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ABSTRACT

Low-rank Adaptation (LoRA) efficiently adapts large pre-trained models to down-
stream tasks by learning low-rank adapters, significantly reducing computational
and memory costs without sacrificing performance. Recent studies highlight the
promise of rank adaptation methods in improving the flexibility and performance
of LoRA. Grounded in Singular Value Decomposition (SVD) theory, these meth-
ods decompose the weight update into parameterized unitary matrices and learn-
able scaling coefficients, thereby allowing dynamic rank allocation of adapters
based on coefficients. However, the parameterized construction of unitary matri-
ces presents a significant computational bottleneck. To address this limitation, we
propose Shared Random-Span Augmentation (SRSA), a novel Parameter-Efficient
Fine-Tuning (PEFT) method that replaces the learnable unitary matrices with
fixed, layer-shared random matrices. Our method facilitates flexible rank adapta-
tion by learning scaling vectors within the shared random space, while maintain-
ing parameter and memory efficiency. We provide both empirical and theoretical
evidence to demonstrate the feasibility of substituting the unitary matrices with a
shared random matrix. To evaluate the representational ability of our method, we
conduct extensive experiments on various visual tasks. The results demonstrate
that our method achieves compelling adaptation performance.

1 INTRODUCTION

The emergence of large-scale pre-trained vision models (Dosovitskiy et al., 2021; Liu et al., 2021;
He et al., 2022) has significantly advanced the field of computer vision, while simultaneously creat-
ing a pressing need for parameter-efficient fine-tuning techniques (Houlsby et al., 2019; Chen et al.,
2022; Hu et al., 2022; Liu et al., 2024). Such methods are essential to adapt these powerful mod-
els to diverse downstream tasks without incurring prohibitive computational costs. Among various
efficient adaptation strategies, Low-Rank Adaptation (LoRA) (Hu et al., 2022) has gained consid-
erable popularity due to its ability to dramatically reduce the number of trainable parameters while
maintaining competitive performance. Despite its widespread adoption, a fundamental limitation of
LoRA and similar fixed-rank approaches is their restricted capacity to generalize across tasks with
varying complexities and data distributions. To elucidate this limitation, we analyze the orthogonal-
ity of the column vectors within LoRA’s down-projection and up-projection matrices, building on
insights from recent work (Yang et al., 2025). From Figure 1a, we observe that the angles between
column vectors in LoRA adapters exhibit distinct distributions across different layers. As the di-
mension increases, the orthogonality progressively deteriorates. This phenomenon implies that the
required rank varies across different adapter layers, demonstrating the inflexibility of the fixed-rank
paradigm in adapting to diverse feature distributions. This drawback has motivated the development
of more expressive fine-tuning mechanisms that can dynamically adjust their representational power.

Recent innovations (Zhang et al., 2023; Valipour et al., 2023; Dong et al., 2024a) have introduced
the concept of learnable rank adaptation, which extends the conventional low-rank framework by
allowing the singular values of the update matrices to be optimized during training. These methods
leverage the principles of singular value decomposition to enable the rank of each adaptation matrix
to vary based on task requirements. While this approach enhances flexibility, it introduces a signifi-
cant computational burden: the orthogonal unitary matrices associated with the singular values must
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rank=8

Layer 1 Layer 4 Layer 8 Layer 12

rank=16

rank=32

rank=128

(a) The angle distribution across layers under different dimension configura-
tions. The LoRA adapters are trained on KITTI dataset using ViT-B/16 pre-
trained backbone.

rank=16

rank=32

rank=128

rank=768

(b) The angle distribution
of random initialized matri-
ces under different dimen-
sion configurations.

Figure 1: Figure 1a shows the angle distribution between column vectors within the down/up-
projection matrices in LoRA adapters. Figure 1b presents the angle distribution between column
vectors of random initialized matrices.

also be updated, either explicitly or implicitly. This requirement not only increases the number of
learnable parameters, but also complicates the optimization process, potentially leading to training
instability and suboptimal convergence (He et al., 2025).

To address these challenges, we propose a novel fine-tuning framework termed Shared Random-
Span Augmentation (SRSA). Our method offers a radical yet theoretically grounded alternative to
conventional learnable rank mechanisms. Instead of optimizing the unitary matrices, SRSA replaces
them with fixed, randomly initialized matrices that remain frozen throughout training. These random
matrices are shared across different layers of the model, creating a highly efficient parameterization
that minimizes introduced parameters. Crucially, we demonstrate that this design preserves the
expressive power of adaptive-rank methods while substantially simplifying the learning process.
We support our approach with a rigorous theoretical analysis that establishes the feasibility of using
layer-shared random matrices as universal approximators in adaptive fine-tuning.

Through extensive experiments on a set of downstream vision classification tasks, we validate the
effectiveness of SRSA. Our results show that the proposed method consistently outperform existing
efficient adaptation approaches. The main contributions of this work are threefold:

1. We introduce SRSA, an efficient fine-tuning strategy that replaces learnable unitary bases
with fixed, layer-shared random matrices, significantly reducing both computational and
memory costs.

2. We provide a theoretical foundation for our approach, proving that frozen random matri-
ces can effectively approximate the adaptive bases in learnable rank mechanisms without
compromising representational power.

3. We conduct comprehensive experiments across multiple vision benchmarks, demonstrating
that our SRSA can offer a compelling trade-off between parameter efficiency and represen-
tational capacity.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING

The PEFT methods (Houlsby et al., 2019; Jia et al., 2022; Ben Zaken et al., 2022) effectively reduce
resource overhead during downstream task adaptation by freezing the pre-trained weights and updat-
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ing minimal introduced parameters. Among various PEFT techniques, Bias (Ben Zaken et al., 2022)
focuses on fine-tuning only the bias terms of pre-trained model for specific downstream tasks, signif-
icantly reducing the training cost. VPT (Jia et al., 2022) introduces prompt learning into visual tasks.
VPT achieves efficient adaptation through training task-specific prompts while keeping the model
backbone frozen. SSF (Lian et al., 2022) accomplishes feature alignment with downstream tasks by
performing scale and shift operations on the deep features of pre-trained model. ARC (Dong et al.
(2023)) significantly reduces learnable parameter count through parameter sharing. Specifically,
ARC shares unified trainable projection matrices across layers while employing tunable coefficients
to capture layer-specific features. To further promote parameter efficiency, FACT (Jie & Deng,
2023) proposes a tensorization-decomposition framework, which factorizes the ViT weights into
a 3D tensor while decomposing the weight increments into learnable lightweight factors. RLRR
(Dong et al., 2024b) reveals the dynamics of PEFT methods from the perspective of SVD and pro-
poses a Residual-based Low-Rank Rescaling (RLRR) fine-tuning strategy. AOFT (Yang et al., 2025)
demonstrates that strict orthogonality whin adapter projection matrices can enhance model general-
ization. To this end, AOFT develops a efficient adaptation strategy which employs a single learnable
vector to generate approximately orthogonal projection matrices.

2.2 LORA AND LEARNABLE RANK ADAPTATION

LoRA (Hu et al., 2022) has gained significant popularity due to its competitive performance while
maintaining parameter efficiency. In practice, LoRA represents original weights updates through
the product of two learnable low-rank matrices, as illustrated in the Figure 2a. During the inference
phase, these low-rank matrices are merged into the original weight matrices through reparameteriza-
tion, thereby avoiding extra computational overhead. Building upon the success of LoRA (Hu et al.,
2022), subsequent research has proposed various improvements to the original framework (Woo
et al., 2025; Hayou et al., 2024). However, the fixed-rank paradigm of LoRA constrains its gener-
alization capability when confronted with varying tasks and data distributions, which has motivated
the development of various flexible rank adaptation strategies.

GoRA (He et al., 2025) leverages gradient information to statically assign ranks for low-rank
adapters and initialize the corresponding weights. While GoRA’s static rank adaptation mechanism
introduces a degree of flexibility, it still fails to address the inherent limitations of such fixed-rank
approaches. To overcome this challenge, DyLoRA (Valipour et al., 2023) and AdaLoRA (Zhang
et al., 2023) employ learnable rank adaptation, allowing dynamic parameter budget allocation for
adapters during training. HTA investigates the limitations of the fixed bottleneck dimension from
the perspective of SVD. To address the limitation, HTA (Dong et al., 2024a) constructs Householder
matrices using trainable vectors and adopts these matrices to efficiently mimic the unitary matri-
ces. Additionally, HTA enables flexible rank adaptation through learnable diagonal vectors. While
the aforementioned studies provide theoretical frameworks for flexible rank adaptation, these meth-
ods require introducing additional parameters to construct the high-dimensionality adaptive-space,
which incurs additional computational overhead. In contrast, our work indicates that a random space
is able to preserve the expressive power of adaptive-rank, offering a parameter-free construction
paradigm.

2.3 PARAMETER-EFFICIENT FINE-TUNING USING RANDOM MATRICES

Random matrices are recognized as a promising technique in PEFT (Houlsby et al., 2019; Jia et al.,
2022; Ben Zaken et al., 2022). Recent studies have replaced the learnable projection matrices
with random initialized matrices that keep frozen during training, substantially reducing the number
of trainable parameters. NoLA (Koohpayegani et al., 2024) reparametrizes projection matrices of
LoRA (Hu et al., 2022) as linear combinations of a predefined set of random matrices. These ran-
dom matrices remain frozen, while only the weighted coefficients for each matrix are learned during
training. VERA (Kopiczko et al., 2024) freezes a single pair of low-rank random matrices that
are shared across layers, while optimizing the scaling vectors that allow for layer-wise adaptation.
RandLoRA (Albert et al., 2025) extends these approaches to achieve full-rank updates. Specifically,
RandLoRA introduces a set of low-rank, non-trainable random matrices and learns scaling vectors to
perform linear combinations of these matrices. In this work, we also present our SRSA fine-tuning
strategy under the umbrella of random matrices. In contrast to previous attempts, we introduce a
novel random matrices sharing strategy for learnable rank adaptation, along with theoretical insights
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into this strategy. A visual comparison between our method and existing random matrix-based PEFT
approaches is presented in Figure 2.

3 METHODOLOGY

3.1 PRELIMINARY

LoRA. For a weight matrix W0 ∈ RD1×D2 in a pre-trained Vision Transformer (ViT) model, fine-
tuning optimizes W0 to obtain the weight update ∆W ∈ RD1×D2 tailored to the downstream task.
LoRA freezes the pre-trained weights and approximates the weight update ∆W using the product
of two low-rank matrices, as follows:

W
′
= W0 +∆W ≈ W0 +WdownW

⊤
up, (1)

where W
′

denotes the fine-tuned weight, Wdown ∈ RD1×r and Wup ∈ RD2×r are low-rank ma-
trices with r ≪ min(D1, D2). As these low-rank matrices require fewer learnable parameters than
original weights, LoRA drastically reduces the consumption of computational resources during fine-
tuning.

Singular Value Decomposition (SVD). Given an arbitrary matrix W ∈ RD1×D2 , SVD algorithm
factorizes it into a product of three matrices. Without loss of generality, we assume D1 < D2. Then
SVD is represented as:

W = USV⊤, (2)
where U ∈ RD1×D1 denotes the left unitary matrix, V ∈ RD2×D2 represents the right unitary
matrix, and S ∈ RD1×D2 is a diagonal matrix with its diagonal entries arranged in descending
order of singular values, such that s1 ≥ s2 ≥ · · · ≥ sD1

≥ 0. Let U = [u1,u2, . . . ,uD1
] and

V = [v1,v2, . . . ,vD2
], where ui and vi represent the bases vectors of U and V, respectively. We

can rewrite equation 2 as following:

W =

D1∑
i=1

uisiv
⊤
i . (3)

3.2 LIMITATIONS OF LORA

We assume the SVD form of the weight update ∆W as
∑D1

i=1 uisiv
⊤
i . To better reveal the limita-

tions of LoRA, we present LoRA from the perspective of SVD, as expressed in :

WdownW
⊤
up =

r∑
i=1

aib
⊤
i , (4)

where ai and bi are the column vectors of Wdown and Wup, respectively. The optimal approximation
of LoRA to the weight update is achieved by minimizing the Frobenius norm of the difference
between ∆W and WdownW

⊤
up:

arg min
Wdown,Wup

∥∆W −WdownW
⊤
up∥2F = arg min

ai,bi

∥
D1∑
i=1

uisiv
⊤
i −

r∑
i=1

aib
⊤
i ∥2F . (5)

According to the Eckart–Young–Mirsky theorem, the solution to equation 5 corresponds to the rank-
r truncation SVD of ∆W, i.e.,

∑r
i=1 aib

⊤
i =

∑r
i=1 uisiv

⊤
i , while the remaining components∑D1

i=r+1 uisiv
⊤
i will be discarded. This finding indicates that LoRA captures the directional infor-

mation of weight updates, which corresponds to the top-k eigenvectors.

As observed, the expressive power of LoRA is constrained by assigned rank. The fixed-rank
paradigm makes the adapter fails to approximate the shifting weight updates. Ideally, the rank
of LoRA adapter should be dynamically adapted according to the effective rank of weight updates.
However, this is impractical as the weight updates remain unknown before training. An alternative
approach is to construct a high-dimensionality space and enable rank adaptation within this space
to effectively model the dynamics in weight updates. This motivates us to investigate a feasible
approach for efficiently building such a adaptive-space.

4
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(d) Illustration of the proposed SRSA. Notably, the dimensionality of low-rank adaptation matrices can be
flexibly configured for specific downstream tasks. We set the dimensionality to one as such setting achieves
an effective balance between performance and parameter efficiency in the following experiments.

Figure 2: Visual comparison between our SRSA and existing PEFT methods.

3.3 ENHANCING LORA WITH SHARED RANDOM-SPAN AUGMENTATION

Random matrices have demonstrated their ability to approximate adapter projection matrices in
previous studies (Kopiczko et al., 2024; Albert et al., 2025). Furthermore, Figure 1b shows that the
column vectors of random matrices preserve approximate orthogonality as the rank increases. This
implies that a random initialized matrix with d×d size possesses the full-rank property. Based on this
observation, we introduce frozen full-rank random matrices to replace the learnable unitary matrices
in rank adaptation framework, which significantly reduces the computational overhead required for
building the high-dimensional space. However, assigning layer-specific random matrices for each
adapter layer incurs a non-negligible memory burden during fine-tuning. To this end, we propose
an aggressive layer-wise sharing strategy: a unified random matrix is shared both across layers and
within each layer. To demonstrate the feasibility of our sharing strategy, we provide a rigorous
theoretical foundation bellow.

Theorem 3.1. Let W be an arbitrary matrix, Q an orthonormal matrix, and E a diagonal matrix.
When both W and Q are fixed, approximating W with QEQ⊤ can be defined as:

argmin
E

∥W −QEQ⊤∥2F . (6)

The optimal solution to the equation 6 is given by E = diag(QWQ⊤), where the trace of E equals
that of W, i.e., tr(E) = tr(W). The detailed proof is provided in the Appendix C. This conclusion
suggests that we can preserve the spectral property of the weight update ∆W, i.e., tr(∆W), by
updating the diagonal matrix within rank adaptation framework. This property is independent of the
unitary matrices, thereby providing the foundation for our proposed sharing strategy.

Inspired by these findings, we propose a novel PEFT approach that enhances the expressive power
of LoRA with Shared Random-Span Augmentation (SRSA). The SRSA applies a rank adaptation
mechanism to LoRA, as illustrated in Figure 2d. The mechanism comprises a left unitary matrix,
a diagonal matrix, and a right unitary matrix. We replace the unitary matrices with non-trainable,
layer-shared random matrices and update the diagonal matrix for efficient layer-wise adaptation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Formally, our approach can be expressed as:

SRSA = WdownW
⊤
up +Wrdiag(λ)W⊤

r =

r∑
i=1

aib
⊤
i +

d∑
j=1

λjrjr
⊤
j , (7)

where Wr ∈ Rd×d denotes the shared random matrix, λ ∈ Rd represents the learnable scaling
vector, and rj are the column vectors of the random matrix Wr. During fine-tuning, we freeze
the random matrix while updating the LoRA adapter and the learnable scaling vector. The SRSA
enables LoRA adapter to capture the directional information of weight updates while simultaneously
obtain the spectral propert through rank adaptation mechanism, thus enhancing the expressive power
of LoRA.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate the effectiveness of our SRSA method on two sets of visual task adapta-
tion benchmarks: FGVC and VTAB-1k, comprising 24 datasets in total. The FGVC benchmark
comprises five Fine-Grained Visual Classification(FGVC) datasets, including CUB-200-2011(Wah
et al., 2011), NABirds(Van Horn et al., 2015), Oxford Flowers(Nilsback & Zisserman, 2008), Stan-
ford Dogs(Khosla et al., 2011), and Stanford Cars(Gebru et al., 2017). The VTAB-1k datasets(Zhai
et al., 2019) consist of 19 visual classification tasks, divided into three groups: the Natural group,
which contains natural images captured with standard cameras; the Specialized group, which in-
cludes images captured with specialized equipment; and the Structured group, which comprises
synthesized images from simulated environments.

Baselines and existing methods.We conduct a comprehensive comparison of our SRSA method
against two baselines and several state-of-the-art PEFT approaches. Two baselines we considered
are: 1) Full fine-tuning, which updates all parameters in the pre-trained model; and 2) LoRA, which
inserts learnable low-rank matrices into the adaptation layers while keeping the pre-trained weights
frozen. In addition to baselines, we compare our method with the following state-of-the-art ap-
proaches: VPT(Jia et al., 2022), FacT(Jie & Deng, 2023), SSF, ARC(Dong et al., 2023), AOFT(Yang
et al., 2025), RLRR(Dong et al., 2024b), HTA(Dong et al., 2024a).

Our SRSA settings. Depending on strategy of random matrix initialization, we present two variants
of SRSA: SRSA-R and SRSA-SOR. For SRSA-R, we generate random matrices using Kaiming
initialization, whose column vectors exhibit approximate orthogonality. Building upon SRSA-R,
SRSA-SOR employs QR decomposition on the random matrices to obtain orthonormal matrices,
which strictly satisfy the preconditions specified in Theorem.3.1. In addition, following previous
work (Dong et al., 2024a), we set the dimension of LoRA adapter to one in our method and apply
SRSZ ro the attention blocks.

More details on the dataset and experimental settings can be found in Appendix B.

4.2 EXPERIMENTAL COMPARISONS

In this section, we conduct extensive comparative experiments on image classification tasks. To
evaluate the adaptation capacity of our SRSA method, we apply the SRSA strategy to two types of
Vision Transformers: ViT (Dosovitskiy et al., 2021) and Swin Transformer (Liu et al., 2021) For
ViT, we employ two backbones with different model sizes: ViT-B/16 and ViT-L/16, to demonstrate
the generalization of our approach. All the backbones are pre-trained on the ImageNet-21K dataset.

Comparisons with existing methods. We evaluate the performance of our SRSA method against
existing baselines and state-of-the-art solutions on the FGVC and VTAB-1k benchmarks. The re-
sults are presented in Table 1 and Table 2. We observe that SRSA demonstrates competitive clas-
sification accuracy with a reasonable parameter count. On the VTAB-1k collection, our SRSA
achieves the best mean accuracy across all divided groups and the overall datasets. In particular,
our method yields a significant accuracy improvement over the LoRA baseline, suggesting its ef-
fectiveness in enhancing the expressive power of LoRA. Compared to ARC, which also employs
parameter-sharing techniques for efficient adaptation, the SRSA achieves a substantial performance
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Table 1: Performance comparisons with state-of-the-art efficient adaptation methods on the VTAB-
1k benchmark using the ViT-B/16 backbone pre-trained on ImageNet-21k. The bold font shows the
best accuracy of all methods.
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Full fine-tuning 68.9 87.7 64.3 97.2 86.9 87.4 38.8 75.9 79.7 95.7 84.2 73.9 83.4 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 47.6 65.6 85.8
LoRA 73 93.9 71.8 99.2 91.2 83.7 57.2 81.4 86 95.3 83.3 74.4 84.8 79.5 63.1 51.8 80.6 82.4 51.2 32.1 45 60.7 73.4 0.33

Bias 72.8 87.0 59.2 97.5 85.3 59.9 51.4 73.3 78.7 91.6 72.9 69.8 78.3 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 44.1 62.1 0.14
VPT-Shallow 77.7 86.9 62.6 97.5 87.3 74.5 51.2 76.8 78.2 92.0 75.6 72.9 79.7 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 47.0 64.9 0.11

VPT-Deep 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.5 81.8 96.1 83.4 68.4 82.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 55.0 69.4 0.60
SSF 58.0 89.8 70.5 98.9 90.2 90.5 52.9 78.7 86.7 95.2 86.4 75.4 85.9 68.2 61.0 52.8 80.7 77.3 48.5 27.6 31.1 55.9 70.6 0.24

FacT-TK≤32 70.6 90.6 70.8 99.1 90.7 88.6 54.1 80.6 84.8 96.2 84.5 75.7 85.3 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 60.7 73.2 0.07
ARC 72.2 90.1 72.7 99.0 91.0 91.9 54.4 81.6 84.9 95.7 86.7 75.8 85.8 80.7 67.1 48.7 81.6 79.2 51.0 31.4 39.9 60.0 73.4 0.13

LoRA+AOFT 74.2 93.4 72.7 99.4 91.5 85.5 57.3 82 86.3 95.2 84.0 75.8 85.3 78.9 63.1 51.2 82.6 83.6 53.9 31.9 47.3 61.6 74.1 0.08
RLRR 75.6 92.4 72.9 99.3 91.5 89.8 57.0 82.7 86.8 95.2 85.3 75.9 85.8 79.7 64.2 53.9 82.1 83.9 53.7 33.4 43.6 61.8 74.5 0.33
HTA 76.6 94.3 72.5 99.3 91.3 86.2 56.5 82.4 87.6 95.7 85.0 75.7 86.0 82.6 63.3 52.5 81.0 84.5 52.6 34.5 47.3 62.3 74.7 0.22

SRSA-SOR 76.7 94.7 73.4 99.4 91.9 86 57.6 82.8 87.9 95.5 85.9 76.1 86.4 82.5 64.2 51.8 82.7 84.9 52.7 34.2 48.3 62.7 75.1 0.15
SRSA-R 76.2 94.5 72.3 99.3 91.7 85.6 57.5 82.4 87.2 95.7 85.9 76.3 86.3 82.3 63.7 52.1 81.9 83.4 51.5 34.5 48.3 62.2 74.7 0.15

Table 2: Performance comparisons with state-of-the-art efficient adaptation methods on the FGVC
datasets using the ViT-B/16 backbone pre-trained on ImageNet-21k.

Method
Dataset CUB-200-2011 NABirds Oxford Flowers Stanford Dogs Stanford Cars Mean Params.(M)

Full fine-tuning 87.3 82.7 98.8 89.4 84.5 88.5 85.98
LoRA 88.3 85.6 99.2 91.0 83.2 89.5 0.44
Bias 88.4 84.2 98.8 91.2 79.4 88.4 0.28

VPT-Shallow 86.7 78.8 98.4 90.7 68.7 84.6 0.25
VPT-Deep 88.5 84.2 99.0 90.2 83.6 89.1 0.85

SSF 82.7 85.9 98.5 87.7 82.6 87.5 0.39
LoRA+AOFT 88.8 84.2 99.4 92.0 85.1 89.9 0.22

ARC 88.5 85.3 99.3 91.9 85.7 90.1 0.20
RLRR 89.3 84.7 99.5 92.0 87.0 90.4 0.47
HTA 88.8 84.4 99.5 92.2 87.9 90.6 0.36

SRSA-SOR 89.1 84.7 99.5 92.5 88.1 90.8 0.29
SRSA-R 88.9 84.9 99.5 92 87.7 90.6 0.29

gain while maintaining a comparable parameter budget. Furthermore, the proposed SRSA outper-
forms previous state-of-the-art work in general, such as AOFT, RLRR, etc. The results summarized
in Table 2 indicate that our method still delivers appealing performance within the context of per-
formance saturation observed on the FGVC benchmark. Notably, the SRSA-SOR variant exhibits
superior performance compared to the SRSA-R variant. We attribute this improvement to the fact
that orthonormal random matrices employed in STSA-SOR rigorously satisfy the assumptions pre-
sented in Theorem.3.1.

Experiments on larger-scale ViT backbone. To validate the adaptation capacity of our approach
across different scales of pre-trained models, we also conduct experiments using the ViT-L/16 back-
bone. A summary of results is available in Table 3 with detailed results being available in Ap-
pendix B. Experimental results show that our method consistently outperforms existing approaches
while maintaining parameter efficiency. This observation suggests that our SRSA exhibits robust
expressive capabilities even when scaled to larger backbones.

Experiments on hierarchical Vision Transformers. To evaluate the generality of our approach
across different network architectures, we conducted comparative experiments on Swin Transformer,
a hierarchical Transformer architecture. To accommodate the varying feature dimensionalities in
Swin Transformer, we introduced a stage-sharing strategy, enabling random matrices sharing within
each stage. As shown in Table 4, the SRSA-SOR achieves state-of-the-art performance on the
VTAB-1k benchmark and maintains favorable parameter scale. Compared to HTA, our method
yields a 0.8% improvement in average accuracy. Experimental results highlight the versatility of our
SRSA in adapting different transformer architectures, suggesting its practical potential for visual
adaptation tasks.
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Table 3: Performance comparison on VTAB-1k using ViT-L/16 pre-trained on ImageNet-21k as the
backbone. “(·)” denotes the number of tasks in the subgroup.

Natural (7) Specialized (4) Structed (8) Mean Total Params.
Full fine-tuning 74.7 83.8 48.1 65.4 303.40

LoRA 81.4 85.0 57.3 72.0 0.74
Bias 70.5 73.8 41.2 58.9 0.32

VPT-Shallow 78.7 79.9 40.6 62.9 0.15
VPT-Deep 82.5 83.9 54.1 70.8 0.49

SSF 81.9 85.2 59.0 73.0 0.60
ARC 82.3 85.6 57.3 72.5 0.18

LoRA+AOFT 83.3 85.9 60.2 74.3 0.15
RLRR 83.9 86.4 61.9 75.2 0.82
HTA 84.1 86.6 62.3 75.4 0.54

SRSA-SOR 84.5 86.8 63.1 76 0.30

Table 4: Performance comparison on VTAB-1k using Swin-B pre-trained on ImageNet-21k as the
backbone.

Natural (7) Specialized (4) Structed (8) Mean Total Params.
Full fine-tuning 79.1 86.2 59.7 72.4 86.80

LoRA 81 85.2 60.5 73.2 0.82
Bias 74.2 80.1 42.4 62.1 0.25

VPT-Shallow 79.9 82.5 37.8 62.9 0.05
VPT-Deep 76.8 84.5 53.4 67.7 0.22

ARC 79.0 86.6 59.9 72.6 0.27
LoRA+AOFT 82.3 86.8 60.6 73.3 0.14

RLRR 81.3 86.7 59.0 73.0 0.41
HTA 81.8 86.7 61.3 74.2 0.23

SRSA-SOR 82.6 86.9 62.4 75 0.19

4.3 ABLATION STUDIES

Effect of random matrices sharing strategy. In proposed SRSA, we introduce a layer-wise sharing
strategy for random matrices and provide theoretical analysis for its feasibility in rank adaptation.
The layer-wise sharing strategy encompasses two aspects: intra-layer sharing, where the left and
right unitary matrices within one adapter are transposes of each other; and inter-layer sharing, where
different adapter layers share the unified random matrix. We conducted a systematic comparison of
different sharing schemes to further investigate the rationale behind the sharing strategy, as detailed
in Table 5. The results indicate that disabling either intra-layer or inter-layer sharing does not result
in performance gains. In contrast, introducing unshared random matrices will increase the training
overhead. This validates the effectiveness of our random matrices sharing strategy.

Effect of adapter positioning. As a plug-and-play method, our SRSA offers flexibility akin to
LoRA, enabling seamless integration into different model components. We investigate the perfor-
mance of our SRSA when placed in various components. For comparison, we include standard
LoRA applied to {Wq,Wv} projection matrices in the multi-head attention operation of each ViT
layer as the baseline. As shown in Table 6, under same integration components with the baseline,
our method demonstrates superior performance to LoRA while using fewer learnable parameters.
Furthermore, when we extend SRSA adapters to {Wk,Wo} and {WFC1 ,WFC2}, results exhibit a
substantial performance improvement. These findings suggest that our method allows a better trade-
off between adaptation performance and parameter efficiency by flexibly selecting the integration
components.

Effect of bottleneck dimensionality. To investigate the impact of LoRA’s dimensionality on our
SRSA method, we systematically examine model performance across different bottleneck dimen-

Table 5: Ablation study on random matrices sharing strategies. All experiments are conducted on
VTAB-1k benchmark using ViT-B/16 backbone.

Natural (7) Specialized (4) Structed (8) Mean Total Params.
SRSA-SOR 82.6 86.8 62.7 75.1 0.15

w/o intra + inter 82.2 85.8 61.9 74.4 0.15
intra + w/o inter 82.4 85.9 62.2 74.6 0.15
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Table 6: Ablation Study on adapter positioning. All experiments are conducted on VTAB-1k bench-
mark using ViT-B/16 backbone.

Natural (7) Specialized (4) Structed (8) Mean Total Params.
LoRA(Wq,Wv) 79.5 84.6 59.8 72.3 0.29

SRSA-SOR(Wq,Wv) 81.4 85.3 59.7 73.1 0.08
SRSA-SOR(Wq,Wv,WFC1 ,WFC2 ) 82.1 86.3 61.0 74.1 0.20

SRSA-SOR(Wq,Wk,Wv,Wo) 82.8 86.4 62.7 75.1 0.15
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Figure 3: Ablation study on the impact of different bottleneck dimensions of LoRA adapter. The
bar chart represents the Top-1 Test Accuracy. We apply SRSA to the {Wq,Wv} matrices.

sions, as shown in the Figure 3. For a fair comparison, we apply our SRSA to the {Wq,Wv}
matrices. Additionally, we include a comparison with the Bias (Ben Zaken et al., 2022), a PEFT
method that updates only the bias terms of pre-trained model. We observe a significant performance
drop in SRSA when we disable LoRA by setting its dimensionality to zero. This finding corroborates
our claim in Section 3.3 that while SRSA excels at rank adaptation, it relies on LoRA to provide the
crucial directional updates. Remarkably, our SRSA achieves a significant performance gain over the
Bias method, even with only the rank adaptation component active. When the dimension increases
to one, our SRSA performance rises significantly, surpassing the LoRA baseline. However, as the
dimension increases further, the performance gains become marginal. We attribute this phenomenon
to the performance bottleneck in LoRA.

5 LIMITATIONS

Our method employs a novel layer-wise sharing strategy that shares a unique random matrix both
across layers and within layers. However, the sharing scheme is built on the assumption that layers
have the same dimensionality. For hierarchical model architectures where feature dimensions vary
across layers, it is necessary to explore efficient alternatives to the sharing strategy. Additionally,
although our method enhances the expressiveness of LoRA through rank adaptation mechanism, our
approach critically depends on LoRA to learn the directional information of weight updates. This
implies that the performance bottleneck of LoRA limits the upper bound of our model’s generaliza-
tion capability. To address the limitation, it is worth exploring strategies to integrate our SRSA into
advanced LoRA variants to further improve the model performance.

6 CONCLUSION

In this work, we propose a novel fine-tuning method called Shared Random-Span Augmentation
(SRSA). Our approach is specifically designed to overcome the computational bottleneck posed by
learnable unitary matrices in existing rank adaptation frameworks. Specifically, our method em-
ploys fixed random matrices as a substitute for learnable unitary matrices and shares these matrices
both across and within layers, thereby significantly reducing the number of learnable parameters.
We provide empirical evidence to demonstrate that fixed random matrices can effectively approx-
imate learnable unitary structures, along with theoretical justification for the feasibility of sharing
random matrices across layers. Experimental results show that our SRSA achieves state-of-the-art
performance across various visual downstream tasks.
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7 REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our method, we submit our source code to supplementary material
in a compressed file for the double-blind review and will open-source it after paper publication.
The compressed file contains the code for data processing, model implementation, and essential
evaluation. We recommend downloading the corresponding pre-trained models and datasets from
open-source repositories in (Dong et al., 2024b; 2023). All implementation details of our work are
meticulously described in Section B.

8 ETHICS STATEMENT

We confirm that all authors have read and adhered to the ICLR Code of Ethics and explicitly com-
plied with its requirements throughout all conference activities (including submission, review, and
discussion). All datasets in this study were sourced from publicly available repositories under li-
censes permitting research use. Therefore, no specific ethical approval was required for data acqui-
sition and analysis.
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A USE OF LARGE LANGUAGE MODELS

In this paper, Large Language Models (e.g., DeepSeek, ChatGPT) were used exclusively as tools for
polishing the writing. The literature findings and the core ideas of this paper were entirely conceived
and developed by the authors.

Table 7: Dataset statistics for FGVC. “*” denotes the train/val split of datasets following the dataset
setting of VPT models Jia et al. (2022).

Dataset Description Classes Train size Val size Test size
CUB-200-2011 Fine-grained bird species recognition 200 5,394* 600* 5,794
NABirds Fine-grained bird species recognition 555 21,536* 2,393* 24,633
Oxford Flowers Fine-grained flower species recognition 102 1,020 1,020 6,149
Stanford Dogs Fine-grained dog species recognition 120 10,800* 1,200* 8,580
Stanford Cars Fine-grained car classificatio 196 7,329* 815* 8,041

Table 8: Dataset statistics for VTAB-1k Zhai et al. (2019).

Dataset Description Classes Train size Val size Test size
CIFAR-100

Natural

100

800/1,000 200

10,000
Caltech101 102 6,084
DTD 47 1,880
Flowers102 102 6,149
Pets 37 3,669
SVHN 10 26,032
Sun397 397 21,750

Patch Camelyon

Specialized

2

800/1,000 200

32,768
EuroSAT 10 5,400
Resisc45 45 6,300
Retinopathy 5 42,670

Clevr/count

Structured

8

800/1,000 200

15,000
Clevr/distance 6 15,000
DMLab 6 22,735
KITTI/distance 4 711
dSprites/location 16 73,728
dSprites/orientation 16 73,728
SmallNORB/azimuth 18 12,150
SmallNORB/elevation 9 12,150
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B DETAILS OF EXPERIMENTAL SETTINGS

B.1 DETAILS OF DATASETS

We delineate the experimental specifications for visual adaptation classification tasks in Table 7
(FGVC) and Table 8 (VTAB-1k), including the cardinalities of the categories and training / valida-
tion / test set partitions, establishing standardized benchmarks for reproducible parameter-efficient
fine-tuning evaluation. The FGVC benchmark suite comprises five fine-grained visual recognition
datasets: CUB-200-2011, NABirds, Oxford Flowers, Stanford Dogs, and Stanford Cars, each tar-
geting specialized classification tasks for avian species, floral categories, canine breeds, and auto-
motive models respectively. In parallel, the VTAB-1k framework organizes its evaluation proto-
col into three task domains:Natural Image Domain: CIFAR-100, Caltech101, DTD, Flowers102,
Pets, SVHN, and Sun397; Specialized Image Domain: Patch Camelyon, EuroSAT, Resisc45, and
Retinopathy;Structured Image Domain: Clevr / count, Clevr / distance, DMLab, KITTI / distance,
dSprites / location, dSprites / orientation, SmallNORB / azimuth and SmallNORB / elevation.

B.2 IMPLEMENTATION DETAILS

To facilitate an impartial evaluation of our proposed SRSA, we follow previous work (Dong et al.,
2023; 2024b;a) and employ simple data augmentation during the data processing stage. For the
FGVC datasets, we processed the images with a random resize crop to 224 × 224 and applied a
random horizontal flip. For the VTAB-1k datasets, we directly resized the images to 224 × 224. To
ensure consistency with prior work, we employ a grid search to identify the optimal hyperparameter
settings, including batch size, learning rate, dropout rate and weight decay. The details of hyperpa-
rameter settings are shown in Tabel 9. All experiments in our work are carried out on NVIDIA 4090
GPUs (24GB VRAM) using PyTorch 3.8.

Table 9: The implementation details of configurations such as optimizer and hyperparameter. We
select the best hyperparameter settings for each download task by using grid search.

Optimizer AdamW
Learning Rate {0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001}
Weight Decay {0.05, 0.01, 0.005, 0.001, 0}

Batch Size {64, 32, 16}
Dropout rate {0.5, 0.4, 0.3, 0.2, 0.1, 0}

Learning Rate Schedule Cosine Decay
Training Epochs 100
Warmup Epochs 10

C MATHEMATICAL DERIVATIONS AND PROOFS

C.1 THEOREM 3.1

In this section, we give the detailed proof of Theorem 3.1 in 3.3 of the main paper.

Theorem 3.1. Let W be an arbitrary matrix, Q an orthonormal matrix, and E a diagonal matrix.
When both W and Q are fixed, approximating W with QEQ⊤ can be defined as:

argmin
E

∥W −QEQ⊤∥2F . (8)

The optimal solution to the equation 6 is given by E = diag(QWQ⊤), where the trace of E equals
that of W, i.e., tr(E) = tr(W).

Proof. According to the definition of the matrix Frobenius norm, we have ∥W∥2F = tr(W⊤W).
Consequently, Equation 8 can be derived as follows:

∥W −QEQ⊤∥2F = tr((W −QEQ⊤)⊤(W −QEQ⊤))

= tr(W⊤W −W⊤QEQ⊤ − (QEQ⊤)⊤W + (QEQ⊤)⊤QEQ⊤).
(9)
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Table 10: This table is extended from Table 3 and shows performance comparisons on the VTAB-1k
benchmark using the ViT-L/16 backbone pre-trained on ImageNet-21k.
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Full fine-tuning 68.6 84.3 58.6 96.3 86.5 87.5 41.4 74.7 82.6 95.9 82.4 74.2 83.8 55.4 55.0 42.2 74.2 56.8 43.0 28.5 29.7 48.1 65.4 303.4
LoRA 75.8 89.8 73.6 99.1 90.8 83.2 57.5 81.4 86.0 95.0 83.4 75.5 85.0 78.1 60.5 46.7 81.6 76.7 51.3 28.0 35.4 57.3 72.0 0.74

Bias 71.0 82.4 51.3 96.3 83.2 59.5 49.9 70.5 72.9 87.9 63.1 71.3 73.8 51.2 50.7 33.5 54.8 65.9 37.3 13.7 22.2 41.2 58.9 0.32
VPT-Shallow 80.6 88.2 67.1 98.0 85.9 78.4 53.0 78.7 79.7 93.5 73.4 73.1 79.9 41.5 52.5 32.3 64.2 48.3 35.3 21.6 28.8 40.6 62.9 0.15

VPT-Deep 84.1 88.9 70.8 98.8 90.0 89.0 55.9 82.5 82.5 96.6 82.6 73.9 83.9 63.7 60.7 46.1 75.7 83.7 47.4 18.9 36.9 54.1 70.8 0.49
ARC 76.2 89.6 73.4 99.1 90.3 90.9 56.5 82.3 85.0 95.7 85.9 75.8 85.6 78.6 62.1 46.7 76.7 75.9 53.0 30.2 35.2 57.3 72.5 0.18

LoRA+AOFT 78.2 95.0 74.7 99.5 92.0 82.4 59.2 83.3 86.7 95.1 86.0 75.2 85.9 81.5 63.2 50.7 81.0 86.7 53.0 28.8 43.3 60.2 74.3 0.15
RLRR 79.3 92.0 74.6 99.5 92.1 89.6 60.1 83.9 87.3 95.3 87.3 75.7 86.4 82.7 62.1 54.6 80.6 87.1 54.7 31.3 41.9 61.9 75.2 0.82
HTA 80.8 92.4 76.1 99.5 92.8 87.2 59.9 84.1 87.7 95.5 86.8 76.5 86.6 82.6 62.4 53.4 80.0 87.1 53.7 33.4 45.6 62.3 75.4 0.54

SRSA-SOR 79.8 95,2 76.0 99.5 92.9 87.6 60.2 84.5 87.6 95.7 87.0 76.9 86.8 83.5 63.4 53.6 82.3 87.1 53.5 35.1 46.2 63.1 76.0 0.30

Table 11: This table is extended from Table 4 and shows performance comparisons on the VTAB-1k
benchmark using the Swin-B backbone pre-trained on ImageNet-21k.
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Full fine-tuning 72.2 88.0 71.4 98.3 89.5 89.4 45.1 79.1 86.6 96.9 87.7 73.6 86.2 75.7 59.8 54.6 78.6 79.4 53.6 34.6 40.9 59.7 72.4 86.9
LoRA 70.1 89.9 73.8 99.3 91.3 87.4 54.9 81.0 85.8 95.0 84.3 75.5 85.2 83.2 60.1 53.1 83.1 89.5 50.8 26.9 37.2 60.5 73.2 0.82

Bias 73.1 86.8 65.7 97.7 87.5 56.4 52.3 74.2 80.4 91.6 76.1 72.5 80.1 47.3 48.5 34.7 66.3 57.6 36.2 17.2 31.6 42.4 62.1 0.25
VPT-Shallow 78.0 91.3 77.2 99.4 90.4 68.4 54.3 79.9 80.1 93.9 83.0 72.7 82.5 40.8 43.9 34.1 63.2 28.4 44.5 21.5 26.3 37.8 62.9 0.05

VPT-Deep 79.6 90.8 78.0 99.5 91.4 46.5 51.7 76.8 84.9 96.2 85.0 72.0 84.5 67.6 59.4 50.1 74.1 74.4 50.6 25.7 25.7 53.4 67.7 0.22
ARC 62.5 90.0 71.9 99.2 87.8 90.7 51.1 79.0 89.1 95.8 84.5 77.0 86.6 75.4 57.4 53.4 83.1 91.7 55.2 31.6 31.8 59.9 72.6 0.27

LoRA+AOFT 71.8 92.3 77.1 99.5 92.6 86.4 55.8 82.3 86.9 96.4 87.3 77.6 86.8 84.5 59.3 53.6 84.7 86.8 52.3 28.1 35.5 60.6 73.3 0.14
RLRR 66.1 90.6 75.5 99.3 92.1 90.9 54.7 81.3 87.1 95.9 87.1 76.5 86.7 66.0 57.8 55.3 84.1 91.1 55.2 28.6 34.0 59.0 73.0 0.41
HTA 72.0 89.6 76.4 99.5 92.1 87.8 55.5 81.8 86.7 96.3 87.5 76.3 86.7 85.0 62.2 53.7 84.3 89.1 52.4 27.6 36.4 61.3 74.2 0.23

SRSA-SOR 73.2 91 76.7 99.5 92.4 89.3 55.8 82.6 87.3 96.1 87.8 76.3 86.9 85.8 62.9 53.9 84.5 92.5 53.3 28.6 37.9 62.4 75.0 0.19

Based on the properties of the matrix trace, we obtain tr(W⊤) = tr(W) and tr(AB) = tr(BA).
Consequently, Equation 9 can be derived as follows:

∥W −QEQ⊤∥2F = tr(W⊤W)− 2tr((QEQ⊤)⊤W) + tr((QEQ⊤)⊤QEQ⊤). (10)

Since only E is trainable in Equation 10, we can regard the right side of Equation 10 as a function
of E, denoted as f(E). Thus, we derive the equivalent form of Equation 8 as:

argmin
E

f(E) = argmin
E

(tr(W⊤W)− 2tr((QEQ⊤)⊤W) + tr((QEQ⊤)⊤QEQ⊤)). (11)

Since f(E) is a convex and non-negative function, the global minimum is attained by solving
∂f(E)
∂E = 0. Combined with Equation 11, we obtain the optimal solution of f(W) as:

∂f(E)

∂E
= −2Q⊤WQ+ 2E = 0. (12)

Since E is a diagonal matrix, we obtain the following equation:

E = diag(Q⊤WQ), (13)

and the proof is complete.

D EXPERIMENTAL DETAILS ON LARGER-SCALE AND HIERARCHICAL VIT
BACKBONES

Table 10 and 11 respectively display the comprehensive results of the comparison conducted in
Section 3.3 among ViT-L/16, and Swin-B models.

E EXPERIMENTAL DETAILS ON ABLATION STUDIES

Table 12, 13, and 14 display the complete results of the ablation studies in Section 4.3

14
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Table 12: This table is extended from Table 5 and shows performance comparisons with different
sharing strategies. All experiments are conducted on VTAB-1k benchmark using ViT-B/16 back-
bone.

Natural Specialized Structured

Method
Dataset

C
IF

A
R

-1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
N

H

Su
n3

97

M
ea

n

C
am

el
yo

n

E
ur

oS
AT

R
es

is
c4

5

R
et

in
op

at
hy

M
ea

n

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

M
ea

n

M
ea

n
To

ta
l

Pa
ra

m
s.(

M
)

SRSA-SOR 76.7 94.7 73.4 99.4 91.9 86.0 57.6 82.8 87.9 95.5 85.9 76.1 86.4 82.5 64.2 51.8 82.7 84.9 52.7 34.2 48.3 62.7 75.1 0.15

w/o intra + inter 75.9 94.0 72.4 99.4 91.5 85.0 57.3 82.2 87.2 95.1 85.5 75.5 85.8 81.4 63.6 51.4 82.3 83.7 52.0 33.5 47.1 61.9 74.4 0.15
intra + w/o inter 75.6 94.3 72.8 99.4 91.9 85.4 57.2 82.4 87.5 95.3 85.0 75.7 85.9 82.0 63.9 51.9 82.1 83.7 52.3 34.1 47.8 62.2 74.6 0.15

Table 13: This table is extended from Table 6 and shows performance comparisons with different
adapter positioning. All experiments are conducted on VTAB-1k benchmark using ViT-B/16 back-
bone.
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LoRA(Wq,Wv) 67.1 91.4 69.4 98.8 90.4 85.3 54.0 79.5 84.9 95.3 84.4 73.6 84.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 59.8 72.3 0.29

SRSA-SOR(Wq,Wv) 73.6 93.7 71.7 99.3 91.4 82.7 57.3 81.4 85.9 95.5 84.4 75.4 85.3 80.3 63.3 47.5 78.6 80.8 50.8 31.2 45.1 59.5 73.0 0.08
SRSA-SOR(Wq,Wv,WFC1

,WFC2
) 74.5 94.0 71.5 99.2 91.6 86.2 57.7 82.1 87.2 96.0 86.3 75.5 86.3 81.0 63.8 48.5 80.7 83.3 52.9 31.5 45.7 61.0 74.1 0.20

SRSA-SOR(Wq,Wk,Wv,Wo) 76.7 94.7 73.4 99.4 91.9 86.0 57.6 82.8 87.9 95.5 85.9 76.1 86.4 82.5 64.2 51.8 82.7 84.9 52.7 34.2 48.3 62.7 75.1 0.15

Table 14: This table is extended from Figure 3 and shows performance comparisons with different
bottleneck dimensions of adaptation matrices in SRSA. All experiments are conducted on VTAB-1k
benchmark using ViT-B/16 backbone.
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LoRA(Wq,Wv) 67.1 91.4 69.4 98.8 90.4 85.3 54.0 79.5 84.9 95.3 84.4 73.6 84.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 59.8 72.3 0.29
Bias 72.8 87.0 59.2 97.5 85.3 59.9 51.4 73.3 78.7 91.6 72.9 69.8 78.3 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 44.1 62.1 0.14

D=0 72.2 90.3 70.6 99.2 91.5 58.8 57.0 77.1 81.8 93.5 81.2 74.4 82.7 56.1 45.3 40.1 73.8 56.5 44.6 22.2 30.0 46.1 65.2 0.05
D=1 73.6 93.7 71.7 99.3 91.4 82.7 57.3 81.4 85.9 95.5 84.4 75.4 85.3 80.3 63.3 47.5 78.6 80.8 50.8 31.2 45.1 59.5 73.0 0.08
D=2 72.5 93.8 72.7 99.3 91.4 82.6 57.2 81.4 86.2 95.4 84.6 75.2 85.4 80.7 62.1 48.0 79.3 80.8 51.5 31.0 45.3 59.8 73.1 0.12
D=4 73.0 93.9 72.0 99.4 91.8 83.5 57.6 81.6 86.5 95.7 84.7 75.7 85.7 81.2 63.0 48.0 80.5 80.8 50.8 31.7 45.7 60.2 73.5 0.20
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