box into the goal area.
The constrained reward is the negative cumulative cost. In goal the agent incurs cost by being in
hazardous regions or bumping into vases; in button the agent incurs cost by being in hazardous
regions, bumping into gremlins, or touching non-target buttons; in push the agent incurs cost being in
hazardous regions or bumping into pillars. All obstacles are static, except for gremlins, which move
in a fixed circular pattern; the agent moves vases when it bumps into them.

In our experiments with two constraints (Sec. 5.1), we use a more difficult variant of the point
goal task, with two changes. First, the length of the square area in which entities are spawned is
three-quarters of the original length, which makes the density of obstacles higher and thus more
difficult for the agent to navigate around. In addition, the radius of the goal region is two-thirds
the original radius, which allows for it to be placed in more difficult-to-reach locations: because
the random initialization of the scene enforces that there are no collisions between the entities, the
smaller the goal is, the more potential open areas it could be placed in.

C ADDITIONAL EXPERIMENTS AND ANALYSIS

C.1 COMPARISON TO MULTI-OBJECTIVE RL ALGORITHMS

We first evaluate whether constrained MO-MPO is able to find solutions that lie on the Pareto front.
Since the ground-truth Pareto front is not available in general, we approximate this for humanoid run

15

Under review as a conference paper at ICLR 2021

Task Number of actor steps

Humanoid run and walk 500 million
Humanoid run, part-way through training 200 million
Humanoid run, per-episode constraint satisfaction 1 billion
Safety Gym point goal, button, push 400 million
Safety Gym point goal with two constraints 200 million

Table 4: The number of actor steps that policies are trained for, before evaluation.

−2000 0
action norm cost

0

500

1000

ta
sk

re
w

ar
d

MO-MPO

−5000 0
action norm cost

controllable MPO

−2000 0
action norm cost

controllable MO-MPO

−2000 0
action norm cost

constrained MO-MPO

0

0.15
εnorm

0

0.15
wnorm

0

0.15
εnorm

−4.0

−1.0
cnorm

Figure 5: A comparison of the Pareto fronts for humanoid run found by MO-MPO, controllable
MPO, and our approaches. For MO-MPO and constrained MO-MPO, each dot corresponds to
a separately-trained policy. For controllable MPO and controllable MO-MPO, five policies are
evaluated by conditioning on a range of linearly-spaced preferences (which correspond to weights or
KL-divergence bounds, respectively). The gray triangles denote the MO-MPO Pareto front.

by training policies with MO-MPO for a range of preference settings: εtask = 0.1 and εnorm at linearly
spaced intervals between 10−5 and 0.15.

We trained preference-conditioned policies with five random initializations, for the same εtask and
εnorm sampled uniformly from the same range; we call this approach controllable MO-MPO. This
produces a Pareto front that is comparable to MO-MPO’s, both in terms of coverage and solution
quality (Fig. 5, middle right).

It is also possible to train preference-conditioned policies where the preferences correspond to weights
for linear scalarization, rather than KL-divergence bounds as in MO-MPO. So as a baseline, we train
weight-conditioned policies with MPO (Abdolmaleki et al., 2018); we call this baseline controllable
MPO. These policies were conditioned on a wtask of 1.0 and wnorm sampled uniformly between 0 and
0.15. Compared to controllable MO-MPO, we had to train controllable MPO for longer (900M actor
steps instead of 500M) in order to reach reasonable task performance, and controllable MPO was still
unable to find solutions with low action norm (Fig. 5, middle left). This is as expected: Abdolmaleki
et al. (2020) show that MO-MPO outperforms MPO with linear scalarization on humanoid run, so
one would expect controllable MO-MPO to also outperform controllable MPO. We tried running
controllable MPO with higher weights, but these did not show any learning progress within 500M
actor steps.

Policies trained with constrained MO-MPO for equality constraint thresholds from −4 to −1 also lie
on the MO-MPO Pareto front (Fig. 5, right). We train a separate preference-conditioned action policy
and preference policy for each unique constraint threshold. This supports that learning the preference
distribution simultaneously while training the policy and Q-functions does not negatively impact the
final solutions that are found.

C.2 MPO LAGRANGIAN BASELINE

The baseline we use in our empirical evaluation is MPO with Lagrangian relaxation. We ran this
baseline on all Safety Gym point mass tasks, using the default settings (including dense reward) so that

16

Under review as a conference paper at ICLR 2021

0

10

20

30

ta
sk

re
w

ar
d

point goal, level 1 point goal, level 2 point button, level 1 point button, level 2 point push, level 1 point push, level 2

0 2 4 6 8
actor steps×107

0

25

50

75

100

to
ta

l
co

st

0 2 4 6 8
actor steps×107

0 2 4 6 8
actor steps×107

0 2 4 6 8
actor steps×107

0 2 4 6 8
actor steps×107

0 2 4 6 8
actor steps×107

Figure 6: Top row: The task reward (averaged over episodes) achieved by policies trained with our
MPO-Lagrangian baseline, over the course of training. The horizontal solid and dashed grey lines
denote the final task reward obtained by the PPO-Lagrangian and TRPO-Lagrangian approaches,
respectively, in Ray et al. (2019). Bottom row: The MPO-Lagrangian baseline meets the constraint
of incurring less than 25 expected cumulative cost per episode, indicated by the dotted red line.

-1.8 -1.6 -1.4 -1.2
cost threshold

−1000

0

1000

av
er

ag
e

ta
sk

/c
os

t
re

w
ar

d humanoid run

-1.4 -1.2 -1.0 -0.8
cost threshold

humanoid walk

-8.0 -6.0 -4.0 -2.0
cost threshold

−20

0

20

av
er

ag
e

ta
sk

/c
os

t
re

w
ar

d point goal

-8.0 -6.0 -4.0 -2.0
cost threshold

point button

-8.0 -6.0 -4.0 -2.0
cost threshold

point push

Figure 7: Constrained MO-MPO (in orange) achieves significantly higher task reward than the
baseline (in gray) for the harder-to-satisfy constraint thresholds in humanoid run (−1.4 and −1.2),
humanoid walk (−1.2,−1.0, and−0.8), point goal (−4 and−2), and point button (−4 and−2). For
the other constraint thresholds, both approaches achieve similar task reward. In terms of satisfying
constraint thresholds, our approach performs on-par with or better than the baseline. Each bar shows
either the average task reward (solid bars) or cost (clear bars) per episode, averaged over five seeds.
For both, higher is better. The error bars refer to standard deviation. The red lines denote the
constraint thresholds: clear bars above the constraint threshold indicate that the constraint is met.

we can directly compare against the constraint-satisfying policies obtained in Ray et al. (2019).11 Our
MPO-Lagrangian baseline compares favorably with those in Ray et al. (2019), that instead combine
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) with Lagrangian
relaxation (Fig. 6). This is with the caveat that policies were trained with TRPO-Lagrangian and
PPO-Lagrangian for 10 million actor steps, whereas our training curves for MPO-Lagrangian go up
to 100 million actor steps.

C.3 MULTIPLE RANDOM SEEDS

To verify that the empirical results we observed in Sec. 5.1 are significant, we used our approach and
the baseline to train policies for the same constraint threshold, starting from five random initializations.
We evaluated this for four constraint thresholds per task, selected from the ranges in Table 3. Results
are shown in Fig. 7.

Constrained MO-MPO achieves significantly higher task reward than the baseline for the harder-to-
satisfy constraint thresholds in four out of the five tasks. For the other constraint thresholds, both

11Since we noticed that our Q-functions underestimate cost (Appendix C.4), we use a cost threshold of 15 for
training, rather than the actual cost threshold of 25.

17

Under review as a conference paper at ICLR 2021

−20 0
Q-value estimate

−20

−10

0

ac
tu

al
co

st

point goal

−20 0
Q-value estimate

point button

−20 0
Q-value estimate

point push

MPO Lagrangian constrained MO-MPO

(a) The learned Q-function for cost underestimates the cost per episode. The actual cost is obtained by evaluating
the deterministic policy after 200M actor steps, on the same 100 randomly-initialized environments.

−20 0
Q-value estimate

−20

−10

0

co
st

th
re

sh
ol

d

point goal

−20 0
Q-value estimate

point button

−20 0
Q-value estimate

point push

(b) For both approaches, almost all trained policies satisfy the constraint (i.e., are on or above the dotted line),
according to the learned Q-values.

Figure 8: In the plots above, the Q-value estimate is obtained by averaging the Q-values for 100
batches of (s, a) pairs from the replay buffer, after 200M actor steps of training. Each point
corresponds to a separately-trained policy, for a different constraint threshold

approaches achieve similar task reward. In terms of satisfying constraint thresholds, our approach
performs on-par with or better than the baseline.

As mentioned, the slight violation of constraint thresholds for the Safety Gym point tasks is due
to underestimation of Q-values, rather than a limitation of the policy improvement method; this is
described in the following subsection.

C.4 Q-FUNCTION ESTIMATES

We noticed that for the Safety Gym point mass tasks, both our approach and the Lagrangian baseline
train policies that slightly exceed the constraints (Fig. 1, bottom row). After digging deeper,
we realized that this results from suboptimal Q-function learning, rather than suboptimal policy
optimization. The learned Q-values for the cost consistently underestimate the actual cost incurred
(Fig. 8a). The policy optimization finds a policy that meets the constraints, assuming that the learned
Q-values for the cost are accurate (Fig. 8b).

Thus, better constraint satisfaction can be obtained by improving policy evaluation, so that estimated
Q-values are more accurate—this is orthogonal to our proposed approach, which is focused on policy
improvement.

D ALGORITHMIC DETAILS

In this section, we give details on how to learn the preference policy and provide an algorithm box
for the policy improvement step. We also describe the overall procedure we use to collect data and
learn from the data.

18

Under review as a conference paper at ICLR 2021

D.1 LEARNING PREFERENCE-CONDITIONED POLICIES

As discussed in the main paper, we also learn a new preference policy πψ(ε) given the current
preference policy πold(ε) and fitness functions fk(ε) (that evaluate ε in terms of constraint satisfac-
tion). One could add the fitness functions together to obtain

∑
k fk(ε), and use any off-the-shelf RL

algorithm to optimize for a new preference policy. On the other hand, this problem can be been as a
multi-objective problem where the fitness for each constraint k is an objective. To this end, we use
MO-MPO for learning πψ(ε). Note that in this paper we have at most two constraints. In the case of
a problem with one constraint (i.e., one “objective”), MO-MPO (Abdolmaleki et al., 2020) reduces to
MPO (Abdolmaleki et al., 2018).

More formally, following the MO-MPO algorithm, we optimize the following constrained optimiza-
tion problem, that can be solved via Lagrangian relaxation (Abdolmaleki et al., 2020):

max
ψ

K∑
k=1

KL(pk(ε)‖πψ(ε)) s.t. KL(πold(ε)‖πψ(ε)) < δ ,

where δ defines a trust region for more stable learning and pk(ε) is a non-parametric improved policy
for each objective, i.e,

pk(ε) ∝ πold(ε) exp
(fk(ε)
ϕk

)
.

ϕk is a temperature variable that we maintain for each objective (or fitness function) and is obtained
by optimizing the convex dual function

g(ϕk) = αk + log

∫
ε

πold(ε) exp
(fk(ε)
ϕk

)
dε , (8)

where αk for each objective k defines a desired KL-divergence bound between the new improved
policy pk(ε) and current policy πold(ψ). We use the same value of αk = 0.1 for all fitness functions
k throughout the paper. For more details on MO-MPO, please refer to (Abdolmaleki et al., 2020).

Note that this section assumes that the preference policy is state-independent, i.e., π(ε). The
optimization is analogous for a state-dependent preference policy π(ε|s), which we consider in Sec.
5.3.

D.2 GENERAL ALGORITHM

We maintain one online network and one target network for each Q-function, action policy and
preference policy. We also maintain one online network for the temperature function. Target networks
are updated every fixed number of steps by copying parameters from the online network. Online
networks are updated using gradient descent in each learning iteration. We refer to the target networks
by using the subscript/superscript “old” throughout the paper.

We use an asynchronous actor-learner setup. In this setup actors fetch policy parameters from the
learner and act in the environment and write transitions to the replay buffer. Note that at the beginning
of each episode, we first sample one preference parameter ε from the preference policy, which
remains fixed until the end of the episode. The learner uses the transitions in the replay buffer to
update the Q-functions, policies and temperature functions. Algorithm 1 describes one step of policy
improvement for constrained MO-MPO.

19

Under review as a conference paper at ICLR 2021

Algorithm 1: Constrained MO-MPO: One policy improvement step
1: given batch size (L), number of actions and ε to sample (M), current policy πold(ε)πold(a|s, ε), current

(K + 1) Q-functions {Qold
k (s, a, ε)}Kk=0, temperature network ηω(ε), (K) constraint fitness functions

{fk(ε)}Kk=1, (K) temperature variables {ϕk}Kk=1, (K) KL bounds {αk}Kk=1, replay buffer D, first-order
gradient-based optimizer O

2:
3: initialize πθ(a|s, ε) from the parameters of πold(a|s, ε)
4: initialize πψ(ε) from the parameters of πold(ε)
5: repeat
6: // Collect dataset {si, εi, aij , Qijk }

L,M,K
i,j,k , where

7: // L states si ∼ D
8: // L preferences εi ∼ πold(ε)

9: // M actions aij ∼ πold(a|si, εi) and Qijk = Qold
k (si, εi, aij)

10:
11: // Compute (non-parametric) action distribution for each objective
12: δω ← ∇ω

∑
k

1
L

∑L
i ηω(ε

i)[k]
[
εik + log

∑M
j

1
M

exp
(

Q
ij
k

ηω(εi)[k]

)]
, where [k] is the index of the vector

13: Update ω based on δω , using optimizer O
14: for k = 0, . . . , K do
15: qijk ∝ exp(

Q
ij
k

ηω(εi)[k]
)

16: end for
17:
18: // Update action policy
19: δθ ← −∇θ

∑L
i

∑M
j

∑K
k=0 q

ij
k log πθ(a

ij |si, εi)
20: (subject to additional KL regularization)
21: Update πθ based on δπ , using optimizer O
22:
23:
24: // Collect dataset {εi, f ik}M,Ki,k , where
25: // M preferences εi ∼ πold(ε) and f ik = fk(ε

i)
26:
27: // Compute epsilon distribution for each constrained objective
28: for k = 1, . . . , K do
29: δϕk ← ∇ϕkϕkαk + ϕk log

(∑
i

1
M

exp
(
fik
ϕk

))
30: Update ϕk based on δϕk , using optimizer O
31: pik ∝ exp(

fik
ϕk

)

32: end for
33:
34: // Update preference policy
35: δψ ← −∇ψ

∑M
i

∑K
k=1 p

i
k log πψ(ε

i)
36: (subject to additional KL regularization)
37: Update πψ based on δψ , using optimizer O
38:
39: until fixed number of steps
40: return πold(a|s, ε) = πθ(a|s, ε) and πold(ε) = πψ(ε)

20

	Introduction
	Related work
	Background and notation
	Constrained Markov Decision Processes
	Multi-objective reinforcement learning

	Approach
	Learning preference-conditioned action policies (Step 1)
	Learning preference policies (Step 2)

	Experiments
	Quality of solutions
	Flexibility
	State-dependent preferences

	Conclusion and future work
	Implementation Details
	Experimental domains
	Humanoid
	Safety Gym

	Additional experiments and analysis
	Comparison to multi-objective RL algorithms
	MPO Lagrangian baseline
	Multiple random seeds
	Q-function estimates

	Algorithmic details
	Learning preference-conditioned policies
	General Algorithm

