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Abstract

Decoder-based transformers, while revolution-
izing language modeling and scaling to im-
mense sizes, have not completely overtaken
encoder-heavy architectures in natural lan-
guage processing. Specifically, encoder-only
models remain dominant in tasks like classi-
fication, regression, and ranking. This is pri-
marily due to the inherent structure of decoder-
based models, which limits their direct appli-
cability to these tasks. In this paper, we intro-
duce Gemma Encoder, adapting the powerful
Gemma decoder model to an encoder archi-
tecture, thereby unlocking its potential for a
wider range of non-generative applications. To
optimize the adaptation from decoder to en-
coder, we systematically analyze various pool-
ing strategies, attention mechanisms, and hyper-
parameters (e.g., dropout rate). Furthermore,
we benchmark Gemma Encoder against estab-
lished approaches on the GLUE benchmarks,
and MS MARCO ranking benchmark, demon-
strating its effectiveness and versatility.

1 Introduction

Decoder-based language models like
Gemma (Gemma Team, 2024b,a) and Gem-
ini (Gemini Team, 2023) have demonstrated
remarkable language understanding capabilities.
Yet, for many downstream tasks such as classi-
fication, regression, and ranking, encoder-based
models, particularly those derived from BERT (De-
vlin et al., 2019) or T5’s encoder (Raffel et al.,
2020), remain the dominant choice. A key question
thus arises: can we effectively adapt the powerful
knowledge embedded in decoder-only models to
excel in these encoder-centric tasks?

This work addresses this gap by introducing
Gemma Encoder, a novel adaptation of the Gemma
decoder model designed for encoder-only architec-
tures. We leverage Gemma’s pre-trained weights as
a strong initialization point, and then strategically
modify the architecture and training procedure to

optimize performance on downstream tasks. Our
approach centers on three key innovations:

First, we augment the model with task-specific
pooling and Multi-Layer Perceptron (MLP) layers,
exploring various pooling strategies to determine
the optimal architecture.

Second, we address the critical impact of atten-
tion mechanisms. Gemma’s causal attention, ideal
for generative tasks, inherently limits its applica-
bility to encoder-based tasks. We demonstrate that
simply enabling bidirectional attention during fine-
tuning dramatically improves performance.

Third, we investigate the role of dropout. While
often omitted during pre-training of modern de-
coder models, our empirical analysis reveals that
incorporating dropout during fine-tuning signifi-
cantly enhances Gemma Encoder’s robustness and
generalization ability. We also analyze different
padding strategies to understand the effect on En-
coder models.

In the rest of this paper, we describe the tech-
nical details of these modifications. To validate
the effectiveness of our Gemma Encoder, we con-
duct our experiments on GLUE benchmarks (Wang
et al., 2019, 2020), for classification and regression
tasks, and the MSMARCO benchmark (Bajaj et al.,
2018) for ranking tasks. Our results show that our
Gemma Encoder models are able to outperform
competitive baselines on these benchmark tasks.

2 Model Adaptation Choices

This work explores adapting decoder-only gen-
erative Al models, exemplified by GPT-4 (Ope-
nAl, 2023), Gemini (Gemini Team, 2023), and
Gemma (Gemma Team, 2024b,a), for encoder-only
tasks such as classification, regression, and rank-
ing. Our adaptation strategy, as shown in Figure 1,
centers on three key architectural and training mod-
ifications: attention mechanism design, pooling
strategies, and the application of dropout.
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Figure 1: Gemma Encoder Architecture & Pooling: The architecture (left) comprises an encoder transformer initialized
from Gemma, followed by task-specific pooler and MLP layers. The right panel illustrates the various pooling strategies
considered: First-K, Last-K, Mean, and Attention Pooling with KV- and Query-probe variants).

While both decoder-only and encoder-only
Transformers share a similar underlying layer de-
sign, their training objectives and downstream ap-
plications diverge significantly. Decoder-only mod-
els are optimized for next-token prediction, making
them well-suited for generative tasks. In contrast,
encoder-only models are trained to generate a com-
prehensive representation of the entire input se-
quence, empowering a diverse range of predictive
tasks, including classification (label prediction), re-
gression (score prediction), and ranking (relative
ordering prediction).

By systematically evaluating these crucial mod-
eling choices, we aim to identify the architecture
that best captures the essential information embed-
ded within the input sequence. This will ultimately
optimize the performance of Gemma Encoder on
downstream tasks. Our analysis provides valu-
able insights into the trade-offs inherent in various
design decisions, offering guidance not only for
adapting Gemma, but also for transforming other
decoder-only models into effective encoders.

2.1 Attention Masking

Pre-trained generative models often employ three
types of attention mask patterns: bidirectional,
causal, and prefix masking (Figures 3 and 4 in Raf-
fel et al. (2020)). For our focus on non-generative
tasks, we limited the explorations to causal atten-
tion and bidirectional attention.

Bidirectional masking, also referred as fully-
visible masking (Raffel et al., 2020), is commonly
used in encoder models. It allows the encoder to
generate a holistic representation of the input by
providing complete access to all input tokens, fos-
tering a comprehensive understanding of the entire
sequence.

Causal masking, on the other hand, is prevalent
in decoder-only and sequence-to-sequence mod-
els. Here, tokens are processed sequentially, and
predictions for the next token rely solely on pre-
ceding tokens. This prevents the model from "look-
ing ahead" during training, preserving the auto-
regressive property essential for text generation.
The attention mechanism is masked so that each
token attends only to itself and prior tokens.

TS5 introduced PrefixLLM, a hybrid approach that
utilizes causal masking with a designated "prefix"
section. This prefix is processed bidirectionally,
allowing the model to attend to all tokens within
it. The remaining sequence is processed causally,
enabling generation conditioned on the fully con-
textualized prefix. This combines the benefits of
bidirectional context for understanding the initial
input segment with the autoregressive capabilities
of causal masking for generating the subsequent
sequence.

Given that Gemma models are pre-trained with

causal attention, we investigated the impact of
both bidirectional and causal attention masks dur-



ing fine-tuning to maximize the performance of
Gemma Encoder models.

2.2 Pooling Strategies

The Gemma Encoder model aims to create a robust
representation by effectively leveraging all input
information. It comprises an encoder transformer
initialized from the Gemma decoder transformer,
and a pooler coupled with Multi-Layer Perceptron
(MLP) layers. The pooling and MLP layers are
randomly initialized. A crucial component for ag-
gregating the contextualized token representations
from the transformer into a fixed-length vector, we
explored several pooling options to determine the
optimal architecture.

First-K and Last-K token poolings are the two
simplest pooling strategies used in transformer
models to extract a fixed-size representation from a
sequence of tokens for encoder tasks. In First-K to-
ken pooling, the representation of the first K tokens
is used to aggregate information from the entire in-
put sequence through attention mechanisms, with
K being the number of classes for classification or
1 for regression and ranking. This approach can
be viewed as fine-tuning the first K tokens as spe-
cial tokens, analogous to the [CLS] token in BERT.
In contrast, Last-K token pooling takes the repre-
sentation of the last token in the sequence. This
approach is particularly relevant in scenarios like
language modeling or when the final tokens rep-
resents a meaningful conclusion of the sequence,
such as an [EOS] token. While both approaches
simplify the transformation of variable-length se-
quences into fixed-size representations, they may
capture slightly different aspects of the input de-
pending on the token’s role in the model architec-
ture and the training objective.

Mean pooling is another parameter-free pooling
method averages the hidden states across all tokens,
creating a single vector representing the average
contextualized information. Mean pooling is com-
putationally efficient and provides a basic repre-
sentation of the entire input. However, it can be
susceptible to noise and may dilute the importance
of critical tokens by treating all tokens equally.

Attention pooling is a more sophisticated tech-
nique that employs an attention mechanism to
weight and aggregate token representations. By
learning attention weights, the model can focus on
the most informative tokens for the downstream

task, effectively filtering noise and highlighting rel-
evant information. Attention pooling offers greater
flexibility and expressiveness compared to mean
pooling.

There are two main approaches to implementing
attention pooling. The attention mechanism can be
expressed as:

T

VD
where the input is passed through the query ma-
trix, Q € RL*D and the latent variables, K , Ve
RY*P “are learned. Here, L, D, and V represent
the input sequence length, the internal embedding
dimension, and the number of latent variables, re-
spectively. This approach is represented as KV-
probe in Figure 1.

Alternatively, the input can be passed through
the key and value matrices, K,V € RY*P while
the latent variables are learned through the query
matrix, () € RV*P  ag introduced in J aegle et al.

(2022). This approach is represented as Query-
probe in Figure 1.

Output = Softmax( )V,

2.3 Dropout

Dropout is a crucial regularization technique
widely used in deep learning to prevent over-fitting
and improve generalization by randomly deactivat-
ing a fraction of neurons during training. How-
ever, overfitting is less of a concern for the latest
large language models (LLMs), due to the massive
training datasets and high model capacity, which
naturally provide robust generalization. Instead of
dropout, LLMs (Chowdhery et al., 2022; Anil et al.,
2023; Hoffmann et al., 2022) rely on other forms
of regularization, such as weight decay or careful
scaling strategies, which are better suited to the
massive scale of these models and training corpora.

When adapting a decoder-only model to an
encoder-only architecture, evaluating the role
of dropout through ablation studies is crucial.
Encoder-only tasks, such as regression, classifi-
cation, and ranking, are more prone to overfitting
compared to generative tasks handled by decoder-
only models. This increased susceptibility arises
because encoder-only models are typically trained
on limited data using supervised fine-tuning, with
less diversity in the output space. Moreover, the
supervision signal in encoder-only tasks operates
at the sentence or full-input-sequence level, rely-
ing on deterministic loss functions. This setup



Benchmark Dataset Metric #Train  #Eval Task
STSB Spearman Coeff. 5749 1500 Similarity
CoLA Matthews Coeff. 8551 1043  Acceptability
QQP F1 363846 40430 Paraphrase
GLUE QNLI Accuracy 104743 5463 QA /NLI
SST2 Accuracy 67349 872 Sentiment
RTE Accuracy 2490 277 NLI
MRPC F1 3668 408 Paraphrase
MNLI-matched Accuracy 392702 9815 NLI
MNLI-mismatched Accuracy 392702 9832 NLI
BoolQ Accuracy 9427 3270 QA
RTE Accuracy 2490 277 NLI
COPA Accuracy 400 100 QA
SuperGLUE CB Accuracy 250 56 NLI
WIC Accuracy 5428 638 WSD
WSC Accuracy 554 104 Resolution
MULTIRC F1 27243 4848 QA
Ranking MS-MARCO MRR/NDCG 532751 6980 Ranking

Table 1: Dataset Statistics across GLUE, SuperGLUE and Ranking Benchmarks used in the paper. The benchmarks cover
a diverse range of encoder tasks, including sentence similarity (similarity), acceptability, paraphrase, question
answering (QA), natural language inference (NLI), sentiment classification (sentiment), word sense disambiguation (WSD),
coreference resolution (resolution), and document ranking (ranking.)

makes the model more likely to fit spurious fea-
tures in the input. In contrast, autoregressive tasks
in decoder-only models inherently involve uncer-
tainty and softer probability distributions, which
naturally help mitigate overfitting.

2.4 Padding Strategies

When processing sequences of varying lengths in
batched inputs, padding is essential to create uni-
form input tensors. However, the choice between
left padding (prepending padding tokens) and
right padding (appending padding tokens) may
impacts model behavior, especially when adapting
encoder model from decoder-only models.

In decoder-only transformer models, such as
those used for language generation (e.g., GPT (Ope-
nAl, 2023), Gemma (Gemma Team, 2024a,b) mod-
els), left padding is typically used to align the in-
puts during training or inference, due to the auto-
regressive training objective and efficient positional
embedding. Decoder-only models are trained in an
auto-regressive manner, where the task is to pre-
dict the next token based on all previous tokens.
Decoder-only transformer models use positional
embeddings to encode the order of tokens. Left-
padding ensures that the relative positions of the
actual tokens remain consistent regardless of the
sequence length.

However, right padding is acceptable for en-
coder models because of the way these models
process input sequences. Unlike decoder-only mod-
els, encoders like those in BERT (Devlin et al.,

2019), TS5 (Raffel et al., 2020) or other bidirec-
tional transformer models handle the entire input
sequence at once, and their attention mechanisms
allow tokens to attend to any other token in the
input through bidirectional attention. In encoder
models, positional embeddings are applied to the
entire sequence, including padding tokens. Since
the padding tokens are ignored during attention,
their positional embeddings don’t interfere with
the actual computation. Whether the padding is on
the right or left does not affect the functionality.
The choice of padding strategy has implications
for the pooling layer, especially in conjunction with
causal attention and First-K/Last-K token pooling.

2.5 Adaption for Ranking Tasks

A ranking task concerns the relative ordering of
a set of text documents by their relevance to a
given query. Formally, for each query ¢;, we
are provided with a list of candidate documents
D; = (d;1, ..., din,) along with their relevance la-
bels y; = (yi1, ..., ¥im). The objective is to train
a ranking model f, such that the model takes a
query-document pair, (g;, d;;), as input and out-
puts a ranking score 9;; = f(¢;, di;) € R.

Listwise Inputs and Outputs. Adapting the
Gemma Encoder to ranking tasks requires handling
listwise inputs, which have the shape [B, M, L],
where B represents the input batch size, M the
number of documents per query, and L the se-
quence length. To process these inputs, we first flat-



Model Size | STSB CoLA QQP QNLI SST2 RTE MRPC MNLer Avg
BERT-base 108M | 84.6 56.9 87.8 904 922  70.0 90.6 83.1 837 821
T5-base 110M | 852 534 89.5 93.2 94.7  69.7 91.6 88.8 884 838
BERT-large  334M | 86.4 63.9 884  93.0 94.0 755 924 87.1 869 853
T5-large 350M | 88.0 63.6 89.6 948 969 85.6 93.5 91.0 909 882
T5-x1 1.5B 87.4 70.9 90.3 96.2 97.0 921 93.5 92.1 91.7 90.1
T5-xx1 6.5B 86.9 72.9 904 964 97.2 928 94.2 92.1 92.0 90.5
Gemma-2 2B 2B 924 67.7 8902 954 97.0 87.0 91.6 91.1 91.1 89.2
Gemma-2 9B 9B 92.6 71.3 90.1 96.4 96.7 931 93.9 922 921 909

Table 2: Evaluation on GLUE benchmarks. For MNLI task, m and mm refers to matched and mismatched
accuracy. All the Gemma experiments are done with bidirectional attention masking, dropout on attention softmax
and feedforward network outputs with 10% rate, and right padding. The metrics for Gemma 2B and 9B are based

on the best pooling strategies as ablated in Table 5.

Model Size | BoolQ RTE COPA CB WIC WSC MULTIRC Avg
T5-xx1 6.5B 90.8 939  98.0 %4 773  96.2 87.4 914
Gemma-22B 2B 88.8 88.8 90.0 1000 751 73.1 85.6 85.9
Gemma-29B 9B 91.3 93.1 96.0 100.0 765 90.4 88.2 90.8

Table 3: Evaluation on SuperGLUE benchmarks. The same hyper-parameter settings are applied as in Table 2.

ten the listwise structure to a shape of [B x M, L].
This flattened input is then passed through the
Gemma Encoder, resulting in logits with a shape
of [B x M]. Finally, these logits are reshaped back
to [B, M] to align with the expected input format
of the ranking loss function.

Ranking Losses. This adaptation enables the
model to produce a ranking score for each doc-
ument. Consequently, any established ranking
loss functions can be applied, such as pairwise
logistic loss (Burges et al., 2005), PolyLoss (Leng
et al., 2022), and Gumbel approximated NDCG
loss (Bruch et al., 2020). In this study, we focused
on the listwise softmax cross-entropy loss (Bruch
etal., 2019; Liu, 2011).
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3 Experiments

We evaluate the effectiveness of various model-
ing choices for adapting the decoder-only genera-
tive model, Gemma, to encoder-only tasks. Perfor-
mance is assessed across a diverse set of classifica-
tion, regression, and ranking tasks.

3.1 Data

Specifically, we demonstrate the effectiveness of
Gemma Encoder for classification and scoring
tasks on the GLUE (Wang et al., 2019) and Super-
GLUE (Wang et al., 2020) benchmarks. We further

evaluate its ranking capability on the MSMARCO
benchmark (Bajaj et al., 2018).

Gemma Encoder’s general language understand-
ing abilities were evaluated on the GLUE and Su-
perGLUE benchmarks, which include diverse text
classification and scoring tasks. The tasks and their
corresponding evaluation metrics are summarized
in Table 1. Our evaluation involved finetuning
Gemma Encoder on each task’s training set and
subsequently assessing its performance on the eval-
uation set. The RECORD task from SuperGLUE
was excluded due to its incompatibility with an
encoder-only architecture.

3.2 Model

We evaluated the encoder adaptation using the
Gemma-2 (Gemma Team, 2024a), specifically, the
2B and 9B decoder model variants.

3.3 Evaluation

GLUE and SuperGLUE evaluation We eval-
uvate Gemma Encoder performance on GLUE, in
Table 2, and SuperGLUE, in Table 3, benchmarks
and compare it with baseline T5 and BERT mod-
els. Notably, Gemma Encoder achieves competi-
tive performance against similarly sized TS mod-
els, despite not utilizing any uptraining or encoder-
decoder masked language modeling (MLM) pre-
training. This highlights the efficacy of our ar-
chitecture adaptation approach in unlocking the
potential of decoder-based language models for
encoder-based tasks.

The results presented in Tables 2 and 3 reflect



the optimal hyperparameter configuration identi-
fied through ablation studies (Section 3.4). Specifi-
cally, we found that bidirectional attention masking
(Section 3.4.2), right padding (Section 3.4.4), and
a 10% dropout rate applied to the attention softmax
and feedforward network outputs (Section 3.4.3)
yielded the best performance.

Using the described training configurations, es-
pecially with bidirectional attention, no single pool-
ing strategy consistently optimized performance
for both Gemma 2B and 9B. The choice of pool-
ing strategy had negligible impact when using our
finetuning dataset. However, with causal atten-
tion masking (Gemma’s default decoder setting),
last-token pooling significantly outperformed other
strategies during finetuning. Please refer to 3.4.1
for more details.

Model Size MRR@10 NDCG@10
RankT5-XLL  1.5B 0.4358 0.5035
Gemma-2 2B 2B 0.4456 0.5133
Gemma-2 9B 9B 0.4450 0.5148

Table 4: Evaluation on MS MARCO benchmark for
Ranking tasks. MRR and NDCG stand for Mean Reciprocal
Rank and Normalized Discounted Cumulative Gain, the

standard ranking metrics.

Attention Last-K
Q KV
2B 88.7 894 89.0 89.0 89.1

9B 90.4 89.7 90.7 90.6 90.9

Model First-K  Mean

Table 5: Pooling strategy ablation. Q and KV denote
Q-probe and KV-probe Attention Pooling, respectively.
Bidirectional attention is used by default.

Causal
Mean Attent Last-K
2B 89.4 84.5 86.0 88.6
9B 90.9 87.5 88.4 90.4

Model BiDi

Table 6: Attention mechanism Ablation. BiDi and Causal
stand for bidirectional and causal attention, respectively. The
BiDi results are the best results from Table 5. For causal
masking results, we applied mean, attention and last token
poolings for comparison. Details in Sec. 3.4.2.

MS MARCO Ranking Evaluation For the rank-
ing task, we utilized the MS MARCO dataset,
which contains approximately 530K queries in the
train partition and 7K queries in the dev par-
tition. The candidate passages are drawn from
a corpus of over 8.8M passages. Each query is
associated with relevant passages labeled with a
relevance score of 1, and irrelevant passages la-
beled with a score of 0. Following the setup in

Bidirectional Attn.  Causal Attn.
left right left  right
2B 88.9 89.4 88.4 88.6
9B 90.8 90.9 90.6 90.4

Model

Table 7: Padding strategies ablation. No significant
difference is found for comparing two choices of padding
strategies after finetuning.

RankT5 (Zhuang et al., 2022), our evaluation fo-
cuses on the top 1000 retrieved documents using
MRR @10 and NDCG @10 as metrics, while our
training uses a sample of 36 documents (1 positive
plus sampled 35 negatives) per query.

We compared the finetuned performance
of Gemma Encoder against the RankT5
model (Zhuang et al., 2022). As shown in
Table 4, Gemma 2B and 9B variants outperform
RankTS5, despite not leveraging any up-training or
encoder-decoder MLM-style pretraining.

3.4 Ablation

To optimize performance, as demonstrated in Ta-
bles 2 and 3, we conducted ablation studies on
architectural and hyperparameter choices.

3.4.1 Pooling Strategy

To evaluate the influence of pooling strategy on the
performance of the Gemma Encoder, we conducted
experiments using the GLUE benchmark. Follow-
ing the approach in TS5 (Raffel et al., 2020), which
demonstrated strong performance for encoder-
based tasks, we utilized bidirectional attention
masking during both finetuning and inference.

Table 5 summarizes the GLUE average scores
(refer to Table 8 for per-task results) obtained with
different pooling strategies for the Gemma-2 2B
and 9B models (Gemma Team, 2024a). Our anal-
ysis reveals that simple pooling strategies, specifi-
cally last-token and mean pooling, achieve superior
performance compared to attention pooling. But
with bidirectional attention, no single pooling strat-
egy consistently optimized performance for both
Gemma 2B and 9B.

Note on limitation: It is important to acknowl-
edge that the observed superiority of simple pool-
ing strategies is specific to the GLUE benchmark
finetuning context, which is characterized by rel-
atively limited training data. In scenarios involv-
ing large-dataset finetuning, or pre-finetuning a de-
coder, especially for retrieval tasks (e.g. Lee et al.
(2024) for pretrained retrieval model, Moiseev et al.
(2023); Dong et al. (2022) for finetuning), a reeval-



uation of the relative efficacy of attention pooling
and simple pooling methods is warranted. The in-
creased parameter count associated with attention
pooling is a significant factor to consider in such
contexts. Please refer to Section A.4 for details.

3.4.2 Attention Masking

To investigate the impact of attention masking
strategies, we evaluated both causal and bidirec-
tional masking using the GLUE benchmark. Ta-
ble 6 provides a comparison of the GLUE aver-
age scores for Gemma-2 2B and 9B models un-
der both masking conditions. For the bidirectional
masking results, we report the optimal performance
achieved across different pooling strategies, consis-
tent with the methodology in Table 5.

A key observation from our experiments is the
superior performance of bidirectional masking
compared to causal masking. This pattern is consis-
tently observed across the majority of tasks within
the GLUE benchmark, detailed in Section A.2 for
different model sizes. This finding is particularly
noteworthy given that the Gemma decoder’s pre-
training process utilizes solely causal masking. It
suggests that employing bidirectional masking, at
finetuning time, can still enhance performance on
encoder-related tasks, even with a causally pre-
trained decoder and limited finetuning data.

Furthermore, our results demonstrate that when
causal masking is employed, last-token pooling ex-
hibits significantly better performance than alterna-
tive pooling methods. This observation aligns with
the inherent nature of causal masking, where the
last token possesses a comprehensive contextual
understanding due to its attention over the entire
preceding sequence. This is analogous to the pre-
training objective of decoder-based language mod-
els, where the embedding of the last token serves
as the basis for predicting the subsequent token.

3.4.3 Dropouts

Considering the task-specific nature and determin-
istic training objectives commonly associated with
encoder tasks, we investigated the influence of
dropout regularization on the performance of the
Gemma Encoder using the GLUE benchmark. Fig-
ure 2 presents the GLUE average scores for the
Gemma-2 2B and 9B models as a function of in-
creasing dropout rate, starting from a rate of zero.

Our analysis reveals that the application of
dropout generally enhances the performance of
the Gemma Encoder for both the 2B and 9B mod-
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Figure 2: Effect of feed-forward and attention dropout.

els. However, a performance degradation is ob-
served when the dropout rate exceeds 0.1. This
pattern is consistently observed across the majority
of tasks within the GLUE benchmark, detailed in
Section A.3 for both model sizes. Therefore, based
on these findings, we recommend a dropout rate
of 0.1 applied to both the attention softmax and
feedforward network outputs during the finetuning
process for encoder-based tasks.

3.4.4 Padding Strategy

To evaluate the influence of padding side on the
performance of the Gemma Encoder, we compared
left and right padding strategies. Table 7 summa-
rizes the GLUE average scores obtained for the
Gemma-2 2B and 9B models under both padding
conditions. Consistent with our expectations, no
statistically significant difference in performance
was observed between the two padding approaches.
This indicates that the model exhibits robustness to
padding side after finetuning.

4 Conclusion

We introduce Gemma Encoder, adapting the
decoder-only Gemma model for encoder tasks.
We addressed using decoder models’ pre-trained
knowledge for tasks typically handled by encoders
(e.g., BERT, T5’s encoder). Our approach involved
task-specific pooling/MLP layers, bidirectional at-
tention, and dropout during finetuning. We also
analyzed padding strategies.

Gemma Encoder outperformed baselines on
GLUE, SuperGLUE, and MSMARCO benchmarks
(classification, regression, ranking), proving that
well-adapted decoder-only models excel at encoder
tasks. Bidirectional attention proved crucial for
capturing context, and dropout improved robust-
ness and generalization. Adaptable pooling and
output layers further enhanced performance.



5 Limitations

We identify a couple of limitations. First, our ex-
periments are based on the Gemma models. We
need to evaluate how the findings would translate to
other large language models. Second, we only eval-
uate the quality of the encoder using classification,
scoring and ranking tasks. Another common use
case of Encoders, retrieval (or embedding) models
are not considered in this work.
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A Additional Results
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ple pooling strategies achieve performance com-
petitively to that of attention pooling, even though
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parameters.
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Model Pooling STSB CoLA QQP QNLI SST2 RTE MRPC mMNLer Avg
FirstK 923 655 883 952 967 870 922 906 909 887
Gommaop  Meam 924 677 892 954 970 8.3 933 91 9L1 894
Attention 923 671 887 953 967 873 920 907 909 89.0
Lasttoken 924 657 881 952 974 888 927 908 90.8 89.1
Firstk 921 723 892 961 963 906 930 924 920 904
Gommaop  Meam  OLS 695 903 964 965 888 894 924 922 897
Attention 925 721 90.1 965 965 913 931 925 921 907
Lasttoken 924 709 898 963 967 942 932 923 921 909

Table 8: Impact of pooling on GLUE task performance. Experiments used bidirectional attention, 10% dropout, and right padding. Attention pooling utilizes
a Query probe.

Model Attention  STSB CoLA QQP QNLI sst2 RTE MRpc ~ MNM - ay
Causal (Mean) 907 652 877 944 962 610 854 898 90.1 84.5

Goemmaop  Causal (Atient) 910 683 879 947 958 693 861 905 907 86.0
Causal (LasttK) 921 673  88.1 949 963 866 90.6 90.6 90.7 88.6

BiDi 924 677 892 954 970 873 933 9Ll 9Ll 894

Causal Mean) 917 725 894 959 963 73.6 850 918 917 87.5

Gemmaop Causal (Atient) 921 719 896 961 965 768 883 920 919 884
Causal (Last-K) 924 722 894 959 965 917 918 919 918 904

BiDi 924 709 898 963 967 942 932 923 92.1 909

Table 9: Impact of attention mechanism on GLUE tasks: BiDi (bidirectional) uses optimal pooling; Causal uses mean, attention, and last-token pooling. All
experiments use 10% dropout and right padding. Attention pooling utilizes a Query probe.

Model ~ Dropout STSB CoLA QQP QNLI SST2 RTE MReC MMM ay
0 910 628 892 952 962 783 8.0 913 915 872
Gemmaop 005 920 664 889 953 964 873 924 910 912 890
010 924 677 892 954 970 873 933 OLI 91 894
015 920 665 83 950 967 844 910 905 907 883
0 913 685 902 964 966 888 900 924 922 896
Gemmaop 005 922 710 900 963 964 924 920 923 920 905
010 924 709 898 963 967 942 932 923 921 909
015 923 714 895 962 966 924 933 921 920 906

Table 10: Impact of dropout on GLUE task performance. Experiments used bidirectional attention and right padding. Gemma 2B employed mean pooling,
while Gemma 9B used last-token pooling.

Probe H T #params STSB CoLA QQP QNLI SST2 RTE MRPC MNLILm Avg
Q 1 1 23M 923 671 87 953 967 873 920 907 909 89.0
Q 2 1 47M 922 664 886 951 966 863 921 90.6 90.6 887
Q 4 1 94M 922 674 888 951 967 866 922 90.6 90.6 889
Q 8 1 188M 922 664 886 954 968 856 919 907 907 887
Q I 512 23M 920 661 887 953 968 859 917 90.6 90.6 886
Q 8 512 188M 922 661 87 953 968 841 919 905 905 88.5

KV 1 512 23M 923 666 885 951 969 884 922 906 90.6 89.0
KV 8 512 188M 923 679 886 951 967 870 922 907 90.7 89.0

Table 11: Gemma 2B performance on GLUE tasks was evaluated with ablations on attention pooling probes, varying the number of attention heads (H) and
pooled tokens (T). Experiments used bidirectional attention, 10% dropout, and right padding.
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