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Abstract

The longstanding question of how neural networks could implement relational
composition has been buoyed by recent success showing relational abstraction
in transformer-based large language models (LLMs). We address recent findings
showing some, but imperfect, generalizability in linear composition during knowl-
edge retrieval of attributive triplets such as has-color (banana, yellow) in GPT-J
[Hernandez, E. et al, (2024). Linearity of relation decoding in transformer language
models (arXiv:2308.09124)]. We report that limitations to relational generaliza-
tion are explainable by two systematic factors. First, relational combinations that
are more accurately retrieved generalize better than uncertain or inaccurate ones.
Second, relational generalization scales with the semantic similarity of the entities
being bound, showing that it is in fact non-linearly dependent on component mean-
ings rather than being purely invariant. This aligns with longstanding findings that
human judgments of adjectival combinations are likewise non-linearly interactive.

1 Introduction

Relational composition is a fundamental capacity of higher-level intelligence, allowing the infinite use
of finite means in language and thought. It entails productivity, the generation and understanding of
novel combinations of simpler parts, and systematicity, the ability to meaningfully recognize relations
among combinations (Fodor, 1998). For example, systematicity allows us to recognize that John loves
Mary is analogous to Amy loves James, and generalize the same relation to new entities, such as Gina
loves Lisa. While it remains a longstanding challenge to implement truly compositional operations in
neural networks (Dasgupta et al., 2018; Elman, 1991; Fodor & Pylyshyn, 1988; Holyoak & Hummel,
1997; Hummel & Holyoak, 2003; Kriete et al., 2013; Marcus, 2001; Mitchell, 2021; Smolensky,
1990; Socher et al., 2012; Webb et al., 2024), recent transformer-based large language models (LLMs)
trained on large corpora of language have demonstrated remarkable emergent relational capabilities,
including analogy and function abstraction (Feng & Steinhardt, 2024; Hernandez et al., 2024; Lepori
et al., 2023; R. T. McCoy, 2022; Webb et al., 2023). This offers an unprecedented opportunity to
empirically discover how neural networks can solve this problem. Yet, debate continues as to whether
these networks implement compositionality or some approximation of it (McCoy, 2022; Mitchell
et al., 2023). We focus on recent findings suggesting some but imperfect linear composition during
knowledge retrieval of attributive relations among concepts in open-source LLM GPT-J (Hernandez
et al., 2024) and test several ideas about what might explain this imperfection.

Knowledge retrieval tasks probe a model’s stored representation of typical relations among familiar
concepts, here investigated as triplets including two concepts bound by an attributive relation. For
example, banana is expected to be bound to yellow with the relation has-color. This structure
follows the format of classic semantic networks (Collins & Quillian, 1969; McClelland & Rogers,
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2003). Related work on conceptual combination has long investigated how the meaning of word
combinations (such as these) arises out of the meaning of their individual parts (Pustejovsky, 1995;
Smith et al., 1988; Smith & Medin, 1981). Whatever the nature of these processes, they are expected
to possess some degree of systematicity and productivity so as to allow the limitless and meaningful
combinations expressible in natural language and comprehensible to the human mind.

Hernandez et al (2024) tested whether such conceptual combinations in GPT-J are linearly composi-
tional and thus, systematic. A given relational triplet, (s, r, o) is hypothesized to be the product of the
model-internal hidden representation of its subject s (e.g., banana), some set of operations represent-
ing the application of relation r (eg., has-color), and a downstream, retrieved hidden representation
of its attribute object o (e.g., yellow). The combinatorial operation is estimated as a linear function
specific to that relation, Wr, that transforms the earlier representation of s into a representation of the
correct object o at the output layer. This relational operation is systematic to the degree that it can be
re-bound to new concepts while preserving its meaning, such that applying the same Wr to a new
item, s′ (e.g., lime), should yield the correct new tuple, (s′, r, o′), in which o′ represents green. This
would show both systematicity and generalization of Wr. Hernandez et al (2024) report that such
cross-application has an overall accuracy of 60% across a number of content domains and, on this
basis, argue that relational operations in GPT-J attribute knowledge are indeed linearly compositional.

However, it is unclear what exactly an accuracy of 60% implies about this hypothesis and what
factors might explain the remaining inaccuracy. Although this accuracy is above certain notions of
chance, what accounts for the remaining variance? One possibility is random noise; another is model
knowledge uncertainty; and a third is systematic non-linearity. The objective of the present work
is to test these alternatives by quantifying the generalization of Wr on an item-by-item basis and
comparing predictors of generalization success across items.

Model knowledge accuracy (vs uncertainty) is a likely factor because the retrieval of o was below
ceiling accuracy at baseline for many triplets in Hernandez et al.’s report. Uncertainty in the retrieval of
an attribute would contribute to noise in estimating Wr and limit the extent of possible generalization
success at test. We thus expect that relational triplets with higher accuracy will generalize best.

Of greater theoretical interest, we hypothesized that the extent to which the relational operation Wr

generalizes might be systematically non-linear as a function of the semantic similarity of the bound
entities, s and s′, or o and o′, across pairs. This predicts that the relational operation Wr will be
more similar among two fruit (e.g., banana and apple) than among more different items (e.g., banana
and barn). It may also be more similar for two entities that are both the same color, such as banana
and canary. Broadly, this predicts that relational generalization scales smoothly as a function of the
similarity between the bound concepts, rather than being a purely invariant operation. If so, then the
relational function is not linear, but rather, systematically non-linear and interactively dependent on
its operands. This would not be without precedent in empirical work on conceptual combination,
which has long observed that human conceptual combination is non-linearly interactive, as opposed
to being tractably, linearly compositional (Fodor, 1998; Medin & Shoben, 1988; Pustejovsky, 1995).
We test this prediction here as an account of the variability in generalization of relational functions in
GPT-J, closely following the methodology in Hernandez et al. (2024).

2 Methods

2.1 Stimuli

Stimuli were 44 triplets consisting of a subject (s), relation (r) and attribute object (o); Supp. Table 1.
We focused on the attributive relation has-color, building on materials in Hernandez et al. We sourced
items with reference to human production norms, selecting items for which no other color attribute
was produced (Cree & McRae, 2003) to increase the chance of model certainty. For similar reasons,
we used common objects (vs unique entities), as these have better representation in language corpora.
Color attributes also apply to a wide range of entities, permitting a broad test of generalization, which
we performed across the domains of fruit, vegetables, animals, and inanimate objects.

2.2 Model knowledge accuracy

Throughout, in line with the main results in Hernandez et al 2024, we used GPT-J (Wang & Komat-
suzaki, 2021), an open-source transformer model. We quantified baseline relational retrieval accuracy
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for each triplet by prompting the model with s and r and evaluating the probability of returning the
expected o, as per Supplemental Table 1. We used 4 synonymous prompts as follows, where s was a
given subject: 1) "What color is s on the outside? It is usually"; 2) "The usual color of s is which
color? It is", 3) "The outside color of s is typically", 4) "On the outside, s most often has the color".
We scored responses by querying whether the expected answer appeared within the first 5 returned
tokens. Accuracy was summed across the 4 prompt trials. When using accuracy as a predictor for the
amount generalization between a pair of triplets, we averaged the accuracy of the two triplets.

2.3 Estimation of W , s, and o

A large language model is a machine that maps a sequence of input tokens or prompts into a single
output token. Internally, large language models embed prompts into vectors, then predict next-token
probabilities, and the output of the machine is generally the most likely predicted token.

Input tokens s: Embedding at layer k

o: Predic-
tion vector

Output token

Relation R

Thus, the relation is represented by the functional form R(s) = o induced by the specific neural
network of interest. In our work, we use the activations at layer 5 of GPT-J as the embedded vector s,
and the unnormalized output of the final layer as the vector representation of o.

Following (Hernandez et al., 2024), we use calculus to motivate a linear approximation of the relation
operator R. For s′ ≈ s, a first-order Taylor series approximation shows that the relationship R can be
well-approximated by an affine function via the Jacobian matrix W := JsR:

R(s′) ≈ R(s) +W (s′ − s) = Ws′ + b

where the bias b := R(s)−Ws. This approach provides a theoretical justification for the use of a
linear relation function, yet we note that the Jacobian W := JsR is a function of the embedded s.

The extent to which W depends on the embedding is a core investigation of this work. This leads to
an important methodological change: unlike Hernandez et al.(2024), we do not average the resulting
W matrix over multiple prompts, but instead consider a W for each prompt. We measure distances
of W between all pairs of prompts, yeilding a matrix Wdist, that quantifies pairwise generalization.
Following Hernandez et al., we also measure faithfulness as the accuracy of retrieving object oj from
sj when replacing W j with W i. Details of these measures are provided in the Supplement.

3 Results

We estimated the linear function W i
r for each triplet (si, ri, oi) and the distance between all pairs

W i
r and W j

r as a measure of how well the relation function generalizes between them. The resulting
distance matrix Wdist is shown in Figure 1. It is clear that Wdist is not uniform or at ceiling and thus
generalization is not perfect. We next compared several potential predictors of Wdist.

A least-squares regression showed that the Wdist of a pair was significantly predicted by pair accuracy,
such that pairs with higher-accuracy triplets had smaller distances in W : t(818) = -4.74, p < .001.
Nonetheless, this factor explained only a small amount of total variance in Wdist, R2 = 0.027.

Our core hypothesis is that the generalization of the relational operation (and thus Wdist) varies
smoothly as a function of the semantic similarity of the entities bound by it, here s and o. We used
the hidden-state representation at layer 5 of each items s (in the relational context) to measure sdist,
and the last-layer representation of o (given prior context s and r) to measure odist, for each pair of
items. Because r is constant across all items, variation in these distance measures reflect the variation
derived from s and o.

In a linear regression with predictors odist, sdist, and pair accuracy, we found that Wdist was
significantly predicted by each factor: sdist, t(816) = 3.57, p < .001, odist, t(816) = 24.74, p < .001,
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Figure 1: Wdist, the distance between the estimated linear relation function, of each pair of triplets
under the relation ’has-color’.

and accuracy, t(816) = -3.01, p < .01. Larger distances in s and o predict larger Wdist, while higher
accuracy predicts lower Wdist. Altogether, these three factors accounted for a large portion, indeed
about half, of all variance in relational generalization, R2 = 0.53.

As a convergent test of generalization in practical terms, we followed Hernandez et al. (2024) in
applying the function Wr across distinct triplets to estimate the accuracy of retrieving the output o,
in terms of its token representation. First, a logistic regression confirmed that Wdist significantly
predicted faithfulness, t(818) = -5.70, p < .001, with a negative coefficient suggesting that smaller
distances in Wdist were associated with higher faithfulness accuracy, consistent with our assumption
that smaller relational distances between entities si and sj are associated with higher retrieval
accuracy of oj . Accordingly, faithfulness behaved similarly to Wdist in our predictive model: it was
significantly predicted in a logistic regression by model accuracy, z(816) = 10.66, and p < .001, by s,
z(816)= -2.92, p < .01, and by o, s(816) = -6.40, p < .001, altogether accounting for R2 = 0.208.

4 Discussion

Building on prior work showing linearly compositional representations of triplet attributive relations
in GPT-J (Hernandez et al 2014), we found that imperfections in linear generalization across triplets
were explainable by at least two systematic factors: model accuracy in retrieving the individual triplets
and the semantic similarity of the entities bound by the relation across triplets. This demonstrates
that this sort of relational binding has systematic non-linearities: it depends on the semantics of the
entities being bound, rather than being purely invariant.

This result aligns with longstanding findings that human judgments of adjectival combinations are
likewise non-linearly interactive (Medin & Shoben, 1988). This suggests that we may not expect
pure linear composition in conceptual combination, whether in humans or models. Ultimately,
studying how LLMs achieve combinatorial relational binding is a promising avenue for illuminating
long-standing puzzles regarding the neural network implementation of combinatorial thought, which
can in turn shed light on how this is achieved in the human brain.

Limitations The scope of our findings is limited to the particular form of relational combination
investigated: knowledge retrieval of attributive relations, as probed with a particular methodology.
Results may vary across different approaches for testing relational operations. We also expect that
relational composition might be more linear in other task domains, such as in-context binding (Feng
& Stainhardt 2024), or for stimuli with more linearly separable features.

Safety implications We believe that our research can have a positive impact on safety. Understand-
ing the limitations of relational generalization can promote responsible use of AI models.
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6 Supplemental material

Table 1: Stimuli used in the experiments: subjects and objects bound by the has-color relation.
Accuracy denotes percent correct during retrieval in GPT-J. Production frequency is reported from
human data from McRae Norms (Cree & McRae 2003).

Subject (s) Attribute object (o) Domain Model Accuracy Production frequency (out of 30)

a barn red object 0 12
a barrel brown object 0.25 8
a bathtub white object 1 9
a brick red object 0.25 14
an emerald green object 1 26
a spoon silver object 0.25 10
a stone grey object 0 13
a toilet white object 1 11
a trumpet gold object 0 5
a tuba gold object 0 5
a wagon red object 0 17
a cauliflower white vegetable 0.5 26
a carrot orange vegetable 0.75 27
celery green vegetable 1 27
corn yellow vegetable 0.5 23
a cucumber green vegetable 1 26
lettuce green vegetable 1 28
a pumpkin orange vegetable 0.75 27
spinach green vegetable 1 30
a zucchini green vegetable 1 21
asparagus green vegetable 1 25
broccoli green vegetable 1 29
a cherry red fruit 1 27
a cranberry red fruit 1 24
an eggplant purple fruit 0.75 22
a lemon yellow fruit 1 28
a lime green fruit 0.75 29
a mandarin orange fruit 0.25 22
a pineapple yellow fruit 0.25 15
a plum purple fruit 0.25 23
a raspberry red fruit 1 19
a strawberry red fruit 1 25
a tomato red fruit 0.75 28
a turtle green reptile 0 14
a crocodile green reptile 0.75 10
a frog green amphibian 0.75 26
a dove white bird 0.75 25
a canary yellow bird 0.75 28
a crow black bird 0.75 25
a flamingo pink bird 1 23
a beaver brown mammal 0.75 19
a goat white mammal 0.75 6
a fox red mammal 0 15

6.1 Additional methodological details

6.1.1 Code availability

The code is provided under https://github.com/relcoglab/hernandez-relations-fork and was run on
Google Colab with an A100 GPU. Results can be reproduced with a minimum of compute time
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(under one hour). Our repository is a fork of material from the original project released by Hernandez
et al (2024) at https://github.com/evandez/relations/ under an MIT licence allowing re-use.

6.1.2 Distance computation

For each pair of relations in each class (si, ri, oi) and (sj , rj , oj) , we compute the distance between
each s embeddings, the W matrices and the o outputs, as the usual Euclidean norm:

dist(si, sj)2 =
∑

k |sik − sjk|2,

dist(oi, oj)2 =
∑

k |oik − ojk|2, and

dist(W i,W j)2 =
∑

k,ℓ |W i
kℓ −W j

kℓ|2.

In the case of matrices W , this corresponds to the Frobenius norm.

6.1.3 In-context learning

In order to generate the vector embedding s, we create an in-context learning prompt with three
example relations. For example, we embed the (s,r,o) relation ‘(celery, color, green)’ via the prompt

On the outside, the color of an eggplant is purple
On the outside, the color of a barn is red
On the outside, the color of a tuba is gold
On the outside, the color of celery is

We use three exemplars in our prompt as a form of in-context learning (ICL), which increases the
likelihood that the LLM will generate an appropriate output. The three ICL prompts were chosen at
random and fixed for the experiment, and were not otherwise included in the analysis.

6.1.4 Faithfulness

We use the notion of faithfulness defined in (Hernandez et al., 2024) to determine how well the
operator W i for relation for subject si generalizes to subject sj . In particular, we say a relation
is faithful if the output vector oi,j := W i(sj) correctly predicts the target oj . To allow for some
ambiguity in the correct answer, we say it "correctly predicts" when the expected answer is in the
top three predicted tokens. When using Wdist as the predictor for faithfulness between si and sj , we
only test i < j to avoid duplicate Wdist).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly define what we test (two predictions about relational generalization),
which bear out with statistical analysis. We note that our results are limited to the kind of
composition tested here and may not generalize to every kind of relational composition.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our findings are not theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a code repository and ample description as well as references to
past work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided code that we believe is easy to reproduce in a Colab notebook
environment.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We described how test data are separated. There is no model training in our
work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: While we do not plot any error bars, we report details information about the
results of statistical tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

11

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We explain that the analyses can be run easily in Google Colan using an L4
GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics and have provided a statement on safety
implications. Human data was not used in this research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: There was limited space to comment on societal impacts but we mention
implications for longstanding questions in cognitive science and safety.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release models or datasets that have safety implications as such.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit the prior work whose code we build on throughout the manuscript
and refer to it in detail in section 6.1.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

13



• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We have not released new assets at this moment. We provide a notebook with
the code to generate the results of this paper for reviewers.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use human subjects data.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use human subjects data.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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