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Abstract Nonlinearmodeling,multi-uncertainty anal-
ysis and robust control are the main challenges for net-
worked control applications in industrial scenarios. To
address these difficulties, this paper proposes a resilient
control scheme for nonlinear cyber-physical systems
with unknown disturbances and actuator attacks. First,
a novel composite control framework under the strategy
of goal representation heuristic dynamic programming
(GrHDP) is constructed to mitigate adverse attacks,
where a three-player zero-sum game (ZSG) is formu-
lated to solve the optimal policy pair. Then, an adaptive
event-triggered mechanism with performance guaran-
tee is designed to save communication resources and
improve system resilience, which does not rely on
explicit dynamics and achieves both short- and long-
term response performance. Under the ZSG issue, a
Nash equilibrium-based GrHDP algorithm is devel-
oped to implement such a scheme, and the weight
updating rules of each network are derived respectively.
Furthermore, both the convergence of the performance
index and the uniform ultimate boundedness of the
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closed-loop systemare analyzed rigorously. Finally, the
effectiveness of the proposed method is verified by an
aero-engine networked system.
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1 Introduction

Cyber-physical systems (CPSs), integrating the mer-
its of computation, communication and control, have
become the key to intelligent evolution in industrial
scenarios, includingmulti-agent system [1], power sys-
tem [2,3], electromechanical system [4], etc. With
the increasing scale and complexity of CPSs, higher
requirements are placed on system stability and robust-
ness. Specifically, the robustness issue is manifested in
two aspects. On the one hand, multiple uncertainties
are ubiquitous in physical plant, such as system non-
linearity and external noise, making traditional control
methods unable to meet the ever-increasing require-
ments of practical engineering [5]. On the other hand,
with the involvement of communication networks, the
system is exposed to open and shared environments and
more vulnerable to malicious attacks that can degrade
system performance and, in severe cases, cause catas-
trophic consequences [6]. Over the past decade, schol-
ars in both academia and industry have devoted exten-
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sive attention to this issue and conducted numerous
meaningful works [7–9].

Significantly, plenty of research has focused on
uncertainty modeling and robust control of complex
CPSs, especially for network-induced factors, such as
delay [10], scheduling [11,12], attack [6,13], etc. Since
most uncertainties can be characterized as bounded dis-
turbances, feedback control with H∞ technology has
been widely used for anti-disturbance control [2,14].
They are mainly designed by Lyapunov functions and
linear matrix inequalities (LMIs), so the closed-loop
system may suffer from high conservatism and low
robustness. Although several advanced schemes have
been implemented to improve system resilience, such
as slidingmode control (SMC) [4,15],model predictive
control (MPC) [16], neural network control [17], etc.,
they extremely rely on explicit systemmodels and some
strict assumptions, e.g., matched disturbance, Gaus-
sian noise, or polyhedral uncertainty, greatly restricting
their engineering applications.Moreover, most of these
results fail to tackle optimality, which is critical for
some high-performance scenarios, such as steady-state
improvement for DCmicrogrids [18], power optimiza-
tion for energy systems [19], and cost optimization for
multi-agent systems [20].

As an iterative optimization algorithm, adaptive
dynamic programming (ADP) provides a pathway
for optimal control of complex physical systems by
solving the Hamilton-Jacobi-Bellman (HJB) equation
[21]. Significantly, there have been great advances
in ADP algorithms, e.g., heuristic dynamic program-
ming (HDP) [22], dual heuristic programming (DHP)
[23], and globalized DHP [24]. Under these frame-
works, policy iteration (PI) or value iteration (VI)
is performed to solve the HJB equation, and neural
networks (NNs) with actor-critic (A-C) structures are
used to approach the optimal policy. In [24,25], the
PI and VI have been developed respectively for linear
or nonlinear continuous-time systems, and the conver-
gence of algorithms is analyzed rigorously. Consider-
ing unknown and constrained dynamics, a model-free
ADP algorithm was proposed and both optimal state
and output feedback controllers were designed in [26].
Nonetheless, in industrial scenarios, since more digi-
tal processors are used for signal interaction, the dis-
crete dynamics play a key role in control synthesis,
and related works can be found in [24,27,28]. How-
ever, these schemes mainly rely on a discrete or fixed
reward (e.g., xTk Qxk + uTk Ruk) and fail to balance the

short- and long-term performance. To alleviate the con-
straint of learning costate, the goal representation HDP
(GrHDP) technique has been developed in [29], and
such a scheme has been successfully applied to deal
with the complex control of industrial devices [30,31].

Note that the above-mentioned methods rely on the
assumption that the system information is complete
and uncorrupted, as CPSs work in an open environ-
ment, malicious attacks are unavoidable. In practice,
network attacks can be divided into denial-of-service
(DoS) [2] and deception attack [13]. Among them,
deception attacks are more sophisticated as they are
carefully designed with system state and difficult to
identify by measuring instruments. Recently, exten-
sive studies have been made for the secure control of
CPSs under deception attacks. For example, the opti-
mal attack for linear quadratic Gaussian systems was
studied in [32]. The authors in [33] designed an adap-
tive fuzzy scheme to mitigate the effects of cyberat-
tacks. In [34], the secure estimation problem under lin-
ear deception attack was investigated and the perfor-
mance upper bound was further analyzed. Unlike pre-
viousmodel-dependent frameworks, data-driven attack
detection and control have been developed in [35,36],
where diverse reinforcement learning algorithms are
designed to balance the cost of attacker and defender.
However, these schemes are mainly based on machine
learning to implement detection and compensation,
which cannot react quickly to the sudden changes of
adverse attacks.

As an effective way to increase the resilience of
CPSs, event-triggered (ET) schemes have gained much
attention in reducing network traffic [2,37–40]. Specif-
ically, in [37], the decentralized periodic ET scheme
was designed for wireless CPSs with distributed sen-
sors. In [38], the ET control of the crane bridge sys-
tem modeled by partial differential equations (PDEs)
was investigated, where an adaptive ET condition was
proposed to reduce resource consumption. Considering
the effect of malicious attacks, the problem of secure
ET control for industrial CPSs under limited resource
budget and deception attacks was addressed in [39],
where a neural network-based controller was designed
to ensure robustness. However, these pre-designed trig-
gering conditions rely on explicit system dynamics and
are difficult to migrate directly to the model-unknown
complex system. To avoid the dependence on system
dynamics, model-free ET mechanisms have been suc-
cessively proposed in [41–43]. Note that among these
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results, the controller is usually solved by NNs, so the
reliability of the closed-loop system is hard to guar-
antee. In addition, the traditional proportional integral
differential (PID) controller has always been in a com-
manding position in industrial control benefiting from
its superiority in parameter tuning and strong robust-
ness. As such, naturally emerged challenge is how to
improve the resilience of CPSs while utilizing the mer-
its of PID controller, which motivates this work.

To summarize the discussions made so far, we find
that the resilient control of nonlinear CPSs is still
a fairly open topic and some issues still exist to be
addressed: (1) most advanced schemes for nonlinear
CPSs rely heavily on explicit system models and strict
assumptions to deal with multiple uncertainties [15],
or train virtual controllers purely based on NNs, mak-
ing them difficult to ensure diverse control require-
ments; (2) as deceptive attacks are usually designed
arbitrarily and change suddenly [36], existing detection
and compensation-based schemes struggle to migrate
the impact of adverse attacks and fail to balance sys-
tem cost; (3) most existing ET schemes rely on sys-
tem dynamics or predefined structures, and ignore the
exploration of the effect of ET conditions on system
performance, and thus fail to apply to model-free sce-
narios.

Against these drawbacks, this paper proposes a
resilient controller with adaptive ET mechanism for
nonlinear CPSs under sparse actuator attack and exter-
nal disturbance. The main contributions are as follows.

• A composite control framework is proposed for
CPSs with actuator attacks, control saturation and
external disturbances via zero-sum game (ZSG)
and supplementary control. Comparedwith [32,33,
35], this framework is model-free and combines
the merits of PID controller and virtual controller
trained by NNs to achieve robustness and reliabil-
ity.

• An adaptive ET mechanism is developed to mit-
igate the adverse effect of attacks and save net-
work bandwidth. The proposed triggering condi-
tion overcomes the dependence on explicit dynam-
ics [2,37,40,41], and obtains considerable perfor-
mance in the whole phase. Moreover, the stability
and performance upper bound of the closed-loop
system are analyzed rigorously.

• In the ZSG framework, a VI algorithm based on
Nash equilibrium and GrHDP is constructed to

Fig. 1 Control framework of CPSs under actuator attacks

implement such a scheme, where the weight updat-
ing rules of each network are derived respectively.
Then, both theoretical and experimental simula-
tions are performed to demonstrate the designed
algorithm is convergent and the system state is ulti-
mately uniformly bounded (UUB).

The remainder of this article is organized as fol-
lows. Section II presents the problem formulation and
some preliminary results. The design of mode-free ET
mechanism is developed in Section III. The ZSG prob-
lem under GrHDP framework is addressed in Sections
IV. The experiment results and analysis are given in
Section V. Section VI concludes this article.

Notations:Throughout this paper,Rn is the n dimen-
sional Euclidean space. E{x} denotes the expectation
of the stochastic variable x . The superscripts ‘T ’ and
‘−1’ are the matrix transpose and inverse, respectively.
inf{x} denotes the infimum of the variable x . diag{...}
indicates the diagonal matrix. δ(k − i) is the Kronecke
function that takes 1 when k = i and 0 otherwise.

2 Problem formulation and preliminaries

The system architecture considered in this paper is
shown in Fig. 1, in which both sensor-to-controller and
controller-to-actuator channels are connected by open
and shared networks. The adversary can monitor the
system behavior and launch sparse actuator attacks. In
particular, the systemdynamics is unknown and subject
to external disturbance and control saturation.
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2.1 Physical system description

Consider the following discrete-time nonlinear dynam-
ics without any prior:

xk+1 = F(xk, uk, ωk) (1)

where xk ∈ R
nx is the state vector, uk ∈ R

nu is the
control input to be designed, ωk ∈ R

nω is the distur-
bance, and k denotes the discrete-time index. F(·) is
a Lipschitz continuous function with F(0, 0, 0) = 0.
The system (1) is controllable without any constraints
beyond that.

To facilitate the control synthesis, Takagi-Sugeno
(T-S) fuzzy technique [2] is introduced to describe
the nominal characteristics of the system (1), which
is given by

Fuzzy rule i : IF g1(k) is Fi
1, g2(k) is F

i
2,..., and g�(k)

is Fi
� , THEN

xr,k+1 = Ai xr,k + Biur,k (2)

where i ∈ {1, 2, ..., r} is the number of rules,
{
Fi
j

}�

j=1

is the fuzzy set, and g(k) = [g1(k), g2(k), ..., g�(k)]T
denotes the corresponding premise variables. xr,k and
ur,k are the state and control signals of the reference
model, respectively. Ai and Bi are constant matrices
with appropriate dimensions.

Note that the reference model does not contain mul-
tiple uncertainties and there are no strict limits on its
accuracy. Then, the global T-S fuzzy model can be
expressed by the following compact form

xr,k+1 =
r∑

i=1

hi (g(k))(Ai xr,k + Biur,k) (3)

with

hi (g(k))=
∏�

j=1 μi j (g j (k))∑r
i=1

∏�
j=1 μi j (g j (k))

,

r∑
i=1

hi (g(k))=1

where μi j (g j (k)) refers to the grade of membership
of g j (xk) in μi j , and hi (g(k)) denotes the normalized
membership function. Based on the parallel distributed
compensation (PDC) technique [44], it is easy to design
an effective controller with guaranteed performance for
such a reference system.

Remark 1 The reference model can be seen as the non-
necessary prior knowledge of system dynamics. It can
roughly describe the nonlinear characteristics of the
system (1) and provide response information to guide
the control synthesis of the original system. When it’s
unknown, a single virtual controller can be designed
with the measurement data as in [42]. Here, we assume
the reference model (2) is known since it is easy to
construct with the T-S fuzzy technique.

2.2 Sparse actuator attack model

In CPSs, since most actuators and communication
channels are protected and the attack power is lim-
ited, deceptive attacks are usually assumed to be sparse,
which is reflected in the number and frequency of
attacked nodes [35]. Thus, the control signal on the
actuator side is given by

ũk = uk + αkΓkua,k (4)

where uk , ua,k and ũk denote the well-designed control
signal, false injection attack, and compromised control
input, respectively. Γk is the attack distribution matrix
to determine the attacked nodes. This model is built on
the basis of [36], and we further extend it to account
for the effect of attack frequency.

Define Sa,k ⊆ Na = {1, 2, ..., nu} as the set of
actuators selected by the attacker at step k. Then,
the attack distribution matrix Γk can be indicated as
Γk = diag{δ̄1σk , δ̄2σk , ..., δ̄nuσk } with σk ∈ Sa,k , where
δ̄iσk = δ(σk − i) is the Kronecke function. δ̄iσk = 1
means that the i-th actuator is attacked, otherwise 0.
The random variable αk inscribes whether or not an
injection attack occurs at time k and satisfies

Prob(αk = 1) = ᾱ (5)

where αk = 1 denotes a successful attack.
For a smart adversary, the number of attacks is lim-

ited and the attack matrix Γk is carefully designed [6].
Furthermore, the energy of the attack signal ua,k is
unknown but bounded to avoid being easily detected
by the defender. Based on this prior, the following two
types of attack patterns are considered [36]
(1) State-independent attacks
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If ua,k is time-invariant, let ua,k = d with d being
a constant. If ua,k is time-varying, ua,k = dk ≤ d̄ with
d̄ being the upper bounded.
(2) State-dependent attacks

If ua,k is time-invariant, let ua,k = dxk with d being
a constant, otherwise ua,k = dkxk with dk being a
bounded function.

The injection attack occurs randomly and fails to
detect beforehand. It degrades the system performance
manifested in two ways: tampering with control sig-
nals and aggravating control saturation. To improve the
robustness and resilience of the system, the following
composite controller is designed

uk = ub,k + us,k (6)

where ub,k is a basic controller and can be built in
advance with arbitrary structures. us,k is the supple-
ment controller to be designed.

Remark 2 In this paper, we do not design detection
mechanisms to identify or reconstruct false signals as
control compensation since the attack is mutable and
tricky [36]. In particular, the ZSG problem is formu-
lated in the subsequent section to solve the worst-case
attack matrix Γk and provide guidance for the design
of resilient controller. Considering that a single con-
troller trained by NNs is unreliable and inefficient [31],
a basic controller ub,k is introduced to maintain system
stability, and a virtual controller us,k is designed to fur-
ther optimize the response performance of the system
against external attacks.

2.3 Reward function design

Since the ideal strategy (u∗
s,k, Γ

∗
k , ω∗

k ) is unknown, a
three-player ZSG is presented to solve the optimal pol-
icy pair, in which Player II and Player III maximize the
degradation of system performance by imposing actu-
ator attacks and deceptive disturbances, respectively,
while Player I aims to search for optimal control actions
to improve robustness.

LetUs =
{
us,k

}∞
k=0,Γa ={Γk}∞k=0, andW={ωk}∞k=0

denote the policy spaces of three players, respectively.
For the reference model, its performance will be guar-
anteed with a well-designed controller. If the state xk
can be accurately tracked to xr,k , the stability of sys-
tem (1) will be guaranteed. Under the framework of

GrHDP [29], define the external reinforcement signal
Gk : Us × Γa × W → R as

Gk = E
{
x̄ Tk Qx̄k + S(ũk) + M(ωk)

}
(7)

where M(ωk) = −γ 2ωT
k ωk . x̄k is the tracking error

with x̄k = xk−xr,k . Q is a positive definite matrix. γ is
a given constant to represent the attenuation level. Due
to the saturation constraint, the non-quadratic power
loss is defined as

E {S(ũk)} = E

{∫ ũk
0 (ψ−1(τ/Ū ))T Ū Rdτ

}

= ᾱ
∫ uk+Γkua,k
0 (ψ−1(τ/Ū ))T Ū Rdτ

+(1 − ᾱ)
∫ uk
0 (ψ−1(τ/Ū ))T Ū Rdτ

(8)

where R is the symmetric positive matrix, Ū is the
upper bound of saturation, and ψ(·) is a bounded sur-
jective function belonging to Cq (q ≥ 1) and L2(�).
Without loss of generality, the tangent functionψ(·) =
tanh(·) is used to ensure the monotonic increment
of S(ũk) [42]. The partial derivatives of S(ũk) with
respect to us,k and Γk are denoted as

⎧⎪⎪⎨
⎪⎪⎩

∂S(ũk)

∂us,k
= ᾱŪ Rψ−1(

uk+Γkua,k

Ū
)+(1−ᾱ)Ū Rψ−1(

uk
Ū

)

∂S(ũk)

∂Γk
= ᾱŪ Rψ−1(

uk + Γkua,k

Ū
)uTa,k

(9)

Then, the internal reinforcement signal is given by

Rk = R(x̄k, uk, Γk, ωk) =
∞∑
i=k

Gi = Gk + Rk+1 (10)

Furthermore, the cost function is defined as

J (x̄k) = Rk + εJ (x̄k+1) (11)

where ε ∈ (0, 1) is a discount factor to balance the
importance of immediate and future rewards. Based on
Bellman’s optimality principle [21], the optimal costate
satisfies

J ∗(x̄k) = min
us,k

max
Γk

max
ωk

{
Rk + εJ ∗(x̄k+1)

}
(12)

Then, the optimal policy pair (u∗
s,k, Γ

∗
k , ω∗

k ) can be
derived from the Hamilton-Jacobi-Isaacs (HJI) equa-
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tion to achieve the Nash equilibrium [41]. However, it
is difficult to exactly solve due to its multivariate non-
linear partial derivative form [26]. In the subsequent
section, wewill introduce aGrHDP algorithm to obtain
suboptimal solutions.

2.4 Problem formulation

Considering malicious attacks and limited bandwidth,
event-triggered (ET) scheduling is adopted to coordi-
nate network resources and improve system resilience.
In this way, the control law is written as

uk = μ(x̄kt ), k ∈ [kt , kt+1) (13)

where {kt }∞t=0 is a monotonically increasing triggering
sequence with k0 = 0, which is determined by

kt+1 = inf
{
k

∣∣Cη(k) ≥ 0, k > kt
}

(14)

where Cη(k) is the ET condition to be designed.
Based on the above statements, the main purposes

of this article are threefold.

• Design a supplement controller to ensure the stabil-
ity and robustness of the closed-loop system under
the worst noise and attack strategies.

• Construct a model-free ET condition to alleviate
network pressure and improve system resilience.

• Solve the ZSG problem (12) under the frame-
work ofGrHDP and analyze the performance upper
bound of the closed-loop system.

Remark 3 The resilient control mainly reflects the sta-
bility, robustness and security of the system against
external attacks, which is achieved in the subsequent
sections by two parallel ways: optimal supplement con-
trol and adaptive ET mechanism. In particular, the
designed ET scheme sends control signals only when
the performance degradation condition is met, which
can significantly reduce the number of data transmis-
sions in the network and thus mitigate the risk of being
attacked.

3 ET scheme design and performance analysis

In this section, a model-free ET mechanism is pro-
posed, and the stability and performance upper bound
of the closed-loop system are analyzed rigorously.

3.1 Event-triggered scheme design

Before building the ET mechanism, an optimal con-
troller in the general time-driven case is designed and
analyzed. The value function Q(x̄k, uk) is practically
optimized to find a feasible policy pair (us,k, Γk, ωk)

in the training process, which is defined by

Qk = Q(x̄k, uk) = Rk + min
uk+1

εQ(x̄k+1, uk+1) (15)

The ZSG issue aims to find a saddle point solution
(u∗

s,k, Γ
∗
k , ω∗

k ) such that the following Nash equilib-
rium holds

J (u∗
s,k, �k, wk)≤ J (u∗

s,k, �
∗
k , w

∗
k )≤ J (us,k, �

∗
k , w

∗
k )

(16)

For the admissible feedback control u∗
s,k , the optimal

controller is given by

u∗
k = u∗

s,k + ub,k (17)

Then, the value function satisfies

Q∗(x̄k, u∗
k) = R∗(x̄k, u∗

k) + εQ∗(x̄k+1, u
∗
k+1)

= J (u∗
s,k, �

∗
k , w

∗
k ) = J ∗(x̄k)

(18)

where Q∗(x̄k, u∗
k), R

∗(x̄k, u∗
k) and J ∗(x̄k) are the opti-

mal performance indices in the time-triggered case.
Since (12) is a nonlinear PDE and difficult to solve
directly, ADP and NNs are introduced in the subse-
quent section to solve the optimal policy pair.

Based on the GrHDP algorithm [30], the optimal
controller u∗

k can be easily obtained. However, exter-
nal attacks are often disguised in control signals to
degrade system performance and fail to be passively
and effectively suppressed. Event-triggered scheduling
can actively reduce the number of signal transmissions
and thus mitigate the risk of attacks. However, most
existing ET conditions rely heavily on system dynam-
ics or predefined structures [2,37,38,40], making them
difficult to transfer directly to model-free scenarios. In
addition, for the ET case, since the controller is updated
only at the triggering moment, the performance index
J ∗(x̄k) will inevitably decrease, so how to limit and
ensure the system performance to be adjusted within a
tolerable range is still a tricky problem.
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To address these challenges, an adaptive ET mech-
anism is designed

Cη(k) = Cη(x̄k, x̄kt ) = max{Cη1(k),Cη2(k)} < 0

(19)

with �Q∗
k =Q∗(x̄k, μ(x̄kt ))−Q∗(x̄k, u∗

k) and

{
Cη1(k) = �Q∗

k − η1R
∗(x̄k, μ(x̄kt )) (20a)

Cη2(k) = G∗(x̄k, μ(x̄kt )) − η2G
∗(x̄k, u∗

k) (20b)

where Cη1(k) reflects the extent to which the actual
performance index Q∗(x̄k, μ(x̄kt )) at moment k devi-
ates from the optimal performance index Q∗(x̄k, u∗

k),
which considers the offset of the internal reinforce-
ment signal and reveals the error of future reward.
While Cη2(k) characterizes the offset of the external
reinforcement signal G∗

k(x̄k, μ(x̄kt )) under ET control,
which reflects the bias of immediate reward. η1 and η2
are constants to govern the triggering threshold with
0 ≤ η1 < 1 and η2 > 1. The control action is updated
only when the triggering condition (19) is violated. Let{
μ(x̄kt )

}∞
t=0 be the ET control sequence, then it satis-

fies
{
μ(x̄kt )

}∞
t=0 ⊆ {

u∗
k

}∞
k=0.

Then, the variable substitution is applied to deal
with the term max{Cη1(k),Cη2(k)}. Define κ(ι1, ι2) as
a binary function satisfying κ(ι1, ι2) = 1 for ι1 ≥ ι2,
otherwise 0. Then, (19) can be rewritten as

Cη(k) = κCη1(k) + (1 − κ)Cη2(k) < 0 (21)

where κ is the abbreviation of κ(Cη1(k),Cη2(k)).

Remark 4 Note that the proposed ET mechanism is
implemented after obtaining the time-driven optimal
controller u∗

k , and it sacrifices some triggering flexi-
bility for control reliability. The external reward signal
comes from environmental feedback or changes in task
demands, while the internal signal reflects or predicts
the difference between internal and target performance.
They are both directly related to the desired state of
the system. The designed ET condition takes perfor-
mance deviation as the threshold, which can compre-
hensively evaluate whether the control strategy needs
to be updated and balance the control performance of
the whole process.

3.2 Performance analysis

In the following, the stability criteria and the upper
bound of performance degradation for closed-loop sys-
tems are analyzed and discussed, respectively.

Theorem 1 For the nonlinear system (1) with the opti-
mal policy pair (u∗

s,k, Γ
∗
k , ω∗

k ), the closed-loop system
is asymptotically stable under the ET mechanism (21).

Proof Consider the following Lyapunov function

V (k) = κVQ(k) + (1 − κ)VR(k) (22)

with VQ(k) = εk Q∗(x̄k, u∗
k), VR(k) = R∗(x̄k, u∗

k).
The proof is conducted by the following two cases.

Case 1: If the ET condition (21) is not violated, i.e.,
Cη(k) < 0 holds at k ∈ (kt , kt+1), we have

Cη1(k) < 0, Cη2(k) < 0 (23)

Define η̄1 =1−η1, according to (18) and (20a), we
have

εkCη1(k) =εk
{
�Q∗

k − η1R∗(x̄k, μ(x̄kt ))
}

=εk
{
Q∗(x̄k, μ(x̄kt ))−Q∗(x̄k, u∗

k)−η1R∗(x̄k, μ(x̄kt ))
}

=εk
{
εQ∗(x̄k+1,u∗

k+1)+η̄1R∗(x̄k, μ(x̄kt ))−Q∗(x̄k, u∗
k)
}

=�VQ(k) + εk η̄1R∗(x̄k, μ(x̄kt ))

(24)

Similarly, substituting (10) into (22) yields

Cη2(k) = G∗(x̄k, μ(x̄kt )) − η2G∗(x̄k, u∗
k)=G∗(x̄k, μ(x̄kt ))−η2

{
R∗(x̄k, u∗

k)−R∗(x̄k+1, u∗
k+1)

}
=G∗(x̄k, μ(x̄kt )) + η2�VR(k)

(25)

By combining (23)-(25), one has

⎧
⎨
⎩
�VQ(k)=εk

[
Cη1(k) − η̄1R∗(x̄k, μ(x̄kt ))

] ≤ 0

�VR(k)= 1

η2

[
Cη2(k) − G∗(x̄k, μ(x̄kt ))

] ≤ 0

(26)

which implies

�V (k) = κ�VQ(k) + (1 − κ)�VR(k) ≤ 0 (27)
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Case 2: If the triggering condition (21) is violated at
k = kt , the control signal will be updated immediately.
Then, we have

�VQ(k) = εk+1Q∗(x̄k+1, u∗
k+1) − εk Q∗(x̄k, u∗

k)

= −εk R∗(x̄k, u∗
k) ≤ 0

(28)

According to (10), one has

�VR(k) = R∗(x̄k+1, ũ∗
k+1) − R∗(x̄k, u∗

k)

= −G∗(x̄k, u∗
k) ≤ 0

(29)

Based on the above discussion, the closed-loop sys-
tem is asymptotically stable with the designed ET
mechanism. This ends the proof. 	


The following corollary reveals the performance
guarantee of the controlled system.

Corollary 1 For the nonlinear system (1) with the ET
condition (21), the performance index is bounded and
obeys the following properties

(1) The internal reward satisfies R(x̄k, μk) ≤ η2
R∗(x̄k, u∗

k).

(2) The cost function satisfies J (x̄k, μk) ≤ 1

η̄1
J ∗(x̄k).

Proof Based on (26), we have

G∗(x̄k, μk) ≤ −η2�R∗(x̄k, u∗
k) (30)

According to Theorem 1, the closed-loop system is
asymptotically stable, so R∗(x̄∞, u∗∞) → 0 holds as
k → ∞. The internal reinforcement signal satisfies

R(x̄k, μk) =
∞∑

m=0

G∗(x̄k+m, μk+m)

≤
∞∑

m=0

{−η2�R∗(x̄k+m, u∗
k+m)

}

= η2
(
R∗(x̄k, u∗

k) − R∗(x̄∞, u∗∞)
)

= η2R
∗(x̄k, u∗

k)

(31)

By combining (18) and (26), we have

η̄1R
∗(x̄k, μk) ≤ Q∗(x̄k, u∗

k) − εQ∗(x̄k+1, u
∗
k+1) (32)

For n = 1, 2, ...,∞, the following inequalities hold

⎧⎪⎪⎨
⎪⎪⎩

εη̄1R∗(x̄k+1, μk+1) ≤ ε
(
Q∗

k+1 − εQ∗
k+2

)
ε2η̄1R∗(x̄k+2, μk+2) ≤ ε2

(
Q∗

k+2 − εQ∗
k+3

)
...

εn η̄1R∗(x̄k+n, μk+n) ≤ εn
(
Q∗

k+n − εQ∗
k+n+1

)

(33)

where Q∗
k+n = Q∗(x̄k+n, u∗

k+n). Summing over (33)
yields

η̄1

n∑
i=1

εi R∗(x̄k+i , μk+i ) ≤ Q∗
k − εn+1Q∗

k+n+1 (34)

Let n → ∞, then the condition Q∗(x̄∞, u∗∞) → 0
holds. Successively, we have

J (x̄k, μk) ≤ 1

η̄1
Q∗(x̄k, u∗

k) = 1

η̄1
J ∗(x̄k) (35)

This ends the proof. 	


Remark 5 The above theorem reveals the stability of
the closed-loop system. Compared with previous stud-
ies [2,38–40], this paper derives the actual perfor-
mance index of the system under ET control and clearly
exposes the relationship between trigger parameters
and performance degradation, which can theoretically
guide users to set an appropriate trigger threshold.

4 Algorithm design and NNs implementation

In this section, the formulated ZSG issue (12) is
addressed under the GrHDP framework. The imple-
mentation architecture is shown in Fig. 2, where a
goal network and a critic network are constructed to
approach the performance indices Rk and Qk , and two
actor networks are designed for Player I and Player
III to approximate the optimal policy pair (u∗

s,k, ω∗
k ).

Based on these estimates, linear programming tech-
nique is used to solve the optimal attack matrix Γ ∗

k of
Player II. Finally, the boundedness of the closed-loop
system is analyzed rigorously.
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Fig. 2 Architecture of the proposed GrHDP algorithm

4.1 GrHDP network design

Note that GrHDP is an iterative optimization algorithm
[29]. According to Bellman’s principle, the update rule
of the performance index satisfies

{
Rt+1
k = Gt

k + Rt
k+1

Qt+1
k+1 = Gt

k + Rt
k+1 + εQt

k+1

(36)

where Gt
k = G(x̄k, uts,k, Γ

t
k , ωt

k), and t is the iteration
index.

Inwhat follows,wewill give four networks to imple-
ment such an algorithm.

(1) Goal network: Compared with the traditional
HDP algorithm [23], the internal reinforcement signal
rather than external reward is designed to capture the
future operation information of the system and provide
guidance for the learning of costate, which is approxi-
mated by the goal network

R̂t
k = (wt

g2)
Tφg(w

T
g1zk) (37)

where (us,k, Γk) acts on uk via (4), and zk =
[x̄ Tk , ũTk , ωT

k ]T is the network input. wg1 and wg2 are
weight matrices from the input-to-hidden (I2H) layer
and hidden-to-output (H2O) layer, respectively. φg(·)
is an activation function and can be selected as the sig-
moid form [42]. According to the Bellman iterative
process, the error of goal network is defined as

etg,k = Gt
k + R̂t

k+1 − R̂t
k (38)

In the learning process, to avoid excessive training
parameters and improve the convergence speed, as in
[31], the weight matrixwg1 is randomly initialized and
remains unchanged. The gradient descent method [22]
is used to updatewg2 byminimizing the quadratic error

Eg,k = 1/2e2g,k , given by the following iterative law

wt+1
g2 = wt

g2 − λg
∂Et

g,k

∂ R̂t
k

∂ R̂t
k

∂wt
g2

(39)

where λg > 0 is the learning rate of the goal network.
(2) Critic network: The critic network is employed

to approach the value function Qt
k , which is described

by

Q̂t
k = (wt

c2)
Tφc(w

T
c1sk) (40)

where sk = [x̄ Tk , ũTk , ωT
k , RT

k ]T is the input of critic
network. wc1 and wc2 are bounded weight matrices
from I2H layer and H2O layer, respectively. φc(·) is
the activation function. Based on (15), the error of value
function is defined as

etc,k = R̂t+1
k + εQ̂t

k+1 − Q̂t+1
k (41)

Then, the stability-assured updating law of the
weight matrix wc2 is obtained by minimizing the error
Ec,k = 1/2e2c,k , which is given by

wt+1
c2 = wt

c2 − λc
∂Et

c,k

∂ Q̂t
k

∂ Q̂t
k

∂wt
c2

(42)

where λc > 0 is the learning rate of the critic network.
(3) Nash equilibrium for Player II: The core task of

Player II is to construct an optimal attack matrix Γ ∗
k to

launch actuator attacks. Note that the attack matrix Γk

solved by (12) takes arbitrary distribution within the
enclosed space �Γ ∈ R

nu×nu , which hardly meets the
properties of sparse attacks [35]. Meanwhile, although
both Player II and Player III optimize the cost function
towards the same direction, i.e., maximally degrading
the system performance, they are independent of each
other and act on the system via different channels.

At each sampling moment k, the attacker randomly
decides whether to launch an attack or not due to lim-
ited power. When αk = 1, the malicious attacker will
selectm nodes fromall actuators to inject false data. Let{
ktα

}∞
t=0 as the time sequence of successfully launched

attacks. Then, the malicious attack at moment ktα can
be expressed as Γ (ktα) = diag{δ̄1ktα , δ̄

2
ktα

, ..., δ̄
nu
ktα

}, and
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Algorithm 1: GrHDP for multi-player ZSG

Input: Attack fators ᾱ and m, system factors x0, Q, R, Ū ,
ε and γ , iteration threshold σ and step tmax.

Output: Optimal policy in the time-triggered case.
1 Set t = 0, R0

k = 0 and Q0
k = 0.

2 Construct GrHDP networks based on (37)-(50).
3 Initialize the weights and learning rates of networks.
4 while t ≤ tmax do
5 Update the weight matrix wg2 based on (39);
6 Update the weight matrix wc2 based on (42);
7 Solve the optimization problem (46) with linear

programming to obtain the attack strategy Γ t
k ;

8 Update the weight matrices wu2 and wω2 based on
(49) and (52);

9 Calculate the value function Q̂t+1
k based on (36);

10 if
∣∣∣Q̂t+1

k − Q̂t
k

∣∣∣ ≤ σ then

11 Solve the control law using the latest weights:
12 u∗

s,k = (wt
u2)

T φu(w
T
u1 x̄k).

13 else
14 t = t + 1.
15 end
16 end
17 return The optimal policy pair (u∗

s,k , Γ
∗
k , ω∗

k ).

the whole ZSG problem is formulated as

min
us,k

max
Γk

max
ωk

Q(x̄k, uk)

s.t.
∑nu

i=1 δ̄iktα
= m

(43)

According to stochastic game theory [36], the Nash
equilibrium (NE) is a joint optimal policy, in which
each player’s strategy is optimal of the rest. Thus, the
optimal attack problem is equivalent to finding a NE
solution to the ZSG issue (43). Based on Bellman’s
principle, the optimal attack matrix satisfies

Γ ∗
k = argmax

Γk
{R(x̄k, uk) + εQ∗(x̄k+1, uk+1)}

s.t.
∑nu

i=1 δ̄iktα
= m

(44)

Sequentially, the optimal policy (u∗
s,k, ω

∗
k ) is com-

puted by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u∗
s,k = Ūψ(−1

2
(Ū R)−1(

∂ x̄k+1

∂us,k
)T∇Q∗

k+1) (45a)

ω∗
k = 1

2γ 2

(
∂ x̄k+1

∂ωk

)T

∇Q∗
k+1 (45b)

Since the internal reinforcement signal Rk and opti-
mal Q-function Q∗

k are unknown, an alternative is to

approximate the problem (44) with the output of goal
network and critic network. By doing so, (44) is trans-
formed into

Γ t
k = argmax

Γk
{R̂t

k + εQ̂t
k+1}

s.t.
∑nu

i=1 δ̄iktα
= m

(46)

The problem (46) is convex and can be solved by
linear programming. After that, two actor networks are
designed for Player I and Player III to get the optimal
policy (u∗

s,k, ω
∗
k ).

(4)Actor network for Player I:The task of Player I is
to obtain an optimal supplementary control law, which
is approximated by

ûts,k = (wt
u2)

Tφu(w
T
u1 x̄k) (47)

where wu1 and wu2 are the network weights of Player
I, and φu(·) is the corresponding activation function.
Define the estimation error as etu,k = ûts,k − uts,k . Con-
sidering the constraint of control saturation, according
to (45a), we have

uts,k = Ūψ(−1

2
(Ū R)−1(

∂ x̄k+1

∂uts,k
)T∇ Q̂t

k+1) (48)

Then, the weight matrixwu2 is updated by minimiz-
ing the error Eu,k = 1/2e2u,k

wt+1
u2 = wt

u2 − λu
∂Et

u,k

∂ ûts,k

∂ ûts,k
∂wt

u2
(49)

where λu > 0 is the learning rate.
(5) Actor network for Player III: The role of Player

III is to find the worst disturbance in L2[0,∞) to
degrade the system performance, which is given by

ω̂t
k = (wt

ω2)
Tφω(wT

ω1 x̄k) (50)

where wω1 and wω2 are the network weights of Player
III, and φω(·) is the bounded activation function. Based
on (45b), we have

ωt
k = 1

2γ 2

(
∂ x̄k+1

∂ωt
k

)T

∇ Q̂t
k+1 (51)

Define the estimation error as etω,k = ω̂t
k − ωt

k and
update the weight matrix wω2 by minimizing Eω,k =
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1/2e2ω,k , one has

wt+1
ω2 = wt

ω2 − λω

∂Et
ω,k

∂ω̂t
k

ω̂t
k

∂wt
ω2

(52)

where λω > 0 is the learning rate of Player III.

4.2 Algorithm implementation

In the following, aiming to obtain the optimal solution
of the above three-player ZSG problem, a NE-based
GrHDP scheme is proposed in Algorithm 1.

Note that the designed ET condition requires the
knowledgeof system indicesQ∗(x̄k, u∗

k) andG
∗(x̄k, u∗

k)

under time-triggered control, so in Algorithm 1, the
training process of network weights does not involve
ETpatterns.After the training process is completed, the
weights of GrHDP networks are maintained to output
appropriate strategies according to the current opera-
tion state of the system. On this basis, the ET mech-
anism (21) is introduced into the controlled system to
reduce the communication cost, and the implementa-
tion process is shown in Algorithm 1.

As the offline training and online deployment strat-
egy is employed, the computational complexity of the
proposed scheme ismainly reflected in the offline train-
ing phase of the supplement controller, which con-
sumes some computational resources to train the neu-
ral network. While in the actual deployment phase, the
computing power mainly depends on the forward prop-
agation process of the neural network, which is linear
and the resources required for each computation are
fixed, so the real-time generation of control actions can
be guaranteed.

4.3 Performance analysis

In this section, the convergence of both the algorithm
implementation and the closed-loop system are ana-
lyzed.

Theorem 2 For the given initial values R0
k and Q0

k ,
when applying the following iterative process

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

utk = argmin
uk

{Gk + Rt (x̄k+1,

ut−1
k+1) + εQt (x̄k+1, u

t−1
k+1)}

Rt+1(x̄k, uk) = Gk + Rt (x̄k+1, utk+1)

Qt+1(x̄k, uk) = Gk + Rt (x̄k+1,

utk+1) + εQt (x̄k+1, utk+1)

Algorithm 2: Event-triggered control scheme
Input: Event-triggered parameters η1 and η2, optimal

policy pair (u∗
s,k , Γ

∗
k , ω∗

k ) under time-triggered
control, maximum step Kmax.

Output: Event-triggered control sequence.
1 while k ≤ Kmax do
2 Set k = 0, t = 0;
3 Calculate the triggering function Cη(x̄k , x̄k+1);
4 if Cη(x̄k , x̄k+1) ≥ 0 then
5 t = t + 1;
6 Update the control law: μ(x̄kt ) = û∗(x̄k+1).
7 else
8 Keep the input μ(x̄kt ) = û∗(x̄k) unchanged.
9 end

10 k = k + 1.
11 end
12 return The event-triggered control law

{
μ(x̄kt )

}∞
t=0.

Then, Qt (x̄k, uk) is monotonically decreasing with t ,
and Qt (x̄k, uk) → Q∗(x̄k, u∗

k) holds when t → ∞.
Successively, it gives (u∞

s,k, Γ
∞
k , ω∞

k ) → (u∗
s,k, Γ

∗
k , ω∗

k ).

Proof Algorithm 1 is constructed based on Theorem
2 and employs NNs to solve the HJI equation. The
above theorem reveals the convergence of Algorithm 1
and its proof is in line with [42]. The formulated ZSG
is approximated by the GrHDP strategy, and then the
optimal policy pair is obtained by executing the above
iterations. With the help of Lyapunov theory, it is easy
to prove that the estimation error of networks (37)-(52)
is bounded [31], and hence omitted here. 	


Based on Theorem 2, the following assumption is
imposed.

Assumption 1 The performance indices S( ˆ̃uk) and
M(ω̂k), and the estimation errors ςk and ζk are
bounded, i.e.,

(1) There exist positive scalar pairs (βs1, βs2), (βω1, βω2),
and (βr1, βr2) such that the following inequalities
hold.

⎧⎨
⎩

βs1‖x̄k‖2 ≤ S( ˆ̄uk) ≤ βs2‖x̄k‖2
βω1‖x̄k‖2 ≤ M(ω̂k) ≤ βω2‖x̄k‖2
βr1‖x̄k‖2 ≤ R̂(x̄k, û(k)) ≤ βr2‖x̄k‖2

(53)

(2) Define the estimation errors as ςk = Q∗(x̄k, u∗
k) −

Q̂(x̄k, ûk) and ζk = R∗(x̄k, u∗
k)− R̂(x̄k, ûk). There

exist twoupper boundsςM and ζM such that‖ςk‖ ≤
ςM and ‖ζk‖ ≤ ζM hold.

123



4088 P. Song et al.

Theorem 3 The system state x̄k is uniformly ultimately
bounded under the solved policy pair and ET mecha-
nism.

Proof Choose (22) as the Lyapunov function and con-
sider the following two cases.

Case 1: If Cη(k)<0 holds at k∈(kt , kt+1), one has

�VQ(k) = εk+1Q∗(x̄k+1, u∗
k+1) − εk Q∗(x̄k, u∗

k)

= εk+1 Q̂(x̄k+1, ûk+1) − εk Q̂(x̄k, ûk) + �ς̄k

= εk[Cη1(k) − η̄1 R̂(x̄k, μ(x̄kt ))] + �ς̄k

≤ −εk η̄1 R̂(x̄k, μ(x̄kt )) + �ς̄k

≤ −εk η̄1βr1
∥∥x̄kt

∥∥2 + ςM

(54)

where �ς̄k =εk+1ςk+1−εkςk . Thus, when the system
state x̄kt is out of the bounded domain, i.e.,

∥∥x̄kt
∥∥ ≥√

ςM

εk η̄1βr1
, the condition �VQ(k) ≤ 0 holds such that

it converges asymptotically to the equilibrium point.
Define �ζk = ζk+1−ζk and η̃2 = 1/η2, based on

(26), we have

�VR(k) = R∗(x̄k+1, u∗
k+1) − R∗(x̄k, u∗

k)

= R̂(x̄k+1, ûk+1) − R̂(x̄k, ûk) + �ζk

= η̃2

[
Cη2(k) − Ĝ(x̄k, μ(x̄kt )

]
+ �ζk

≤ η̃2

(
x̄ Tk Qx̄k + S( ˆ̃ukt ) + M(ω̂kt )

)
+ �ζk

≤ η̃2

[
λmin(Q)‖x̄k‖2 + (βs1 + βω1)

∥∥x̄kt
∥∥2] + ζM

(55)

Similarly, �VR(k) < 0 holds when the following
inequality is true.

‖x̄k‖ ≥
√

η2ζM

λmin(Q)
or

∥∥x̄kt
∥∥ ≥

√
η2ζM

βs1 + βω1
(56)

Thus, when the ET condition is not violated at k ∈
(kt , kt+1), the system state x̄k is UUB.

Case 2: If Cη(k) > 0 holds at k ∈ (kt , kt+1). At
this time, the update law of the control signal is the
same as the time-triggered mechanism. Then, based on
Theorem 1, the system is asymptotically stable. This
ends the proof. 	

Remark 6 The above theorem reveals the boundedness
of the closed-loop system under the proposed scheme.
Note that the policy pair solved by Algorithm 1 is

suboptimal due to the presence of network estimation
errors [31]. But the basic controller ub,k can provide an
additional way to further deal with multiple uncertain-
ties and improve system robustness.

4.4 Controller parameter analysis

There are three types of parameters need to be config-
ured to achieve the resilient control scheme.
(1)Performance parameters:The performance param-
eters (Q, R, γ , ε) are mainly used to establish the opti-
mization criteria and balance the control power, steady-
state error and anti-disturbance performance. They are
often developed by the user based on actual control
requirements.
(2) Network training parameters: The learning rate
parameters (λg , λc, λu , λω) of neural networks affect
the training performance and convergence speed of the
model, and users can choose these parameters accord-
ing to the network complexity and dataset size.
(3) ET parameters: The ET parameters η1 and η2
are employed to balance the network quality of ser-
vice (QoS) and quality of control (QoC). As the trigger
parameters η1 and η2 increase, the number of triggers
becomes less, the resource is saved more, the perfor-
mance index of the system becomes larger, and the con-
trol performance worsens. Corollary 1 also reveals the
relationship between the ET parameters and the deteri-
oration of system performance indices, which can also
provide guidance to users.

5 Simulation results and discussions

In this section, simulation validations are conducted to
verify the effectiveness of the proposed scheme.

5.1 System setup

This section gives a simulation example on an aero-
engine networked system operating in an open environ-
ment, and the system is subject to external disturbances
and cyberattacks. Figure3 depicts the structure of the
simulation platformand it is consistentwith [44],where
TrueTime 2.0 toolbox is used to characterize the com-
munication network. Four subsystems, including low
pressure compressor (LPC) subsystem, high pressure
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Table 1 Simulation-related parameters

Parameters Q R γ ε η1 η2

Values diag{2, 2} 0.01diag{1, 1} 1.2 0.8 0.1 1.05

Parameters λg λc λu λω σ tmax

Values 0.005 0.01 0.001 0.001 10−3 100

Fig. 3 TrueTime simulation framework of aero-engine net-
worked system

compressor (HPC) subsystem, turbine and afterburner
subsystem, and nozzle subsystem, are considered in
the speed control loop. The communication nodes are
implemented by TrueTime Kernel. Additionally, the
composite controller and real-time ET mechanism are
encoded into the intelligent sensor and controller mod-
ule.

Because of the complex aerothermodynamic rela-
tionships between different components and largeflight
envelopes, there are no explicit nonlinear dynamics for
aero-engines. Zhou et al. [45] established a T-S fuzzy
model from AL-31F aero-engine, which is employed
in this paper as a nominal reference system to simulate
the full-envelope characteristics. The model structure
is as follows:

Fuzzy rule 1: If H f is 0km and Ma is about 0.11,
then

A1 =
[−1.26364 1.03610
−0.15054 −1.24944

]
,

B1 =
[
0.35420 0.54739
0.35765 0.32159

]

Fig. 4 Optimal value function Q∗(x̄k , u∗
k ) under different sys-

tem states

Fuzzy rule 2: If H f is 6.86km and Ma is about 0.75,
then

A2 =
[−0.68796 0.56623
−0.10917 −0.74529

]
,

B2 =
[
0.23334 0.32494
0.21948 0.21712

]

Fuzzy rule 3: If H f is 13.61km and Ma is about
1.40, then

A3 =
[−0.70638 0.33246
−0.13549 −0.37354

]
,

B3 =
[
0.10421 0.15536
0.10228 0.08665

]

Fuzzy rule 4: If H f is 16.27km and Ma is about
1.44, then

A4 =
[−0.89628 0.51077
−0.18259 −0.56626

]
,

B4 =
[
0.14051 0.27368
0.15398 0.13103

]
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Fig. 5 Response curves of closed-loop system under different
controllers

In this paper, we mainly focus on speed control, so
the output matrices are C = diag{1, 1} and D = 0.
The sampling period is set to h = 20ms. The saturation
constraint is

∣∣Ū ∣∣ = 30. The control inputs are the fuel
mass flowW f (kg/s) and throat area in nozzle A8 (m2),
and the outputs are the low pressure rotor speed nL
(r/min) and high-pressure rotor speed nH (r/min). The
external disturbance is random electromagnetic noise
perturbed around 20% of the equilibrium point.

Note that the common scheme for aero-engine net-
worked systems is to design feedback or PID con-
trollers. In [44], a robust fuzzy PI scheme is designed
for aero-engine systems with network-induced factors,
and it is taken for comparison. Moreover, Ren et al.
[46] explored a new achievement for generalized SMC
(GSMC), which is more universal and can be used
as a benchmark. The proposed scheme involves three
types of parameters: performance parameters (Q, R,
γ , ε), training parameters (λg , λc, λu , λω, σ , tmax) and
design parameters (η1, η2), and their initial values are
shown in Table 1. Specifically, the performance param-
eters and training parameters are generalized parame-
ters set by users based on expected quadratic perfor-
mance and network training loss. The design param-
eters are employed to balance the network quality of
service (QoS) and quality of control (QoC), and users
can set them according to Corollary 1 and specific con-
trol requirements. To give a clear discussion, a series

Fig. 6 System performance under different triggering condi-
tions

of experiments are carried out to verify the control per-
formance of the proposed scheme.

5.2 Optimal supplementary control without attack

In the first case, consider the aero-engine operating
at (H f = 3.98, Ma = 0.38). Set the initial state
x0=[0.6,−1]T and x̄0=[0.4,−0.2]T . When there are
no actuator attacks, i.e., ᾱ=0, under the framework of
GrHDP, the structures of NNs for goal network, critic
network, and actor networks are chosen as 5−32−1,
6−32−1, 2−20−2, and 2−20−1, respectively. The
initial weights for each network are randomly valued
within [−1, 1]. Define the state exploration space as
X ={

x̄k
∣∣−0.8 ≤ x̄1,k ≤ 0.8,−0.8 ≤ x̄2,k ≤ 0.8

}
.We

uniformly select 40,000 groups of states to obtain the
optimal value function Q∗(x̄k, u∗

k). The GrHDP algo-
rithm executes no more than tmax to achieve the cal-
culation accuracy σ . Figure4 depicts the output of the
well-trained Q-function under different system states.
As the system state converges to the equilibrium point,
the optimal value Q∗(x̄k, u∗

k) monotonically decreases
towards 0, which confirms that the trained critic net-
work is capable of evaluating the entire state space.

The response curves of the closed-loop system with
different controllers are shown in Fig. 5. One can see
that the PI controller is sensitive to system uncertainty
and leads to a large steady-state error. Although GSMC
has good anti-disturbance capability, it requires high
gains for robustness and easily causes a wide quasi-
sliding band. Thus, some additional measures such as
disturbance compensation or adaptive switchingmech-
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Fig. 7 Response curves of the closed-loop system under different attack frequency ᾱ and mode (Case 1/Case 3: state-
independent/dependent constant attack; Case 2/Case 4: state-independent/dependent time-varying attack)

anisms need to be introduced to alleviate the chatter-
ing phenomenon, which also increases the design com-
plexity. Significantly, the proposed optimal supplemen-
tary controller (OSC) introduces an additional control
action us,k to fine-tune system performance and further
enhances the anti-disturbance capability by imposing
the disturbance generation network and ZSG problem,
achieving no obvious overshoot and steady-state error
of less than 1%. Figure6 shows the response curves
of the system under different triggering cases. Under
the proposed ET mechanism, the communication con-
sumption is reduced by nearly 70% with the sacri-
fice of tolerable control performance. Meanwhile, the
actual performance index J (x̄k, μk) is always bounded
at [J ∗(x̄k), 1/η̄1 J ∗(x̄k)], which is also consistent with
the conclusion of Corollary 1.

5.3 Optimal supplementary control with actuator
attack

In this section, consider the aero-engine operating at the
afterburner state with (H f =0, Ma=0). As discussed
in Section II, there are four types of false attack sig-
nals involved, including state-independent/dependent
constant attacks [35], and state-independent/dependent
time-varying attacks [36]. The initial parameters are
set in line with Table 1, and the attack signal ua,k

is chosen randomly or fixedly from [−2, 2] at each
attack moment, i.e. d = d̄ = 2. Figure7 shows the
response curves of the closed-loop system under differ-
ent attack frequencies and modes, where Case 1-Case
4 indicate four attack types, respectively. As can be
seen fromFig. 7, the systemperformance degradeswith
the attack frequency ᾱ, and state-independent attacks
are more destructive to system performance than state-
dependent attacks, showing whole-phase chattering
and large steady-state errors. This is mainly because
the proposed scheme can ensure the asymptotic stabil-
ity of the closed-loop system, and the state-dependent
attack intensity tends to zero with the convergence of
state variable, thus achieving good steady-state perfor-
mance.

The response curves of attack signal and disturbance
signal for the four attack types at ᾱ = 0.4 are shown
in Fig. 8. They are generated by the optimization prob-
lem (46) and actor network (50) respectively and act on
the system via different transmission channels. Specifi-
cally, the disturbance signal oscillates between0∼10%
of the maximum state and gradually converges with
the formulated ZSG. The state-independent attacks
degrade system performance and impose the greatest
damage to system stability at a fixed or random inten-
sity over the whole phase, and thus are the most effec-
tive means for the adversary to launch such attacks. Set
the attack frequency ᾱ = 0.4, the response curves of
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Fig. 8 Responses of attack signal and disturbance signal at ᾱ =
0.4

Fig. 9 Response curves of the systemwith different attack inten-
sities

the system under state-dependent time-varying attacks
with different attack intensities are shown in Fig. 9.
Although the attack intensity has reached 30% of the
saturation constraint Ū , the proposed controller is still
able to migrate the attack effect and maintain the state
convergence, which also confirms the robustness of the
designed composite scheme.

Figure10 shows the system response of different
controllers under the state-independent time-varying
attack with ᾱ=0.4 and d̄=2, where‘1’ and ‘-1’ denote
the two nodes of the actuator, respectively. At each
time, the attack launched by the adversary is stochas-
tic and near-optimal. It randomly chooses one actuator
node for false data injection and acts on the system
through the control channel, which can be regarded
as matched sparse uncertainty but remains difficult to

Fig. 10 Response of different controllers under state-
independent attacks

Fig. 11 System response under different triggering cases and
attack modes

detect in advance. Since the construction of GSMC
relies on the model prior and disturbance assumption,
it is unable to effectively migrate the effects of mul-
tiple uncertainties, leading to a large overshoot and
error band. Instead, the proposed scheme introduces
an additional control action us,k to fine-tune the system
performance, which is generated by the actor network
(47) and adaptively varies with the attack intensity, thus
achieving strong resilience against malicious attacks.

Figure11depicts the response curves of the system
with state-independent/dependent attack modes under
different triggering cases, where the mainstream rein-
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Fig. 12 Response curves of the system under ET control for
different ᾱ

forcement learning control (RLC) [36] is introduced
for comparison. As shown in Fig. 11, both RLC and
the proposed OSC can effectively migrate the effect of
malicious attacks. However, despite its stronger non-
linear mapping ability, RLC requires more computa-
tional resources and hyperparameters to train the deep
model and ignores the handling of external distur-
bances, which usually act directly on the system in
the form of mismatched noise through other channels.
With the introduction of the ET mechanism, the net-
work sends control signals only when the ET condi-
tion (19) is satisfied, so the malicious attack only suc-
ceeds at the ET moment. In this case, the designed
strategy achieves comparable performance using only
about 40%of communication resources, and it can both
migrate malicious actuator attacks and reduce resource
consumption, which is attractive for high-frequency
sampling CPSs with multiple signals.

Figure12 displays the response curves of the sys-
tem under ET control for different attack frequency ᾱ.
One can see that the system performance deteriorates
as the attack frequency ᾱ increases. By introducing ET
scheduling, when the attack frequency is ᾱ = 0.75, the
adversary launches a total of 67 attacks in 100 steps,
but only 36 attacks successfully act on the actuator,
which confirms the resilience of the closed-loop system
against malicious attacks. Meanwhile, the formulated
problem (12) considers both the short- and long-term
performance of the system, and the actual performance
index J (x̄k, μk) is bounded and maintained around the
near-optimal value J ∗(x̄k) even with frequent external
attacks. Table 2 exhibits the performance index and ET

Fig. 13 Response curves of the system under different training
algorithms

Fig. 14 Steady-state errors at different flight points with OSC
with ET

number under different triggering parameters. Specif-
ically, η1 and η2 focus on long-time performance and
short-time performance, respectively, and the larger
η1 and η2 are, the fewer the number of triggers, and
the worse the performance of the system. Thus, users
can select ET parameters according to specific control
requirements to achieve the trade-off between perfor-
mance and resource consumption.

Set the initial parameters consistent with Table 1 and
attack frequency ᾱ = 0.4, the response curves of the
system under different training algorithms are shown in
Fig. 13, where the HDP algorithm [22] is introduced to
solve the supplement controller and its value function
is set to Qk = Gk + Qk+1, which is approximated by
the critic network. As shown in Fig. 13, both HDP and
GrHDP are able to solve the formulated ZSG problem.
However, the reward signal ofHDPusually consists of a
fixed immediate reward Gk , which is difficult to adjust
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Table 2 Performance index for different ET parameters

η1, η2 = 1.05 0 0.05 0.1 0.4

J (x̄k , μk) 0.0098 0.0093 0.0108 0.0271

ET number 71 53 48 21

η2, η1 = 0.1 1 1.05 1.15 1.3

J (x̄k , μk) 0.0089 0.0108 0.0133 0.0170

ET number 67 48 31 17

adaptively with the change of the system state [31].
Instead, GrHDP adds a goal network to HDP, which
can not only receive the external reinforcement signal,
but also generate the long-term reward adapted to the
current state through the internal goal-oriented mecha-
nism, so as to better regulate themapping between input
signals and output control actions, and guide the fast
convergence of network training errors to avoid falling
into the local optimum. Figure14shows the response
curves of the system at different flight points. One can
see that the designed composite scheme is robust to
flight point variations and guarantees a steady-state
error of less than 6% over a wide range of flight areas.
All the experimental results confirm the effectiveness
of the proposed scheme.

6 Conclusion

In this article, the supplementary control of nonlin-
ear CPSs with unknown disturbances and actuator
attacks is investigated. Firstly, a novel composite con-
trol schemeunder the frameworkofGrHDP is proposed
to mitigate adverse attacks, where a three-player ZSG
is formulated to solve the optimal policy pair. Then,
an adaptive ET mechanism with performance guaran-
tees is designed to save communication resources and
improve system resilience. Both theoretical and exper-
imental simulations are performed to demonstrate that
the designed algorithm is convergent and the system
state is UUB. The experimental results show that the
constructed composite controller owns the advantages
of fast convergence, small chattering, robustness to
malicious, and few communication resources, which
are beneficial for CPSs with high-frequency sampling
and multiple uncertainties. In the future, the proposed
scheme will be extended to more complex scenarios,

such as dual-channel scheduling, hybrid attacks, and
fault-tolerant control.
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