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Say as It Is: Verbatim Fidelity Evaluation of Long-Context Language Model

Anonymous Authors1

Abstract
Accurately processing long texts and generating
precise responses remains a significant challenge
for large language models (LLMs). While ex-
isting benchmarks evaluate long-text comprehen-
sion, they often overlook the models’ ability to
faithfully preserve the exact wording, formatting,
and sequence of prompts in their responses. To
address this gap, we propose a novel evaluation
framework with two key advantages: (i) adaptabil-
ity across diverse domains and data sources, and
(ii) tunable difficulty through dynamic variation
of text length. Across three tasks—mathematical,
contextual, and semantic reasoning—we find that
even state-of-the-art long-context LLMs exhibit
notable difficulty in maintaining verbatim fidelity
during long-text generation.

1. Introduction
Recent advancements in large language models (LLMs)
have dramatically expanded context windows, i.e., long-
context language models (LCLMs). For instance, OpenAI’s
o1 (Jaech et al., 2024) and o3-mini (OpenAI, 2025) handle
up to 200K input tokens. This expanded capacity enables
these models to process vast amounts of raw data across do-
mains. However, even with explicit instructions to preserve
text verbatim, LLMs often exhibit omissions, oversimplifi-
cations, or hallucinations when managing large volumes of
information (Liu et al., 2023; Huang et al., 2023). This is
nontrivial, as even minor omissions or distortions in certain
domains such as law, medicine, and regulatory compliance
can have serious consequences.

Prior studies have examined LCLMs’ ability to leverage
extended context while preserving accuracy in summariza-
tion, reasoning, and retrieval (Kuratov et al., 2024; Zhang
et al., 2024b; Bai et al., 2023).1 However, they primarily
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1More detailed related work is provided in Section A.

focused on long-context comprehension and retrieval, with
less emphasis on the models’ ability to precisely preserve
the exact wording, formatting, and sequence of the contex-
tual text at the word level and accurately integrate them into
the generated response—a capability we refer to as verbatim
fidelity, which remains largely unexplored.

To further investigate the verbatim fidelity of recent LCLMs,
we present VERBATIMEVAL, a proxy evaluation framework
for assessing the long-text generation capabilities of LLMs.
VERBATIMEVAL encompasses mathematical, contextual,
and semantic reasoning tasks, implemented through numeric
sorting, arranging shuffled sentences, and entity grouping.
Additionally, we introduce tailored evaluation metrics for
each task to assess both overall task performance and the
precise reproduction of details. Figure 1 illustrates how
VERBATIMEVAL evaluates a model’s ability to memorize
the context and specific words from the prompt and lever-
age them when generating responses. A key advantage of
our proposed evaluation framework is its flexibility across
domains and difficulty levels. For the shuffled sentence
arrangement task, no annotations are required, making it
easily applicable to any domain. Moreover, the difficulty
can be adjusted by varying the retention demands.

Finding. We evaluate state-of-the-art LCLMs, including
o1, o3-mini, gpt-4o (Hurst et al., 2024), gpt-4o-mini (Ope-
nAI, 2024), Gemini 2.0 Flash (Google DeepMind, 2025),
and Gemini 1.5 Pro (Team et al., 2024a), using VERBA-
TIMEVAL. Our results show that while these models demon-
strate strong memorization capabilities and effectively recall
lengthy texts, they still exhibit omissions and hallucinations
in tasks requiring both comprehension and precise retention.
Specifically, compared to short-text inputs, performance de-
clines by 40% in numeric sorting, 48% in arranging shuffled
sentences, and 37% in entity grouping when handling longer
inputs. This gap underscores that despite recent increases
in context-window sizes, maintaining verbatim retention in
long-text generation remains an open challenge.

2. VERBATIMEVAL

The core idea behind VERBATIMEVAL is that as LLMs con-
tinue to evolve, it becomes increasingly important for them
not only to handle extended contexts but also to accurately
retain prompt details and reflect them in their responses. For
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Verbatim Fidelity Evaluation of Long-Context Language Model

The patient is a 65-year-old male with a history of hypertension and type 2 diabetes. His blood pressure at admission was 150/95 
mmHg, and his HbA1c level was 7.8%. He also reported, prior to admission, occasional chest pain during exertion. Lastly, 
current medications include metformin 1000 mg twice daily and amlodipine 5 mg once daily.

Text

Lastly, current medications include metformin 1000 mg twice daily and amlodipine 5 mg once daily. The patient is a 65-year-old 
male with a history of hypertension and type 2 diabetes. He also reported, prior to admission, occasional chest pain during 
exertion. His blood pressure at admission was 150/95 mmHg, and his HbA1c level was 7.8%. 

Prompt

Verbatim Fidelity Evaluation for the Responses
green: semantically correct differences,  red: semantically incorrect differences

The patient is a 65-year-old man with a medical history of hypertension and type 2 diabetes mellitus. On admission, 
his blood pressure was 150/95 mmHg, and his HbA1c level was 7.8%. He also reported occasional chest pain during 
exertion. Lastly, current medications include metformin 1000 mg twice daily and amlodipine 5 mg once per day.

The patient is a 65-year-old male diagnosed with type 1 diabetes and hypertension. His blood pressure was 140/85 
mmHg at admission. He denies chest pain. His HbA1c was 6.2%. Medications include amlodipine 10 mg daily and 
insulin.

Shuffling Sentences

90%

50%

“Rearrange the sentences!”

Figure 1. An example of VerbatimEval. While rearranging the sentences, the second response alters key medical values, reflecting poor
retention of the prompt information. We impose a penalty on tokens that differ from the original ones, and an additional penalty is applied
if the generated sentences are also semantically different from the original.

this, we first define verbatim fidelity.

Definition 2.1. Verbatim fidelity measures how accurately
a model preserves the exact wording, formatting, and order
of the original text at the word level, ensuring precise repro-
duction of token sequences, numerical values, and named
entities.

With this definition, to systematically assess this critical
yet underexplored capability, VERBATIMEVAL introduces
three tasks that collectively measure key skills essential for
robust long-context generation: Numeric Sorting, Sentence
Arrangement, and Entity Grouping. We specifically design
the evaluation metrics for each task to prioritize both task
performance and the accurate reproduction of details, pro-
viding a comprehensive assessment of each model’s ability
to maintain verbatim fidelity under challenging conditions.
Diverse datasets can be utilized for sentence arrangement,
covering a broad range of domains. Each task includes
adjustable difficulty levels, e.g., increasing the number of
items to recall, ensuring the benchmark remains relevant as
LCLMs advance.

2.1. Numeric sorting

Models are given a list of large numbers and tasked with
rearranging them in ascending or descending order. This
task evaluates both the arithmetic comparison of numeric
values and the model’s ability to retain verbatim numeric

information as the number of items and the magnitude of
the values increase.

Method. We sample N integers, x1, x2, . . . , xN , from a
uniform range between A and B where A < B. In this work,
we set A = 108 and B = 109. Then, the model outputs the
numbers in either ascending or descending sequence. Task
difficulty can be scaled by increasing N and by using larger
numbers. The more digit the number has, the more tokens it
contains, which increases the in-context memory load.

Metric. We measure verbatim fidelity by computing Lev-
enshtein similarity between output texts and ground-truth
texts2:

levsim(a, b) :=
(|a|+ |b|)− lev(a, b)

|a|+ |b|
, (1)

The Levenshtein distance (Levenshtein, 1965) lev(a, b) sig-
nifies the minimum number of edits (insertions, deletions,
substitutions) required to transform a into b. The detailed
calculation is provided in Appendix B.

2.2. Arranging Shuffled Sentences

In this task, the model receives a paragraph with shuffled sen-
tences and aims to restore the original order while preserving
both semantic coherence and exact wording. Each passage

2For implementation, we represent both the output list of num-
bers and the ground-truth list as strings in comparison.
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Figure 2. Numeric sorting results. The “Verbatim-Only” baseline represents the performance when LLMs are instructed to simply repeat
the input without sorting, providing an upper bound on their verbatim retention of information. We compute the standard deviation over
five runs for ascending and descending orders with varied sampling seeds. The detailed results are provided in Section G.

100 200 300 400 500
Number of Samples (N)

20

40

60

80

100

Av
er

ag
e 

Si
m

ila
rit

y

MeetingBank

100 200 300 400 500
Number of Samples (N)

GovReport

100 200 300 400 500
Number of Samples (N)

QASPER

100 200 300 400 500
Number of Samples (N)

Wiki-727K

o1 o3-mini gpt-4o gpt-4o-mini gemini-2.0-flash gemini-1.5-pro Verbatim-Only

Figure 3. Arranging shuffled sentence results. Average similarity represents the mean of semantic similarity and Levenshtein similarity.
The shaded area spans the minimum and maximum of the two similarity measures. The Gemini models generated responses only for the
MeetingBank dataset due to Gemini’s RECITATION flag. The results for each similarity measure are presented in Section G.

is a self-contained text, allowing reconstruction without ex-
ternal context. By evaluating reconstruction across diverse
domains, we assess how well models maintain sentence in-
tegrity and semantic flow across varying vocabulary, content,
and discourse styles.

Method. We randomly select passages from the dataset
from each domain, ensuring their length falls between N
and N + 100 sentences. Each selected passage is then
shuffled at the sentence level, and the model is tasked with
reconstructing the original order. The difficulty increases as
N grows, making the passages longer and more challenging
to restore.

Metric. We evaluate the output on two fronts: verbatim
fidelity and semantic fidelity. For verbatim fidelity, we first
compute the Levenshtein similarity (Eq. 1) between each
ground-truth sentence and every generated sentence. Specif-
ically, let T = {tn}Nn=1 be the set of ground-truth sen-
tences, and Q = {qm}Mm=1 be the set of generated sentences.
For each tn ∈ T , we calculate the Levenshtein similarity
lev(tn,qm) for all qm ∈ Q and take the maximum value
as the matching score for tn. The overall verbatim fidelity,
V (T,Q), is then defined as the average of these maximum

scores across all ground-truth sentences:

V (T,Q) :=
1

N

N∑
n=1

max
1≤m≤M

[lev(tn, qm)]. (2)

By comparing one ground-truth sentence against all gener-
ated sentences and taking the highest Levenshtein similarity,
it accommodates scenarios where the generated text may
be out of order or duplicated. Averaging these best-match
scores over all ground-truth sentences then gives an overall
measure of how faithfully the model reproduced the original
text, sentence by sentence. For semantic fidelity, we com-
pute cosine similarity between the generated passage and
the original passage. This captures whether the model has re-
constructed a passage that remains semantically equivalent
to the original.

Remark 2.2. Numeric Sorting and Sentence Arrangement
require no annotations. Sentence Arrangement is especially
useful, as it can be applied across domains by simply shuf-
fling sentences within a large corpus.
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Figure 4. Entity grouping results. The standard deviation is com-
puted over 10 runs with different sampling seeds. The detailed
results are provided in Section G.

2.3. Entity Grouping

The entity grouping task challenges the model to classify
a set of entities into predefined categories without altering
or omitting the entity names. This requires both precise
verbatim retention of each entity and an understanding of
its semantic category.

Method. We randomly sample N entities from a set of X
entities with N < X , ensuring that at least one entity per
category is selected. The model is tasked with grouping
these entities into K categories without altering their origi-
nal text forms. The difficulty can be increased by scaling N
to include more entities.

Metric. For task performance evaluation, we calculate
recall for each category and average these scores across all
K categories:

Recallcategory(M,G) :=

K∑
k=1

|Mk ∩Gk|
|Gk|

, (3)

where Gk represent the set of ground-truth entities in a
category k, and Mk denote the set of entities the model
assigns to the category k. This approach offers a compre-
hensive assessment of the model’s performance, accounting
for the variations in grouping accuracy specific to each cat-
egory. For verbatim fidelity evaluation, we measure recall
at a global level, comparing the set of all predicted entities
(MK =

⋃K
k=1 Mk) and the set of all ground-truth enti-

ties (GK =
⋃K

k=1 Gk). This metric quantifies the model’s
ability to retain the full set of entities from the original in-
put, reflecting the extent of both omissions and incorrect
inclusions.

3. Experiments
3.1. Experimental Setup

Baseline. We evaluate state-of-the-art LLMs, gpt-4o (Hurst
et al., 2024), o1 (Jaech et al., 2024), o3-mini (Ope-
nAI, 2025), gpt-4o-mini (OpenAI, 2024), Gemini 2.0
Flash (Google DeepMind, 2025), and Gemini 1.5 Pro (Team

et al., 2024a) using VERBATIMEVAL. For each task, We
also include a Verbatim-Only Baseline, where the model is
instructed to replicate the input text without performing any
concurrent task. First, we identify the lowest-performing
model at the largest tested N , and then track its verbatim
retention score across various N . This baseline helps isolate
the model’s capacity for faithful reproduction of input text
from any additional reasoning requirements.

Dataset. Arranging shuffled sentences: Meeting-
Bank(Hu et al., 2023), GovReport(Cao & Wang, 2022),
QASPER(Dasigi et al., 2021), and Wiki-727K. (Koshorek
et al., 2018). Entity grouping: DBpedia Ontology (Zhang
et al., 2015). Please refer to Section C.1 for more details.

Implementation detail. The prompts employed in these
tasks and additional implementation details are outlined in
Appendix E and Section C.2, respectively. Code will be
released upon publication.

3.2. Results and Discussion

Remark 3.1. LCLMs can reliably memorize and reproduce
long inputs (Verbatim-Only in Figure 2, 3, and 4). How-
ever, their performance declines on tasks that require rea-
soning or understanding — i.e., the typical way LCLMs are
used.

Numeric sorting. Models maintain high fidelity to the
sorted list for small N , but Levenshtein similarity drops by
40% as N increases (Figure 2). Notably, descending or-
der proves more difficult than ascending, and among small
models, o3-mini experiences greater performance degrada-
tion than gpt-4o-mini. Performance across different upper
bounds of sample numbers, B, is illustrated in Figure 5 in
Appendix G.

Arranging shuffled sentences. As N increases, all models
show declines in both semantic and Levenshtein similarity,
averaging a 48% reduction (Figure 3). gpt-4o-mini performs
unexpectedly well, while o3-mini struggles with semantic
similarity despite comparable Levenshtein scores, indicating
its performance degradation under higher retention demands.

Entity grouping. Increasing N raises task difficulty, re-
ducing average recall by 37% (Figure 4). Unlike previous
tasks, GPT-4o models underperform significantly in this task
compared to OpenAI’s other models and Gemini models.

4. Concluding Remark
We introduce VERBATIMEVAL, an evaluation framework,
to assess the verbatim fidelity of LCLMs. By applying it
across various domains and adjusting difficulty, we find
even state-of-the-art LCLMs struggle to maintain verbatim
accuracy, a limitation that may pose challenges in domains
requiring precise reproduction of input.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Verbatim Fidelity Evaluation of Long-Context Language Model

Impact Statement
This paper introduces a benchmark for evaluating verbatim
fidelity in long-text generation. We believe it serves as
a practical and versatile proxy applicable across various
domains. While our work may have societal implications,
we do not identify any that require specific emphasis at this
time.
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A. Related Work
Benchmarks for long-context language model. A wide
range of benchmarks have evaluated LLMs in long-context
scenarios, mainly focusing on semantic correctness in com-
prehension, retention, and retrieval. These include en-
suring valid QAanswers (An et al., 2023; Wang et al.,
2024; Hsieh et al., 2024), high-quality summaries (Yen
et al., 2024; Zhang et al., 2024b), or strong retrieval accu-
racy (Li et al., 2023). Other benchmarks target more spe-
cific tasks, such as long-form generation (Liu et al., 2024b),
mathematics-focused reasoning (Wang et al., 2024), latent
structure queries (Vodrahalli et al., 2024), massive multi-hop
QA (Kuratov et al., 2024), multilingual retrieval and reason-
ing (Agrawal et al., 2024), function search in code reposi-
tories (Liu et al., 2024a), veracity checks (Karpinska et al.,
2024), and QA with fine-grained citations (Zhang et al.,
2024a) explore distinct challenges. While prior benchmarks
assess long-context comprehension in terms of semantic
correctness and retention, they do not explicitly evaluate
verbatim memorization and reproduction, leaving a critical
gap in assessing exact text fidelity.

Long-context language model. Recent advancements in
LLMs have significantly extended the window size for text
processing, addressing limitations in handling lengthy docu-
ments. GPT-4 Turbo (Achiam et al., 2023) supports up to
128K tokens, while Claude 3 (Anthropic, 2024) extends this
to 200K tokens, both optimizing retrieval and contextual co-
herence. Gemini 2.0 Flash (Google DeepMind, 2025) sets a
new benchmark with a 1M-token context window, enabling
ultra-long document comprehension. Efforts to expand the
context length of open-source models continue. LLaMA
2-Long (Xiong et al., 2023) applies RoPE (Su et al., 2021)
to reach 32K tokens, and LongLLaMA (Tworkowski et al.,
2023)—with its Focused Transformer—scales up to 256K
tokens. Additionally, Command R+ (Cohere, 2024) (128K
tokens) and Jamba 1.5 (Team et al., 2024b) (256K tokens) in-
tegrate retrieval-augmented generation (RAG) (Lewis et al.,
2020) for knowledge-intensive tasks.

B. Levenshtein distance

- If |b| = 0, then lev(a, b) = |a|.
- If |a| = 0, then lev(a, b) = |b|.
- If head(a) = head(b), then:

lev(a, b) = lev(tail(a), tail(b))

- Otherwise:

lev(a, b) = 1 +min
lev(tail(a), b),
lev(a, tail(b)),

lev(tail(a), tail(b)),

where head(x) refers to the first string of x, and tail(x)

refers to the substring consisting of all characters except the
first.

C. Experimental Setup
C.1. Dataset

MeetingBank contains 6,892 city council English transcripts
with dialogic, unstructured text. GovReport includes 19,463
government reports with dense, technical language in En-
glish. QASPER features 1,585 NLP research papers requir-
ing specialized content handling in English. Wiki-727K
comprises 582K Wikipedia passages in English, testing
structured information flow. DBpedia Ontology contains
70,000 named entities across 14 categories, including Com-
pany, Artist, Athlete, Building, Natural Place, Animal, Film,
and Written Work, with 5,000 entities per category. For
each dataset, we merge the training, test, and validation sets,
and then sample instances from this combined dataset.

C.2. Implementation Details

We use the openai-python and google-generativeai libraries
to access the APIs for our chosen models, employing their
default generation configurations (e.g., temperature). For
the sentence-shuffling task, we employ text-embedding-3-
large (OpenAI, 2024) to calculate the semantic similarity
between ground-truth passages and the corresponding gener-
ated outputs. In the entity-grouping task, we initially require
the models to produce a structured output consisting of a
list of categories, each containing a category name and its
associated entities. The exact formatting code for this struc-
ture is detailed in Appendix F. As N grows, however, some
models fail to adhere to this format. In those cases, we parse
their free-text responses instead. Despite explicit formatting
instructions, larger inputs often lead models to disregard the
requested structure. We therefore tailor our parsing strategy
for each experimental instance. Notably, the o1 model fails
to generate structured outputs at N = 250, 500, 750, 1000,
while gemini-2.0-flash fails at N = 500, 750, 1000.

C.3. Model API Detail

Table 1 displays the specific model versions used throughout
the experiments.

Table 2 illustrates the tokens used in Figure 2, Figure 3,
Figure 4, and Figure 5.

D. Licensing and Terms of Use
We rely on several publicly available datasets in this
work and strictly comply with their respective licenses.
MeetingBank is distributed under the Creative Commons
Attribution Non Commercial Share Alike 4.0 license
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Model Version / Release

o1 o1-2024-12-17
o3-mini o3-mini-2025-01-31
gpt-4o gpt-4o-2024-08-06
gpt-4o-mini gpt-4o-mini-2024-07-18
gemini-2.0-flash gemini-2.0-flash-001
gemini-1.5-pro gemini-1.5-pro-002

Table 1. Model versions used in the experiments.

Input Output Reasoning

o1 3.10M 6.05M 3.64M
o3-mini 3.05M 4.38M 3.31M
gpt-4o 3.01M 1.28M –
gpt-4o-mini 3.03M 2.05M –
gemini-2.0-flash 4.67M 1.82M –
gemini-1.5-pro 4.24M 1.51M –

Average 3.52M 2.85M 3.47M
Total 21.1M 17.1M 6.95M

Table 2. Comparison of total input, output, and reasoning to-
kens used by various models in the experiments.

(“huuuyeah/meetingbank”). Wiki-727K, obtained from
“TankNee/wiki-727k,” does not explicitly specify a li-
cense; however, since the passages are derived from
Wikipedia, they are subject to the Creative Commons
Attribution-ShareAlike 4.0 International License (CC-BY-
SA 4.0), which we assume applies. Additionally, Gov-
Report (“ccdv/govreport-summarization”) and QASPER
(“allenai/qasper”) are both released under the Creative Com-
mons Attribution 4.0 license. We adhere to the terms of
these licenses in our use and distribution of these datasets.

We carefully reviewed all data sources for personally identi-
fying or offensive content. The MeetingBank dataset was
compiled from publicly accessible city council meetings
and evaluated—through consultation with legal experts—to
ensure that it does not contain confidential or uniquely iden-
tifying information. Similarly, while Wikipedia includes
detailed profiles of public figures, its content is subject to
strict editorial standards and is publicly available under the
CC-BY-SA 4.0 license. We rely on these established proto-
cols to maintain ethical standards in our work.
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E. Prompts
This section presents prompts used in the experiments in
Section 3.2.

Verbatim-Only

Repeat the same text as provided in the original text.
Original Text: {context}

In the Verbatim-Only prompt, context represents the original
text that the model must reproduce verbatim.

Numeric Sorting

Rearrange the numbers so that they are in {mode}
order: {context}
Only provide the answer.

For the Numeric Soring prompt, context represents the list
of numbers to be sorted, and mode indicates whether they
should be arranged in ascending or descending order.

Arranging Shuffled Sentences

You are given sentences from a Wikipedia article.
These sentences have been randomly shuffled. Your
task is to restore them to their original order to form
a coherent text. Follow these rules:

1: Do not omit or modify any words, punctuation,
or other details from the sentences.

2: Do not add any new content or commentary.

3: Only output the reordered text, with each sen-
tence in its correct position to recreate the origi-
nal passage.

4: Do your best to restore the original order of the
provided sentences.

Shuffled Sentences: {context}

In the Shuffled Sentences prompt, context is the randomly
shuffled sentences that the model must reorder into their
original sequence.

Entity Grouping

Below is a list of entity names. Your task is to
assign each entity to exactly one of the following 14
categories:
- Company
- Educational Institution
- Artist
- Athlete
- Office Holder
- Mean of Transportation
- Building
- Natural Place
- Village
- Animal
- Plant
- Album
- Film
- Written Work
Requirement:

1: Each entity must be assigned to only one cate-
gory.

2: No entity should be left unclassified.

3: Use the exact entity names as they appear in the
input; do not modify them.

The list of entities: {context}

In the Entity Grouping prompt, context is the set of entities,
each assigned to a single category without modifying the
original text.

F. Structure Output Format
Here, we provide the structured output code for the entity
grouping task in Figure 4.

from pydantic import BaseModel
class Category(BaseModel):

entities:list[str]
category˙name: str

class Grouping(BaseModel):
categories: list[Category]

G. Results
Table 3, Table 4, Table 5, and Table 6 provide detailed re-
sults for Figure 2, Figure 3 (Tables 4, 5), and Figure 4,
respectively. We also report semantic and Levenshtein sim-
ilarity for the shuffled sentences task (Figure 6), recall for
each category for the entity grouping task (Figure 7), and
Levenshtein similarity across the sample upper bounds for
the numeric sorting task (Figure 5).
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Figure 5. Numeric sorting performance across different sample upper bounds. The models are evaluated on N = 2000 integers
sampled from [10x−1, 10x]. The x-axis represents the exponent x, with B = 10x as the sample upper bound. For all models, overall
performance decreases at higher exponents.
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Figure 6. Arranging shuffled sentence results. Each column corresponds to one dataset (MeetingBank, GovReport, QASPER, Wiki-
727K). The top row displays semantic similarity, indicating the semantic coherence between the ground-truth and generated text. The
bottom row shows Levenshtein similarity, reflecting the verbatim fidelity of each model’s output.
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values indicating better recall for that category.
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Model 100 500 1000 1500 2000

Ascending

o1 100.00± 0.00 98.04± 2.36 97.56± 2.36 95.52± 2.05 84.54± 19.73

o3-mini 100.00± 0.00 98.59± 0.69 98.07± 0.32 96.84± 1.42 42.33± 24.05

gpt-4o 100.00± 0.00 98.65± 0.99 92.01± 7.19 85.30± 19.42 71.48± 7.17

gpt-4o-mini 93.25± 1.68 92.98± 1.16 92.15± 0.97 85.09± 10.99 88.52± 1.03

gemini-2.0-flash 99.95± 0.00 99.91± 0.10 85.34± 0.05 66.29± 0.07 51.39± 5.57

gemini-1.5-pro 99.95± 0.00 99.95± 0.05 85.38± 0.00 66.36± 0.00 54.26± 0.03

Descending

o1 100.00± 0.00 85.65± 13.53 69.17± 13.17 70.73± 13.87 71.46± 22.47

o3-mini 100.00± 0.00 84.72± 17.99 62.55± 26.27 26± 15.08 13.04± 8.88

gpt-4o 98.57± 0.67 97.18± 1.61 61.50± 13.03 55.47± 12.32 40.79± 6.37

gpt-4o-mini 88.75± 3.59 62.63± 18.24 56.54± 15.87 62.17± 10.17 62.18± 5.31

gemini-2.0-flash 99.95± 0.00 99.45± 0.33 77.48± 14.21 59.40± 7.46 53.50± 1.82

gemini-1.5-pro 99.75± 0.40 99.99± 0.01 85.38± 0.01 66.34± 0.04 54.23± 0.03

Table 3. Numeric sorting results. The experimental setup follows the one depicted in Figure 2.

Model 100 200 300 400 500

MeetingBank

o1 95.66± 4.80 91.60± 19.73 85.26± 19.57 77.78± 23.92 48.09± 30.30

o3-mini 92.52± 8.18 78.41± 25.75 58.63± 28.74 37.67± 19.73 31.80± 1.56

gpt-4o 65.41± 15.71 54.60± 7.27 48.77± 14.35 41.92± 7.98 41.98± 10.86

gpt-4o-mini 83.08± 6.67 73.03± 6.21 69.53± 10.74 68.56± 3.65 70.44± 10.41

gemini-2.0-flash 94.16± 1.38 93.45± 1.15 90.56± 3.09 84.63± 3.67 80.37± 5.04

gemini-1.5-pro 95.29± 6.39 83.33± 12.27 82.15± 15.15 79.92± 13.79 71.21± 13.32

GovReport

o1 90.36± 5.08 81.45± 21.04 66.21± 25.36 42.20± 21.26 35.65± 23.19

o3-mini 69.07± 22.98 56.05± 22.45 35.29± 1.29 38.58± 6.56 34.78± 1.31

gpt-4o 73.93± 12.08 63.25± 8.49 52.32± 8.28 45.87± 6.37 45.65± 5.88

gpt-4o-mini 71.64± 5.12 67.58± 12.78 59.64± 6.51 62.51± 14.37 55.28± 11.79

QASPER

o1 89.41± 3.77 85.29± 9.00 78.38± 10.04 70.71± 14.62 66.85± 11.8

o3-mini 84.92± 6.54 71.91± 12.68 61.80± 17.18 51.19± 20.62 46.56± 12.74

gpt-4o 71.43± 9.81 63.71± 11.34 50.53± 4.22 53.27± 11.07 48.02± 5.09

gpt-4o-mini 69.68± 7.83 69.61± 10.37 62.05± 10.29 57.40± 5.51 52.48± 2.18

Wiki-727K

o1 92.67± 4.20 86.46± 3.52 72.44± 22.38 58.70± 25.11 55.95± 20.51

o3-mini 81.65± 15.26 58.45± 21.65 39.73± 9.76 39.29± 9.78 32.65± 10.04

gpt-4o 74.14± 14.12 56.05± 6.25 52.02± 4.53 49.89± 2.96 52.18± 5.22

gpt-4o-mini 65.66± 9.18 60.9± 5.72 59.68± 9.19 54.12± 3.92 51.78± 1.93

Table 4. Levenshtein similarity results for arranging shuffled sentences task. Each cell shows the average Levenshtein similarity
(higher is better) between the model’s re-ordered text and the ground-truth sentences. The experimental setup follows the one depicted in
Figure 3.
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Model 100 200 300 400 500

MeetingBank

o1 82.20± 5.94 73.96± 21.6 67.59± 18.86 62.85± 25.66 31.73± 33.31

o3-mini 83.1± 4.73 64.43± 27.47 43.61± 32.19 16.83± 16.87 10.94± 3.58

gpt-4o 73.98± 12.26 67.86± 7.68 54.68± 24.28 44.51± 22.69 36.72± 24.85

gpt-4o-mini 81.67± 6.37 83.46± 4.54 74.31± 6.53 77.72± 4.94 75.5± 7.46

gemini-2.0-flash 86.08± 4.72 82.61± 3.6 77.41± 5.31 76.13± 5.75 81.41± 6.16

gemini-1.5-pro 85.59± 5.33 83.31± 6.93 83.73± 7.64 76.21± 7.36 75.77± 8.26

GovReport

o1 89.81± 3.66 81.14± 25.02 61.85± 38.69 28.59± 36.32 22.32± 34.57

o3-mini 64.41± 37.43 46.66± 36.39 9.64± 2.97 13.37± 19.57 5.53± 2.23

gpt-4o 84.41± 5.24 78.52± 6.18 69.54± 21.15 54.08± 25.4 56.67± 23.23

gpt-4o-mini 84.95± 4.58 80.58± 6.38 84.30± 4.52 80.57± 5.62 78.94± 5.31

QASPER

o1 90.64± 4.12 90.03± 1.25 88.67± 3.72 74.93± 20.27 79.26± 22.16

o3-mini 90.66± 3.7 83.73± 22.52 66.77± 34.19 50.9± 36.31 40.64± 32.27

gpt-4o 88.21± 3.8 82.75± 4.96 71.5± 6.2 70.58± 17.61 65.41± 17.76

gpt-4o-mini 86.75± 4.28 88.4± 3.44 82.96± 7.79 81.59± 4.93 76.54± 5.28

Wiki-727K

o1 89.17± 4.8 84.04± 7.18 67.61± 33.88 50.89± 40.72 49.26± 36.89

o3-mini 77.06± 25.44 43.4± 40.75 13.66± 22.68 15.31± 25.38 8.28± 2.73

gpt-4o 87.06± 6.51 78.45± 6.66 72.36± 8.44 66.24± 7.54 71.6± 9.02

gpt-4o-mini 83.01± 4.83 83.17± 4.23 78.53± 6.50 77.69± 8.19 71.22± 5.22

Table 5. Semantic similarity results for arranging shuffled sentences task. Each cell shows the average semantic similarity (higher is
better) between the model’s re-ordered text and the ground-truth sentences. The experimental setup follows the one depicted in Figure 3.

Model 100 250 500 750 1000

Category Recall

o1 95.02± 1.96 92.13± 2.07 82.98± 16.37 61.82± 33.75 53.27± 30.36

o3-mini 84.89± 3.54 76.78± 2.53 64.82± 6.90 53.18± 5.04 41.42± 7.03

gpt-4o 58.69± 18.99 34.48± 8.01 12.89± 4.73 8.39± 2.83 6.99± 1.82

gpt-4o-mini 7.69± 5.36 9.52± 9.82 8.28± 6.12 3.88± 2.29 4.09± 1.72

gemini-2.0-flash 72.07± 14.89 62.39± 16.72 65.95± 3.34 47.97± 10.83 20.13± 8.5

gemini-1.5-pro 73.5± 4.32 71.83± 4.24 68.05± 3.03 57.85± 7.38 53.67± 15.2

Global Recall

o1 99.90± 0.30 96.89± 1.58 87.62± 17.03 66.18± 35.71 56.18± 31.06

o3-mini 99.00± 1.00 90.36± 2.04 76.88± 7.19 62.39± 6.16 48.97± 8.66

gpt-4o 65.40± 19.92 41.24± 8.64 19.05± 5.95 11.47± 3.15 9.73± 2.32

gpt-4o-mini 11.08± 8.38 12.89± 14.94 11.51± 9.16 6.45± 4.68 7.17± 3.31

gemini-2.0-flash 85.40± 16.82 71.12± 18.3 72.17± 2.56 59.81± 4.98 54.14± 8.17

gemini-1.5-pro 84.71± 6.54 85.22± 5.02 79.82± 5.09 71.53± 9.37 66.81± 18.54

Table 6. Entity grouping results. The experimental setup follows the one depicted in Figure 4.
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