
Adapting Decoder-Based Language Models for Diverse Encoder
Downstream Tasks

Anonymous ACL submission

Abstract001

Decoder-based transformers, while revolution-002
izing language modeling and scaling to im-003
mense sizes, have not completely overtaken004
encoder-heavy architectures in natural lan-005
guage processing. Specifically, encoder-only006
models remain dominant in tasks like classi-007
fication, regression, and ranking. This is pri-008
marily due to the inherent structure of decoder-009
based models, which limits their direct appli-010
cability to these tasks. In this paper, we intro-011
duce Gemma Encoder, adapting the powerful012
Gemma decoder model to an encoder archi-013
tecture, thereby unlocking its potential for a014
wider range of non-generative applications. To015
optimize the adaptation from decoder to en-016
coder, we systematically analyze various pool-017
ing strategies, attention mechanisms, and hyper-018
parameters (e.g., dropout rate). Furthermore,019
we benchmark Gemma Encoder against estab-020
lished approaches on the GLUE benchmarks,021
and MS MARCO ranking benchmark, demon-022
strating its effectiveness and versatility.023

1 Introduction024

Decoder-based language models like025

Gemma (Gemma Team, 2024b,a) and Gem-026

ini (Gemini Team, 2023) have demonstrated027

remarkable language understanding capabilities.028

Yet, for many downstream tasks such as classi-029

fication, regression, and ranking, encoder-based030

models, particularly those derived from BERT (De-031

vlin et al., 2019) or T5’s encoder (Raffel et al.,032

2020), remain the dominant choice. A key question033

thus arises: can we effectively adapt the powerful034

knowledge embedded in decoder-only models to035

excel in these encoder-centric tasks?036

This work addresses this gap by introducing037

Gemma Encoder, a novel adaptation of the Gemma038

decoder model designed for encoder-only architec-039

tures. We leverage Gemma’s pre-trained weights as040

a strong initialization point, and then strategically041

modify the architecture and training procedure to042

optimize performance on downstream tasks. Our 043

approach centers on three key innovations: 044

First, we augment the model with task-specific 045

pooling and Multi-Layer Perceptron (MLP) layers, 046

exploring various pooling strategies to determine 047

the optimal architecture. 048

Second, we address the critical impact of atten- 049

tion mechanisms. Gemma’s causal attention, ideal 050

for generative tasks, inherently limits its applica- 051

bility to encoder-based tasks. We demonstrate that 052

simply enabling bidirectional attention during fine- 053

tuning dramatically improves performance. 054

Third, we investigate the role of dropout. While 055

often omitted during pre-training of modern de- 056

coder models, our empirical analysis reveals that 057

incorporating dropout during fine-tuning signifi- 058

cantly enhances Gemma Encoder’s robustness and 059

generalization ability. We also analyze different 060

padding strategies to understand the effect on En- 061

coder models. 062

In the rest of this paper, we describe the tech- 063

nical details of these modifications. To validate 064

the effectiveness of our Gemma Encoder, we con- 065

duct our experiments on GLUE benchmarks (Wang 066

et al., 2019, 2020), for classification and regression 067

tasks, and the MSMARCO benchmark (Bajaj et al., 068

2018) for ranking tasks. Our results show that our 069

Gemma Encoder models are able to outperform 070

competitive baselines on these benchmark tasks. 071

2 Model Adaptation Choices 072

This work explores adapting decoder-only gen- 073

erative AI models, exemplified by GPT-4 (Ope- 074

nAI, 2023), Gemini (Gemini Team, 2023), and 075

Gemma (Gemma Team, 2024b,a), for encoder-only 076

tasks such as classification, regression, and rank- 077

ing. Our adaptation strategy, as shown in Figure 1, 078

centers on three key architectural and training mod- 079

ifications: attention mechanism design, pooling 080

strategies, and the application of dropout. 081

1

Pooler

Transformer

MLP

Projection

Logits
 ∈ 𝑹𝑲

Pooled Embeddings
 ∈ 𝑹𝑷×𝑫

Input Tokens

 ∈ 𝑹𝑳

Embedding Tokens

 ∈ 𝑹𝑳×𝑫

Embedding Tokens
 ∈ 𝑹𝑳×𝑫

First-K Token Pooling Last-K Token Pooling

Attention Pooling

Mean Pooling

K

KV Probe

𝑸 ∈ 𝑹𝑳×𝑫

𝑲 ∈ 𝑹𝑽×𝑫

𝑽 ∈ 𝑹𝑽×𝑫

Query Probe

𝑸 ∈ 𝑹𝑽×𝑫

𝑲 ∈ 𝑹𝑳×𝑫

𝑽 ∈ 𝑹𝑳×𝑫

A
tte

n
tio

n

Pooling Strategies

Learnable
Tokens

K

Figure 1: Gemma Encoder Architecture & Pooling: The architecture (left) comprises an encoder transformer initialized
from Gemma, followed by task-specific pooler and MLP layers. The right panel illustrates the various pooling strategies

considered: First-K, Last-K, Mean, and Attention Pooling with KV- and Query-probe variants).

While both decoder-only and encoder-only082

Transformers share a similar underlying layer de-083

sign, their training objectives and downstream ap-084

plications diverge significantly. Decoder-only mod-085

els are optimized for next-token prediction, making086

them well-suited for generative tasks. In contrast,087

encoder-only models are trained to generate a com-088

prehensive representation of the entire input se-089

quence, empowering a diverse range of predictive090

tasks, including classification (label prediction), re-091

gression (score prediction), and ranking (relative092

ordering prediction).093

By systematically evaluating these crucial mod-094

eling choices, we aim to identify the architecture095

that best captures the essential information embed-096

ded within the input sequence. This will ultimately097

optimize the performance of Gemma Encoder on098

downstream tasks. Our analysis provides valu-099

able insights into the trade-offs inherent in various100

design decisions, offering guidance not only for101

adapting Gemma, but also for transforming other102

decoder-only models into effective encoders.103

2.1 Attention Masking104

Pre-trained generative models often employ three105

types of attention mask patterns: bidirectional,106

causal, and prefix masking (Figures 3 and 4 in Raf-107

fel et al. (2020)). For our focus on non-generative108

tasks, we limited the explorations to causal atten-109

tion and bidirectional attention.110

Bidirectional masking, also referred as fully- 111

visible masking (Raffel et al., 2020), is commonly 112

used in encoder models. It allows the encoder to 113

generate a holistic representation of the input by 114

providing complete access to all input tokens, fos- 115

tering a comprehensive understanding of the entire 116

sequence. 117

Causal masking, on the other hand, is prevalent 118

in decoder-only and sequence-to-sequence mod- 119

els. Here, tokens are processed sequentially, and 120

predictions for the next token rely solely on pre- 121

ceding tokens. This prevents the model from "look- 122

ing ahead" during training, preserving the auto- 123

regressive property essential for text generation. 124

The attention mechanism is masked so that each 125

token attends only to itself and prior tokens. 126

T5 introduced PrefixLM, a hybrid approach that 127

utilizes causal masking with a designated "prefix" 128

section. This prefix is processed bidirectionally, 129

allowing the model to attend to all tokens within 130

it. The remaining sequence is processed causally, 131

enabling generation conditioned on the fully con- 132

textualized prefix. This combines the benefits of 133

bidirectional context for understanding the initial 134

input segment with the autoregressive capabilities 135

of causal masking for generating the subsequent 136

sequence. 137

Given that Gemma models are pre-trained with 138

causal attention, we investigated the impact of 139

both bidirectional and causal attention masks dur- 140

2

ing fine-tuning to maximize the performance of141

Gemma Encoder models.142

2.2 Pooling Strategies143

The Gemma Encoder model aims to create a robust144

representation by effectively leveraging all input145

information. It comprises an encoder transformer146

initialized from the Gemma decoder transformer,147

and a pooler coupled with Multi-Layer Perceptron148

(MLP) layers. The pooling and MLP layers are149

randomly initialized. A crucial component for ag-150

gregating the contextualized token representations151

from the transformer into a fixed-length vector, we152

explored several pooling options to determine the153

optimal architecture.154

First-K and Last-K token poolings are the two155

simplest pooling strategies used in transformer156

models to extract a fixed-size representation from a157

sequence of tokens for encoder tasks. In First-K to-158

ken pooling, the representation of the first K tokens159

is used to aggregate information from the entire in-160

put sequence through attention mechanisms, with161

K being the number of classes for classification or162

1 for regression and ranking. This approach can163

be viewed as fine-tuning the first K tokens as spe-164

cial tokens, analogous to the [CLS] token in BERT.165

In contrast, Last-K token pooling takes the repre-166

sentation of the last token in the sequence. This167

approach is particularly relevant in scenarios like168

language modeling or when the final tokens rep-169

resents a meaningful conclusion of the sequence,170

such as an [EOS] token. While both approaches171

simplify the transformation of variable-length se-172

quences into fixed-size representations, they may173

capture slightly different aspects of the input de-174

pending on the token’s role in the model architec-175

ture and the training objective.176

Mean pooling is another parameter-free pooling177

method averages the hidden states across all tokens,178

creating a single vector representing the average179

contextualized information. Mean pooling is com-180

putationally efficient and provides a basic repre-181

sentation of the entire input. However, it can be182

susceptible to noise and may dilute the importance183

of critical tokens by treating all tokens equally.184

Attention pooling is a more sophisticated tech-185

nique that employs an attention mechanism to186

weight and aggregate token representations. By187

learning attention weights, the model can focus on188

the most informative tokens for the downstream189

task, effectively filtering noise and highlighting rel- 190

evant information. Attention pooling offers greater 191

flexibility and expressiveness compared to mean 192

pooling. 193

There are two main approaches to implementing 194

attention pooling. The attention mechanism can be 195

expressed as: 196

Output = Softmax(
Q ·KT

√
D

) · V, 197

where the input is passed through the query ma- 198

trix, Q ∈ RL×D, and the latent variables, K,V ∈ 199

RV×D, are learned. Here, L, D, and V represent 200

the input sequence length, the internal embedding 201

dimension, and the number of latent variables, re- 202

spectively. This approach is represented as KV- 203

probe in Figure 1. 204

Alternatively, the input can be passed through 205

the key and value matrices, K,V ∈ RL×D, while 206

the latent variables are learned through the query 207

matrix, Q ∈ RV×D, as introduced in Jaegle et al. 208

(2022). This approach is represented as Query- 209

probe in Figure 1. 210

2.3 Dropout 211

Dropout is a crucial regularization technique 212

widely used in deep learning to prevent over-fitting 213

and improve generalization by randomly deactivat- 214

ing a fraction of neurons during training. How- 215

ever, overfitting is less of a concern for the latest 216

large language models (LLMs), due to the massive 217

training datasets and high model capacity, which 218

naturally provide robust generalization. Instead of 219

dropout, LLMs (Chowdhery et al., 2022; Anil et al., 220

2023; Hoffmann et al., 2022) rely on other forms 221

of regularization, such as weight decay or careful 222

scaling strategies, which are better suited to the 223

massive scale of these models and training corpora. 224

When adapting a decoder-only model to an 225

encoder-only architecture, evaluating the role 226

of dropout through ablation studies is crucial. 227

Encoder-only tasks, such as regression, classifi- 228

cation, and ranking, are more prone to overfitting 229

compared to generative tasks handled by decoder- 230

only models. This increased susceptibility arises 231

because encoder-only models are typically trained 232

on limited data using supervised fine-tuning, with 233

less diversity in the output space. Moreover, the 234

supervision signal in encoder-only tasks operates 235

at the sentence or full-input-sequence level, rely- 236

ing on deterministic loss functions. This setup 237

3

Benchmark Dataset Metric #Train #Eval Task

GLUE

STSB Spearman Coeff. 5749 1500 Similarity
CoLA Matthews Coeff. 8551 1043 Acceptability
QQP F1 363846 40430 Paraphrase
QNLI Accuracy 104743 5463 QA / NLI
SST2 Accuracy 67349 872 Sentiment
RTE Accuracy 2490 277 NLI

MRPC F1 3668 408 Paraphrase
MNLI-matched Accuracy 392702 9815 NLI

MNLI-mismatched Accuracy 392702 9832 NLI

SuperGLUE

BoolQ Accuracy 9427 3270 QA
RTE Accuracy 2490 277 NLI

COPA Accuracy 400 100 QA
CB Accuracy 250 56 NLI

WIC Accuracy 5428 638 WSD
WSC Accuracy 554 104 Resolution

MULTIRC F1 27243 4848 QA

Ranking MS-MARCO MRR/NDCG 532751 6980 Ranking

Table 1: Dataset Statistics across GLUE, SuperGLUE and Ranking Benchmarks used in the paper. The benchmarks cover
a diverse range of encoder tasks, including sentence similarity (similarity), acceptability, paraphrase, question

answering (QA), natural language inference (NLI), sentiment classification (sentiment), word sense disambiguation (WSD),
coreference resolution (resolution), and document ranking (ranking.)

makes the model more likely to fit spurious fea-238

tures in the input. In contrast, autoregressive tasks239

in decoder-only models inherently involve uncer-240

tainty and softer probability distributions, which241

naturally help mitigate overfitting.242

2.4 Padding Strategies243

When processing sequences of varying lengths in244

batched inputs, padding is essential to create uni-245

form input tensors. However, the choice between246

left padding (prepending padding tokens) and247

right padding (appending padding tokens) may248

impacts model behavior, especially when adapting249

encoder model from decoder-only models.250

In decoder-only transformer models, such as251

those used for language generation (e.g., GPT (Ope-252

nAI, 2023), Gemma (Gemma Team, 2024a,b) mod-253

els), left padding is typically used to align the in-254

puts during training or inference, due to the auto-255

regressive training objective and efficient positional256

embedding. Decoder-only models are trained in an257

auto-regressive manner, where the task is to pre-258

dict the next token based on all previous tokens.259

Decoder-only transformer models use positional260

embeddings to encode the order of tokens. Left-261

padding ensures that the relative positions of the262

actual tokens remain consistent regardless of the263

sequence length.264

However, right padding is acceptable for en-265

coder models because of the way these models266

process input sequences. Unlike decoder-only mod-267

els, encoders like those in BERT (Devlin et al.,268

2019), T5 (Raffel et al., 2020) or other bidirec- 269

tional transformer models handle the entire input 270

sequence at once, and their attention mechanisms 271

allow tokens to attend to any other token in the 272

input through bidirectional attention. In encoder 273

models, positional embeddings are applied to the 274

entire sequence, including padding tokens. Since 275

the padding tokens are ignored during attention, 276

their positional embeddings don’t interfere with 277

the actual computation. Whether the padding is on 278

the right or left does not affect the functionality. 279

The choice of padding strategy has implications 280

for the pooling layer, especially in conjunction with 281

causal attention and First-K/Last-K token pooling. 282

2.5 Adaption for Ranking Tasks 283

A ranking task concerns the relative ordering of 284

a set of text documents by their relevance to a 285

given query. Formally, for each query qi, we 286

are provided with a list of candidate documents 287

Di = (di1, ..., dim) along with their relevance la- 288

bels yi = (yi1, ..., yim). The objective is to train 289

a ranking model f , such that the model takes a 290

query-document pair, (qi, dij), as input and out- 291

puts a ranking score ŷij = f(qi, dij) ∈ R. 292

Listwise Inputs and Outputs. Adapting the 293

Gemma Encoder to ranking tasks requires handling 294

listwise inputs, which have the shape [B,M,L], 295

where B represents the input batch size, M the 296

number of documents per query, and L the se- 297

quence length. To process these inputs, we first flat- 298

4

Model Size STSB CoLA QQP QNLI SST2 RTE MRPC MNLI Avg
m mm

BERT-base 108M 84.6 56.9 87.8 90.4 92.2 70.0 90.6 83.1 83.7 82.1
T5-base 110M 85.2 53.4 89.5 93.2 94.7 69.7 91.6 88.8 88.4 83.8

BERT-large 334M 86.4 63.9 88.4 93.0 94.0 75.5 92.4 87.1 86.9 85.3
T5-large 350M 88.0 63.6 89.6 94.8 96.9 85.6 93.5 91.0 90.9 88.2

T5-xl 1.5B 87.4 70.9 90.3 96.2 97.0 92.1 93.5 92.1 91.7 90.1
T5-xxl 6.5B 86.9 72.9 90.4 96.4 97.2 92.8 94.2 92.1 92.0 90.5

Gemma-2 2B 2B 92.4 67.7 89.2 95.4 97.0 87.0 91.6 91.1 91.1 89.2
Gemma-2 9B 9B 92.6 71.3 90.1 96.4 96.7 93.1 93.9 92.2 92.1 90.9

Table 2: Evaluation on GLUE benchmarks. For MNLI task, m and mm refers to matched and mismatched
accuracy. All the Gemma experiments are done with bidirectional attention masking, dropout on attention softmax
and feedforward network outputs with 10% rate, and right padding. The metrics for Gemma 2B and 9B are based

on the best pooling strategies as ablated in Table 5.

Model Size BoolQ RTE COPA CB WIC WSC MULTIRC Avg
T5-xxl 6.5B 90.8 93.9 98.0 96.4 77.3 96.2 87.4 91.4

Gemma-2 2B 2B 88.8 88.8 90.0 100.0 75.1 73.1 85.6 85.9
Gemma-2 9B 9B 91.3 93.1 96.0 100.0 76.5 90.4 88.2 90.8

Table 3: Evaluation on SuperGLUE benchmarks. The same hyper-parameter settings are applied as in Table 2.

ten the listwise structure to a shape of [B ×M,L].299

This flattened input is then passed through the300

Gemma Encoder, resulting in logits with a shape301

of [B×M]. Finally, these logits are reshaped back302

to [B,M] to align with the expected input format303

of the ranking loss function.304

Ranking Losses. This adaptation enables the305

model to produce a ranking score for each doc-306

ument. Consequently, any established ranking307

loss functions can be applied, such as pairwise308

logistic loss (Burges et al., 2005), PolyLoss (Leng309

et al., 2022), and Gumbel approximated NDCG310

loss (Bruch et al., 2020). In this study, we focused311

on the listwise softmax cross-entropy loss (Bruch312

et al., 2019; Liu, 2011).313

ℓSoftmax(yi, ŷi) = −
m∑
j=1

yij log
(eŷij∑

j′ e
ŷij′

)
.314

3 Experiments315

We evaluate the effectiveness of various model-316

ing choices for adapting the decoder-only genera-317

tive model, Gemma, to encoder-only tasks. Perfor-318

mance is assessed across a diverse set of classifica-319

tion, regression, and ranking tasks.320

3.1 Data321

Specifically, we demonstrate the effectiveness of322

Gemma Encoder for classification and scoring323

tasks on the GLUE (Wang et al., 2019) and Super-324

GLUE (Wang et al., 2020) benchmarks. We further325

evaluate its ranking capability on the MSMARCO 326

benchmark (Bajaj et al., 2018). 327

Gemma Encoder’s general language understand- 328

ing abilities were evaluated on the GLUE and Su- 329

perGLUE benchmarks, which include diverse text 330

classification and scoring tasks. The tasks and their 331

corresponding evaluation metrics are summarized 332

in Table 1. Our evaluation involved finetuning 333

Gemma Encoder on each task’s training set and 334

subsequently assessing its performance on the eval- 335

uation set. The RECORD task from SuperGLUE 336

was excluded due to its incompatibility with an 337

encoder-only architecture. 338

3.2 Model 339

We evaluated the encoder adaptation using the 340

Gemma-2 (Gemma Team, 2024a), specifically, the 341

2B and 9B decoder model variants. 342

3.3 Evaluation 343

GLUE and SuperGLUE evaluation We eval- 344

uate Gemma Encoder performance on GLUE, in 345

Table 2, and SuperGLUE, in Table 3, benchmarks 346

and compare it with baseline T5 and BERT mod- 347

els. Notably, Gemma Encoder achieves competi- 348

tive performance against similarly sized T5 mod- 349

els, despite not utilizing any uptraining or encoder- 350

decoder masked language modeling (MLM) pre- 351

training. This highlights the efficacy of our ar- 352

chitecture adaptation approach in unlocking the 353

potential of decoder-based language models for 354

encoder-based tasks. 355

The results presented in Tables 2 and 3 reflect 356

5

the optimal hyperparameter configuration identi-357

fied through ablation studies (Section 3.4). Specifi-358

cally, we found that bidirectional attention masking359

(Section 3.4.2), right padding (Section 3.4.4), and360

a 10% dropout rate applied to the attention softmax361

and feedforward network outputs (Section 3.4.3)362

yielded the best performance.363

Using the described training configurations, es-364

pecially with bidirectional attention, no single pool-365

ing strategy consistently optimized performance366

for both Gemma 2B and 9B. The choice of pool-367

ing strategy had negligible impact when using our368

finetuning dataset. However, with causal atten-369

tion masking (Gemma’s default decoder setting),370

last-token pooling significantly outperformed other371

strategies during finetuning. Please refer to 3.4.1372

for more details.373

Model Size MRR@10 NDCG@10
RankT5-XL 1.5B 0.4358 0.5035

Gemma-2 2B 2B 0.4456 0.5133
Gemma-2 9B 9B 0.4450 0.5148

Table 4: Evaluation on MS MARCO benchmark for
Ranking tasks. MRR and NDCG stand for Mean Reciprocal
Rank and Normalized Discounted Cumulative Gain, the

standard ranking metrics.

Model First-K Mean Attention Last-K
Q KV

2B 88.7 89.4 89.0 89.0 89.1
9B 90.4 89.7 90.7 90.6 90.9

Table 5: Pooling strategy ablation. Q and KV denote
Q-probe and KV-probe Attention Pooling, respectively.

Bidirectional attention is used by default.

Model BiDi Causal
Mean Attent Last-K

2B 89.4 84.5 86.0 88.6
9B 90.9 87.5 88.4 90.4

Table 6: Attention mechanism Ablation. BiDi and Causal
stand for bidirectional and causal attention, respectively. The
BiDi results are the best results from Table 5. For causal

masking results, we applied mean, attention and last token
poolings for comparison. Details in Sec. 3.4.2.

MS MARCO Ranking Evaluation For the rank-374

ing task, we utilized the MS MARCO dataset,375

which contains approximately 530K queries in the376

train partition and 7K queries in the dev par-377

tition. The candidate passages are drawn from378

a corpus of over 8.8M passages. Each query is379

associated with relevant passages labeled with a380

relevance score of 1, and irrelevant passages la-381

beled with a score of 0. Following the setup in382

Model Bidirectional Attn. Causal Attn.
left right left right

2B 88.9 89.4 88.4 88.6
9B 90.8 90.9 90.6 90.4

Table 7: Padding strategies ablation. No significant
difference is found for comparing two choices of padding

strategies after finetuning.

RankT5 (Zhuang et al., 2022), our evaluation fo- 383

cuses on the top 1000 retrieved documents using 384

MRR@10 and NDCG@10 as metrics, while our 385

training uses a sample of 36 documents (1 positive 386

plus sampled 35 negatives) per query. 387

We compared the finetuned performance 388

of Gemma Encoder against the RankT5 389

model (Zhuang et al., 2022). As shown in 390

Table 4, Gemma 2B and 9B variants outperform 391

RankT5, despite not leveraging any up-training or 392

encoder-decoder MLM-style pretraining. 393

3.4 Ablation 394

To optimize performance, as demonstrated in Ta- 395

bles 2 and 3, we conducted ablation studies on 396

architectural and hyperparameter choices. 397

3.4.1 Pooling Strategy 398

To evaluate the influence of pooling strategy on the 399

performance of the Gemma Encoder, we conducted 400

experiments using the GLUE benchmark. Follow- 401

ing the approach in T5 (Raffel et al., 2020), which 402

demonstrated strong performance for encoder- 403

based tasks, we utilized bidirectional attention 404

masking during both finetuning and inference. 405

Table 5 summarizes the GLUE average scores 406

(refer to Table 8 for per-task results) obtained with 407

different pooling strategies for the Gemma-2 2B 408

and 9B models (Gemma Team, 2024a). Our anal- 409

ysis reveals that simple pooling strategies, specifi- 410

cally last-token and mean pooling, achieve superior 411

performance compared to attention pooling. But 412

with bidirectional attention, no single pooling strat- 413

egy consistently optimized performance for both 414

Gemma 2B and 9B. 415

Note on limitation: It is important to acknowl- 416

edge that the observed superiority of simple pool- 417

ing strategies is specific to the GLUE benchmark 418

finetuning context, which is characterized by rel- 419

atively limited training data. In scenarios involv- 420

ing large-dataset finetuning, or pre-finetuning a de- 421

coder, especially for retrieval tasks (e.g. Lee et al. 422

(2024) for pretrained retrieval model, Moiseev et al. 423

(2023); Dong et al. (2022) for finetuning), a reeval- 424

6

uation of the relative efficacy of attention pooling425

and simple pooling methods is warranted. The in-426

creased parameter count associated with attention427

pooling is a significant factor to consider in such428

contexts. Please refer to Section A.4 for details.429

3.4.2 Attention Masking430

To investigate the impact of attention masking431

strategies, we evaluated both causal and bidirec-432

tional masking using the GLUE benchmark. Ta-433

ble 6 provides a comparison of the GLUE aver-434

age scores for Gemma-2 2B and 9B models un-435

der both masking conditions. For the bidirectional436

masking results, we report the optimal performance437

achieved across different pooling strategies, consis-438

tent with the methodology in Table 5.439

A key observation from our experiments is the440

superior performance of bidirectional masking441

compared to causal masking. This pattern is consis-442

tently observed across the majority of tasks within443

the GLUE benchmark, detailed in Section A.2 for444

different model sizes. This finding is particularly445

noteworthy given that the Gemma decoder’s pre-446

training process utilizes solely causal masking. It447

suggests that employing bidirectional masking, at448

finetuning time, can still enhance performance on449

encoder-related tasks, even with a causally pre-450

trained decoder and limited finetuning data.451

Furthermore, our results demonstrate that when452

causal masking is employed, last-token pooling ex-453

hibits significantly better performance than alterna-454

tive pooling methods. This observation aligns with455

the inherent nature of causal masking, where the456

last token possesses a comprehensive contextual457

understanding due to its attention over the entire458

preceding sequence. This is analogous to the pre-459

training objective of decoder-based language mod-460

els, where the embedding of the last token serves461

as the basis for predicting the subsequent token.462

3.4.3 Dropouts463

Considering the task-specific nature and determin-464

istic training objectives commonly associated with465

encoder tasks, we investigated the influence of466

dropout regularization on the performance of the467

Gemma Encoder using the GLUE benchmark. Fig-468

ure 2 presents the GLUE average scores for the469

Gemma-2 2B and 9B models as a function of in-470

creasing dropout rate, starting from a rate of zero.471

Our analysis reveals that the application of472

dropout generally enhances the performance of473

the Gemma Encoder for both the 2B and 9B mod-474

Figure 2: Effect of feed-forward and attention dropout.

els. However, a performance degradation is ob- 475

served when the dropout rate exceeds 0.1. This 476

pattern is consistently observed across the majority 477

of tasks within the GLUE benchmark, detailed in 478

Section A.3 for both model sizes. Therefore, based 479

on these findings, we recommend a dropout rate 480

of 0.1 applied to both the attention softmax and 481

feedforward network outputs during the finetuning 482

process for encoder-based tasks. 483

3.4.4 Padding Strategy 484

To evaluate the influence of padding side on the 485

performance of the Gemma Encoder, we compared 486

left and right padding strategies. Table 7 summa- 487

rizes the GLUE average scores obtained for the 488

Gemma-2 2B and 9B models under both padding 489

conditions. Consistent with our expectations, no 490

statistically significant difference in performance 491

was observed between the two padding approaches. 492

This indicates that the model exhibits robustness to 493

padding side after finetuning. 494

4 Conclusion 495

We introduce Gemma Encoder, adapting the 496

decoder-only Gemma model for encoder tasks. 497

We addressed using decoder models’ pre-trained 498

knowledge for tasks typically handled by encoders 499

(e.g., BERT, T5’s encoder). Our approach involved 500

task-specific pooling/MLP layers, bidirectional at- 501

tention, and dropout during finetuning. We also 502

analyzed padding strategies. 503

Gemma Encoder outperformed baselines on 504

GLUE, SuperGLUE, and MSMARCO benchmarks 505

(classification, regression, ranking), proving that 506

well-adapted decoder-only models excel at encoder 507

tasks. Bidirectional attention proved crucial for 508

capturing context, and dropout improved robust- 509

ness and generalization. Adaptable pooling and 510

output layers further enhanced performance. 511

7

5 Limitations512

We identify a couple of limitations. First, our ex-513

periments are based on the Gemma models. We514

need to evaluate how the findings would translate to515

other large language models. Second, we only eval-516

uate the quality of the encoder using classification,517

scoring and ranking tasks. Another common use518

case of Encoders, retrieval (or embedding) models519

are not considered in this work.520

References521

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-522
son, Dmitry Lepikhin, Alexandre Passos, Siamak523
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng524
Chen, Eric Chu, Jonathan H. Clark, Laurent El525
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-526
rav Mishra, Erica Moreira, Mark Omernick, Kevin527
Robinson, and 109 others. 2023. Palm 2 technical528
report. Preprint, arXiv:2305.10403.529

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,530
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,531
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,532
Mir Rosenberg, Xia Song, Alina Stoica, Saurabh533
Tiwary, and Tong Wang. 2018. Ms marco: A human534
generated machine reading comprehension dataset.535
Preprint, arXiv:1611.09268.536

Sebastian Bruch, Shuguang Han, Mike Bendersky, and537
Marc Najork. 2020. A stochastic treatment of learn-538
ing to rank scoring functions. In Proceedings of the539
13th ACM International Conference on Web Search540
and Data Mining (WSDM 2020), pages 61–69.541

Sebastian Bruch, Xuanhui Wang, Michael Bendersky,542
and Marc Najork. 2019. An analysis of the softmax543
cross entropy loss for learning-to-rank with binary544
relevance. In Proceedings of the 2019 ACM SIGIR545
International Conference on Theory of Information546
Retrieval, ICTIR ’19, page 75–78.547

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,548
Matt Deeds, Nicole Hamilton, and Greg Hullender.549
2005. Learning to rank using gradient descent. In550
Proceedings of the 22nd international conference on551
Machine learning, pages 89–96.552

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,553
Maarten Bosma, Gaurav Mishra, Adam Roberts,554
Paul Barham, Hyung Won Chung, Charles Sutton,555
Sebastian Gehrmann, Parker Schuh, Kensen Shi,556
Sasha Tsvyashchenko, Joshua Maynez, Abhishek557
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-558
odkumar Prabhakaran, and 48 others. 2022. Palm:559
Scaling language modeling with pathways. Preprint,560
arXiv:2204.02311.561

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and562
Kristina Toutanova. 2019. BERT: Pre-training of563
deep bidirectional transformers for language under-564
standing. In Proceedings of the 2019 Conference of565

the North American Chapter of the Association for 566
Computational Linguistics: Human Language Tech- 567
nologies, Volume 1 (Long and Short Papers), pages 568
4171–4186, Minneapolis, Minnesota. Association for 569
Computational Linguistics. 570

Zhe Dong, Jianmo Ni, Daniel M. Bikel, Enrique Alfon- 571
seca, Yuan Wang, Chen Qu, and Imed Zitouni. 2022. 572
Exploring dual encoder architectures for question 573
answering. Preprint, arXiv:2204.07120. 574

Gemini Team. 2023. Gemini: A family of highly capa- 575
ble multimodal models. Preprint, arXiv:2312.11805. 576

Gemma Team. 2024a. Gemma 2: Improving open 577
language models at a practical size. Preprint, 578
arXiv:2408.00118. 579

Gemma Team. 2024b. Gemma: Open models based 580
on gemini research and technology. Preprint, 581
arXiv:2403.08295. 582

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, 583
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, 584
Diego de Las Casas, Lisa Anne Hendricks, Johannes 585
Welbl, Aidan Clark, Tom Hennigan, Eric Noland, 586
Katie Millican, George van den Driessche, Bogdan 587
Damoc, Aurelia Guy, Simon Osindero, Karen Si- 588
monyan, Erich Elsen, and 3 others. 2022. Training 589
compute-optimal large language models. Preprint, 590
arXiv:2203.15556. 591

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste 592
Alayrac, Carl Doersch, Catalin Ionescu, David Ding, 593
Skanda Koppula, Daniel Zoran, Andrew Brock, Evan 594
Shelhamer, Olivier J Henaff, Matthew Botvinick, An- 595
drew Zisserman, Oriol Vinyals, and Joao Carreira. 596
2022. Perceiver IO: A general architecture for struc- 597
tured inputs & outputs. In International Conference 598
on Learning Representations. 599

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, 600
Daniel Cer, Jeremy R. Cole, Kai Hui, Michael 601
Boratko, Rajvi Kapadia, Wen Ding, Yi Luan, Sai 602
Meher Karthik Duddu, Gustavo Hernandez Abrego, 603
Weiqiang Shi, Nithi Gupta, Aditya Kusupati, Pra- 604
teek Jain, Siddhartha Reddy Jonnalagadda, Ming- 605
Wei Chang, and Iftekhar Naim. 2024. Gecko: Ver- 606
satile text embeddings distilled from large language 607
models. Preprint, arXiv:2403.20327. 608

Zhaoqi Leng, Mingxing Tan, Chenxi Liu, Ekin Do- 609
gus Cubuk, Jay Shi, Shuyang Cheng, and Dragomir 610
Anguelov. 2022. Polyloss: A polynomial expansion 611
perspective of classification loss functions. In Inter- 612
national Conference on Learning Representations. 613

Tie-Yan Liu. 2011. Learning to Rank for Information 614
Retrieval. Springer. 615

Fedor Moiseev, Gustavo Hernandez Abrego, Peter Dorn- 616
bach, Imed Zitouni, Enrique Alfonseca, and Zhe 617
Dong. 2023. Samtone: Improving contrastive loss 618
for dual encoder retrieval models with same tower 619
negatives. Preprint, arXiv:2306.02516. 620

8

https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2204.07120
https://arxiv.org/abs/2204.07120
https://arxiv.org/abs/2204.07120
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://openreview.net/forum?id=fILj7WpI-g
https://openreview.net/forum?id=fILj7WpI-g
https://openreview.net/forum?id=fILj7WpI-g
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2306.02516
https://arxiv.org/abs/2306.02516
https://arxiv.org/abs/2306.02516
https://arxiv.org/abs/2306.02516
https://arxiv.org/abs/2306.02516

OpenAI. 2023. Gpt-4 technical report. Preprint,621
arXiv:2303.08774.622

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-623
ine Lee, Sharan Narang, Michael Matena, Yanqi624
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the625
limits of transfer learning with a unified text-to-text626
transformer. Journal of Machine Learning Research,627
21(140):1–67.628

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-629
preet Singh, Julian Michael, Felix Hill, Omer Levy,630
and Samuel R. Bowman. 2020. Superglue: A stickier631
benchmark for general-purpose language understand-632
ing systems. Preprint, arXiv:1905.00537.633

Alex Wang, Amanpreet Singh, Julian Michael, Felix634
Hill, Omer Levy, and Samuel R. Bowman. 2019.635
Glue: A multi-task benchmark and analysis plat-636
form for natural language understanding. Preprint,637
arXiv:1804.07461.638

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,639
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and640
Michael Bendersky. 2022. Rankt5: Fine-tuning641
t5 for text ranking with ranking losses. Preprint,642
arXiv:2210.10634.643

A Additional Results644

A.1 Pooling Ablation Details645

Table 8 provides a breakdown of per-task perfor-646

mance on the GLUE benchmark for different pool-647

ing strategies. The query-probe approach is utilized648

for attention pooling. The results indicate that sim-649

ple pooling strategies achieve performance com-650

petitively to that of attention pooling, even though651

attention pooling introduces a greater number of652

parameters.653

A.2 Attention Ablation Details654

Table 9 provides a breakdown of per-task perfor-655

mance on the GLUE benchmark for different atten-656

tion mechanisms.657

A.3 Dropout Ablation Details658

Table 10 provides a breakdown of per-task perfor-659

mance on the GLUE benchmark across a range of660

dropout rates.661

A.4 Attention Pooling Ablation662

Table 11 provides a comparison of per-task per-663

formance on the GLUE benchmark for various at-664

tention pooling variants. An increase in attention665

complexity, reflected in a larger number of parame-666

ters, resulted in a decrease in performance on the667

GLUE benchmarks. As detailed in Table 1, the668

GLUE training sets are limited in size (all con- 669

taining fewer than 1 million examples), which is 670

inadequate for the effective adaptation of a ran- 671

domly initialized attention pooler with millions of 672

parameters. 673

9

https://arxiv.org/abs/2303.08774
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2210.10634
https://arxiv.org/abs/2210.10634
https://arxiv.org/abs/2210.10634

Model Pooling STSB CoLA QQP QNLI SST2 RTE MRPC MNLI Avgm mm

Gemma 2B

First-K 92.3 65.5 88.3 95.2 96.7 87.0 92.2 90.6 90.9 88.7
Mean 92.4 67.7 89.2 95.4 97.0 87.3 93.3 91.1 91.1 89.4

Attention 92.3 67.1 88.7 95.3 96.7 87.3 92.0 90.7 90.9 89.0
Last token 92.4 65.7 88.1 95.2 97.4 88.8 92.7 90.8 90.8 89.1

Gemma 9B

First-K 92.1 72.3 89.2 96.1 96.3 90.6 93.0 92.4 92.0 90.4
Mean 91.5 69.5 90.3 96.4 96.5 88.8 89.4 92.4 92.2 89.7

Attention 92.5 72.1 90.1 96.5 96.5 91.3 93.1 92.5 92.1 90.7
Last token 92.4 70.9 89.8 96.3 96.7 94.2 93.2 92.3 92.1 90.9

Table 8: Impact of pooling on GLUE task performance. Experiments used bidirectional attention, 10% dropout, and right padding. Attention pooling utilizes
a Query probe.

Model Attention STSB CoLA QQP QNLI SST2 RTE MRPC MNLI Avgm mm

Gemma 2B

Causal (Mean) 90.7 65.2 87.7 94.4 96.2 61.0 85.4 89.8 90.1 84.5
Causal (Attent.) 91.0 68.3 87.9 94.7 95.8 69.3 86.1 90.5 90.7 86.0
Causal (Last-K) 92.1 67.3 88.1 94.9 96.3 86.6 90.6 90.6 90.7 88.6

BiDi 92.4 67.7 89.2 95.4 97.0 87.3 93.3 91.1 91.1 89.4

Gemma 9B

Causal (Mean) 91.7 72.5 89.4 95.9 96.3 73.6 85.0 91.8 91.7 87.5
Causal (Attent.) 92.1 71.9 89.6 96.1 96.5 76.8 88.3 92.0 91.9 88.4
Causal (Last-K) 92.4 72.2 89.4 95.9 96.5 91.7 91.8 91.9 91.8 90.4

BiDi 92.4 70.9 89.8 96.3 96.7 94.2 93.2 92.3 92.1 90.9

Table 9: Impact of attention mechanism on GLUE tasks: BiDi (bidirectional) uses optimal pooling; Causal uses mean, attention, and last-token pooling. All
experiments use 10% dropout and right padding. Attention pooling utilizes a Query probe.

Model Dropout STSB CoLA QQP QNLI SST2 RTE MRPC MNLI Avgm mm

Gemma 2B

0 91.0 62.8 89.2 95.2 96.2 78.3 89.0 91.3 91.5 87.2
0.05 92.0 66.4 88.9 95.3 96.4 87.3 92.4 91.0 91.2 89.0
0.10 92.4 67.7 89.2 95.4 97.0 87.3 93.3 91.1 91.1 89.4
0.15 92.0 66.5 88.3 95.0 96.7 84.4 91.0 90.5 90.7 88.3

Gemma 9B

0 91.3 68.5 90.2 96.4 96.6 88.8 90.0 92.4 92.2 89.6
0.05 92.2 71.0 90.0 96.3 96.4 92.4 92.0 92.3 92.0 90.5
0.10 92.4 70.9 89.8 96.3 96.7 94.2 93.2 92.3 92.1 90.9
0.15 92.3 71.4 89.5 96.2 96.6 92.4 93.3 92.1 92.0 90.6

Table 10: Impact of dropout on GLUE task performance. Experiments used bidirectional attention and right padding. Gemma 2B employed mean pooling,
while Gemma 9B used last-token pooling.

Probe H T #params STSB CoLA QQP QNLI SST2 RTE MRPC MNLI Avgm mm

Q 1 1 2.3M 92.3 67.1 88.7 95.3 96.7 87.3 92.0 90.7 90.9 89.0
Q 2 1 4.7M 92.2 66.4 88.6 95.1 96.6 86.3 92.1 90.6 90.6 88.7
Q 4 1 9.4M 92.2 67.4 88.8 95.1 96.7 86.6 92.2 90.6 90.6 88.9
Q 8 1 18.8M 92.2 66.4 88.6 95.4 96.8 85.6 91.9 90.7 90.7 88.7
Q 1 512 2.3M 92.0 66.1 88.7 95.3 96.8 85.9 91.7 90.6 90.6 88.6
Q 8 512 18.8M 92.2 66.1 88.7 95.3 96.8 84.1 91.9 90.5 90.5 88.5

KV 1 512 2.3M 92.3 66.6 88.5 95.1 96.9 88.4 92.2 90.6 90.6 89.0
KV 8 512 18.8M 92.3 67.9 88.6 95.1 96.7 87.0 92.2 90.7 90.7 89.0

Table 11: Gemma 2B performance on GLUE tasks was evaluated with ablations on attention pooling probes, varying the number of attention heads (H) and
pooled tokens (T). Experiments used bidirectional attention, 10% dropout, and right padding.

10

	Introduction
	Model Adaptation Choices
	Attention Masking
	Pooling Strategies
	Dropout
	Padding Strategies
	Adaption for Ranking Tasks

	Experiments
	Data
	Model
	Evaluation
	Ablation
	Pooling Strategy
	Attention Masking
	Dropouts
	Padding Strategy

	Conclusion
	Limitations
	Additional Results
	Pooling Ablation Details
	Attention Ablation Details
	Dropout Ablation Details
	Attention Pooling Ablation

