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ABSTRACT

Density estimation and reliable prediction regions for outputs are crucial in super-
vised and unsupervised learning. While conformal prediction effectively generates
coverage-guaranteed regions, it struggles with multi-dimensional outputs due to
reliance on one-dimensional nonconformity scores. To address this, we introduce
CONTRA: CONformal prediction region via normalizing flow TRAnsformation.
CONTRA utilizes the latent spaces of normalizing flows to define nonconformity
scores based on distances from the center. This allows for the mapping of high-
density regions in latent space to sharp prediction regions in the output space,
surpassing traditional hyperrectangular or elliptical conformal regions. Further,
for scenarios where other predictive models are favored over flow-based models,
we extend CONTRA to enhance any such model with a reliable prediction re-
gion by training a simple normalizing flow on the residuals. We demonstrate that
both CONTRA and its extension maintain guaranteed coverage probability and
outperform existing methods in generating accurate prediction regions across var-
ious datasets. We conclude that CONTRA is an effective tool for (conditional)
density estimation, addressing the under-explored challenge of delivering multi-
dimensional prediction regions.

1 INTRODUCTION

In unsupervised and supervised learning, density and conditional density estimation are frequently
used to communicate the inherent variability in the potential outcome and assess the reliability of
estimations and predictions (Hall & Yao, 2005; Guhaniyogi et al., 2014; Dalmasso et al., 2020).
These methods can report regions that aim to capture the true outcome with a specified probability,
such as 90%, based on the estimated density. However, the actual coverage rate depends on the
underlying model assumptions and does not come with any inherent guarantees.

Conformal prediction is a way to produce regions with guaranteed coverage rate of future outcomes
non-asymptotically and free of model assumptions (Papadopoulos et al., 2002; Vovk et al., 2005; Lei
et al., 2018; Romano et al., 2019; Lei et al., 2015; Izbicki et al., 2020; Chernozhukov et al., 2021).
Briefly, the most popular split conformal approach partitions the whole dataset into a proper training
set and a calibration set. A predictive model is trained using the former, and non-conformity scores
are calculated on the latter that measure the deviation of the predictions from the actual outputs.
Quantiles of the non-conformity scores are used to set threshold values, producing prediction regions
that capture future outcome with desired probabilities. More accurate predictive models usually yield
tighter conformal prediction regions.

The conformal prediction literature has primarily focused on one-dimensional output settings, partly
because the conformal idea depends on quantiles. Among the relatively few multi-targeting meth-
ods in the literature, most restrict region shapes to be boxes or ellipsoids. For complex conditional
distributions of the output, such as those with multi-modes or unequal-tails in different directions,
boxes or ellipsoids encompass low-density areas to ensure validity, and become inflated. Two recent
approaches that allow flexible shape for multi-dimensional conformal regions are the spherically
transformed directional quantile regression (ST-DQR) (Feldman et al., 2023) and the probabilistic
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conformal prediction (PCP) (Wang et al., 2022). But their prediction regions are composed of nu-
merous balls, which often lead to highly irregular boundaries and more disconnected regions than
desirable, hindering interpretability.

We propose CONTRA, a new method that produce prediction regions for multi-dimensional outputs.
CONTRA stands for CONformal prediction region via normalizing flow TRAnsformation. Here,
normalizing flows (NF) (Dinh et al., 2016; Huang et al., 2018; Chen et al., 2019; Kingma & Dhariwal,
2018; Papamakarios et al., 2021) and conditional normalizing flows (CNF) (Winkler et al., 2019) are
generative methods that provide samples, hence density estimates, for the output.

An example is shown in Figure 1 for the prediction region of dropoff locations of Taxi (y) given an
arbitrary pickup point (x, shown as blue pin) in New York city. This is a situation where the con-
ditional density of the outcome is multimodal. Ten different conformal predictions were displayed.
The five methods with restricted shapes in (e) and (f) yield large and unnatural prediction regions.
The CONTRA region in (b), a variation of CONTRA in (c), and the PCP and ST-DQR methods based
on either NF or diffusion models in (d), (g) and (h) produced comparable areas with similar sizes.
But both CONTRA prediction regions in (b) and (c) are much more connected than that of PCP and
ST-DQR, providing the most effective and interpretable results that maintained theoretical rigor.
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(a) KDE (unsafe)
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(b) CONTRA
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(c) ResCONTRA
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(d) NF + PCP
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(e) Ellipses



 Leaflet | © OpenStreetMap contributors

(f) Rectangles
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(g) DM + PCP
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(h) DM + ST-DQR

Figure 1: NYC Taxi data. Prediction regions of drop-off location given a pickup coordinate (blue pin). (a)
shows a 90% high-density region estimated via kernel density estimates (KDE) based on dropoff locations from
the 200 nearest pickups to the blue pin. While there is no guarantee of coverage, the shape of this region offers
an informal visual reference to help users assess conformal regions. (b)-(f) show various conformal predictions
based on NF, trained on 3600 samples and calibrated on 1200. The methods include our proposed CONTRA
and ResCONTRA; PCP and ST-DQR (the latter result is not shown due to its similarity to the PCP); NLE and
RCP that always lead to elliptical regions; and MCQR, Dist-Slpit, and CQRbon that always lead to rectangular
regions; (g) and (h) show the PCP and ST-DQR conformal regions based on a diffusion model, in particular, a
Denoising Diffusion Probabilistic Model (Ho et al., 2020) trained with 800 timesteps, learning rate 0.001 and
300 epochs.

We briefly explain here how CONTRA works. Given an input, CNF learns a bijection that maps a
latent variable from a simple base distribution, like a standard multivariate Gaussian, to the outcome
variable (details in Section 2). After training a CNF on the proper training set, CONTRA maps high-
density regions (HDRs) of the base distribution to the outcome, while the split-conformal approach
adjusts these regions in the latent space by comparing latent representations of the calibration set to
the expected base distribution. Consequently, CONTRA’s prediction region is a bijection of a single
high-density area, naturally aligning with the output’s conditional distribution, circumventing the
need to union many regions, as seen in PCP and ST-DQR.

While flow-based models excel in many contexts, there are times when other predictive approaches
are preferable. For these situations we invent a variation of CONTRA called ResCONTRA, which
enhance any predictive model with a reliable prediction region by training a simple NF on the resid-
uals. The ResCONTRA approach builds on Colombo (2024), where one-dimensional residuals were
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transformed to follow base distributions like Uniform or Gaussian using relatively simple bijec-
tions. ResCONTRA extends this idea to multi-dimensional outputs and introduces the concept of
a symmetric base distribution in Rq en route to define an ideal non-conformity score. In describ-
ing ResCONTRA in section 3.4, we also highlight the need for a three-step calibration procedure
to ensure exchangeability that leads to coverage guarantee. Compared to CONTRA, which trains a
single model, ResCONTRA seems less efficient as it trains two models on smaller data sets. But
ResCONTRA has the potential to excel in situations, say, when E(y|x) is highly intricate and can
be better learned with techniques like XGBoost rather than an underlying bijection. Some empirical
comparisons of the two proposed methods can be found in Section 5 and Appendix G.

We provide details of CONTRA and ResCONTRA in Section 3, review existing multi-output confor-
mal predictions in Section 4. We demonstrate that CONTRA and ResCONTRA achieve the desired
coverage probability (e.g., 90%) with high accuracy in Section 5. They outperform shape-restricted
methods by providing smaller regions that better reflect the true density. And they have smoother
boundaries and improved interpretability compared to the flexible regions of PCP and ST-DQR.

2 CONDITIONAL NORMALIZING FLOW

Let (X,Y) denote a random vector with unknown probability density (or mass) function pXY(x,y),
supported on S ⊂ R(p+q). For each x ∈ X ⊂ Rp, the support of Y is denoted by Yx ⊂ Rq . Suppose
a data set D = {(xi,yi)}ni=1 has been drawn from pXY(x,y). The objective of a conditional density
estimation method is to find an estimate p̂Y|X(·|x) of the true conditional density pY|X(·|x) for all
x ∈ X based on D. In a parametric approach, where candidate models are P = {pY|X,θ; θ ∈ Θ},
the maximum likelihood principle leads to p̂Y|X(·|x) = pY|X,θ̂(·|x), where θ̂ is given by:

θ̂ = argmax
θ

n∏
i=1

pY|X,θ(yi|xi) = argmax
θ

n∑
i=1

log pY|X,θ(yi|xi) . (1)

The CNF approach specifies P to be such that, each pY|X,θ(·|x) is a density of a q-dimensional
random vector Y that can be transformed via a differentiable bijection to a simple random vector
Z ∈ Z , such as a q-dimensional Gaussian1. We denote this transformation by

y = tθ(z,x)

such that for any x ∈ X , t(·,x) is a differentiable bijection from Z to Yx, with inverse function
t−1(·,x). Let det denote the determinant function. The change-of-variable technique implies:

pY|X,θ(y|x) = pZ(t
−1
θ (y,x))

∣∣∣∣det ∂t−1
θ (y,x)

∂y

∣∣∣∣ .
It can be extremely challenging to directly constructing an expressive enough collection of transfor-
mations, {tθ, θ ∈ Θ}, to capture the true conditional density, pY|X(y|x). Fortunately, the compo-
sitional nature of bijective functions allows complex transformations to be built from simpler ones:
tθ(·,x) = tm,θ ◦ tm−1,θ ◦ . . . ◦ t1,θ(·,x). Accordingly,

log pY|X,θ(y|x) = log pZ(z)−
m∑
l=1

log

∣∣∣∣det ∂tl,θ
∂z(l−1)

∣∣∣∣ ,
where z0 = z, zl = tl,θ(zl−1,x) for l = 1, . . . ,m, and zm = tθ(z,x) = y. And equation 1 can be
rewritten as:

θ̂ = argmax
θ

n∑
i=1

[
log pZ(zi)−

∑m
l=1 log

∣∣∣det ∂tl,θ

∂z
(l−1)
i

∣∣∣] . (2)

From equation 2, it’s essential to specify transformations tl that are easy to evaluate Jacobian determi-
nants for. Several structured approaches, including autoregressive flows (Huang et al., 2018), linear
flows (Kingma & Dhariwal, 2018), and residual flows (Chen et al., 2019), facilitate such tractability.
In this paper, we employ an affine transformation model known as realNVP (Dinh et al., 2016), which
leverages coupling layers (Dinh et al., 2014) to improve computational efficiency. Further details on
realNVP are included in Appendix C.

1The general CNF framework allows the base distribution of z to depend on x and θ. We intentionally used
one free of x so that the latent z at different values of x are comparable and can be pooled for calibration.
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3 CONTRA: CONFORMAL REGION VIA NORMALIZING FLOW
TRANSFORMATION

Having trained a CNF model, tθ̂, it is tempting to perform naive conditional density estimation as
follows. Given any xn+1 of interest, define the naive (1− α) prediction region to be

C̃1−α(xn+1) = {y : y = tθ̂(z,xn+1), z ∈ B1−α} ,
where B1−α is the q-dimensional ball that is the highest probability region of size (1 − α) in the
latent space for the standard Gaussian. However, the actual coverage rate of this region can vary
greatly depending on the quality of y = tθ̂(z,xn+1),Z ∼ Nq(0, I) as an approximate sampler for
pY|X=xn+1

. Approximation errors can be high for xn+1 values not well represented in training.
Given xn+1, we would like methods to construct Ĉ(xn+1) ⊂ Rq that satisfies the marginal coverage
guarantee:

P[yn+1 ∈ Ĉ(xn+1)] ≥ 1− α . (3)

3.1 CONFORMAL REGIONS: FROM THE LATENT SPACE TO THE OUTPUT SPACE

Two general ideas to achieve equation 3 are full conformal prediction (Vovk et al., 2005) and split
conformal prediction (Papadopoulos et al., 2002; Lei et al., 2018; 2015; Angelopoulos & Bates,
2021). Full conformal prediction requires recalculating non-conformity scores across the entire
dataset for each new instance. Split conformal prediction partitions the whole dataset into two dis-
joint sets: the proper training set, D1 = {(xi,yi) : i ∈ I1} of size n1; and the calibration set,
D2 = {(xi,yi) : i ∈ I2} of size n2 = n − n1. We choose the split approach for its computational
efficiency in developing CONTRA.

Recall tθ̂(·, ·) : S → Rq stands for the CNF model with a standard Gaussian base trained from D1.
Given any (x,y), there is a latent representation of the output, which we denote by ẑ = t−1

θ̂
(y,x).

Denote the collection of latent representations for D2 by
Zcal = {ẑi ∈ Rq : ẑi = t−1

θ̂
(yi,xi), i ∈ I2} . (4)

Let r1−α denote the ⌈(1 − α)(n2 + 1)⌉-th smallest member of {∥ẑi∥2, i ∈ I2}, where ∥ · ∥2 is the
Euclidean norm. We define the conformal ball of size (1− α) to be

Ê = {z ∈ Rq : ∥z∥ ≤ r1−α} . (5)

Then Ê contains at least (1 − α)100% of the points in Zcal. By the inflation of quantiles lemma
(Romano et al., 2019), assuming the points in D2 and the point to predict, (xn+1,yn+1), are ex-
changeable, we have

P(ẑn+1 ∈ Ê) = P(∥ẑn+1∥ ≤ r1−α) ≥ 1− α.

The CONTRA prediction region is defined to be the mapping of Ê in the output space:
Ĉ(xn+1) = tθ̂(Ê,xn+1) .

The algorithm for producing CONTRA prediction region is summarized as Algorithm 1. Its coverage
guarantee is stated in Proposition 2 in Appendix A.1.

Algorithm 1 Conformal Region via Normalizing Flow Transformation (CONTRA)

Input :
1: Data {(xi,yi)}ni=1 ∈ Rp × Rq.
2: Miscoverage level α ∈ [0, 1].
3: A CNF algorithm A with a standard Gaussian base distribution.
4: A point xn+1 that needs a prediction region for its output, yn+1.

Procedure :
1: Randomly split {(xi,yi)}ni=1 into two disjoint sets D1 and D2.
2: Fit tθ̂ by A(D1).
3: Obtain Zcal as in equation 4.
4: Compute r1−α and define Ê as in equation 5.
5: Compute Ĉ(xn+1) = tθ̂(Ê,xn+1).

Output :
A prediction region for yn+1 is given by Ĉ(xn+1).
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3.2 PRACTICAL ASPECTS OF PRESENTING CONTRA OUTPUTS

There is flexibility in implementing steps 4 and 5 of Algorithm 1 and in displaying the prediction
region. One way is to get samples inside Ê and map them to the output space. Samples can be random
or deterministic, using methods like Monte Carlo, grid points, or Quasi Monte Carlo. Another less
costly way is to only sample from the boundary of Ê, which will map to of Ĉ in the output space.
The validity of this approach hinges on Proposition 3 in Appendix A.2, which states that boundaries
of sets are preserved under homomorphisms, including the CNF transformation.

3.3 CONNECTEDNESS AND VOLUME OF CONTRA

There is no universal criteria for comparing different prediction regions, provided they have guaran-
teed coverage. However, smooth boundaries and smaller volumes are generally considered desirable
characteristics.

Connectedness. Fewer disconnected sets and smoother boundaries for a prediction region means
predictions close to each other are more likely to be classified the same way, either inside or outside
of the prediction region. These properties contribute to robust and interpretable inferences in practice.
The prediction region Ĉ of CONTRA is indeed closed and connected due to the following.
Proposition 1. (James, 2000, Chap.3) Suppose E ⊂ Z is closed and connected, and t is a homeo-
morphism. Then t(E) ⊂ Y is also closed and connected .

Volume calculation. Assessing, calibrating, and comparing different prediction regions necessitates a
tool to calculate the volume of the regions, which can be challenging for irregular multi-dimensional
shapes. We propose an approximation method for the volume of Ĉ(xn+1), using by-products from
the training process of CNF. Note that

Vol
(
Ĉ(xn+1)

)
=

∫
Ê

∣∣det(Jtθ̂ (z))∣∣ dz = Vol(Ê)

∫
Ê

∣∣det(Jtθ̂ (z))∣∣ 1

Vol(Ê)
dz .

The above integral can be approximated using a Monte Carlo estimator based on a random sample,
{zb}Bb=1, drawn uniformly from Ê, with density 1/Vol(Ê):

V̂ol
(
Ĉ(xn+1)

)
= Vol(Ê)

1

B

B∑
b=1

∣∣det(Jtθ̂ (zb))∣∣ .
3.4 EXTENSION TO WORK WITH OTHER PREDICTION MODELS: RESCONTRA

The CONTRA method proposed so far restricts the fitted model to be a NF. We now present a vari-
ation, ResCONTRA, to enable conformal prediction for any user-chose prediction methods. As
explained in the introduction, this is inspired by an idea in Colombo (2024). We split the whole
dataset into D1, D2 and D3. Here, D1 is used to train the user-chosen point estimator, f̂ . Residuals,
ri = yi − f̂(xi), for points in the latter two sets are calculated. Then the standard CONTRA is
applied to D∗

2 = {(xi, ri)}i∈I2 and D∗
3 = {(xi, ri)}i∈I3 , which serve as the proper training and

the calibration set respectively in the split conformal framework. Denote the NF that transforms the
residuals in D∗

2 to latent z by t−∗, and the conformal ball Ê∗ is calibrated with D∗
3 . Finally, the

prediction region for a new data point is given by

Ĉ∗(xn+1) = f̂(xn+1) + t∗(Ê∗,xn+1) .

It’s straightforward to see that marginal coverage is guaranteed, as

P(yn+1 ∈ Ĉ∗(xn+1)) = P(rn+1 ∈ t∗(Ê∗,xn+1)) ≥ 1− α.

Remark: If the distribution of z were perfectly independent of x, Corollary 2.6 of Colombo (2024)
suggests that conditional coverage probability of yn+1 given any x can be achieved. However, since
perfect independence is not achievable in practice with finite data, they also derived in Theorem 2.7
a theoretical bound for the potential reduction in conditional coverage probabilities. This bound
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depends on the deviation between the learned distribution of z and the ideal base distribution that is
independent of x. Since both CONTRA and ResCONTRA aim to transform z to have symmetrical
distributions free of x, both methods are expected to approximately achieve the desired conditional
coverage similar to those shown in Colombo (2024). It is an on-going work to analyze the conditional
coverage probabilities of CONTRA and ResCONTRA both theoretically and empirically, with the
challenging but important goal of deriving practically useful bounds.

4 RELATED WORK

In contrast to CONTRA, traditional conformal prediction methods construct prediction regions di-
rectly in the output space. We review some of them below.

4.1 CONFORMAL APPROACHES THAT TARGET MULTI-DIMENSIONAL OUTPUTS

Limited conformal methods in the literature target multi-dimensional outputs directly. An example is
the robust conformal prediction (RCP) (Johnstone & Cox, 2021), which employs the global covari-
ance matrix to produce an ellipsoid region. The normalized locally ellipsoid (NLE) (Messoudi et al.,
2022) extends RCP by incorporating local covariance matrices, making the region adaptive to x.

Two recent methods, PCP and ST-DQR, are closer to CONTRA as they don’t restrict shape of the
prediction regions. First, the PCP method was proposed by Wang et al. (2022). Given a generative
model for estimating the conditional density, PCP defines the non-conformity score of a data point
(xi,yi) as

si = min
1≤k≤K

∥yi − ŷk
i ∥ ,

where {ŷi},Kk=1 is a sample of the output generated from the estimated conditional density. Then the
prediction region at xn+1 is obtained by generating a sample {ŷk

n+1}Kk=1 and form

ĈPCP(xn+1) =

K⋃
k=1

{y : ∥y − ŷk
n+1∥2 ≤ s1−α},

where s1−α is the ⌈(1 − α)(n2 + 1)⌉-th smallest member of {si, i ∈ I2}. Note that each PCP
prediction region is the union of K balls. They have flexible, but often irregular, disconnected shapes,
and are sensitive to the choice of K and α. This brings challenge to interpreting the regions.

Next, the ST-DQR method was proposed by Feldman et al. (2023). It learns an r-dimensional latent
representation of the output, e.g., using the conditional variational auto-encoder (CVAE). The latent
variable is encouraged to follow a unimodal distribution, so that methods like the directional quantile
regression (DQR) are applicable to form convex probability regions for it. Samples are generated
in the output space corresponding to points in the latent region. Calibration and the final prediction
region are created similarly to the PCP.

ST-DQR and our CONTRA are similar in that they both depend on latent representations, but differ
substantially in the latent representation. CONTRA uses bijection and are often able to learn the
latent variable to follow the Gaussian reference distribution rather closely. In contrast, the latent
variable in ST-DQR is typically of lower dimension than the output, and its distribution is only
coarsely similar to a reference. And this is why additional steps like DQR are needed to form latent
probability regions in ST-DQR, but our CONTRA can directly use HDR of the reference Gaussian.
When calibrating the regions, ST-DQR (and PCP) had to introduce yet another step: union balls
around generated samples, and calibrate the common radius of the balls. Whereas CONTRA directly
calibrate radius of the Gaussian HDR. Afterall, these methods have their strengths and weaknesses,
but each is a valuable addition to the user’s toolkit.

4.2 ONE-DIMENSIONAL CONFORMAL APPROACHES AND UPGRADING THEM TO CAPTURE
MULTI-DIMENSIONAL OUTPUTS

The literature of conformal predictions for one-dimensional output is rather rich and we list a few
state-of-the-art methods. Locally adaptive split conformal prediction (Lei et al., 2018) enhances
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reliability by adapting to local data variability, while Dist-split (Izbicki et al., 2020) constructs in-
tervals based on the estimated cumulative density function. However, both methods tend to provide
broader intervals when the underlying conditional density is not symmetric. Conformalized quantile
regression (CQR) (Romano et al., 2019) offers asymmetric intervals using two conditional quantile
estimators, but it remains inefficient for multi-modal distributions. This limitation can be addressed
by CD-split (Izbicki et al., 2022), which can generate discontinuous prediction intervals, but may
encounter stability issues.

Although these methods are designed for handling one-dimensional output, they can be building
blocks for valid prediction regions for multi-dimensional outputs. Bonforonni method (Bonferroni,
1936; Dunn, 1961) is a simple but conservative way to do so. Alternatively, we provide in section
4.2.1 a new method called multi-target conformalized quantile regression (MCQR) that lifts tradi-
tional one-dimensional CQR to work for multi-dimensional outputs.

4.2.1 MCQR: MULTI-TARGET CONFORMALIZED QUANTILE REGRESSION

As in CQR, we train on D1 a pair of lower and upper quantile estimators, Q̂l
j and Q̂u

j , for each
dimension of the output y = (y1, · · · , yq). Given a weight vector w = (w11, w12, · · · , wq1, wq2),
the choice of which to be discussed later, we define non-conformity of a point (x,y) as:

s = max
j=1,...,q

{
wj1(Q̂

l
j(x)− yj), wj2(yj − Q̂u

j (x))
}

,

Then we set the prediction region to be

ĈMCQR(xn+1) =

{
y : Q̂l

j(xn+1)−
s1−α

wj1
≤ yj ≤ Q̂u

j (xn+1) +
s1−α

wj2
, j = 1, . . . , q

}
.

For any choice of the weight vector w = (w11, w12, · · · , wq1, wq2), the MCQR satisfies the marginal
coverage guarantee defined in equation 3, which we prove in Appendix A.3.

Finally, since ĈMCQR(xn+1) is a box, its volume is simply

Vol(ĈMCQR(xn+1)) =

q∏
j=1

[
Q̂u

j (xn+1)− Q̂l
j(xn+1) +

s1−α

wj2
+

s1−α

wj1

]
.

Coming back to the problem of how to specify the weight vector w, one solution is to minimize the
average volume of prediction regions in the calibration set, that is

ŵ = arg min
w

1

n2

∑
i∈I2

Vol
(
ĈMCQR(xi)

)
.

5 EXPERIMENTS

In this section, we systematically compare the performance of the proposed CONTRA and ResCON-
TRA to that of other conformal prediction methods reviewed in section 4, including PCP, NLE, RCP,
MCQR, Dist-split and CQR. The last two were designed for one-dimensional outputs. We employ the
Bonferroni approach to produce valid multi-dimensional regions, labeled as Dist-splitbon and CQRbon
respectively. Throughout the experiments, the miscoverage rate is set at α = 0.1 for each prediction
region, hence a nominal coverage rate of 90%.

Experiments are conducted on four synthetic and six real datasets. For each real dataset, input vari-
ables x were standardized before model training. There are many ways to implement CNF, all of
which would be compatible with our CONTRA method. Here, we applied RealNVP due to its sim-
plicity and computational efficiency. Specifically, we used 6 to 10 coupling layers for each CNF.
Each coupling layer (details in Appendix C) involves two neural networks, each including 2 hidden
layers with 512 hidden units and ReLU activation function. Optimization is done with the Adam
gradient descent method (Kingma & Ba, 2014) with a learning rate of 1 × 10−3 for most of cases.
Training epochs are mostly set to be 200. To implement ResCONTRA, we selected support vector
regression as the predictive model.
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We also studied the impact of underfitting and overfitting on CONTRA regions, as well as the impact
of data sizes. Practical guidelines are provided for interesting readers in Appendices E and F.

All models were trained on an A30 GPU with 32 GB of memory. The training time for each CNF
varied from 1 to 3 minutes, depending on the datasets and RealNVP structures used.

5.1 SYNTHETIC DATA ANALYSIS

We experimented with four setups where Y|X = x are mixture-Gaussian, spiral, moon and ring-
shaped, respectively. We present results for the first two cases below while leave the latter two in the
Appendix D due to limited space. Data generation details can be found in Appendix B. The sample
sizes of the training, calibration and testing sets of the mixture Gaussian and spiral examples are
3375, 1125, and 500, respectively. We further split the training set for ResCONTRA into 60% for
a support vector regression model and 40% for the first calibration to train a normalizing flow. For
additional simulation studies, see Appendix D.

Table 1 shows the empirical coverage probabilities of each method, averaged over 20 replications,
with standard errors in the brackets. Each replication is a different split between the proper training
set and the calibration set, while the test set is fixed. All conformal methods achieved the nominal
level of 0.9. In both setups, CONTRA and PCP are based on the same CNF and generated the small-
est two prediction regions. ResCONTRA delivered comparable results, with discrepancies largely
because the “user-chosen” . The other methods produced significantly larger regions.

Table 1: Coverage and volume for 2-dimensional 90% conformal regions in two synthetic datasets. Each table
entry is the average of results over 20 random splits, with standard error in the parentheses. The method that
achieved the smallest volume is in boldface.

Metric CONTRA ResCONTRA PCP NLE RCP MCQR Dist-splitbon CQRbon

Mixt. Coverage 0.91(0.003) 0.90(0.003) 0.91(0.003) 0.89(0.003) 0.90(0.002) 0.89(0.003) 0.90(0.002) 0.90(0.002)
Volume 64.92(1.015) 90.94(1.727) 71.32(0.845) 129.88(10.299) 135.12(12.378) 109.51(0.412) 112.38(0.575) 112.30(0.563)

Spiral Coverage 0.91(0.003) 0.90(0.003) 0.91(0.002) 0.91(0.003) 0.91(0.002) 0.91(0.003) 0.91(0.003) 0.91(0.002)
Volume 23.70(1.622) 41.73(2.275) 23.22(1.154) 68.97(0.917) 68.16(0.943) 64.69 (0.199) 65.82(0.157) 65.42(0.202)

(a) CONTRA (b) ResCONTRA (c) PCP (d) Ellipses (e) Rectangles

Figure 2: Prediction regions of a two-dimensional outcome given a specific x value from the test set. Colored
lines show the boundary of various prediction regions. In the case of PCP, K = 3000 disks are shown. Orange
points show a random sample of size 2000 from the true conditional distribution of y given x.

Beyond numerical metrics, we visualize and compare these conformal regions. Figure 2 shows the
prediction regions at an arbitrarily chosen x value from the test set. CONTRA, ResCONTRA and
PCP construct prediction regions that align well with the true HDRs. The remaining four methods are
limited to generating elliptical or rectangular regions, hence contain extensive areas of lower density.
Among the top three performers, PCP constructs regions from a union of K circles. While increas-
ing K improves the approximation to the true underlying distribution, it also raises computational
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costs and creates more complex boundaries. After all, the synthetic data experiments suggest that the
proposed CONTRA and ResCONTRA methods outperforms others. They consistently achieve nom-
inal coverage, capture true conditional density with flexible shapes, and maintain smooth, connected
regions for robust inference.

5.2 REAL DATA ANALYSIS

We next applied CONTRA, ResCONTRA and competing methods to form prediction regions for six
datasets from the public-domain. Each dataset was partitioned into 60% training, 20% calibration,
and 20% testing. For ResCONTRA, the 60% training portion was further split into 60% for training
and 40% for the first calibration. Summaries of their dimensions and sizes are given in Table 2. The
first example has a one-dimensional output, and we check if methods for multi-dimensional output
work effectively in this special case. Then, we took on examples with two-dimensional output with
various input dimensions and training/calibration set sizes. Finally, we tackled a challenging task of
density estimation for a four-dimensional output, a significant hurdle for traditional approaches.

Table 2: Summary of dataset structures in real data experiments.

Dataset dim(x) dim(y) n1 (training) n2 (calibration) n3 (test)

Bio 9 1 3000 1000 1000
Taxi 2 2 3600 1200 1200
Energy 8 2 460 154 154
2D RF 20 2 5403 1801 1801
SCM20D 61 2 3000 1000 1000
4D RF 20 4 5403 1801 1801

Briefly, Bio focuses on the physicochemical properties of protein tertiary structures, derived from
CASP 5-9 experiment (Rana, 2013). It includes nine predictors that provide information on the
structural and geometric properties of molecules, with the aim of predicting the size of the residue.
Taxi contains longitude and latitude details for pick-up and drop-off location in New York for the
year 2016. The goal is to predict the (conditional) distribution of the drop-off location given any
pick-up location. This is also the example featured in Figure 1. Energy is used to train a predictive
model for heating and cooling loads given eight building-related predictors like relative compactness,
roof area, surface area and so on (Tsanas & Xifara, 2012). 2D RF and 4D RF are based on the same
river flow dataset, which comprises more than one year of hourly flow observations from eight sites
within the Mississippi River network (Spyromitros-Xioufis et al., 2016). Twenty observations of
river network flows at various sites and past time points are used to predict the flows 48 hours into
the future at 2 and 4 sites, respectively. SCM20D contains 5000 records from the 2010 Trading Agent
Competition in Supply Chain Management (Spyromitros-Xioufis et al., 2016). The goal is to predict
the mean price 20-days into the future.

Table 3: Coverage and volume for multi-dimensional 90% conformal regions in seven real datasets. Each table
entry is the average of results over 20 random splits, with standard error in the parentheses. The method that
achieved the smallest volume is in boldface.

Metric CONTRA ResCONTRA PCP NLE RCP MCQR Dist-splitbon CQRbon

Bio Coverage 0.90(0.002) 0.90(0.002) 0.90(0.003) \ \ \ 0.89(0.004) 0.90(0.002)
Volume 13.23(0.383) 12.64(0.178) 12.54(0.072) \ \ \ 13.49(0.132) 12.55(0.076)

Taxi Coverage 0.89(0.002) 0.89(0.002) 0.89(0.002) 0.90(0.001) 0.90(0.002) 0.89(0.002) 0.90(0.002) 0.91(0.002)
Volume(×10−3) 8.71(0.290) 9.06(0.281) 8.95(0.132) 10.77(0.188) 12.21(0.262) 10.86(0.283) 14.65(0.378) 12.41(0.266)

Energy Coverage 0.87(0.006) 0.87(0.009) 0.88(0.006) 0.86(0.006) 0.85(0.008) 0.84(0.007) 0.84(0.010) 0.87(0.008)
Volume 18.24(1.269) 22.76(4.238) 16.40(0.901) 19.14(1.982) 26.04(2.888) 25.39(2.238) 32.12(2.383) 27.73(2.343)

2D RF Coverage 0.91(0.002) 0.90(0.002) 0.91(0.002) 0.91(0.002) 0.90(0.002) 0.91(0.001) 0.92(0.001) 0.92(0.002)
Volume 5.29(0.074) 10.34(0.207) 7.19(0.164) 15.50(0.307) 23.85(0.644) 11.92(0.185) 12.14(0.187) 12.30(0.190)

SCM20D Coverage 0.89(0.001) 0.89(0.003) 0.89(0.002) 0.90(0.002) 0.89(0.002) 0.89(0.002) 0.90(0.003) 0.91(0.002)
Volume(×104) 6.30(0.120) 8.91(0.207) 6.97(0.154) 10.37(0.599) 6.52(0.153) 7.10(0.165) 8.82(0.231) 8.50(0.206)

4D RF Coverage 0.90 (0.003) 0.89 (0.002) 0.89 (0.003) 0.89 (0.002) 0.90 (0.002) 0.89(0.002) 0.91(0.001) 0.92(0.002)
Volume(×102) 0.59(0.043) 1.54(0.098) 1.13 (0.057) 26.10(4.020) 52.93(11.403) 10.92(0.597) 20.40 (1.219) 12.68(0.665)

Table 3 reports the empirical coverage probability and volumn of various prediction regions. The
coverage rates are generally very accurate around the nominal level 0.9. Slightly lower coverage
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rates that range from 0.84 to 0.88 are observed across the different methods for the energy dataset.
This is not surprising given the marginal coverage guarantee established for these conformal methods
are meant to deliver the nominal coverage when averaged over all possible training and calibration
sets. Hence, smaller training and calibration sizes led to a bigger chance of seeing large deviation
from the nominal level and relatively low empirical coverage rate out of 20 replications. In addition,
for Dist-splitbon, a reduction in coverage is observed when the dimension of x is high. For Bio,
we see that CONTRA, ResCONTRA and PCP are as good as state-of-the-art methods designed for
one-dimensional problems. In multi-dimensional experiments, CONTRA, ResCONTRA and PCP
constructed considerably more compact prediction regions than their competitors, with CONTRA
keeping the smallest volume with most cases. Overall, the CONTRA-type methods excel in these
numerical metrics and offer smoother regions than other top performers, providing a significant ad-
vantage.

6 SUMMARY AND DISCUSSION

The main contribution of our work is the proposal of a new multi-dimensional conformal prediction
method, CONTRA, that allows reliable conditional density estimation. We demonstrated with var-
ious examples that CONTRA surpasses other methods in offering compact prediction regions with
flexible shapes and smooth boundaries for easy interpretation.

Alongside CONTRA, we introduce two new methods, ResCONTRA and MCQR, catering to users
with their own preferred methods. ResCONTRA extends any user-selected point predictors with
valid prediction regions. MCQR extends CQR, a popular one-dimensional conformal prediction
method, to create prediction boxes that aim for optimal compactness among box-shaped conformal
regions.

Note that most conformal prediction methods are intrinsically one-dimensional: points in the cal-
ibration set are projected into a line via a properly defined one-dimensional conformal score. An
empirical quantile of these scores serves as the threshold on the line, and is projected back to the
output space to form prediction regions. Any choice of the projection will lead to marginal cover-
age guarantee under the exchangeability condition. Quality projections are key to generating desir-
able prediction regions, which exhibit properties like small volume, minimal disconnected sets, and
smooth boundaries that allow robust and interpretable conclusions in real-world applications. CON-
TRA is an intuitive and effective approach for defining such projections. It leverages NF and CNF
that possess latent representations of the output, and project points to a line based on the density of
their latent representation with respect to the standard Gaussian. This reduces to using the distance
of the latent representation to the origin in the q-dimensional space as the non-conformity score.

One challenge of CONTRA is it requires training a bijection that transforms q-dimensional output to
its latent representation. Better trained bijection leads to more compact CONTRA regions. In theory,
the ground truth bijection always exists (Bogachev et al., 2005). But in practice, more complex
distributions with higher q require more data points and increasingly complicated structures in an NF
(or CNF) to learn the true bijection well (Durkan et al., 2019). In the case where data size is small
and NF (or CNF) is hard to train, one possible solution is to inspect the latent representations of
the training and the calibration points and check their distribution against the standard multivariate
Gaussian. Patterns of the deviation such as bias in certain directions, correlation among different
directions, asymmetry/skewness, kurtosis and so on could potentially be modeled and utilized to
adjust the shape of Ê to maintain 90% empirical coverage and be transformed back to obtain adjusted
prediction regions in the output space, all while retaining the coverage guarantee.

The current version of CONTRA uses a Gaussian base distribution for the latent representation. This
limits its application to model continuous outcomes. Given the wide application of supervised learn-
ing with multi-dimensional discrete or mixed-type outcomes, there is an urgent need to perform un-
certainty quantification in these settings by developing effective conformal prediction methods. Since
there is a wealth of literature on multi-dimensional classification models as well as one-dimensional
conformal methods for discrete outcomes, their confluence has the potential to drive rapid advance-
ments in this direction.
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A PROOF

A.1 MARGINAL COVERAGE GUARANTEE OF CONTRA

Proposition 2. (A simple Corollary to the marginal coverage theorem of split conformal methods)
Suppose the sample points in D2 and (xn+1,yn+1) are exchangeable. Then for any CNF model tθ̂,
the corresponding conformal ball Ê based on D2 satisfies

P
(
yn+1 ∈ tθ̂(Ê,xn+1)

)
≥ 1− α.

Further, if ẑi ∈ Zcal and ẑn+1 are almost surely distinct, the above probability is bounded above by
1− α+ 1

n2+1 .

Proof. Since tθ̂ is trained by CNF, it is a differentiable bijection. Hence

ẑn+1 ∈ Ê ⇐⇒ tθ̂(ẑn+1,xn+1) ∈ tθ̂(Ê,xn+1)

⇐⇒ yn+1 ∈ tθ̂(Ê,xn+1) .

Therefore

P[yn+1 ∈ tθ̂(Ê,xn+1)] = P[ẑn+1 ∈ Ê] ≥ 1− α

A.2 SET BOUNDARIES REMAIN BOUNDARIES UNDER HOMOMORPHISM

The following result is well-know, but we provide a proof to be self-contained. Many background
materials can be found in (James, 2000). Let U and V be two topological spaces. (They will be
played by Z and Y respectively in CNF.)
Definition 1. A function t : U → V is called a homomorphism if t is bijective and continuous, and
t−1 is continuous.
Proposition 3. If t : U → V is a homomorphism and E ⊂ U , then t(∂E) = ∂t(E), where ∂E is the
boundary of E.

Proof. The boundary of E in U can be expressed by ∂E = E ∩ Ec, where E denotes the closure of
E and Ec denotes the complement of E.

Since t is a homomorphism, we have

t(E) = t(E), t(Ec) = (t(E))c.

Therefore,
t(Ec) = t(Ec) = (t(E))c.

Applying t to the boundary of E , we can obtain

t(∂E) = t(E ∩ Ec) = t(E) ∩ t(Ec) = t(E) ∩ (t(E))c = ∂t(E).

Hence, t(∂E) = ∂t(E).

A.3 GUARANTEED COVERAGE PROOF OF MCQR

Proposition 4. Suppose (xi,yi), i = 1, . . . , n + 1, are exchangeable, then the prediction region
ĈMCQR(xn+1) constructed by the MCQR algorithm satisfies

P
[
yn+1 ∈ ĈMCQR(xn+1)|(xi,yi), i ∈ I1

]
≥ 1− α . (6)

If the non-conformity scores, si, i = 1, · · · , n+ 1, are almost surely distinct, then the probability in
the left hand side of equation 6 is also bounded above by 1− α+ 1

n2+1 .
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Proof. First, we show that y ∈ ĈMCQR(x) is equivalent to s ≤ s1−α.

s ≤ s1−α

⇐⇒ max
j=1,...,q

{
wj1

(
Q̂l

j(x)− yj

)
, wj2

(
yj − Q̂u

j (x)
)}

≤ s1−α

⇐⇒
{(

Q̂l
j(x)− yj

)
≤ s1−α

wj1
∧
(
yj − Q̂u

j (x)
)
≤ s1−α

wj2
for j = 1, . . . , q

}
⇐⇒

{
Q̂l

j(x)−
s1−α

wj1
≤ yj ≤ Q̂u

j (x) +
s1−α

wj2
for j = 1, . . . , q

}
.

Since non-conformity scores si, i ∈ I2 and sn+1 are exchangeable. Applying Lemma 1,

P(sn+1 ≤ s1−α|(xi,yi) : i ∈ I1) ≥ 1− α.

If calibration residuals si and sn+1 are almost surely distinct,

P(sn+1 ≤ s1−α|(xi,yi) : i ∈ I1) ≤ 1− α+
1

n2 + 1
.

Taking expectation over D1, the marginal coverage is guaranteed.

Lemma 1 (Inflation of quantiles, Romano et al. (2019)). Suppose Z1, . . . ,Zn+1 are exchangeable
random variables. For α ∈ (0, 1),

P{Zn+1 ≤ Z(⌈α(n+1)⌉,n)} ≥ α,

Where Z(⌈α(n+1)⌉,n) is ⌈α(n + 1)⌉ smallest value in Z1, . . . ,Zn, or α-th empeical quantile of
Z1, . . . ,Zn. Moreover, if the random variables Z1, . . . ,Zn+1 are almost surely distinct, then also

P{Zn+1 ≤ Z(⌈α(n+1)⌉,n)} ≤ α+
1

n
.

B SYNTHETIC DATA STRUCTURE

1. A model with a mixture Gaussian error term.{
Y1 = 3X3

1X2 − 5X2
2 + 4X1X2 − 6X2 + 7 + ε1

Y2 = X1X2 −X3
2 + 3X1X

2
2 + 8 + ε2

,

where Y = [Y1, Y2]
T , X = [X1, X2]

T ∼ N(µµµ, I2), µµµ = [−2.0,−1.5]T ,
and εεε = [ε1, ε2]

T ∼ 0.3N
(
[0, 0]T , 0.5(I2 + J2)

)
+ 0.4N

(
[5, 5]T , 1.5(I2 − J2)

)
+

0.3N
(
[10, 0]T , I2

)
, J2 is a 2 by 2 matrix with all elements equal to one.

2. A model with a spiral curve error term.{
Y1 = 2X3

1 − 3X2
2 + 5X2 +X1X2 + ε1

Y2 = X2
1X2 − 4X2

2 + 3X2
1X2 + 7 + ε2

,

where X has the same structure as in Model 1; ε1 ∼ N(θ cos(θ), 0.22), ε2 ∼
N(θ sin(θ), 0.12), where θ ∈ (0, 2π).

3. A model with a moon curve error term. The specification of Y and X are the same
as the previous setup, And the error term follows a moon-shaped distribution, ε1 ∼
N(cos(θ), 0.12), ε2 ∼ N(sin(θ), 0.12), θ ∈ (0, π).

4. A model with a ring error term. The specification of Y and X are the same as the previous
setup, ε1 = r cos(θ), ε2 = r sin(θ), where r2 ∼ U(r2inner, r

2
outer), θ ∼ U(0, 2π).

14



Published as a conference paper at ICLR 2025

C COUPLING LAYER

For a vector y ∈ Rq , partition y into two subspaces: (yI1 ,yI2) ∈ Rq1 × Rq−q1 and a bijection
function g(·) : Rq−q1 −→ Rq−q1 . Define{

zI1 = yI1

zI2 = g(yI2 ;m(yI1 ,x))
,

In particular, let g(yI2 ;m(yI1 ,x)) = yI2 ⊙ exp(u(yI1 ,x)) + v(yI1 ,x) (Winkler et al., 2019), then
the determinant of Jacobian is exp(

∑q−q1
j=1 u(yI1 ,x)j).

The transformation t is composed by multiple coupling layers. To prevent the composition of two
consecutive coupling layers from reducing to the identity function, we can switch the roles of the two
subsets (Dinh et al., 2016). For instance, consider a scenario where we aim to transform y into z via
w. In this case, we have:

1⃝
{
wI1 = yI1

wI2 = g(1)(yI2 ;m(yI1 ,x))
2⃝
{
zI1 = g(2)(wI1 ;m(wI2 ,x))

zI2 = wI2

D ADDITIONAL SIMULATION STUDIES

Table 4: Coverage and volume for 2-dimensional 90% conformal regions in two synthetic datasets. Each table
entry is the average of results over 20 random splits, with standard error in the parentheses. The method that
achieved the smallest volume is in boldface.

Metric CONTRA ResCONTRA PCP NLE RCP MCQR Dist-splitbon CQRbon

Moon Coverage 0.91(0.002) 0.90(0.003) 0.91(0.003) 0.91(0.003) 0.91(0.003) 0.90(0.003) 0.91(0.003) 0.91(0.003)
Volume 1.56(0.020) 2.65(0.062) 1.66(0.015) 3.32(0.040) 3.28(0.037) 2.50(0.014) 2.63(0.012) 2.62(0.013)

Ring Coverage 0.90(0.004) 0.91(0.002) 0.90(0.002) 0.91(0.003) 0.91(0.003) 0.89(0.004) 0.89(0.003) 0.89(0.003)
Volume (×102) 3.00(0.217) 4.57(0.405) 1.97(0.030) 5.53(0.875) 6.14(1.537) 5.17(0.009) 5.19(0.010) 5.19(0.009)

(a) CONTRA (b) ResCONTRA (c) PCP (d) Ellipse (e) Rectangle

Figure 3: Prediction regions of a two-dimensional outcome given a specific x value from the test set. Colored
lines show the boundary of various prediction regions. In the case of PCP, K = 3000 disks are shown. Orange
points show a random sample of size 2000 from the true conditional distribution of y given x.

E THE IMPACT OF UNDERFITTING AND OVERFITTING ON CONTRA

Using a Normalizing Flow model that is either too complex or too simple can result in conformal
regions that are overly sensitive or excessively large. A straightforward guideline to mitigate these
overfitting and underfitting issues is to evaluate how closely the latent variables z from the calibration
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(a) Over-dispersed (b) Under-dispersed (c) Nearly Gaussian
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(d) Underfitting
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(e) Overfitting
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(f) Regular fitting

Figure 4: CONTRA prediction regions and latent z for the calibration set under three different NF models, for
drop-off location given a specific pickup coordinate (blue pin) for the NYC taxi data. Data size equals 4800,
with a 75%-25% training-calibration split. (a) and (d): An underfitting NF with 2 coupling layers and 16 hidden
units per layer, trained for 50 epochs in 4 seconds. (b) and (e): An overfitting NF with 16 coupling layers and
1024 hidden units, trained for 500 epochs in 205 seconds. (c) and (f): A regular fitting NF with 6 coupling
layers and 256 hidden units, trained for 200 epochs in 17 seconds.

set resemble a random sample from the standard Gaussian. The top row of Figure 4 provides a visual
check for bias, overdispersion, or underdispersion, from which users can tell that the trained model
corresponding to the rightmost picture had the best out-of-sample performance among the three, and
would be the best choice for constructing CONTRA regions. This is confirmed in the bottom row
of Figure 4 . In addition to the visual check, classical metrics can be used to quantify the deviation
between the z sample and the standard Gaussian, aiding in model tuning.

F IMPACT OF DATA SIZE ON CONTRA AND ITS MAIN COMPETITOR
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(a) (n1, n2) = (225, 75)
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(b) (n1, n2) = (900, 300)
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(c) (n1, n2) = (3600, 1200)

Figure 5: The impact of data size on prediction regions of drop-off location given a specific pickup coordinate
(blue pin) for the NYC taxi data. The top row shows results of our proposed CONTRA method; the bottom row
shows results of ST-DQR based on a diffusion model. Data sizes used for each column are 300, 1200, and 4800,
respectively, with a 75%-25% training-calibration split.

We examined the performance of CONTRA and the ST-DQR based on the diffusion model across
various sample sizes, with a particular focus on smaller sample sizes that pose challenges for both NF
and diffusion model training. The resulting prediction regions for both methods were consistent with
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expectations and appeared reasonable. As the sample size increased from very small to moderate,
uncertainty decreased, leading to smaller prediction regions. However, as the sample size continued
to grow, the prediction region stabilized, remaining approximately the same size, which correctly
reflects the inherent uncertainty in predicting outcomes for new subjects.

G A COMPARISON BETWEEN CONTRA AND RESCONTRA

This section compares the two proposed methods, CONTRA and ResCONTRA. We use empirical
examples to confirm the following heuristics: When NF is effective at learning y|x, the one-step
CONTRA method generally outperforms the two-step ResCONTRA due to its larger training set.
Whereas when the relationship between y and x, such as E(y|x) = f(x), is highly complex but
the residual y − f(x) follows a relatively simple distribution, ResCONTRA tends to provide better
prediction regions. This is because ResCONTRA divides the original training data into two subsets.
One subset is used to train an estimator for f(x), using any preferred method that specializes for
this task of point estimation. The second subset is then used to model the distribution of the residual
using a relatively simple NF.

Above, we provided a general guideline for choosing between CONTRA and ResCONTRA. In prac-
tice, users don’t need to decide in advance. They can try both methods and use the method that lead
to the prediction region that better suits their needs.

(a) CONTRA (b) Res-SVR-10 (c) Res-SVR-6 (d) Res-XGB-10 (e) Res-XGB-6

Figure 6: Comparing CONTRA to ResCONTRA in terms of the latent variable, z, of the calibration set on
two different datasets. Plots of z that closely resemble the standard bivariate Gaussian distribution result in
smaller calibrated radii, r.9, and better conformal prediction regions. Five conformal prediction methods are
implemented: (a) CONTRA with a 10-layer NF; (b) and (c) ResCONTRA with SVR followed by 10- and 6-
layer NFs, respectively; (d) and (e) ResCONTRA with XGBoost followed by 10- and 6-layer NFs, respectively.
For CONTRA, the sizes for training, calibration, and testing are (3375, 1125, 500). For ResCONTRA, the
training set was further split into 60% to train a point estimator and 40% to train a NF.

CONTRA SVR-10 SVR-6 XGB-10 XGB-6
Mixture-Gaussian (%) 0.71 2.67 1.69 2.67 3.38

Multiplicative Gaussian (%) 1.24 0.27 0.09 0.00 0.00

Table 5: The percentage of points out of the [−7.5, 7.5]× [−7.5, 7.5] range.

For illustration, we apply CONTRA and four different implmentations of ResCONTRA to two exam-
ples. The first example is the same mixture-Gaussian example in Section 5.1. And the second exam-
ple specifies a more complex relationship between y and x, described in equation 7. For each method
that learns the conditional distribution of y given x, we examine values of the latent variable, z, of the
calibration set. Resemblance of the distribution of z to the bivariate standard normal indicates good
out-of-sample learning of the distribution of y|x. Figure 6 displays the values of z for the two exam-
ples in the top and bottom rows, respectively. All 10 plots show the [−7.5, 7.5]× [−7.5, 7.5] region
of the latent space, while Table 5 shows the proportions of z falling outside the shown range. Over-
laying on each plot is the theoretical 90% highest density region of the bivariate standard Gaussin
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(in green) and the smallest circle centered at the origin that contains 90% of the ẑ of the calibration
set, with radius denoted by r. From the first row of Figure 6 and Table 5, we can see that CONTRA
(a) is the best performer for the example with relatively simple model and more complicated error;
and from the second row, we can see that ResCONTRA methods, especially (c) and (e) that combine
tools specialized for point estimation and relatively simple NF for the residuals, are the best perform-
ers to capture the complex relationship between y and x while providing small r that leads to small
conformal regions.

Details of the relatively complex dataset.

This is the dataset that corresponds to the results in the bottom row of Figure 6 and Table 5.{
Y1 = 2X2

1e1e2 − 3X2 + 0.5X3
3 +X4X5e2 − 1.5X2

6 + 0.7X7X
2
8 − 0.3X9e1 + sin(X10) + 5

Y2 = −X3
1 + 4X2

2 −X3X4e2 + 0.8X2
5 − 2X6X7e1e2 + 0.6X8 − 1.2X3

9e
2
1 + cos(X10) + 7

,

(7)

where Y = [Y1, Y2]
T , X ∼ N(µµµ, I10), µµµ is a 10-dimensional mean vector with each component

independently drawn from the Uniform[−10, 10] distribution, and εεε = [ε1, ε2]
T ∼ N (0, I2) .

H AGREEMENT BETWEEN CONTRA PREDICTION REGIONS AND HPDS

(a) Mixt. Gaussian (b) Moon (c) Gamma (d) Ring (e) Spiral

Figure 7: CONTRA conformal regions of the output variable y given some fixed x value for five setups with
coverage levels 50%, 70% and 90%, respectively. The orange points are random samples of size 2000 from each
of the true conditional distribution of y given x. We can see the CONTRA regions of various levels properly
capture the high-density regions in each case.
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