
Exploring Convolutional Networks for End-to-End Visual Servoing

Aseem Saxena*1, Harit Pandya*1, Gourav Kumar1, Ayush Gaud1 and K. Madhava Krishna1

Abstract— Present image based visual servoing approaches
rely on extracting hand crafted visual features from an image.
Choosing the right set of features is important as it directly
affects the performance of any approach. Motivated by recent
breakthroughs in performance of data driven methods on
recognition and localization tasks, we aim to learn visual feature
representations suitable for servoing tasks in unstructured
and unknown environments. In this paper, we present an
end-to-end learning based approach for visual servoing in
diverse scenes where the knowledge of camera parameters and
scene geometry is not available a priori. This is achieved by
training a convolutional neural network over color images with
synchronised camera poses. Through experiments performed
in simulation and on a quadrotor, we demonstrate the efficacy
and robustness of our approach for a wide range of camera
poses in both indoor as well as outdoor environments.

I. INTRODUCTION

Visual servoing (VS) refers to the control of robot motion
using data from vision sensors. Vision sensor integration
enables robotic systems to work outside controlled industrial
settings. As a consequence, it has applications in diverse
areas such as robotic surgery, autonomous navigation and
manipulation for household robots. The objective is to move
the robot in Cartesian space from an arbitrary starting pose
(location and orientation) to a fixed goal pose. This is
achieved by iteratively minimizing the error between the
current and goal pose.

Position Based Visual Servoing (PBVS) defines the error
in Euclidean space, which results in a simpler control law
and minimal length trajectory [1]. However, PBVS requires
a 3D model of the scene and camera parameters to be known
before hand, which is a major bottleneck in practical imple-
mentation of PBVS methods. Image based visual servoing
(IBVS), on the other hand, describes the error function in
image space by extracting a set of visual features. IBVS
controller attempts to move the robot in such a way that
the visual features attain the desired configuration i.e. it
minimises the error in image space. This requires a mapping
of the feature velocity in image space to robot motion in
Euclidean space via the analytical computation of image
Jacobian that leads to various issues such as attaining local
minima, exceeding joint limit and so forth [2]. Another issue
with IBVS approaches is the extraction of unambiguous
features that truly represent the pose information, which is a
non-trivial task. Classical IBVS approaches use geometrical
primitives like locations of points, lines, contours etc. as

*Equal contribution.
1 International Institute of Information Technology, Hyderabad, India.
{harit.pandya, gourav.kumar}@research.iiit.ac.in
{aseem.bits, ayush.gaud}@gmail.com, mkrishna@iiit.ac.in
Harit Pandya is supported by TCS Reserach PhD fellowship.

(a)

(b) (c) (d)

Fig. 1. Visual servoing using CNN. We present a learning based approach
for end-to-end visual servoing using CNNs i.e. given a desired pose and
initial pose in the form of images, our framework predicts visual servoing
control commands. (a) A 3D model of an outdoor scene from our dataset
with an initial and desired location of the robot. (b) Initial pose. (c) Desired
pose. (d) Resultant pose attained by the robot using our framework. Note
that our network does not assume prior knowledge of camera parameters and
geometry of the scene. Also note the large camera displacement between
initial and desired pose.

visual features [1]. However, these methods require an accu-
rate feature matching for convergence. Recent IBVS methods
consider appearance based features such as pixel intensities
[3], image gradients [4] etc. These methods do not require
an explicit matching step, however, the number of features
is typically very large that results in a smaller convergence
domain.

In this paper, we address the following question - is
it possible to learn the motion required to attain a desired
pose from an initial pose only from visual feedback? Recent
breakthroughs in computer vision suggest that data driven
frameworks efficiently learn high-level semantic representa-
tions from images, especially for a large number of examples
[5]. Motivated by recent advances in machine learning,
especially deep learning, we aim to learn an optimal set
of image representations that estimate the relative trans-
formation required to attain a desired pose. We explore
convolutional neural network (CNN) architectures to learn
such transformations in an end-to-end paradigm. Unlike other
visual servoing approaches, our framework eliminates the
need for extraction and tracking of features. Moreover, prior
knowledge about the camera intrinsics and the scene’s 3D
geometry is not required. Experiments show that our model

ar
X

iv
:1

70
6.

03
22

0v
1 

 [
cs

.R
O

] 
 1

0 
Ju

n 
20

17



also has a large convergence domain across a variety of
synthetic and real world scenarios.

In this paper, we present a Convolutional Neural Net-
work trained for performing visual servoing on diverse
environments without knowledge of the underlying scene’s
geometry. We have trained the network on the publicly
available 7-Scenes dataset [6] as this dataset provides large
variations across scenes and covers a wide range of camera
transformations between frames. We evaluate our network on
5 synthetic 3D models using free camera paradigm and on
a real world scene using a quadrotor. Our simulation based
testing framework allows us to compute ground truth camera
transformations that can be used to compute the error of our
system’s estimates. Figure 1 shows an exemplar of servoing
result. Figure 1(a) shows the scene on which servoing was
performed. Figure 1(b-d) shows initial pose, desired pose
and resultant pose attained after visual servoing. Note that
although there is large camera motion between initial and
desired pose, the camera still reaches close to the desired
pose using our method.

II. RELATED WORK

Most of the previous image based visual servoing ap-
proaches rely on hand-crafted visual features for representing
images. The control law could be seen as gradient descent
over the feature error [3]. This requires image Jacobian or
interaction matrix to be computed analytically. For several
features widely used by modern computer vision techniques,
it is difficult to represent analytically, for instance, Histogram
of Oriented Gradients (HOG). Another line of approaches
intend to numerically estimate the interaction matrix. How-
ever, due to high non-linearity in interaction matrix, it is
difficult to get an accurate estimation. Also, numerical meth-
ods are vulnerable to conditioning and singularity issues.
Neural Network based methods have been used for learning
interaction matrix but the selection of features was hand-
engineered. Readers may refer to [7] for a detailed review of
Jacobian learning and estimation methods. Recently, support
vector machines have been used to learn pose specific
representations for visual servoing across object instances
[8]. Again, the interaction matrix was numerically estimated.
There has been significant work on reinforcement learning
(RL) approaches [9], [10] for end-to-end visual servoing.
However, parameters learned by RL are specific to the
environment and task, hence it becomes difficult to generalise
RL for new environments. On the other hand, our approach
is end-to-end i.e. we learn visuomotor representations for
direct control. Moreover, our approach generalises well on
unknown environments.

Techniques for pose estimation, camera relocalization and
visual odometry have been successfully applied in approach-
ing the visual servoing problem. There have been works on
absolute scene 6D pose estimation from a single monocular
image in the recent past which are data-driven [11], [12].
Kendal’ et al. [12] train a CNN to regress the 6D pose of
the camera from a single monocular image in real time. Our
approach differs from theirs as we wish to learn relative

Fig. 2. Overview of the proposed approach. Given an image I∗ repre-
senting desired pose in the image space and the current image measurement
I from camera, we use a CNN to estimate relative camera transformation
c
c∗T required to reach I∗ in image space. Considering noise in estimation
of c

c∗T, we take a servoing step of length λ in direction of c
c∗T.

camera pose from a pair of images. As natural scenes change
over time, systems which estimate the absolute pose of a
scene are bound to falter as a viewpoint can be remarkably
different visually from the same viewpoint at a different
time. Rather, we consider the relative pose between two
frames to be much more meaningful. Two images with
sufficient scene overlap offer more information and context
than a single image. Some recent works have approached
the problem of camera ego-motion estimation which has
applications in visual servoing [13], [14], [15]. Agarawal et
al. [13] explore the idea of feature learning using egomotion
as ground truth instead of manually annotated labels. They
demonstrate camera ego-motion estimation by learning a
Siamese Style CNN with two images as input and the
relative camera transformation as the ground truth. However,
our work significantly differs from theirs in multiple ways.
We perform regression over the image pairs whereas they
perform classification. Also, we use a different Network
architecture, loss function and optimization scheme for our
task. Costante et al. [14] train a network to estimate frame
to frame visual odometry by taking the optical flow between
image pairs as input. Ours does not require the computation
of optical flow. To the best of our knowledge, there has
been no work which directly addresses the problem of visual
servoing by leveraging powerful CNN based image features.

Contributions: Our contributions could be summarised
as following. Firstly, we present a CNN based learning
framework for visual servoing. Our framework generalises
well over a wide range of synthetic and real world scenarios.
We rigorously and systematically evaluate our approach in
simulation and on real scenarios using a quadrotor. Secondly,
as there are no benchmarking datasets for visual servoing and
due to the presence of dynamic control, it is not feasible to
provide access to pre-capture images similar to most of the
available datasets. We would publicly release 3D models of
scenes used for testing along with the necessary scripts.

III. OVERVIEW

Assuming eye-in-hand configuration and world origin
coinciding with the given object’s center, we denote the



camera’s pose in SE(3) at given time in a fixed global frame
as c. Given a scene X and a desired camera pose in the same
global frame c∗, the goal of a visual servoing scheme is to
find a camera transformation c∗

c T, such that c∗ =c∗

c Tc. For
image based visual servoing (IBVS), current pose and the
desired pose are represented in the form of a set of features
extracted from images s = φ(KcX) and s* = φ(Kc∗X).
Where K is the camera’s intrinsic matrix and φ(·) is the
feature selection criterion. For IBVS, the goal is modified to
finding the transformation c∗

c T such that the error in features
e = s − s* is regulated to zero at desired pose. The task
is achieved by minimizing e iteratively and controlling the
camera velocity, v = −λL+

s e, where Ls is the interaction
matrix that maps the rate of change of features to velocity
and (·)+ represents pseudoinverse operation as defined in
[1]. On the other hand, in position based visual servoing
(PBVS), the camera pose at any given time c is inferred
from the scene and image measurements. However, inferring
camera pose from a single image requires the knowledge of
the scene and camera parameters. In this work, we aim
to jointly learn the representations s the describe the image
and error e from a pair of images I and I∗ without camera
parameters K and geometry of the scene X . Our framework
takes RGB images I and I∗ as the input and estimates the
camera transformation c

c∗T thereby waving the requirement
for any feature computing or matching step. Further, using
image based feedback, we estimate the control commands
ˆc

c∗T to attain the desired camera pose c∗. Figure 2 shows the
overall pipeline of the proposed framework.

IV. NETWORK ARCHITECTURE

A. FlowNet

Convolutional Neural Networks have recently been shown
to perform well on large scale visual recognition tasks [5].
In the recent past, research on training CNNs for per pixel
prediction tasks such as optical flow has started to surface
[16]. FlowNet by Fischer et al. [16] approaches the problem
of optical flow in a supervised learning setting. Optical
flow prediction involves both per pixel localization and
learning powerful representations. We leverage these aspects
of FlowNet to learn camera ego-motion. The motivation
behind this effort is that traditionally optical flow has been
used to estimate visual odometry [17]. A network which
could robustly estimate optical flow would also be able to
estimate camera ego-motion since both problems involve
correspondences between image pixels. FlowNet is trained
to predict optical flow using image pairs as input and their
x-y flow fields as ground truth (Figure 3(a)). The images
are stacked together to form a 6 channel image which
is passed through multiple convolutions and ReLu non-
linearities. Convolutional Neural Networks involve down-
scaling of feature maps, which is necessary for the training
phase to be computationally feasible. As optical flow is a per
pixel prediction task, it would require a feature map which
is up to scale to predict a flow field of higher resolution. In
order to provide dense per-pixel predictions, ’upconvolution’
is performed on the coarse feature map to get it up to scale.

’Upconvolution’ involves unpooling (bilinear upscaling of
the feature map) followed by a convolution (refer Figure
3(b)). Similar layers have been used previously [18]. In this
way, information from both coarser and finer feature maps
is preserved. Upconvolution is performed at multiple scales
which ultimately results in a two channel feature map which
is 16 times the resolution of the last coarse feature map and
1/4 times the resolution of the image input. Our network
differs slightly from FlowNet as we discard the loss layer
of FlowNet and instead feed the final feature map to a
fully connected layer with ReLu non linearity and dropout
followed by separate regression layers for translation and
rotation [12].

V. TRAINING

A. Loss function and Optimization Scheme

Our network takes in two monocular images I , I∗ and
outputs a pose vector p comprising of a relative (I∗ with
respect to I) translation x and rotation q in quaternion form.

p = [x,q] (1)

To regress relative pose, we consider the following objec-
tive loss function similar to [12].

loss(I, I∗) = ‖x̂− x‖2 + β

∥∥∥∥q̂ − q

‖q‖

∥∥∥∥
2

(2)

β is chosen so as to keep the expected value of translation
and rotation errors to be equal. We found β as 500, 000
to be optimal for training. The motive behind deploying
the loss function is that both the translation and rotation
regressors are loosely coupled and therefore, are not being
denied the information to factor position from orientation
and vice versa.

B. Data-Preparation and Implementation Details

We use the Train Split of 7 Scenes Dataset to train our
networks. Ground truth is present for each frame in the
form of 4 × 4 homogeneous matrix. For an image frame
in a sequence, we take only 10 temporally close frames for
computing the ground truth transformation, this is done to
ensure that there is partial scene overlap in the two images.
Let the absolute pose in homogeneous coordinates of I and
I∗ be O

c T and O
c∗T (with respect to some world origin O)

respectively, then the Transformation of I∗ with respect to I
is given by:

c
c∗T =c

O TO
c∗T (3)

We obtain approximately 500,000 such training image pairs.
For training on FlowNet architecture, we resize the images
to 512×384 and pass it for training. We use FlowNet’s mean
subtraction layer to normalize the image data. We use Caffe
library [19] to train our networks. The machine has a core
i7 processor with 64 GB of RAM. We used a single Titan
X GPU to perform training and testing. It took an hour to
complete 1000 iterations with a batch size of 40. We perform
transfer learning [20], [21] with the official FlowNet model
weights released by the authors. This is done in order to get a
better network initialization and faster network convergence.



FlowNetSimple

REFINE
MENT x

x
4x

4x 2x

4X4 filter
Stride : 2 pad : 1

2x

Coarse Feature map

Up-scaled Feature map

unpooling
*

Conv.

(a) (b)

Fig. 3. Description of the Network architectures for learning camera motion. (a) FlowNet − FlowNet takes 2 images stacked together as a six
channel image as input and predicts the transformation between the two images. FlowNet consists of Convolutional, ReLu and ’Upconvolution’ layers. (b)
Upconvolution layer − the coarse feature map is bi-linearly up-sampled to 4 times its size followed by a convolution with a 4× 4 filter with stride as 2
and padding as 1. This results in a feature map double the size of the coarse feature map. Upconvolution is performed 4 times at multiple scales.

Fig. 4. 7 Scenes dataset Example images from left to right: Office, Heads, Fire, Pumpkin, Chess, Red Kitchen and Stairs.

We use Adam optimization scheme instead of stochastic
gradient descent for minimizing the loss function as it
showed faster convergence for training during experiments.
We train with base learning rate as 10−4 reduced by 50%
every 30, 000 iterations. We take momentum, momentum2
parameters of Adam solver to be 0.9 and 0.99 respectively.
We use the network weights obtained after 75, 000 iterations
of training for all our experiments.

C. Dataset

We train our network on the RGB-D ’7 Scenes Dataset’
[6]. It comprises of seven scenes of varying spatial extent
and clutter as shown in figure 4. The Dataset is challenging
due to the presence of image artifacts such as motion blur
and reflections. Also, presence of texture-less flat surfaces,
sensor noise and varying lighting conditions compound the
challenge. We chose this dataset as it comprises of multiple
trajectories with a variety of rotational and translational
transformations between frames. This would enable us to
learn a rich variety of poses with challenging image pairs.

VI. CONTROL LAW

The network is trained to compute relative error in pose
c
c∗T given two images I and I∗. We consider an object centric
coordinate system with a frame Fo∗ attached to an object.
Fc,Fc∗ denote the current and desired camera frames. In our
PBVS scheme, s = (c

∗
tc, θu) Consequently, s* = 0 and e =

s. This formulation results in a decoupling of rotational and
translational motions and a simple control law as follows:

vc = −λc∗RT
c
c∗ tc

ωc = −λθu. (4)

Where, c∗RT
c and c∗ tc are the relative rotation and translation

of camera’s desired pose with respect to camera’s initial
pose in frame Fc . cRT

c∗ and ctc∗ are predicted by our

network, given I and I∗. λ is the step size for rotational
and translational velocities.

VII. EXPERIMENTS AND RESULTS

We evaluate our approach on non-planar scenes. Since
there is no publicly available dataset that allows us to render
an entire scene from a given viewpoint, we introduce a
new synthetic dataset VSSD consisting of 5 detailed CAD
models of various scenes. We use the OpenRAVE simulation
framework [22] for rendering scenes since it allows us
to quantitatively measure the performance of our approach
as the desired camera pose is known in the world frame.
Thirdly, we qualitatively evaluate the performance of our
approach on our dataset for various initial and desired poses.
Finally, we execute our approach in a real environment
using a quadrotor. Note that for all the experiments we do
not assume any knowledge of camera parameters or depth
information of the scene. Another fact worth noting is that
the images used in evaluation were not encountered during
training of the CNN Model. For simulation experiments
we consider free-flying camera model. All the experiments
reported here are performed on a system with Intel i7
processor and 64 GB RAM and a single 12 GB Titan X GPU.
On this system our approach takes 20s for initialization i.e.
loading the network into GPU and henceforth every iteration
takes 20ms of which, majority of the time is consumed in
forward pass of the network.

A. Visual Servoing Scene Dataset

There are several publicly available datasets for tracking
and localization [23], [6]. However, for visual servoing it is
difficult to release such a dataset, as it requires image based
measurements of the environment where viewpoint changes
dynamically. We address this issue by using synthetic 3D
models. In the recent past, 3D models have been used by the
computer graphics and vision communities to produce large
amounts of synthetic data which enable better generalisation



Initial pose Desired pose Resultant pose Initial error image Resultant error image

Fig. 5. Qualitative results. (a) Initial pose captured by the robot with a random camera pose for provided 3D object from the dataset. (b) Desired pose.
(c) Resultant positioning of camera achieved by CNN based visual servoing. (d) Resultant error image. Note the similarity in the resultant pose achieved
by the proposed approach compared to the desired pose provided, over a wide range of desired poses.



for deep learning models [24]. However, these datasets are
limited to shapes and objects. Recently Handa et al. [25]
released a synthetic dataset for scenes. However, the scenes
provided are purely depth-based, which makes it unsuitable
for visual servoing purposes. 3D positioning is performed
for physical objects which limits the scope of reproducing
the results for benchmarking purposes.

For this work, we have generated Visual Servoing Scene
Dataset (VSSD) by rendering 5 scenes using textured syn-
thetic 3D models publicly available from Google 3D ware-
house [26]. We have ensured to diversify scenes based on
the following criterion:

• We have selected models that represent indoor, outdoor
and object categories.

• The scenes are sufficiently large to capture large camera
transformations.

• These scenes have non-homogeneous lightning condi-
tions.

• Viewpoints in the scenes vary in texture.
The main motivation behind the effort is to provide a
wide range of test cases for systematically evaluating visual
servoing approaches on a common benchmark. All the scenes
(CAD models) used in the dataset are publicly available and
could be download at our project page1.

1) Simulation results for 3D scene: In this experiment
we aim to evaluate the control laws for our network ar-
chitecture and to evaluate robustness in performing a po-
sitioning task. The initial pose (refer figure 6(a)) is selected
from ”House” model of VSSD dataset. The difference be-
tween desired and initial pose ∆rdesired = rdesired − rinit =
[91.4mm, 92.3mm, 36.7mm, 8◦, 10◦, − 5◦]. Although, the
relative camera transformation is large, our approach is still
able to converge to the desired pose with error in camera
pose as ∆rdesired − ∆rfinal = [−5.1mm, 2.8mm, 0.5mm, −
0.28◦, − 0.42◦ − 0.42◦,], which is around 4% in both
translation as well as rotation. It could be seen from figure
6(e-g) that both the error as well as the camera velocity
decrease exponentially despite the fact that these are output
by a CNN. The experiment demonstrates that visuomotor
representations are indeed learnt by our system. Also, the
camera trajectory as shown in figure 6(h)is close to a straight
line, which is desirable for visual servoing purposes.

2) Qualitative results on servoing dataset: The objective
of this experiment is to show the efficacy of the proposed
algorithm to servo to a diverse set of target instances across
various environment and viewpoint variations. For every
scene from the VSSD dataset, we evaluate our algorithm
for two configurations of the initial and desired pose pair,
with different transformations in 6 DOF. The resultant error
images from figure 5 indicate that our CNN based approach
is indeed able to attain the desired pose for large camera
pose variations. Let us note that VSSD has non-homogeneous
lighting conditions, hence the assumption of temporal lumi-
nance continuity made by previous featureless visual servo-
ing approaches [3], [4] does not apply to such scenes. Also,

1http://robotics.iiit.ac.in/urls/d173716a.htm

(a) (b)

(c) (d)

#iteration

0 50 100T
ra

n
s
la

ti
o
n
a
l 
v
e
lo

c
it
y

×10 -3

-2

0

2

4
v

x

v
y

v
z

#iteration

0 50 100

R
o
ta

ti
o
n
a
l 
v
e
lo

c
it
y

-0.1

-0.05

0

0.05

0.1
ω

x

ω
y

ω
z

(e) (f)

#iteration

0 50 100
P

h
o
to

m
e
tr

ic
 e

r
r
o
r

×10
4

0.5

1

1.5

2

2.5

×10 -3

0

x-axis

-10
-200

5

y-axis

10
15

-0.65

-0.7

×10 -3

z
-a

x
is

(g) (h)

Fig. 6. 3D positioning task. (a) Initial pose for a non-planar scene from
house scene. (b) Desired pose. (c) Error image for initial image. Notice the
large displacement of camera and variation in viewpoints. (d) Error image
for resultant pose using CNN. (e) Translational velocity in m/s. (f) Rotational
velocity in rad/s. (g) Photometric feature error. (h) Camera trajectory. Our
approach is able to attain the desired pose even when the displacement
between initial and desired pose is large and lightning is non-homogeneous.

the scene ”kitchen” has textureless surfaces, which would
make feature extraction difficult. This experiment validates
the robustness of the feature representations learnt by the
network for diverse and challenging environments without
prior knowledge of the scene or camera used.

3) Real experiment using a quadrotor: In this experiment,
we evaluate our approach on real world scenarios using a Par-
rot Bebop 2 drone. Since quadrotors are under-actuated, only
4 DOF tasks were selected for visual servoing. In real world,
it is difficult to accurately predict the position of a drone.
Hence we report the qualitative results and an approximate
trajectory generated and reported by the drone by fusion of
inertial measurement unit (IMU) , sonar sensor and optical
flow sensor facing downward. Note that the images in the
evaluation were not encountered during training of the CNN
model. Again, the transformation between the initial and the
desired pose is large. Precise convergence was not achieved
since only 4 DOF could be controlled. Figure 7(a,b) show
the initial and desired pose given to the CNN for generating
velocity commands. The local controller aimed to track the
quadrotor velocity commands generated by the CNN based
high-level controller. The CNN forward pass processing was
performed using a laptop computer with Core i7 CPU, Nvidia
Quadro M2000M GPU and 16 GB RAM. It took 65ms for

http://robotics.iiit.ac.in/urls/d173716a.htm


(a) (b)

(c) (d)

0.5

x-axis

0

-0.5

-1-0.6

-0.4

y-axis

-0.2

0

1.5

1

0.5

0

z-
ax

is

(e) (f)

Fig. 7. Positioning task using quadrotor. (a) Initial pose for a real scene.
(b) Desired pose. (c) Resultant pose at the end of approach. Notice the large
displacement of camera and variation in viewpoints. (d) Initial position of
quadrotor in the image space. (e) Final position of quadrotor in image space.
(f) Approximate quadrotor trajectory in 3D.

one forward pass to complete on the machine. The drone was
given 2 seconds to converge to the generated velocity before
capture and forward pass of next image hence sending next
velocity command. The image captured by the drone and
corresponding control commands generated by the network
were exchanged between the system and drone over WiFi
channel.

VIII. CONCLUSION

In this work, we have introduced an end-to-end learning
based framework for visual servoing tasks using CNN. The
visuomotor representations learnt by the network generalises
well across diverse environments. We have experimentally
verified our approach on both synthetic as well as real world
scenarios for robustness to non-homogeneous illumination
and texture of scene. Unlike previous approaches, we do
not need the knowledge of geometry of scene or camera
parameters. Further, by learning the control representations
we circumvent the requirement of any feature extraction or
tracking step.

REFERENCES

[1] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic
approaches,” IEEE RAM, vol. 13, no. 4, pp. 82–90, 2006.

[2] F. Chaumette, “Potential problems of stability and convergence in
image-based and position-based visual servoing,” in The confluence
of vision and control. Springer, 1998, pp. 66–78.

[3] C. Collewet and E. Marchand, “Photometric visual servoing,” IEEE
TRO, vol. 27, no. 4, pp. 828–834, 2011.

[4] E. Marchand and C. Collewet, “Using image gradient as a visual
feature for visual servoing,” in IROS, 2010, pp. 5687–5692.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.

[6] B. Glocker, S. Izadi, J. Shotton, and A. Criminisi, “Real-time rgb-d
camera relocalization,” in ISMAR, 2013, pp. 173–179.

[7] F. Chaumette and S. Hutchinson, “Visual servo control, part ii:
Advanced approaches,” IEEE RAM, vol. 14, no. 1, pp. 109–118, 2007.

[8] H. Pandya, K. M. Krishna, and C. Jawahar, “Servoing across object
instances: Visual servoing for object category,” in ICRA, 2015, pp.
6011–6018.

[9] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Deep spatial autoencoders for visuomotor learning,” in ICRA, 2016,
pp. 512–519.

[10] T. Lampe and M. Riedmiller, “Acquiring visual servoing reaching and
grasping skills using neural reinforcement learning,” in IJCNN, 2013,
pp. 1–8.

[11] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, and
C. Rother, “Uncertainty-driven 6d pose estimation of objects and
scenes from a single rgb image,” in CVPR, 2016.

[12] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” in ICCV, 2015,
pp. 2938–2946.

[13] P. Agrawal, J. Carreira, and J. Malik, “Learning to see by moving,”
in ICCV, 2015, pp. 37–45.

[14] G. Costante, M. Mancini, P. Valigi, and T. A. Ciarfuglia, “Explor-
ing representation learning with cnns for frame-to-frame ego-motion
estimation,” RAL, vol. 1, no. 1, pp. 18–25, 2016.

[15] K. Konda and R. Memisevic, “Learning visual odometry with a
convolutional network,” in International Conference on Computer
Vision Theory and Applications, 2015.

[16] A. Dosovitskiy, P. Fischery, E. Ilg, C. Hazirbas, V. Golkov, P. van der
Smagt, D. Cremers, T. Brox, et al., “Flownet: Learning optical flow
with convolutional networks,” in ICCV, 2015, pp. 2758–2766.

[17] J. Campbell, R. Sukthankar, and I. Nourbakhsh, “Techniques for
evaluating optical flow for visual odometry in extreme terrain,” in
IROS, vol. 4, 2004, pp. 3704–3711.

[18] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox, “Learning to
generate chairs with convolutional neural networks,” in CVPR, 2015,
pp. 1538–1546.

[19] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in ACMMM, 2014, pp. 675–678.

[20] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in NIPS, 2014, pp. 3320–3328.

[21] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring
strategies for training deep neural networks,” JMLR, vol. 10, no. Jan,
pp. 1–40, 2009.

[22] R. Diankov and J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Robotics Institute, Tech. Rep., 2008.

[23] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in CVPR, 2012, pp. 3354–
3361.

[24] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The princeton
shape benchmark,” in Shape Modeling Applications, 2004. Proceed-
ings, 2004, pp. 167–178.

[25] A. Handa, V. Ptrucean, S. Stent, and R. Cipolla, “Scenenet: An
annotated model generator for indoor scene understanding,” in ICRA,
2016, pp. 5737–5743.

[26] Google, “3d warehouse,” 2014. [Online]. Available: http://sketchup.
google.com/3dwarehouse/

http://sketchup.google.com/3dwarehouse/
http://sketchup.google.com/3dwarehouse/

	I INTRODUCTION
	II Related work
	III Overview
	IV Network Architecture
	IV-A FlowNet

	V Training
	V-A Loss function and Optimization Scheme
	V-B Data-Preparation and Implementation Details
	V-C Dataset

	VI Control Law
	VII Experiments and Results
	VII-A Visual Servoing Scene Dataset
	VII-A.1 Simulation results for 3D scene
	VII-A.2 Qualitative results on servoing dataset
	VII-A.3 Real experiment using a quadrotor


	VIII Conclusion
	References

