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Abstract

One key aspect of spatially aware robots is the ability to “find their bearings”, i.e. to
correctly situate themselves in previously seen spaces. In this work, we focus on this
particular scenario of continuous robotics operations, where information observed
before an actual episode start is exploited to optimize efficiency. We introduce a new
model, Kinaema, and agent, capable of integrating a stream of visual observations
while moving in a potentially large scene, and upon request, processing a query
image and predicting the relative position of the shown space with respect to
its current position. Our model does not explicitly store an observation history,
therefore does not have hard constraints on context length. It maintains an implicit
latent memory, which is updated by a transformer in a recurrent way, compressing
the history of sensor readings into a compact representation. We evaluate the
impact of this model in a new downstream task we call “Mem-Nav”. We show that
our large-capacity recurrent model maintains a useful representation of the scene,
navigates to goals observed before the actual episode start, and is computationally
efficient, in particular compared to classical transformers with attention over an
observation history.

1 Introduction
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Figure 1: We introduce Kinaema, a model ca-
pable of situating previously observed spaces:
a recurrent transformer compresses observed
sequences into latent memory and estimates rel.
pose of a goal image w.r.t. to its current state.

The majority of work in embodied AI, in particu-
lar methods based on machine learning, work in
episodic settings: the agent begins with a clean
empty internal representation at every start, dealing
with every episode as if it was the first one after
unpacking the robot after its purchase. This is in
stark contrast to realistic robot operations, where
we would expect a robot to be able to exploit infor-
mation on the scene observed previously.

In this work, we propose a model capable of spa-
tially situating previously observed spaces. While
applicable to a broader class of downstream tasks,
we focus on navigation and a new continuous vari-
ant of the ImageNav task: an agent is given a goal
image and is required to navigate to the position
shown in this image. In the case when the goal is
not seen from the starting position, classical solu-
tions resort to an exploration strategy, patrolling the scene until the goal is observed. In our new
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setting focusing on continuous operation, “Mem-Nav”, the agent can explore the scene before each
episode starts to build up a latent representation, but it does not have access to the future goal at this
point — it has to build a general representation suitable for any potential future goal.

Previous work addressing continuous navigation mainly focuses on map-based solutions [40, 61],
building, maintaining and querying a metric or topological map during operation. We address this
problem in a purely data-driven way with models and agents which compress a potentially long
sequence of visual observations into a high-capacity latent representations, denoted mt in Fig. 1. The
recurrent nature of our model is a key design feature: given a history of observations of length N ,
sequence models based on transformers update their representations with O(1), essentially stowing
away the input, but query it in O(N2) due to the quadratic complexity of attention. In contrast, our
recurrent model, both, updates and queries memory in O(1).1 Classical recurrent networks, on the
other hand, suffer from scaling limitations as their network capacity scales quadratically with respect
to memory size [28]. We introduce a new recurrent sequence model, which decouples these aspects
and maintains memory in the form of a set of embeddings, which are updated with a transformer.

The main skill required for Mem-Nav is the capacity to situate previously observed space, which we
directly supervise during a pre-training phase: we train the recurrent model to estimate relative pose
between a query/goal image and the current agent position, assuming that the query image depicts a
point of the scene which had been previously observed, albeit potentially from a different viewpoint.
This text task may be somewhat reminiscent of classical relative pose estimation, but is fundamentally
different: compared to classical binocular geometric foundation models comparing pairs of images,
eg. DEBiT [9], our model compares a single query image to latent agent memory. We combine this
pre-training task with a memory based variant of masked-image modeling.

In summary, we introduce the following contributions: (i) a new recurrent sequence model “Kinaema”
with distributed memory and transformer-based update; (ii) “Mem-RPE”, a new task requiring the
estimation of relative pose between an image and agent memory; (iii) the integration of the sequence
model in a navigation agent trained with Reinforcement Learning; (iv) a new downstream navigation
task “Mem-Nav” allowing an agent to access observations collected before the episode start.

2 Related work

Visual navigation has been addressed in robotics for a long time by explicit models [13, 38, 39] based
on mapping and localization [12, 34, 56], and explicit planning [32, 52]. ML-based solutions are
typically trained on photorealistic simulators [31, 48]. Modular agents [14] decompose the problem
in sub-modules, whereas end-to-end trained models directly map input to actions with Reinforcement
Learning (RL) [27, 42, 57, 68], Imitation Learning (IL) [19], or offline-RL [54]. Image goal
navigation, “ImageNav”, adds a skill linked to relative pose estimation, which explicit methods
have addressed with local feature matching [33], or by retrieving features from a topological map
[7]. End-to-end trained agents compare images by extracting binocular features with [1, 53, 67, 69],
potentially directly pre-training for RPE [9]. Modular approaches have also been proposed [18, 65].

Continuous navigation has previously been cast as problem where episodes are divided in multiple
sub-episodes, where later sub-episodes are supposed to exploit information seen earlier. Common
formulations are the K-items scenario [6], Multi-Object Navigation [40, 61] or the Goat-Bench [30].
Our “Mem-Nav” task decomposes the problem into a priming sequence of fixed trajectories followed
by navigation episodes, which allows to accelerate training by pre-computing priming representations.

Sequence models were early on implemented with recurrence in RNNs, LSTMs [26] and GRUs [16].
Their memory capacity scaling problem had been addressed by external neural memory [22, 55, 70],
but was then eclipsed by transformers [59], which replaced recurrence altogether by attention. While
attention over time still dominates multiple fields like NLP and CV, currently recurrence makes
inroads again, either through state space models like S4 [24], Mamba [23] and LRU [45] inspired
from control theory, or by combining it with attention: xLSTM [5], MooG [58] and Token Turing
Machines [47] are prominent examples. We introduce a new transformer-based recurrent model and
show that it scales favorably, can be trained for long sequences and generalizes to even longer ones.

Relative pose estimation (RPE) between two images was tackled for decades with pixel-level
image matching techniques [25, 43, 49]; before learning-based approaches were proposed [29].

1This expresses complexity depending on the history size N only.
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Self-supervision was quickly introduced [36]. More recently, DUSt3R [60] regresses pointmaps,
while MASt3R [35] additionally learns a descriptor inspired by image matching. Both leverage
CroCo [62, 63] for pre-training. Similarly, MicKey [4] regresses pointmaps and supervises relative
pose alone with differentiable RANSAC formulations [8, 11]. All these recent methods have led to
impressive results for relative pose estimation, even under scenarios with little overlap between input
images as in the MapFree-Relocalization benchmark [3]. Compared to the standard formulation, our
“Mem-RPE” task requires estimating the pose between an image and the agent’s memory.

3 The Mem-Nav and Mem-RPE tasks

Mem-Nav — We study navigation in photorealistic 3D environments, where an agent is given a
goal image g ∈ R3×H×W and is required to navigate from a starting location to the position shown
in the goal. At each time step t the agent observes a pair of sensor readings ot = {xt,ut}, where
xt ∈ R3×H×W is an RGB image of size 112×112, and ut ∈ R7 is an odometry estimate in the form
of a difference of agent poses between t and t−1.

In contrast to classical navigation tasks in embodied AI, we model a continuous navigation setting
by dividing each episode into two different parts: An initial priming sequence of length P , around
200 steps, in which the agent explores the scene and has access to observations {ot}t=1...P but
not yet the future goal. During this initial sequence, the agent cannot chose its own actions and
follows a predefined path. From step P+1 on, the agent receives the goal image g additionally to
the observations {ot}t=P+1... and must navigate by predicting actions at at each step. The action
space is the discrete set A ={move forward 0.25m, turn left 10◦, turn right 10◦, stop}. An episode is
considered successful if the agent calls the stop action within 1m of the goal position and within its
1000 steps budget. We use the Habitat simulator [48].

Mem-RPE as an intermediate skill — Navigating to previously seen positions efficiently requires
the capacity to predict where they are, and we train our model for exactly this skill. We introduce the
new sub-task of relative pose estimation between an agent position at time t, represented by a latent
memory mt maintained by the agent, and a query image q, as p = {t,R}, where t = {d, θ} is the
translation, i.e. distance and bearing angle from the agent to the position depicted in query image. R
is the rotation matrix of the goal towards the agent, which is of limited relevance to a navigation task,
but which we supervise to increase the learning signal during training.

4 Situation awareness with latent memory

We designed a new sequence model around the following goals targeting continuous robotics:

(G1) Recurrence — Classical auto-regressive models attending over a history of observations are
required to revisit every single historical item for each step. Not only is this repetition wasteful
in itself, it is further exacerbated by the quadratic computational complexity of transformers
of O(N2) given N observed items from the past. We target models maintaining a memory
representation mt updated at each step given the current observation ot only, and queried
directly, without again considering other historical information, leading to a complexity of O(1)
plus complexities arising from the distributed nature of the memory itself.
While transformers attending over time are currently the dominant models in embodied AI,
and we do not claim to argue against their usage, in this paper we argue that the dominance
might potentially be an overfit of the scientific process to the short episode lengths from existing
benchmarks. While this is suitable for certain application which do not require long-term memory,
like manipulation, we think that it does hold back research in areas where very long-term memory
is necessary. Some applications in robotic navigation fall into this case, where it is advantageous
to remember information seen minutes, hours, or even days ago.

(G2) Memory capacity — Holding actionable information about an entire observed scene requires
scaling the memory size. Unfortunately, classical recurrent models like RNNs, LSTMs and GRUs
are held back by the direct coupling of memory capacity and network capacity with a quadratic
relationship determined by their update matrices. We address this by introducing a distributed
hidden state mt of N embeddings of size E, and modeling the update function as a transformer.
This ensures that the capacity of the network (transformer) can be chosen independently of the
memory capacity by scaling N .
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(G3) Stability — While we advocate for recurrent models for the reasons given above, they come
with a shortcoming: training requires back-propagating gradients over memory update chains
spanning over the sequence length. This is in contrast to transformers attending over time, where
the sequence length is dealt with attention: while the number of attended items is as large as
for recurrent models, the length of the gradient multiplication chain is not related to the context
length, as items are not integrated sequentially, making these models more stable. We address
this issue by combining research from classical recurrent models with an architecture from the
transformer literature: we add gating functions to the memory update, allowing the model to take
decisions (to “gate”) on the speed of updates for each memory item.

In what follows, we introduce a new high-capacity recurrent model maintaining a latent
representation of an observed scene, but as we will compare it to several recurrent baseline
models from the literature in the experimental section, we start with quite general equa-
tions which fit all tested models. All considered models maintain some form of memory mt

over time steps t, and which are characterized by concrete implementations of the following functions:

x̃t = Encvis(xt) // Encode visual input

ũt = Encodo(ut) // Encode odometry input

mt = Update(mt−1, x̃t, ũt) // Update memory

yt = Read(mt) // Read out memory

pt = Dec(yt,Encgoal(g)), // Decode relative pose

(1)
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Starting with the commonalities, all models encode the visual input with a Vision Transformer
(ViT) [20], Encvis(xt), which we initialize with the weights of DINO-v2 [44] ViT-Small/14, and
finetune the weights during training. Odometry inputs are encoded with an MLP, Encodo(ut). All
models update memory at each time step and also project memory mt into a set of embeddings
yt = Read(mt) through a read-out mechanism. Both functions are tailored to each model, given
further below. And lastly, we train all models in a supervised manner by predicting relative pose pt

with a decoder Dec, which is implemented as a transformer with cross-attention between encoded
query image and read out memory, followed by self-attention,

p̃t = CrossAttn(Q=Encgoal(g),K = yt, V = yt)
pt = SelfAttn(p̃t).

(2)

For clarity we omitted residual connections and FF layers from the notation, pose is predicted from
an additional CLS token added to the inputs.

4.1 Kinaema — memory in motion

We call our model “Kinaema”, a neologism from kinema (motion) and mnema (memory). It maintains
a set of N embeddings mt = {mt,n} of dimension E, and its update is recurrent (Goal G1) and
implemented as transformer, ensuring that the memory size can be scaled by increasing N without
having to modify the network capacity (Goal G2). This is achieved by modeling the memory
update mt = Update(mt−1, x̃t, ũt) as follows, also shown in Fig. 2. Each memory embedding
mt,n is summed with a learned positional embedding et,n combined with the encoded observations
(x̃t, ũt) through concatenation, and then encoded, resulting in memory embeddings corrected (in a
Kalman-like sense) by the observations:

mcorr
t,n = Linear([mt−1,n + en, x̃t, ũt]), (3)

where [., .] denotes concatenation over the embedding dimension. The output size of the linear layer
is E. While the last operation deals with each embedding independently, the following self-attention
transformer contextualizes the embeddings with each other,

m̃t = SelfAttn(mcorr
t ). (4)

The resulting set of embeddings m̃t corresponds to the update candidates, which are then subject to
gating to increase training stability (Goal G3) and to model different speeds of dynamics in memory.
The gating block operates on each embedding independently, giving

mt,n = Gating(mt−1,n, m̃t,n). (5)
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Figure 2: Kinaema is a recurrent sequence model maintaining distributed memory mt in
the form of N embeddings of size E each. Its previous state mt−1 is first contextualized with
observations ot = {xt,ut} then embedding-wise gated, resulting in new state mt.

Gating is inspired by GRUs by adding an update gate and a forget gate to the model [16], and we
actually exploit this by implementing the gating block as a GRU cell with weights shared over the
N embeddings of mt. This comprises an essential difference between GRUs and Kinaema: in
classical gated recurrent networks the gating mechanism is of the same complexity as the actual
update function (the parameter matrices for the update and reset gate are of size identical to the matrix
handling the update of the hidden state), which would be intractable for model as large as our model
with a large distributed state. In Kinaema, the actual state update is handled through the transformer
given in Eq. (4), whereas the gating is done by block weight-shared over memory embeddings. This
choice allows to scale memory capacity easily without impacting the capacity of the gating block. In
Sec. 5, we will show that both the transformer block in Eq. (4) and the gating block in Eq. (5) are
essential for good performance.

The read-out block projects memory embeddings to a representation useful for the downstream
decoders. For our model, this is implemented as a basic reshape, shaping the memory tensor from
N×E to N ′×E′, yt = ReshapeN ′,E′(mt). In our experiments, we will show, that it is interesting
to have fewer memory of embeddings of higher embedding dimension, and to read them out into a
larger number embeddings of lower dimension for decoding.

Training — We train on sequences of randomized lengths T between 50 and 100 time steps, and
by taking the memory mT at the last time step, predicting relative pose for 2T query images of
two different types: (i) the T observed images {xt}1...T , and (ii) T alternative images {xalt

t }1...T ,
which have not been observed but lie in the observed region of the scene. We generate them with
the same simulator by slightly disturbing the pose of the observation of the corresponding time
step t. These frames prevent the model to learn a simple lookup table. We train with supervision,
LRPE =

∑
i

[
|ti − t∗i |+ |Ri −R∗

i |
]
, where (ti,Ri) and (t∗i ,R

∗
i ) are predicted and GT pose for

training image i, respectively. We add an auxiliary masked image modeling loss, which reconstructs
the same query images after they have been masked. We add a second decoder head querying memory
with the same cross-attention mechanisms as the RPE decoder in Eq. (2) — see Appendix B.

4.2 Integration into the downstream navigation agent

We address the Mem-Nav task introduced in Sec. 3 by augmenting the DEBiT agent from [9], which
currently achieves state-of-the-art performance on the ImageNav and Instance-ImageNav tasks:

pobs
t = BinEnc(xt,g) // Binocular encoder - get goal direction

ht = GRU (ht−1,p
obs
t , RN(xt),MLP(at−1)) // Recurrent memory update

p(at) = π(ht). // Linear policy

(6)

This agent maintains a recurrent GRU memory ht fed with visual observations xt encoded by a
ResNet-18. More importantly, it compares each visual observation xt with the goal image g using a
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Figure 3: Integration into the downstream RL-trained agent: The RPE decoder used for pre-
training is kept for the downstream task, searching for the goal image in the embeddings yt which are
read out from memory mt, while a binocular encoder BinEnc from DEBiT [9] is used to compare
the goal to the current observation. Two types of memory are updated and queried: (i) the agent
maintains its own additional recurrent memory ht, and (ii) Kinaema-memory mt.

binocular transformer BinEnc, pre-trained for relative pose and visibility estimation between pairs
of images, to extract information on the goal direction.

The DEBiT agent is capable of efficiently detecting goals when they are visible, but does not handle
previously seen goals, in particular when they have been observed before an episode start. This is
where our proposed new sequence model comes in — it is run in parallel, receives the same visual
observations xt as the main agent, and contributes with goal direction estimates.

As illustrated in Fig. 3, the augmented agent is given as

pobs
t = BinEnc(xt,g), // Binocular encoder - get goal direc

mt = . . . using Eqs.(1), // Kinaema memory update

pmem
t = . . . using Eqs.(1), // Kinaema - get goal direction

ht = GRU (ht−1,p
obs
t ,pmem

t , RN(xt),MLP(at−1)), // Recurrent memory update

p(at) = π(ht). // Linear policy

(7)
where pmem

t is given by the relative pose decoder of the Kinaema model, denoted as pt in Eq. (1).
Inspired by [9], for both pose estimates, pobs

t and pmem
t , we provide the latent encoding of the

pose taken from the penultimate layers of the respective networks, and not the decoded pose values
themselves.

Training — we train the parameters of the policy π, the recurrent network GRU and the monocular
ResNet encoder RN jointly with PPO [50] for 300M steps, with a reward definition in the lines of the
one proposed by [15] for PointGoal and re-used by [9] for ImageGoal, rt = K · 1success −∆Geo

t − λ,
whereK=10, ∆Geo

t is the increase in geodesic distance to the goal, and slack cost λ=0.01 encourages
efficiency.

We initialize the agent from publicly available trained DEBiT-B model provided by [9], and train the
remaining parameters from scratch. Since the size of the GRU was increased by the additional inputs,
of the extended agent, this required a block-wise initialization of the weight matrix which project
GRU input to latent memory space:

W =

 WKinaema→h = 0
Wmonoc→h = Wmonoc→h pre-trained from [9]
Wbinoc→h = Wbinoc→h pre-trained from [9]
Wact→h = Wact→h pre-trained from [9]


Just after initialization, the extended agent gives the exact same outputs as DEBiT-B [9]. We then
re-initialize the linear policy layer with default uniform distribution.

5 Experimental results

Experimental setup — We trained the models on the HM3D [46] and Gibson [66] datasets
and created a sound set of splits allowing clean separation of pre-training, training and evalua-
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Model Mem Obs Seq len 200 Seq len 800
size hist 1m

10o
1m
90o

2m
90o

1m
10o

1m
90o

2m
90o

Trunc.Hist. 41.6k ✓ 2 11 28 1 6 16
MooG [58] 524.3k ✗ 0 5 14 0 3 9
LRU [45] 3.1k ✗ 4 18 34 2 9 20
EMA [21] 153.6k ✗ 6 18 34 3 11 24
xLSTM [5] 2,359.3k ✗ 8 23 47 5 13 29
GRU [16] 3.1k ✗ 12 32 56 4 14 31
Kinaema 61.4k ✗ 21 41 63 10 21 37

Table 1: Comparisons of models on Mem-
RPE: Kinaema has N=20 memory embed-
dings; EMA uses a trainable λ ( RPE-test ).
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Figure 4: Generalization to longer sequences,
Mem-RPE: GRU and Kinaema, trained for
T=100, evaluated on T=100...1000 ( RPE-test ).

tion: RPE-train was used for Mem-RPE training and consisted of sequences sampled from the
HM3D/train scenes. RPE-val contains sequences generated from Gibson/train scenes and was used
for checkpoint selection and ablations. RPE-test contains sequences generated from HM3D/val
scenes and was used for final evaluation and model comparisons. NAV-train was used for navigation
training on new episodes generated from the HM3D/train scenes: starting poses match pre-generated
offline priming sequences. A similar arrangement was done for NAV-test , based on HM3D/val
scenes. All tables have color-coded backgrounds indicating the splits. More details in Appendix A.

Metrics / Mem-RPE — All models have been trained with randomized sequence lengths sampled
between T=50 and T=100. We systematically evaluate all models in significant out-of-distribution
settings, generalizing to two different validation sequence lengths of T=200 and T=800, respectively.
We provide accuracy of correctly recognized poses with three tolerance margins: less than 1m of
translation and 10◦ of rotation errors, < 1m and 90◦, and < 2m and 90◦. We put more emphasis
on low translation errors, almost disregarding goal rotation: this is goal rotation towards the agent,
irrelevant for navigation. Rotation towards the goal, a.k.a. “bearing”, is part of the translation error.

Metrics / Mem-Nav — Navigation performance is evaluated by success rate (SR), i.e., fraction of
episodes terminated within a distance of <1m to the goal by the agent calling the stop action, and
SPL [2], i.e., SR weighted by the optimality of the path, SPL = 1

N

∑N
i=1 Si

ℓ∗i
max(ℓi,ℓ∗i )

, where Si be a
binary success indicator in episode i, ℓi is the agent path length and ℓ∗i the shortest path length.

Baseline models — We implemented the following baseline sequence models, which were adapted
to the task by adding a read-out mechanism and the same RPE-decoder described in Sec. 4, Eq. (2).
More details on them is given in Appendix D.

GRUs [16] model memory mt as a single vector and were implemented with the standard PyTorch
implementation, Update ≜ mt = Wmt−1 +Ux̃t, where we omitted gating equations from the
notation. We explored multiple numbers of layers and we made the memory read-out function
non-linear with (non-shared) MLPs, Read(mt) ≜ {MLPθi(mt)}i.

EMA [21] models memory update as an exponential average, Update ≜ mt = λmt−1 + Uxt,
with the readout being a simple reshape. They are simple but provide interesting guarantees;
more importantly, lacking any learned dynamics, they allow to evaluate the impact of significantly
increasing memory capacity without having to deal with side-effects on stability.

xLSTMs [5] maintain a matrix shaped cell state updated with the covariance update rule [51]
resorting to cross-products of K and V projections. We took the official code 2 and projected the
models hidden memory to a set of embeddings with the parallel MLP chain given above. This
uses xLSTMs “as is”, i.e. as a standard sequence model. Potential further integration could be
done by opening the black box and adapting the internal querying mechanism to the task.

MooG [58] is probably the model closest to us, as it is recurrent with a transformer update. However,
it has key differences: there is no gating block, updates separate a prediction and a correction
step, inputs are dealt with patch-wise and cross-attended to 1024 memory embeddings of size 512,
learned embeddings are replaced with memory initialization. We re-implemented it and adapted
by giving it the same inputs (including ut) as the other models. This re-implementation has the
exact architecture and hyper-parameters as described in the paper, but for comparability does not
use their specific loss, which separates a prediction and a correction step.

2
https://github.com/NX-AI/xlstm
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Trunc.Hist. is a simple baseline which forwards the last Ttrunc observations embeddings directly to
the decoder. It is not recurrent and has a limited context length.

DEBiT [9] is a natural baseline for the navigation task. It was described in Sec. 4.2 and currently
holds SoTA performance on ImageNav and Instance-ImageNav. We used the official code.3

Mem-RPE performance — Tab. 1 compares Kinaema with the baselines on the Mem-RPE
task. EMA has a massive advantage in terms of memory size, which we configured to
|mt|=400∗384=153.6k, but this could not compensate its very simple dynamics modeled as expo-
nential decay. As its memory content cannot be re-arranged by the Update function, the burden of
organizing it lies with the input encoder placing inputs correctly into the memory values. Compared
to the original [21], we made λ a trainable vector of size 153.6k, which boosted performance (see
Appendix E for the performance of [21]). GRU clearly outperforms EMA due to its more expressive
handling of process dynamics. Given its small memory capacity, it was crucial to encourage the model
to compress memory, which we achieved by making Read non-linear. This performed considerable
better than the linear variants (see Appendix E). The more recent xLSTM performed less well than
a GRU, but was used as a plug-n-play sequence model. We conjecture that performance could be
optimized further by opening the black box and making the internal query mechanism connect to
the goal image more directly. MooG was reported to be trained for T=8 steps only in [58] but we
trained it the same lengths of T=100 as the other models in our experiments. It performed very
poorly, which we link to the patch-wise handling of visual inputs, which seems to overwhelm the
recurrent transformer. Out attempts to switch Kinaema to a similar handling of memory and attention
failed similarly. Kinaema has been configured such that each embedding is of the same size as the
GRU memory, and the model can leverage its larger memory, making use of its multiple embeddings.
It provided the best performance, in particular when needing the generalize to longer sequences. We
link this to the combination of large memory size, expressive transformer update, and stable training
provided by the gating block. Trunc.Hist. was trained with Ttrunc=100, and evaluated on longer
sequences by truncation. It does not generalize well, and delegates all the work to the decoder, which
lacks capacity.

All models were trained on a max seq. length of T=100, we see that performances drop when they
are evaluated on significantly larger lengths, T=800. Fig. 4 compares Kinaema with GRU on lengths
100...1000, where we see a sharp initial drop increasing T from the in-domain value of T=100,
followed by a more shallow further decrease. Comparisons of all models are given in Appendix E.

Num Emb Mem Seq len 200 Seq len 800
emb dim size 1m

10o
1m
90o

2m
90o

1m
10o

1m
90o

2m
90o

1 3.1k 3.1k 7 26 53 3 12 34
5 3.1k 15.4k 14 34 72 7 21 44

10 3.1k 30.7k 14 36 62 9 23 45
20 3.1k 61.4k 24 52 77 13 28 47
30 3.1k 92.2k 24 51 73 9 22 40
50 3.1k 153.6k 23 47 68 1 7 22

(a)
Num Emb Mem Seq len 200 Seq len 800
emb dim size 1m

10o
1m
90o

2m
90o

1m
10o

1m
90o

2m
90o

160 384 61.4k 4 19 44 2 13 33
80 768 61.4k 2 12 31 1 7 20
40 1.5k 61.4k 6 26 52 3 14 33
20 3.1k 61.4k 24 52 77 13 28 47

(b)
Table 2: Kinaema: varying memory
structure, Mem-RPE: (a) keeping memory
embedding size constant; (b) keeping total
memory size constant ( RPE-val ).

While the EMA and GRU models were quite stable
during training, Kinaema followed a bi-modal dis-
tribution over seeds: seeds either gave excellent or
mediocre performance. Results in Tab. 1 were given on
RPE-test with seeds selected on RPE-val .

Sensitivity study: memory capacity — In Tab. 2a, we
studied the impact of the number N of embeddings in
mt of size 3072= ∼ 3k. The model scales well until
roughlyN=20 embeddings are reached. We conjecture
that this is due to training with sequences of length
T=100 and longer training could lead to bigger choice
for optimal memory usage. In Tab. 2b we studied the
compromise between the number of embeddings and
their dimensions for a given fixed memory size. Fewer
and bigger embeddings seem to work better, which
we tentatively explain by the factorization of the gating
block of the model: each scalar gate value is determined
as a function of the values of the same embedding.
Increasing the embedding dim increases expressivity.

Ablation studies — Tab. 3 ablates the two main blocks of Kinaema’s Update block: both the
transformer and the gating block are necessary for good performance. In Tab. 4 we ablate training
choices. Randomizing sequence length T during training is a key design choice. We found that
training with constant lengths hindered generalization to longer sequences. We conjecture that it
leads to models confusing the notion of “state” (in a control theory sense) with “layer of abstraction”,

3
https://github.com/naver/debit

8

https://github.com/naver/debit


Transf. Gating Seq len 200 Seq len 800
block block 1m

10o
1m
90o

2m
90o

1m
10o

1m
90o

2m
90o

✗ ✓ 11 33 55 3 9 19
✓ ✗ 11 37 62 4 15 31
✓ ✓ 24 52 77 13 28 47

Table 3: Kinaema ablations of update blocks,
impact on Mem-RPE ( RPE-val ).

Randomize Masked img Seq len 200 Seq len 800
seq len modeling 1m

10o
1m
90o

2m
90o

1m
10o

1m
90o

2m
90o

✗ ✓ 8 30 58 4 15 36
✓ ✗ 28 51 71 4 14 34
✓ ✓ 24 52 77 13 28 47

Table 4: Kinaema ablations of different losses,
impact on Mem-RPE ( RPE-val ).

Figure 5: RPE during navigation: exploiting the information from the priming sequence (green),
Kinaema can predict (pink) the rel. pose of the goal (red), while the binocular module of [9] only
starts providing reliable predictions (orange) when the agent is positioned (cyan) in view of the goal.

i.e. using recurrent updates not only to push representations forward in time, but also to make changes
in abstraction levels as a neural network would do between layers. The removal of masked image
modeling particularly impacts OOD behavior, generalization to longer sequences.

Navigation performance — Three variants of the DEBiT agent [9], with different ways to integrate
memories, are fine-tuned for 100M steps on NAV-train , and compared against the original agent on
NAV-test in Tab. 5: (with Kinaema) concatenates the output of the Kinaema for Mem-RPE fed with
primer and updated with observations to the input of the agent GRU, as described in Sec. 4.2; (with
GRU memory) same, but using a GRU; (with h0-injection) is a baseline using the hidden state ht of
the original agent to encode the priming sequence with no goal, teacher forced, and injects it into h0
at episode start with linear adaptation.

SPL (%) DIST SPLIT→ EASY (2-5m) MEDIUM (5-10m) HARD (10-22m)
SEEN SPLIT→ SEEN UNSEEN SEEN UNSEEN SEEN UNSEEN

↓MODEL PRIMER ↓ (#=566) (#=116) (#=520) (#=319) (#=64) (#=290)
• DEBiT (zeroshot) ✗ 41 41 40 42 47 41
• DEBiT (finetune) ✗ 45 40 42 43 48 44
• w/. inject h0 ✗ 37 32 35 37 42 38

✓ 41 (+4) 40 (+8) 36 (+1) 38 (+1) 41 (-1) 40 (+2)
• w/. GRU memory ✗ 43 42 42 43 50 45

✓ 45 (+2) 48 (+6) 43 (+1) 46 (+3) 50 (+0) 45 (+0)
• w/. Kinaema ✗ 48 47 46 45 44 48

✓ 50 (+2) 46 (-1) 48 (+2) 49 (+4) 54 (+10) 49 (+1)
Table 5: Downstream navigation performance on Mem-Nav ( NAV-test ): GRU and Kinaema
are integrated into the agent as in Section 4.2. The baseline “h0-injection” uses the non-augmented
DEBiT agent over the priming sequence (teacher-forced) and episode (policy taking decisions) with
the same state ht. See Fig. 10 in supp. mat. for the corresponding plot.

As shown in Tab. 5, naively adapting hidden state of the original agent (h0 injection) to represent
primer information does not work. Using dedicated memory encoders significantly improves navi-
gation performance, indicating that the agent could exploit the information to localize the goal and
optimize its path. Fig. 10 shows navigation performance, measured by SPL, for different episode
difficulties, measured by geodesic distance between start and goal. Kinaema offers a significant ad-
vantage compared to other models. While easier episodes can be solved by any model, the additional
memory and RPE decoders are helpful when dealing with longer sequences.

In particular, we can observe the advantage of having obtained an initial exploration of the scene
through the priming sequence (marked in the 2nd column) and stored in Kinaema memory.

Fig. 5 visualizes Mem-RPE predictions during navigation episodes, indicating that Kinaema can
successfully predict the goal position even when it is not in view.
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Figure 6: Cross-attention over memory: each image patch is colored by the memory embedding
receiving the highest attention, revealing stable region–memory correspondences over time.

Kinaema

Kinaema
no rec. loss

Avg 
SR*

Avg 
IoU

61.30.46

56.80.46

GT

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 180 190 200170 t

Figure 7: Occupancy probing of a sequence of length T=200 from mt. SR∗: success rate on 10
navigation episodes defined on each GT map, but executed on the probed map.

Visualizing cross-attention between memory and scene patches — As mentioned in Eq. (2), the
RPE decoder of our Kinaema model contains a cross-attention layer that operates between the patch
tokens of the query images and 160 embeddings (20 memory embeddings mt of size 3072 reshaped
into 160 embeddings yt of size 384). In Fig. 6, we visualize attention probabilities from this layer
on four random selected Gibson episodes, each comprising 200 steps. There, each memory token is
given a fixed color. Then for each query image, we associate its patch tokens to the most attended
memory token, and overlay the corresponding color on the image. We see that patch tokens from
spatially coherent regions tend to map to the same memory token, producing a segmentation-like
effect. This correspondence is stable over time: as the agent moves, the set of patch tokens associated
with a given memory token “moves” consistently with the viewpoint.

Probing occupancy — In Fig. 7 we show predictions of a probing model outputting occupancy BEVs
from the frozen memory mt of Kinaema. The probe is able to infer scene structures from Mem-RPE
pre-training. While map reconstruction accuracy is the same with and without reconstruction loss
(average IoU on the validation set), removing the loss degrades navigation performance in this setting:
the avg. SR∗ using probed maps goes from 61.3% to 56.8%. More details are given in Appendix F.

Limitations — (i) Kinaema has been trained for relative pose estimation, but does not provide an
estimate on whether a goal image has been seen in the past. (ii) Training has been limited to T=100
steps, an increase would likely improve performance. (iii) Dealing with visual inputs as a single
embedding instead of a patch-wise representation enabled its high performance, compared to models
like MooG [58], but it might limit adding further improvements in the future.

6 Conclusion

We have proposed a new recurrent sequence model maintaining a distributed memory updated with a
transformer. Compared to transformers attending over the observation history, it is computationally
efficient with updates and reads of O(1). We trained the model for a new skill “Mem-RPE”, relative
pose estimation between a goal image and agent memory, and integrated it into a new continuous
navigation downstream task, “Mem-Nav”. We show that the model can spatially situate previously
seen spaces and leverage this capability to navigate efficiently in a continuous operation. The model
widely outperforms other recurrent baselines including recent work using transformer updates.
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A Data splits and generation

A.1 RPE data

Pre-training data for relative pose estimation (RPE) is generated on scenes from the train split of
the HM3D dataset. Using a navigating agent configuration close to the default one of habitat-sim,
we collect a fixed number of frames per scene by chaining random goal pursuits. We split data per
connected components of the navigation mesh, such that any sample of a subset can be reached
from any other. We take care of balancing the number of samples with respect to the component
area relative to the total navigable area of the scene. Compared to the default agent configuration,
we use a smaller image resolution (112× 112) and an action space enabling finer motion, which is
deliberately different from the action space of the agent used for the validation and testing data, for
both Mem-RPE and Mem-Nav. This allows to test our model in out-of-distribution situations:

Configuration 1: RPE-training : A = {10cm forward, 5◦ turns}. This choice corresponds to the
raw data generated. Additionally, during training frames are not sampled consecutive, but
randomly in steps between 1 and 8.

Configuration 2: RPE-validation+test, Mem-Nav training+test :
A = {25cm forward, 10◦ turns}.

This generates significant out-of-distribution behavior between Mem-RPE training and Mem-RPE
testing. Note that a forward testing step of 25cm cannot be expressed as multiple steps of forward
training steps of 10cm.
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Additionally, one alternative frame is generated at each step by randomizing most of the sensor
specification. We provide details of the parameter distributions in Tab. 6. Algorithm 1 provides more
details on the generation procedure. We use a custom storage format based on a compressed NumPy
archive supporting both dense and sparse values (e.g. for the pursued goal position), and large folders
of images compressed in JPEG. Validation and test data are generated on different scenes with the
same procedure. We use the train split of the Gibson dataset for validation, from which we select
hyper-parameters and models without interfering with the tests used to report metrics. The final
metrics are reported on the HM3D val split (the test split is not publicly available). However, as
detailed in Tab. 6, agent configuration uses the standard action space instead (25cm forward, 10◦
turns), to match the one of the downstream navigation task.

Input: scene dataset S, #frames per scene
Output: Offline dataset of trajectories with main and alt cam
foreach scene in S do

split scene into connected navigable islands;
select subset I of islands to get 80% of scene coverage;
foreach island in I do

#frames← area(island) / total covered area × #frames per scene;
agent state← random navigable position, random orientation;
repeat

select random navigable goal with geodesic dist. constraints;
while goal not reached do

agent state← execute greedy action towards goal;
alternative camera← random configuration;
render main and alternative frames;
store(frames, agent position and orientation, alt camera);

end
until #frames have been generated;

end
end

Algorithm 1: RPE data generation procedure.

A.2 MemNav data

For the downstream navigation task, we only use the scenes in the publicly available train and val
splits of the HM3D dataset. We use the default agent configuration of habitat-sim except for the
frame resolution which we reduce to 112 × 112 to avoid unnecessary rendering and inter-process
transfer for frames ending up resized or max-pooled in the agent model. We first sample a few
exploration cycles per connected component of the navigable mesh in each scene, to constitute limited
offline information used as memory primers for the agent, and for which we can pre-compute internal
representation. Start poses are then sampled from these cycles with many different goal positions to
make navigation episodes. Algorithm 2 provides details of the generation procedure, and Algorithm
7 lists important generation parameters.

B More details on training losses

As mentioned in Sec. 4.1 of the main paper, we train all models by jointly optimizing the relative
pose estimation (RPE) and masked image modeling (MIM) losses over sequences of length T = 100.

Mean-squared error is used for the MIM loss:

LMIM =
1

N×P

N∑
i=1

∑
p∈Ii

[
|pi − p∗

i |22
]
, (8)

where pi and p∗
i are predicted and GT pixel values for the patch p of the training image i, and N and

P are the number of training images and patches in each image, respectively.

18

https://github.com/StanfordVL/GibsonEnv#database
https://aihabitat.org/datasets/hm3d
https://aihabitat.org


Common cameras main resolution 112× 112
field of view 90◦

position 125cm above ground
orientation straight

alt resolution 112× 112
field of view ∼ U [60◦, 120◦]
aspect ratio ∼ U{1, 4/3, 16/9, 16/10}

× (portrait or landscape)
position 125cm above ground

+∆ ∼ U [±50cm] in all dir.
orientation pan ϕ ∼ U [±50◦]

tilt ψ ∼ U [±30◦]
roll θ ∼ U [±5◦]

RPE-train actions forward 10cm
turn L/R 5◦

scenes set HM3D/train
# 800

frames # per scene 100k
total 80M

sampling rand. intervals skip ∼ U [0, 8] frames
RPE-val actions forward 25cm

turn L/R 10◦

scenes set gibson/train
# 72

frames # per scene 1k
total 72k

sampling contiguous seq.
RPE-test actions forward 25cm

turn L/R 10◦

scenes set HM3D/val
# 100

frames # per scene 1k
total 100k

sampling contiguous seq.
Table 6: Parameters for RPE data generation.

The RPE loss is given in Sec. 4.1 of the main paper, and repeated here for completeness:

LRPE =
1

N

N∑
i=1

[
|ti − t∗i |+ |Ri −R∗

i |
]
, (9)

where (ti,Ri) and (t∗i ,R
∗
i ) are predicted and GT pose for the training image i, respectively.

See Appendices C.2 and C.3 on how we make RPE and MIM predictions, respectively.

Generalization to longer sequences — We apply two types of “drop-out” to improve generalization
between train and test, and generalization to longer sequences:

1. random sequence sub-sampling, where a sequence length is randomly determined at each
training iteration to lie between a minimum value (Tsub) and T .

2. as already mentioned in section A.1 on data generation, we do not sample consecutive steps
from the generated training data, but rather use random interval sampling of size 8, where
the interval between two consecutive steps can be up to 8. This encourages robustness to
changes in sampling rate between train and test.

Training hyper-parameters commonly used for all models are shared in Tab. 8.
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Input: scene dataset S, #cycles per island, #frames per cycle, #episodes per scene
Output: “navigate from memory” dataset of episodes with primers
foreach scene in S do

split scene into connected navigable islands;
select subset I of islands to get 80% of scene coverage;
foreach island in I do

for #cycles per island do
while approximate cycle length < #frames per cycle do

add random waypoint to cycle;
end
solve TSP on waypoints;
agent state← arbitrary waypoint in cycle;
foreach waypoint in cycle do

while waypoint not reached do
agent state← execute greedy action towards waypoint;
render main camera frame;
ray-trace fog of war on occupancy grid;
store(frame, fog, agent position and orientation);

end
end
#episodes← area(island) / total covered area / #cycles × #frames per scene;
for #episodes do

start (pos, ornt)← random pose along cycle;
goal (pos)← random navigable point;
memory primer← sub-sample cycle (frames,poses) to fixed #frames per cycle;
/* such as memories end at start pose */
geodesic distance← shortest path length from start to goal;
seen indicator← approx. goal visibility from cycle (fog or neighbor alignment);
store(episode);

end
end

end
end

Algorithm 2: MemNav data generation procedure.

C Kinaema: architecture details

C.1 Main memory model

Inputs: images are of resolution 112×112.

Visual encoders (Encvis and Encgoal): they are implemented as ViT-Small with a patch size of 14
and 0 registers [17], and they are initialized from the pretrained weights of DINO-v2 [44].

Odometry encoders (ũt): they are implemented as linear layers with an output size of 64.

Update/correction block: equation (3) is Linear function.

Update/transformer block: the transformer block has 3 layers, 24 heads, and an MLP-factor of 4.
This was optimized over the validation set RPE-val , exploring 0,1,2,3,4 layers and various numbers
of heads.

Update/gating block: the gating block is a GRU in the standard PyTorch implementation with 3
layers. We explored 0,1,2,3 and 4 layers, optimized over RPE-val .

C.2 RPE modules

All models have a Transformer-based decoder to provide estimates for relative pose, but there are
slight differences, as we optimized this for the baselines. In order words,
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common cameras main resolution 112× 112
field of view 90◦

position 125cm above ground
orientation straight

actions forward 25cm
turn L/R 10◦

collision radius 10cm
height 150cm
sliding disabled

cycles # per island 2
len 200 frames (aka. steps)

NAV-train scenes set HM3D/train
# 800

episodes # per scene 10k
total 8M

NAV-test scenes set hm3d/val
# 100

episodes # per scene 20
total 2k

Table 7: Parameters for MemNav data generation.

Hyper-parameter Value

Sequences
Length (T ): 100
Random sequence sub-sampling (Tsub): 50
Random interval dropping: 8

Batch size 32
Training steps 250K

Optimizer
Type: AdamW
Weight decay: 5e− 2
(β1, β2): (0.9, 0.99)

Learning rate

Min: 1e− 8
Max: 1.5×10−4×batch-size/256
Warm-up: Linear, for first 20% of iterations
Schedule: Cosine

Gradient clipping Over all parameters, max magnitude:1
Data type AMP with float16

Table 8: Hyper-parameters used for training models.

• the choices we made for Kinaema worked best for Kinaema.

• the choices we made for the baselines, worked best for the baselines.

The Kinaema decoder employs a cross-attention (CA) layer with no residual connection whose keys
and values are provided by the Read function and queries are the patch tokens from the goal image
encoder Encgoal. The motivation behind this design is to make the decoder rely solely on the memory
outputs and prevent information leakage from Encgoal into the decoder. A learnable token (i.e. a
CLS token) is attached to the output of the CA layer and given as input to a sequence of 4 standard
self-attention (SA) blocks [59]. Finally, the CLS token is detached and relative pose of the goal image
is estimated by a MLP with 1 hidden layer.

Other competitive variants, i.e. GRU and xLSTM, perform better when multiple CA layers are
interleaved with the MLP and SA layers. More concretely, for those models, we attach the CLS token
to Encgoal outputs, and apply 3 chains of CA-MLP-SA-MLP layers, where the first CA layer does
not have a residual connection. Relative pose estimations are made similarly to Kinaema.

All decoders have a comparable number of parameters.
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C.3 Masked image modeling modules

These modules provide the prediction for the masked image modeling loss, and they follow the design
of the RPE modules from the previous section. For Kinaema, a separate sequence of 4 standard SA
blocks is applied after the CA layer between Encgoal and Read outputs. Then RGB values for each
pixel of a patch are predicted by a linear layer.

On the other hand, for the GRU and xLSTM models, a learned MASK token is inserted at the output
of Encgoal to the locations of the masked tokens, and they are given as input a separate stack of
CA-MLP-SA-MLP layers, followed by a linear layer for predicting RGB values.

D Baselines: architecture details

D.1 GRU

As mentioned in Sec. 5 of the main paper, this variant differs from Kinaema in its Update and Read
functions. We implemented the Update function for the GRU variant such that encoded visual and
odometry inputs (x̃t and ũt, respectively) are concatenated in the channel dimension and then given to
a GRU with 4 hidden layers and 3072 units (following the standard implementation in PyTorch). Then
the output from the final step of the GRU is given as input to the Read function, which applies a list
of 50 MLPs in parallel to produce 50 different memory tokens. Finally, the memory tokens are given
to the Dec functions to estimate the relative pose and model the masked image. The hyper-parameters
of this variant, i.e. the number of hidden layers and units in GRU and the number of parallel MLPs
are chosen such that the total number of trainable parameters of this variant is comparable to that of
Kinaema. We saw in general that the more the parameters the better the performance on RPE-val .

D.2 EMA

The EMA models are simple and do not leave much space for configuration choices. The memory
vector mt is of size 153.6k, chosen to be a multiple of 384. This choice was optimized over the
set {19.2k, 38.4k, 76.8k, 153.6k } on RPE-val . The visual and odometry encoders Encvis and
Encodo, respectively, are the same as for Kinaema and the other baselines. However, the concatenated
encoded inputs [x̃t, ũt] are additionally projected to dimension 153.6k with a single linear layer into,
and added to mt by simple summing, as was also described in the main paper:

Update ≜ mt = λmt−1 +Uxt (10)

The matrix U of this layer alone has (4096+ 64)× 153.6k =∼ 640M parameters. The EMA model
trades the simplicity of the update function for the complexity in the input projectors.

D.3 xLSTM

This variant closely follows the GRU one described above, except that xLSTM[1:0] (comprised
only of mLSTM blocks [5]) is used in the Read function. We took the official code 4 for the
implementation of mLSTM. To match the trainable parameters of Kinaema, we use 6 mLSTM blocks
in total, which are applied sequentially. In each block, the upsampling factor of 1.47 is used to project
the concatenated visual and odometry inputs into 2×3072 dimensions, which produces a cell state of
size 768×768×4 = 2, 359, 296. Similarly to the GRU variant, we take the final hidden state (Eq. 21
in [5]) and provide it to the Read function.

D.4 MooG

We re-implemented MooG with the architecture described in their original paper, but adapted it to
our task by giving it the same inputs (including ut) as the other models. Input images and encoders
Encvis and Encodo are the same as for Kinaema and the other baselines. The rest of the architecture
has been kept as in the original paper (ref. [52] in the main paper). Memory mt is composed of 1024
embeddings of size 512. As in the original paper, inputs are dealt with patch-wise, in our case the
DINO-v2 patch embeddings. We adapt this be concatenating it with the encoded odometry and then

4
https://github.com/NX-AI/xlstm
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linearly projecting to the memory embedding dimension of 512. Updates separate a prediction and a
correction step.

Update/prediction step: as in the original paper, this is implemented as a transformer with 3 layers
and 4 heads and self-attention layers.

Update/correction step: as in the original paper, this is implemented as a transformer with 2 layers
and 8 heads and cross-attention and self-attention layers.

D.5 Truncated History

We implemented a simple Truncated History (Trunc. Hist.) baseline: it directly forwards the
concatenated patches embeddings and odometry embeddings to the Dec function.

mt = Update(mt−1, x̃t, ũt) ≜

[
mt−1

x̃t

ũt

]
yt = Read(mt) ≜ mt

(11)

First value is repeated as much as necessary to pad the resulting mt matrix to a fixed Ttrunc size, eg:

m3 =

[
x̃0

ũ0
. . .

x̃0

ũ0︸ ︷︷ ︸
×Ttrunc−3

x̃1 x̃2 x̃3

ũ1 ũ2 ũ3

]

A maximum of Ttrunc = 100 embeddings is kept (older ones are discarded), eg:

m243 =

[
x̃144 x̃145

ũ144 ũ145
. . .

x̃242 x̃243

ũ242 ũ243

]

D.6 Integration into the navigation agent

As shown on Fig. 3, we integrate our Kinaema“memory encoder” into the standard agent architecture
of [9], which borrows from existing agent baselines models: separate encoders per observation
modality, whose outputs are concatenated to be fed to a GRU which maintains an internal state
representation (ie. compressed representation of observations history) from step to step while the
agent is navigating. This internal state is then given to a linear actor (ie. policy) head to produce
a distribution over actions. The originality in [9] is a dedicated binocular encoder pre-trained to
compare pairs of images, and estimating relative pose and visibility information between them. This
is exploited to predict the relative pose between goal image and an onboard image observation. We
extend on this idea by integrating the comparison of the goal to a dedicated compressed memory
representation, instead of only comparing to last observation and leaving all the recurrent work to the
agent GRU and policy.

E Additional experiments

E.1 EMA w. constant λ vs. trainable λ

In Table 9 we have explored different variants of the EMA baseline with different values of the
λ decay factor: λ = 0.9, λ = 0.95, and a trainable λ vector (which is the variant shown in the
experiments of the main paper). Making λ trainable has a positive impact, which can be explained
quite easily: we conjecture that it allows the model to choose whether certain memory features are
“fast” or “slow”.

E.2 Alternative read outs for the GRU Baseline

In the main paper we had promised further experiments with alternative read outs for the GRU
baseline. Unfortunately we seem to have lost the corresponding model checkpoints, we apologize for
that. We are re-running these experiments and will have them ready for the rebuttal period.

23



Seq len 200 Seq len 800
1m
10o

1m
90o

2m
90o

1m
10o

1m
90o

2m
90o

λ = 0.9 4 14 29 2 8 19
λ = 0.95 2 9 22 1 6 15
λ = trainable vector of size 153.6k 6 18 34 3 11 24

Table 9: EMA: comparisons of λ configurations, impact on Mem-RPE ( RPE-val ).
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Figure 8: Comparing all models (trained on T=100) on their generalization to longer sequences;
Mem-RPE, RPE-test . (a) pose threshold 1m10°; (b) pose threshold 1m90°; (c) pose threshold
2m90°.

E.3 Generalization to long sequences

As an extension of Figure 3 of the main paper, which compared the Kinaema and GRU models on
longer sequences, in Figure 8 of this supplementary material we compare Kinaema on RPE-test with
all main baselines: GRU, xLSTM, EMA, and MooG. We can see that Kinaema clearly outperforms
the baselines and provides the best Mem-RPE predictions over an extremely large range of out-of-
distribution sequences lengths, from the in-domain length of 100 frames up to 1000 frames. The
advantage of Kinaema is also maintained over all 3 metrics.

E.4 Training on different sequence lengths

We trained two models on different sequence lengths T and compare their generalization in Fig. 9.
The standard model trained on T=100 is compared to a variant which has been finetuned on sequences
of length T=200 (but limiting backpropagation to the last T=100 frames of the sequence). In both
cases, we provide the maximum length, as for each batch we randomly sample sequence lengths. We
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Figure 9: Impact of different training sequence lengths: the standard model trained on T=100
compared to a variant which has been finetuned on sequences of length T=200. We can see an
improvement in precision (the hardest metric) but not necessarily in the overall recall (less hard
metrics).

can see an improvement in precision (the hardest metric) but not necessarily in the overall recall (less
hard metrics).

E.5 Visualization of downstream Mem-Nav performances

Tab. 5 provides a plot of the results shown in Tab. 5 in the main paper.
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Figure 10: Navigation efficiency (SPL) for different episode difficulties (start→goal distance), w/
(■) and w/o (⊟) priming sequence. Numbers correspond to Tab. 5 in main paper.

F Occupancy probing experiments

We generate a dataset {(mi
t,M

i
t)}i=1...D of D=185k trajectories of length 100, where mi

t are
memory states and Mi

t are corresponding ego-centric 2D metric occupancy maps of size 10m×10m
calculated in simulation. A probing network ϕ, inspired by [64, 10], is trained on Gibson training
scenes to predict M̃i

t = ϕ(mi
t) minimizing the Dice loss [41] between M̃i

t and Mi
t.

The network ϕ processes each flattened mi
t with an MLP with 2 hidden layers of size 512 to produce

an output vector of dimension 2304. This vector is reshaped into a 3D tensor of size [16, 12, 12]
and processed by a Coordinate Convolution (CoordConv) layer [37], followed by four CoordConv-
CoordUpConv (Coordinate Up-Convolution) blocks. Each such block is composed of:

A 2D Dropout layer with dropout probability 0.05;
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Ground-truth Reconstruction, SR*= 60%

Figure 11: Computation of 2D Navigation Success Rate, SR∗: 10 goal positions gn, in green, are
randomly sampled on the ground-truth occupancy map on the left. They are all reachable from the
agent position at the center (yellow square). SR∗ is computed as the percentage of goal positions gn
that can be reached on the reconstructed map on the right, again in green. Unreachable locations are
highlighted in red.
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Figure 12: Comparing occupancy probing performance of Kinaema trained with and without
reconstruction loss with T=100, on sequences of length T=100, 200, 300. (Left) Average Intersec-
tion over Union, IoU; (Right) Average 2D Navigation Success Rate, SR∗.

A CoordUpConv layer with kernel size = 3, stride = 2, padding = 0, that maintains the channel
dimension and roughly doubles the spatial dimensions of the feature map;

A CoordConv layer with kernel size = 3, stride = 1, padding = 0, that halves the channel size
while roughly keeping the other dimensions intact;

ReLU activation except for the last block where it is removed.

The result of this process is passed to a Conv2D layer to create the output of size [1, 200, 200]
representing the unnormalized logits of each map pixel being navigable.

We tested probing performance on 1000 trajectories of length 100, 200 and 300 collected on unseen
Gibson validation scenes, evaluating map reconstruction quality with Intersection over Union (IoU)
and assessing how useful the probed map is for navigation with 2D Navigation Success Rate (SR∗)
[10]. Fig. 11 shows an example of SR∗ calculation: given a pair of ground-truth and predicted maps
(Mi

t, M̃
i
t), we sample 10 reachable goal locations on the ground-truth map gn, and compute SR∗ as

the percentage of goals gn that can be reached on the reconstructed map M̃i
t. See

Fig. 12 shows average probing performance of Kinaema trained with and without reconstruction loss
with T=100, on sequences of length 100, 200 and 300. On the left we display IoU and on the right
SR∗. Interestingly, when tested in-domain (T=100), the model without reconstruction loss achieves
better performance, while for longer sequences the trend reverses, especially concerning SR∗. This
confirms previous observations that the use of reconstruction loss mainly helps the model generalize
to longer sequences.

Finally, in Fig. 13 we display example predictions of occupancy maps obtained by probing the two
Kinaema models trained with and without reconstruction loss for sequences of length 100 to 300.
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Figure 13: Probing of sequences of length T=100 (top), T=200 (middle), T=300 (bottom). On
each figure we display, from top to bottom, ground-truth occupancy map, occupancy reconstructed by
probing Kinaema, and occupancy reconstructed by Kinaema without reconstruction loss. Sequences
are down-sampled by a factor 10.

G Additional complementary visualizations of memory attention

G.1 Attention over top-down maps

In Fig. 14 we show complementary visualizations of memory attention. While in Fig. 6 of the main
paper we link patches of observed images to queried memory, in Fig. 14 take a single memory mt at
time t, read out into embeddings yt, and check how these embeddings are attended given different
goal poses. Kinaema is primed with the priming sequence shown in green. Then, goal poses are
sampled from positions on a regular grid and four different canonical orientations. Respective icons
are color coded, where color represents the choice of read out embedding in {yt} which received
highest attention. Figures Fig. 14 (Left) and Fig. 14 (Right) differ in the order in which the priming
frames have been visited.

We can see that there are regions of homogeneous color (which identifies the read out embedding) in
the map, but also that goal camera orientation potentially plays an important role. This makes sense,
as a rotation of the goal camera by 90◦, 180◦ or 270◦ will lead to completely different observations.
On the other hand, we see quite big differences between the left and the right Figure, which differ by
the order in which the priming frames have been seen. This gives evidence that memory embeddings
are not plainly selected based on appearance features, a choice which we would have judged as being
sub-optimal, as it would have ignored the spatial layout of a visited scene. As a summary, considering
this post-hoc analysis, we judge as positively interesting, that (1) assignments between memory
embeddings and goal pose depend on the priming sequence, and (2) there are spatial regularities
in highly attended memory embeddings. Combined, they provide evidence for a spatially coherent
strategy which does not collapse to appearance alone.

G.2 Global attention patterns

To assess the contribution of memory tokens across diverse goal images, we compute the cross-
attention between the patch tokens output by Encgoal and memory tokens for all 1000 images in
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Figure 14: Visualization of attention to memory queried from different goal poses: Kinaema is
primed with the priming sequence shown in green. Then, goal poses are sampled from positions on a
regular and 4 canonical orientations, color coded as the choice of read out embedding in {yt} which
received highest attention. Left and right differ in the order in which the priming frames have been
visited.

the 200-frame sequences of RPE-val . Then we average these probabilities over images and patch
tokens, and visualize them in Fig. 15, both per attention head and aggregated across heads.

It can be seen that the heads exhibit distinct and complementary patterns. Heads 2 and 6 concentrate
sharply on a few memory tokens, whereas other heads distribute their attention more evenly. Collec-
tively, the heads provide full coverage: the mean attention over all heads assigns non-zero weight to
every memory token, although certain tokens are consistently emphasized more than others.

H Computing resources and runtime

Model training is performed on a variety of NVIDIA V100, A100 or H100 type of GPUs (up to 4
GPUs). To maintain a fixed batch size across all models, we implemented the gradient accumulation
mechanism. This way, the batch size per GPU can be as low as 1.

Mem-RPE — Training Kinaema on 1 H100 GPU takes approximately 5 days.
Mem-Nav — RL fine-tuning of the agent w/ Kinaema on 1 H100 GPU takes approximately 30 days

to reach 300M steps.

Inference of the full agent is lightning fast: processing a full set of 2k episodes of NAV-test takes
approximately an hour and a half on 1 V100 GPU, which corresponds to roughly 140 frames per
second.

I Broader impact

Our paper investigates the scientific question, whether relative pose can be estimated between an
image and latent memory, and whether recurrent Transformers can perform this task without requiring
to store historical information. Beyond the exciting scientific reasons for exploring work on spatial
AI and embodied AI, we welcome the potentially high interest for society in getting tedious tasks
automated. Our contributions advance robotics, and as such, positive and negative impacts are
common with other scientific advancements in this area. We can provide a few examples, but the
impact of robotics is well known: autonomous agents navigating in indoor spaces could be helpful in
health care, care for the elderly, but could also be useful for tasks as mundane as guides in offices,
museums etc. An intelligent agent could act as an “embodied ChatGPT”, providing help not only
in the form of textual output, but more importantly, by guiding people to places they have difficulty
finding or by fetching items. We acknowledge that any progress in robotics can inherently be abused
and produce potential harm, for instance, in surveillance or military applications.
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Figure 15: Cross-attention scores between goal images and memory tokens. Y-axis represents the
attention probability multiplied by 100 for the sake of visualization. Scores for each head sum to 100.
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