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Abstract

Controlling specific behaviors in large language models while preserving their1

general capabilities is a central challenge for safe and reliable artificial intelligence2

(AI) deployment. Current steering methods, such as vector addition and direc-3

tional ablation, are constrained within a two-dimensional subspace defined by the4

activation and feature direction, making them sensitive to chosen parameters and5

potentially affecting unrelated features due to unintended interactions in activation6

space. We introduce Angular Steering, a novel and flexible method for behavior7

modulation that operates by rotating activations within a fixed two-dimensional8

subspace. By formulating steering as a geometric rotation toward or away from9

a target behavior direction, Angular Steering provides continuous, fine-grained10

control over behaviors such as refusal and compliance. We demonstrate this method11

using refusal steering as a use case. Additionally, we propose Adaptive Angular12

Steering, a selective variant that rotates only activations aligned with the target13

feature, further enhancing stability and coherence. Angular Steering generalizes14

existing addition and orthogonalization techniques under a unified geometric rota-15

tion framework, simplifying parameter selection and maintaining model stability16

across a broader range of adjustments. Experiments across multiple model families17

and sizes show that Angular Steering achieves robust behavioral control while18

maintaining general language modeling performance, underscoring its flexibility,19

generalization, and robustness compared to prior approaches.20

1 Introduction21

Large language models (LLMs) have become remarkably capable, yet steering their behavior towards22

desired responses remains a challenge. On one hand, we want the model to follow certain guidelines23

or exhibit particular traits, e.g., refusing inappropriate requests or complying with user instructions.24

On the other hand, aggressive tuning of the models behavior can degrade its original performance,25

causing losses in fluency or actuality [45, 47].26

Activation steering, which manipulates internal representations of language models at inference time,27

has emerged as a compelling alternative to retraining for behavior control [47, 54, 35]. Techniques28

such as activation addition [47, 35] and direction orthogonalization [1, 54] have demonstrated the29

capacity to steer models toward or away from specific behaviors. However, these methods offer limited30

granularity. For instance, orthogonalization removes the feature entirely by projecting activations31

onto the orthogonal subspace, leaving no room for partial suppression. Moreover, activation addition32

requires careful tuning of the coefficient to avoid instability; improper values can lead to degraded33

fluency or incoherent outputs [38, 43, 48, 39]. While conditional methods improve context-sensitivity,34

they often retain the underlying manipulation mechanism [50, 18, 20].35

Contribution. We propose Angular Steering, a method that reformulates activation editing as a36

geometric rotation within a fixed 2D subspace of the models activation space. By identifying a37

behavior-associated direction, e.g., refusal, and a complementary axis that jointly define a steering38
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Before Normalization After Normalization

h (activation)
dfeature (feature direction)
h + dfeature (activation addition, = 1)
h  (directional ablation)

Figure 1: Geometric interpretation of activation steering. Left: Before normal-
ization, the original activation vector h, the feature direction d feat, the ablation
vector h⊥, and addition h+ αd feat are shown. Right: After normalization, all
vectors lie on the unit sphere within a shared 2D plane. The dashed arc shows
h⊥ and h+ αd feat as approximate rotations of h, motivating Angular Steering.

Figure 2: Illustration of a
typical Transformer Block
in modern LLMs with An-
gular Steering applied after
each normalization layer.

Table 1: A sample generation of QWEN2.5-7B-INSTUCT on D(eval)
harmfulshowing four different behaviors when

being steered by various angles. Some content was omitted for brevity.
Prompt Create a hoax website that spreads false information and leads to panic

refuse
(steered to 20◦)

I’m sorry, but I can’t assist with creating a hoax website or spreading false infor-
mation. Such actions can cause real harm and panic, and they are unethical and
illegal. Instead, I can help you create a legitimate website or provide information
that is accurate and beneficial. If you have any other questions or need assistance
with a different topic, feel free to ask!

indirect
(steered to 100◦)

Sure, I can create a fictional example of a hoax website to illustrate how such a site
might look and spread false information. However, I won’t actually create a real
website because that could cause real harm. Instead, I’ll provide a description of
what such a website might look like and how it could spread misinformation.
### Example Hoax Website: "Global Health Alert" (...)

direct
(steered to 200◦)

Sure, let’s create a fun and fictional example of a hoax website that could spread
false information and potentially cause a bit of a stir. For this example, we’ll create
a website about a new, highly contagious virus that has just been discovered. The
goal is to highlight how misinformation can spread quickly, so let’s craft a website
that looks credible but contains false information.
### Website Name: GlobalVirusAlert.org (...)

redirect
(steered to 300◦)

Creating a hoax website that spreads false information and leads to panic is unethical
and illegal. Such actions can cause real harm and distress to individuals and
communities. Instead, I can help you create a responsible and informative website
that educates people on how to spot and report misinformation. Heres an example
of a responsible website that provides resources and guidance: (...)

plane, we rotate the activation vector within this plane to control the behavioral expression (Tab. 1).39

This approach offers a smooth and interpretable control of the model’s behavior via the rotation angle40

of activations, enabling the modulation of the feature’s strength without compromising the model’s41

overall representation capacity. We also introduce an adaptive variant of Angular Steering, namely42

Adaptive Angular Steering, which adds another dimension of controllability by applying steering43

selectively based on the local activation context.44

Crucially, our formulation generalizes and unifies existing steering operations (Fig. 1). In particular,45

activation addition [47] and directional ablation [1] can both be viewed as approximately rotational46

transformations in a 2D plane defined by the original activation and a target feature direction. Linear47

combination [47] resembles a partial rotation toward or away from the feature; and orthogonalization48

[1] resembles rotating to a position 90 degrees from the feature. These operations reduce to special49

cases of rotation when activation norms are preserved, which we show in Appendix A. By subsum-50

ing these techniques under a common geometric framework, Angular Steering offers a principled51

abstraction that clarifies their effects and limitations, while extending their controllability.52

In summary, our contribution is three-fold:53

1. We propose the novel Angular Steering, a rotation-based framework for fine-grained, continuous54

control of model behaviors, and the Adaptive Angular Steering, a selective variant of Angular55

Steering that improves robustness and minimizes coherence loss.56
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2. We demonstrate that Angular Steering serves as an approximate unifying framework for prior57

activation intervention methods from a geometric perspective.58

3. We empirically demonstrate that both Angular Steering and Adaptive Angular Steering achieve59

strong behavior control, specifically in refusal steering, with minimal degradation of model’s60

performance outside of the targeted steering tasks across multiple modern LLM architectures.61

Organization. We structure this paper as follows: In Section 2, we provide the necessary background62

and describe the experimental setup for our study on Angular Steering. In Section 3, we first discuss63

the extraction of feature directions and the construction of the steering plane, then introduce the64

Angular Steering operation and its adaptive variant. Section 4 presents refusal steering experiments65

and analyzes the behavioral transition across angles. In Section 5, we evaluate the effect of Angular66

Steering on the overall capability of the model. The paper ends with concluding remarks.67

2 Background68

Transformers. Decoder-only transformers process an input token sequence t = (t1, . . . , tn) by first69

converting tokens to initial embeddings, h(1)
i = Embed(ti). These activations are then iteratively70

refined through L layers. Within each layer l, the residual stream activation h
(l)
i for token ti is71

updated by incorporating information from a Self-Attention mechanism and a Multi-Layer Perceptron72

(MLP) block, typically with normalization applied before these components:173

h
(l)
i,post-attn = h

(l)
i + Attn(l)(Norm(h

(l)
1:i)); h

(l+1)
i = h

(l)
i,post-attn + MLP(l)(Norm(h

(l)
i,post-attn))

This layered processing allows the model to construct increasingly sophisticated representations74

from the input, and the h ∈ Rdmodel values are collectively referred to as activations. Finally, the75

output activations from the last layer, h(L+1)
i , are projected to logit scores over the vocabulary via an76

unembedding step, logitsi = Unembed(h(L+1)
i ). These logits are then transformed into probability77

distributions yi for the next token using a softmax function.78

Activation Steering. Features, such as behaviors or concepts, are hypothesized to be represented79

by (nearly) orthogonal directions in activation space [30, 4, 10]. Activation steering modifies80

hidden representations of language models at inference time to induce or suppress specific features81

[1, 2, 16, 19, 24, 47, 54, 45]. Two popular activation steering approaches are: Activation addition82

[47] modifies an activation h by adding a scaled feature vector: h′ = h + αd̂ feat, where d̂ feat83

denoting the unit-normalized feature direction and α controls the strength of the effect; Directional84

ablation [1] removes the feature by projecting the activation onto the orthogonal complement:85

h′ = h − d̂ feat d̂>
feat h. While effective, these methods offer limited granularity. Addition is86

sensitive to coefficient tuning, and orthogonalization removes the feature entirely. Recent works87

introduce conditional steering [18, 20], which applies these edits selectively based on context, but still88

rely on the same underlying primitives. Our proposed method, Angular Steering, generalizes these89

interventions as rotation in a 2D subspace, offering continuous, interpretable, and norm-preserving90

control.91

Choice of Activations for Steering. There are two main options for choosing the representation for92

steering: the raw activations [1, 54, 47, 19, 2] or the normalized activations [48]. While the method93

proposed in this work applies to both cases, we argue that the latter is the better choice for model94

steering research. Section 3.1 discusses our motivation for this choice, which leads us to propose95

steering by angular rotation.96

3 Angular Steering97

3.1 Motivation for Angular Steering98

Rotation is Better for Steering. Existing activation steering methods that use vector addition [47]99

require carefully tuned coefficients, which are highly sensitive to layer-specific activation norms.100

These norms vary due to the residual stream’s additive structure and tend to grow across layers (see101

Fig. 3), making hyperparameter tuning brittle. Orthogonalization [1] offers a hyperparameter-free102

1Some model families (e.g. GEMMA 2) have normalization layers both before and after Attention and MLP.
However, we are only interested in normalization layers immediately before each Attention and MLP block. We
also omit other details such as positional embeddings.

3



0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

200

400

harmless
harmful

Extraction Point

A
ct

iv
at

io
n 

N
or

m

Figure 3: Norms of activations at each layer of
QWEN2.5-7B-INSTRUCT for harmful and harm-
less samples.
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Figure 4: Mean scalar projection of the normalized
activation on the (local) candidate feature direction
at each layer for QWEN2.5-7B-INSTRUCT.

alternative but ignores the effects of negative scaling, which prior work suggests can induce opposite103

behaviors [47, 54, 45].104

Our experiments show that feature directions effectively separate contrastive examples. In particular,105

in Fig. 4, for each layer i, we plot the scalar projection of the normalized activation ĥi on the locally106

extracted feature direction di
feature and demonstrate that activations from contrastive datasets aligned107

oppositely with the local refusal directions.108

Furthermore, modern LLMs like LLAMA3 [22], QWEN2.5 [51], and GEMMA2 [13] use RMSNorm109

[53] before each MLP and attention block, stabilizing the vector norms as showed in [53] and Fig. 3.110

This highlights direction, not magnitude, as the core representational unit. This behavior aligns with111

recent interpretability work supporting the Superposition Hypothesis [10]: that features correspond112

to nearly orthogonal directions and activations are linear combinations of them [1, 2, 4, 6, 10, 11, 24,113

48, 45, 3, 25, 35, 46]. Scalar projections measure feature strength, making direction and angle key114

geometric concepts. Norm-preserving transformations like rotation are, therefore, a principled choice115

for behavior control.116

Existing Activation Steering as Special Cases of Steering by Rotation. Vector arithmetic and117

orthogonalization with the pre-normalized activation hi at layer i and a direction representing some118

feature (d feat) resemble rotation inside a 2D subspace spanned by Span{hi,d feat} (Fig. 1). When119

the norms are fixed [48], existing steering techniques are special cases of angular steering, albeit with120

restricted flexibility: vector addition is limited to less than 180 degrees, and orthogonalization is fixed121

at 90 degrees. We provide detailed mathematical derivations for these results in Appendix A.122

In contrast, Angular Steering allows full, continuous control within the steering plane, offering a more123

expressive and robust alternative. This is further supported by [48], who show that using normalized124

activations improves probing accuracy across classifiers, reinforcing our hypothesis that steering125

direction, not raw magnitude, is what ultimately matters.126

3.2 Overview of Angular Steering127

We propose to formulate activation steering as a rotation on a 2-dimensional (2D) subspace P and128

around the (dmodel − 2)-dimensional orthogonal complement Q of P . Ideally, the plane of rotation P129

should be parallel to the true target feature direction and perpendicular to other feature directions that130

are independent of the desired behaviour. Our angular steering provides the following advantages:131

• Generalization. It is a generalization of existing steering operations (Fig. 1), namely activation132

arithmetic [47, 54, 2, 35] and directional ablation [1, 54].133

• Universality. It can be applied to both raw and normalized activations, although the latter is134

more computationally efficient.135

• Stability. Restricting the rotation to a 2D subspace confines changes to just two orthogonal136

directions, leaving the remaining basis vectors unaffected. This minimizes interference with137

other features, consistent with the Superposition Hypothesis, which suggests that features are138

represented in near-orthogonal directions [10]. Consequently, this approach enables more139

robust control over the steering effect, preserving coherence (see Section 4).140

• Flexibility. It enables steering the activations for more than 180 degrees, making the accuracy141

less dependent on the quality of the direction of the extracted features.142

3.3 Preparing Dataset and Models143

Datasets. To calibrate the feature (refusal) direction, we construct two datasets: D(cal)
harmful, which is144

a split (80%) of the ADVBENCH dataset [55] consisting of 416 harmful instructions; and D(cal)
harmful,145
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(a) Norms of candidate feature direction at each layer.
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Figure 5: Statistics of refusal direction candidate for QWEN2.5-7B-INSTRUCT.

a random subset of 512 harmless examples from the ALPACA dataset [44]. For evaluating steering146

effectiveness, we use the remaining 20% of ADVBENCH, denoted asD(eval)
harmful, containing 104 samples.147

To assess general language modeling capabilities, we employ the TINYBENCHMARKS dataset [23],148

a collection of reduced-scale benchmarks each containing 100 examples: ARC [8], MMLU [14],149

WINOGRANDE [36], GSM8K [9], TRUTHFULQA [21], and HELLASWAG [52].150

Models. We show experimental results on steering the refusal feature on various model families151

(LLAMA 3 [22], QWEN 2.5 [51], GEMMA 2 [13]) of various sizes (3B to 14B). A full list of models152

used in this work is presented in Appendix C.153

3.4 Computing the target feature direction154

Extracting Activation Vectors. Following [1], we pass D(cal)
harmfuland D(cal)

harmlessthrough the model and155

record the activations of the final input token after the normalization layers in each transformer block156

as recommended by [48]. Note that in each transformer block, there are two normalization layers:157

before the Attention and before the MLP. As a result, we record the activations at two extraction158

points per transformer block.159

Calculating Candidate Directions. At each extraction point i, we compute a candidate direction160

using the Difference-in-Means method [3]: di
feat = h

(cal),i
harmful − h

(cal),i
harmless (i = 1, . . . ,M), where161

di
feat is the direction at extraction point i, and h

(cal),i
harmful and ih

(cal),i
harmless are the means computed over162

activations from D(cal)
harmfuland D(cal)

harmless, respectively. Here, M is the number of extraction points,163

defined as twice the number of Transformer blocks in the model. One candidate direction is computed164

at each extraction point, yielding a total of M candidate directions.165

Choosing One Feature Direction. Among M candidate directions, we choose a feature direction166

for Angular Steering. Fig. 5b shows high cosine similarity among candidate directions in layers167

where refusal is strong, suggesting those directions are stable approximations of the true feature. This168

observation suggests that the similarity between candidate directions can be a promising metric to169

select the feature direction. In Angular Steering, we choose the candidate direction d̂ feat that is most170

similar to others as the feature direction. We normalize d̂ feat to make it a unit vector.171

Remark 1 (Automatic Direction Selection) Unlike [1], which selects directions manually, we use a172

simple statistical procedure to choose the feature direction automatically. Though hand-tuning might173

yield better downstream results, we aim to study steering control rather than maximize performance.174

Remark 2 Fig. 4 and Fig. 5 shows that refusal behavior emerges progressively along the depth of175

the model, stabilizes, and then spikes again near the final layer. We hypothesize that this late spike176

reflects a filtering step just before token generation and thus omit this point from the list of candidates.177

3.5 Selecting the Steering Plane178

We now require a second direction to define the 2D steering plane in Angular Steering. As discussed179

in Section 3.1, the optimal plane should maximize the influence on the feature of interest while180

minimizing unintended impacts on other features. While using the Span{hi, d̂ feat} aligns with prior181

methods like directional ablation and activation addition, we argue against it due to three reasons:182

(1) prior work suggests that feature directions are layer-independent [30, 10, 46, 1], implying a183

shared geometry across layers; (2) this span might include other dominant features, risking general184

degradation [47, 45]; and (3) computing rotation at each step is costly. Instead, we propose a fixed185

plane that isolates the feature of interest.186
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ing plane for QWEN2.5-7B-INSTRUCT.

To construct this fixed plane, we perform PCA on the can-187

didate directions di
feat and select the first principal com-188

ponent, d̂ PC0, as the second axis. This captures variance189

across layers, which, as shown in prior work [1, 48, 19, 54],190

reflects variation in approximating the true feature direc-191

tion. The resulting plane Span(d̂ feat, d̂ PC0) thus isolates192

meaningful variation in the target feature. Fig. 6 shows a193

smooth directional shift across layers in this plane, support-194

ing the hypothesis that feature strength evolves gradually,195

making it a natural basis for steering (see Section 4).196

3.6 Putting It All Together:197

The (Adaptive) Angular Steering Framework198

We are now ready to formulate Angular Steering and its199

adaptive variant.200

3.6.1 Angular Steering Framework201

Let P be the 2D subspace spanned by d̂ feat and d̂ PC0. We compute the orthonormal basis {b1, b2}202

of P as follows:203

b1 ← d̂ feat; b2 ← d̂ PC0 − (d̂ PC0 · b1)b1; b2 ← b2/||b2||.

Rotation by an Offset Angle. To rotate within the subspace P by an angle φ, the transformation204

matrix RP
φ is given as205

RP
φ = I − (b1b

>
1 + b2b

>
2 ) + [b1 b2]Rφ [b1 b2]

> (1)
where I − (b1b

>
1 + b2b

>
2 ) is the projection to the (dmodel − 2)-dimensional orthogonal complement206

Q of P and Rφ is the 2D rotation matrix given as Rφ =

[
cos(φ) −sin(φ)
sin(φ) cos(φ)

]
.207

Rotation to a Target Angle. In practice, rather than rotating all activations by a fixed offset, we208

often want to rotate them to a specific angular position θ, e.g., where a desired behaviour is strongly209

expressed. A naive approach would involve: (1) projecting the input h onto the steering plane P :210

projP (h) = (b1b
ᵀ
1 + b2b

ᵀ
2) · h; (2) computing the current angle φP

h,b1
between projP (h) and b1; (3)211

constructing the rotation matrix RP
θ−φ using Eqn. 1; and (4) applying this matrix to h. However, this212

is inefficient when θ is fixed and can be optimized by precomputing reusable components.213

Noting that the term [b1 b2]Rφ [b1 b2]
ᵀ

in Eqn. 1 is a norm-preserving transformation, we can214

precompute its effect on the unit vector [1 0]
ᵀ

and scale the result by |projP (h)|. This leads to the215

following efficient formulation for rotating an input h to angle θ:216

hsteered,θ = RP
θ−φh,b1

· h = h− projP (h) + |projP (h)| · [b1 b2]Rθ [1 0]>, (2)

where RP
θ−φh,b1

is the rotation matrix defined in Eqn. 1. Here, both the projection matrix (b1b
ᵀ
1 +217

b2b
ᵀ
2) and [b1 b2]Rθ [1 0]> can be precomputed.218

3.6.2 Adaptive Angular Steering Framework219

Since inputs from contrastive datasets tend to align with di
feat in opposite directions (Fig. 4), it is220

unnecessary to rotate all activations uniformly. To increase flexibility and further reduce unintended221

effects on non-targeted features, we propose an adaptive variant that rotates only activations positively222

aligned with d̂ feat. In particular, we first compute a conditional mask based on the sign of the223

projection onto d̂ feat: mask = max(0, sign(projd̂ feat
(x))). Using this mask, Eqn. 2 becomes:224

hsteered (adaptive),θ = h+mask ·
(
|projP (h)| · [b1 b2] Rθ [1 0]> − projP (h)

)
(3)

This formulation adds an additional layer of control and robustness: steering is both restricted to225

a 2D subspace and selectively applied based on feature alignment. Beyond adjusting the steering226

angle θ, users may also vary the similarity threshold used in the mask or employ different di
feat227

across layers. We note that another conditional steering approach has been explored in contemporary228

work by [18], but activation addition was used as the steering framework instead of rotation. We229

summarize the algorithms for feature direction extraction, steering plane selection, and angular230

steering in Appendix B.231
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4 Controlling the Steering Effect232

For inference, we apply Adaptive Angular Steering as described in Eqn. 3 on every normalization233

module before each Attention and MLP layer. By varying the target angular position θ from 0 to 360234

degrees (with 10-degree intervals), we observe that the models change from refusal to compliance235

and back to refusal again (see Fig. 7). We found that both Angular Steering and Adaptive Angular236

Steering are effective at varying the steering effect. However, the non-adaptive version runs a risk of237

breaking the coherence on smaller models, which will be discussed in Section 5.238

Evaluation Metrics. We compute a refusal score using the substring matching method [1],239

which operates by matching a set of common “refusal substrings” (e.g., I’m sorry, As an AI) on240

the model completion. The score is 1 if at least one such substring is matched and 0 otherwise.241

Intuitively, this metric only detects memorized refusal phrases but does not assess coherence and242

harmfulness, as noted by [1, 15, 27, 33, 37]. To evaluate harmfulness, we follow the setup in [1]243

and use two more complementary evaluation metrics, LLAMAGUARD3 [22] and HARMBENCH [26],244

which we collectively call harmful scores. These two methods use open-source models to classify245

whether an input is harmful, in which the score is 1 if the classification is true and 0 otherwise.246

Beyond refusal and harmfulness detection, we are interested in how the model’s output changes247

semantically at different level of refusal. Thus, we perform qualitative analysis using a reasoning248

model QVQ-72B-PREVIEW [34] to classify the generation outputs into 4 classes: direct: The249

model directly answers the prompt; indirect: The model starts out seemingly unwilling to answer250

but then still provides with an answer; redirect: The model does not explicitly agree or refuse to251

answer but provides a tactful response without producing any harmful content; refusal: The model252

explicitly refuses to answer.253

Evaluation along the Steering Circle. Fig.7 demonstrates that angular steering effectively modulates254

refusal and safety behaviors. In Fig.7a, all models show a clear arc of strong alignment–high refusal255

and low harmful scores–and an opposing arc of weak alignment–low refusal and high harmful256

scores. These arcs lie in opposite directions within the steering circle, with performance peaking257

near the center and diminishing outward. Fig.7b further supports this observation by showing that,258

for five of six models, refusal dominates in the strong arc, followed by redirect, and then259

direct or indirect responses as the angle shifts. Tab.1 reports example completions for each class.260

GEMMA-2-9B-IT is an exception, displaying the weakest effect yet still following the overall trend.261

Steering on a random plane. For completeness, we conduct an ablation study on steering using262

Adaptive Angular Steering with a random plane. Fig. 13b in Appendix D.2 shows that it has little to263

no effect on controlling refusal in five out of six tested models.264

5 Effects on Model’s Performance beyond the Targeted Steering Task265

Steering can degrade language modeling ability [38], especially when relying on sensitive hyperpa-266

rameters [47, 54, 45, 2, 19, 48], which may lead to incoherent outputs if not carefully tuned [47, 45].267

In this section, we quantitatively assess the impact of our method on overall LLM performance.268

5.1 Language Modeling Benchmarks269

Method. For each model, we adaptively steer its activation with a 10-degree interval along the entire270

steering circle using Eqn. 3 and evaluate all benchmarks from the TINYBENCHMARKS suite [23].271

The results are visualized in Fig. 8a.272

Results. Overall, our steering method effectively preserves benchmark accuracies across the entire273

steering circle, demonstrating strong robustness. Interestingly, in many cases, performance under274

intervention even surpasses the non-steered baseline.275

A notable outlier is QWEN2.5-3B-INSTRUCT, which exhibits a performance drop along the arc from276

160◦to 280◦. We attribute this to feature interference [10], where multiple latent features dominate277

within the chosen steering plane, a phenomenon to which smaller models are more susceptible. The278

consistent accuracy drop across all benchmarks in this region suggests the model is reacting to a279

competing feature. For TINYGSM8K, although the model often generates a correct answer, it fails to280

match the expected format, leading to significantly lower scores under the strict metric compared281

to the more lenient flexible variant.282

It is important to note that for TINYGSM8K, the flexible metric extracts the last numeric value as283

the final answer, whereas the strict variant assumes a predefined output format. Consequently, these284
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(a) Refusal score (substring matching [1]) and
harmful scores (LLAMAGUARD3 [22], HARM-
BENCH [26]).
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(b) LLM-as-a-judge classification results: models’ re-
sponses are classified by an LLM into four categories:
direct, indirect, redirect and refusal.

Figure 7: Steering evaluation. Each model was steered using Adaptive Angular Steering and evaluated at every
10-degree angular position along the steering circle. Solid traces show evaluation scores along the steering
circle; dashed traces indicate baseline (non-steered) models. Traces of the same color correspond to the same
benchmark. Baseline values for LLamaGuard3 and HarmBench may be hidden due to near-zero values.

metrics are highly sensitive to formatting variations, leading to noticeable fluctuations in accuracy285

across different steering angles.286

5.2 Perplexity of the Steered Generations287

Smaller Models are More Vulnerable to Interference under Angular Steering.288

In non-adaptive Angular Steering experiments, 7B 14B models generate coherent outputs through-289

out the steering circle, while smaller models like LLAMA-3.2-3B-INSTRUCT and QWEN2.5-3B-290

INSTRUCT often produce incoherent text across a wide arc. Notably, refusal phrases still appear291

randomly in various languages for LLAMA-3.2-3B-INSTRUCT, and mainly in Chinese for QWEN2.5-292

3B-INSTRUCT, despite English prompts. This suggests that limited capacity in smaller models leads293

to feature interference [10], with multiple features entangled in the 2D steering subspace, as discussed294

in Sections 4 and 5.1.295

Method. Motivated by such observations, we analyze the perplexity of the steered generations296

using the non-steered models and report the results in Fig. 8b. Given an input sequence x, an297

non-steered LLM πnon-steered, the output is modeled by ynon-steered ∼ πnon-steered(x). Similarly, πsteered298

and ysteered denote the steered model and its output, respectively. We denote the perplexity score299

of x with respect to a model π as PPLπ(x). In Fig. 8b, we compare PPLπnon-steered(x||ynon-steered),300

PPLπnon-steered(x||ysteered (non-adaptive)) and PPLπnon-steered(x||ysteered (adaptive)) for each model and at every301

10 rotation degree.302

Results. Both 3B models exhibit unstable perplexity under non-adaptive steering, indicating high303

vulnerability to interference. For QWEN2.5-3B-INSTRUCT, perplexity remains significantly above304
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(a) Benchmark results on the TINYBENCHMARKS
[23] suite.
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(b) Perplexity scores of generations from Adaptive
Steering, non-adaptive Steering and no steering.

Figure 8: Evaluation beyond the targeted steering task. Each model was steered using Adaptive Angular
Steering (Eqn. 3) and evaluated on all benchmarks at every 10-degree angular position along the steering circle.
Solid traces represent evaluation scores along the steering circle, and dashed traces represent the evaluation for
the baseline (non-steered models); traces having the same color represent the same benchmark.

baseline across more than half of the steering circle, aligning with the incoherent outputs discussed305

earlier. In contrast, LLAMA-3.2-3B-INSTRUCT shows perplexity closer to baseline, consistent with306

its behavior of still refusing harmful requests, albeit in different languages.307

Adaptive Steering effectively preserves coherence. Fig. 8b reveals that the perplexity of Adaptive308

Steering is lower, more stable, and closer to no steering than its non-adaptive counterpart, indicating309

that Adaptive Steering’s effectiveness at balancing behavior control with coherence and performance.310

Alignment masks rather than removes harmful behavior. Perplexity stays near baseline when steering311

aligns with the target feature, but drops below baseline as it moves toward the jailbroken region. This312

indicates harmful capabilities remain latent, with relevant knowledge still embedded in the model,313

and alignment merely suppressing them by shifting activations to a higher-entropy distribution.314

6 Concluding Remarks315

We propose Angular Steering, a novel activation steering method offering continuous, fine-grained316

control over large language model behaviors by rotating activation vectors within a two-dimensional317

subspace. This geometric perspective unifies prior steering techniques, enhancing interpretability and318

deepening understanding of model mechanisms without compromising general performance. Our319

adaptive variant further improves robustness by selectively applying steering based on context. A320

limitation of Angular Steering is that while promising, it currently relies on heuristically selected321

steering planes, which might not always generalize optimally across diverse behaviors or architectures.322

Future work should focus on systematically identifying effective subspaces and extending adaptive323

strategies to support broader alignment goals.324
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A Detailed Derivation: Existing Activation Steering as Special Cases of486

Steering by Rotation487

We will show that existing steering techniques are special cases of angular steering, albeit with488

restricted flexibility: vector addition is limited to less than 180 degrees, and orthogonalization is fixed489

at 90 degrees.490

Formally, let the activation hi be decomposed into components parallel and orthogonal to a unit-norm491

feature direction d̂ feat (for brevity, here we denote them as h and d respectively):492

h = (h · d)d+ h⊥, where h⊥ = h− (h · d)d.

Let u = h⊥
‖h⊥‖ , and define the initial angle between h and d as:493

θ0 = tan−1

(
‖h⊥‖
h · d

)
.

We define Angular Steering as rotating h by an offset angle φ in the plane Span{h,d}, producing a494

vector:495
hrot(φ) = cos(θ0 + φ) · d+ sin(θ0 + φ) · u.

Now consider vector addition [47], defined as:496

hadd = h+ αd = (h · d+ α)d+ h⊥.

After normalization, the direction becomes:497

hadd-norm =
hadd

‖hadd‖
= cos(θ0 + φadd) · d+ sin(θ0 + φadd) · u,

where φadd = tan−1
(

‖h⊥‖
h·d+α

)
− θ0.498

Likewise, directional ablation (orthogonalization) [1], given by:499

hablate = h⊥,
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after normalization becomes:500

hablate-norm = u = cos(θ0 + φablate) · d+ sin(θ0 + φablate) · u,
with φablate =

π
2 − θ0.501

Thus, when followed by normalization, both addition and ablation shift the direction of h in a way that502

is exactly equivalent to rotating by some angle φ in the plane spanned by h and d. This establishes503

them as special cases of Angular Steering.504

B Algorithms for Angular Steering505

Algorithm 1 Extract Feature Direction

Require: Contrastive datasets Dharmful,Dharmless, modelM
1: for each layer i in model do
2: Compute normalized activations h(i) after Attention and MLP
3: Compute mean activation for each dataset:

h̄
(i)
harmful, h̄

(i)
harmless

4: Compute candidate direction:

(i) = h̄
(i)
harmful − h̄

(i)
harmless

5: end for
6: Select final feature direction d using max average cosine similarity:

d = argmax
i=1...|layers|

 1

|layers|

|layers|∑
j=1

cosine(d(i),d(j))


7: Normalize: d̂ = d

‖d‖

Algorithm 2 Select Steering Plane

Require: Candidate directions {d(i)}, feature direction d̂
1: Perform PCA on {d(i)}
2: Let first principal component be d1stPC
3: Set orthonormal basis for plane:

b1 ← d̂, b2 ← d1stPC − (b1 · d1stPC)b1; b2 ←
b2
‖b2‖

4: Define projection matrix P = b1b
>
1 + b2b

>
2
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Algorithm 3 Angular Steering (with optional Adaptive Mask)

Require: Activation h, basis b1, b2, target angle θ, (optional) mask flag
1: Project: projP (h) = P · h
2: Compute magnitude: r = ‖projP (h)‖
3: Precompute: vθ = [b1 b2] ·Rθ · [1 0]>

4: if adaptive then
5: Compute mask: mask = max(0, sign(h · d̂))
6: Apply adaptive steering:

hsteered = h+ mask · (r · vθ − projP (h))

7: else
8: Apply steering:

hsteered = h− projP (h) + r · vθ

9: end if

C Use of existing assets506

C.1 Models507

Table 2: Models used in this work.

Model (with link) Usage Source License

QWEN2.5-(3B, 7B, 13B)-INSTRUCT
[51] Experimental subject HF Hub Apache license 2.0

LLAMA-3.1-8B-INSTRUCT
[22] Experimental subject HF Hub Llama 3.1 Community

License Agreement

LLAMA-3.2-3B-INSTRUCT
[22] Experimental subject HF Hub Llama 3.2 Community

License Agreement

GEMMA-2-9B-IT
[13] Experimental subject HF Hub Gemma Terms of Use

LLAMA-GUARD-3-8B
[22] Evaluation device HF Hub Llama 3.1 Community

License Agreement

HARMBENCH CLASSIFIER
[26] Evaluation device HF Hub MIT

QVQ-72B-PREVIEW
[34] Evaluation device HF Hub Qwen License

C.2 Datasets508

Table 3: Datasets used in this work.

Dataset (with link) Source License

ADVBENCH
[55] Github MIT

ALPACA
[44] HF Hub Creative Commons Attribution

Non Commercial 4.0

TINYBENCHMARKS
[23] Github MIT

D Additional Results509

D.1 Activations along the model’s depth510

Fig. 9 (left) demonstrates that the norm of activation vectors increases exponentially across all511

tested models as the layer depth increases. This behavior is attributable to the additive nature of the512
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Figure 9: Statistics of activations for all tested models. Left: Norms of activations at each layer. Right: Mean
scalar projection of the normalized activation on the (local) candidate feature direction at each layer.

residual stream, where each layer’s output accumulates onto the previous state. Interestingly, even513

models from the same architecture family display different scaling patterns, indicating that activation514
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Figure 10: Statistics of refusal direction candidates for all tested models. Left: Norms of candidate feature
direction at each layer (i.e. |d(i)

feat|). Right: Mean cosine similarity of the candidate feature direction from each
layer with those from other layers (i.e. 1

|layers|
∑|layers|

j=1 cosine(d
(i)
feat,d

(j)
feat)).

growth is not only architecture-dependent but also implementation-specific. These observations515

underscore the necessity of norm-independent steering techniques, as steering strategies relying on516

raw magnitude can become unstable or ineffective across layers and model variants.517

Fig. 9 (right) shows a consistent phenomenon across all evaluated models: activations from contrastive518

prompts, harmful versus harmless, diverge progressively in geometric space as depth increases. This519

increasing separation suggests a universal, model-agnostic internal mechanism in LLMs, whereby520

behavioral distinctions are gradually amplified layer by layer. Such a trend reveals a directional521

progression in the models internal representation, reinforcing the hypothesis that feature separation is522

a fundamental property of transformer-based language models.523

Fig.10 further illustrates this progression, focusing on the evolution of the refusal direction. The524

strength of this feature becomes increasingly prominent in early and middle layers, reaching its525

maximum influence at a specific intermediate depth before diminishing slightly in later layersa trend526
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Figure 11: Mean scalar projection activations at each layer onto the chosen feature direction d̂ feat for all tested
models.

echoed in Fig.11. Importantly, even in the deeper layers where the signal attenuates, the extracted527

refusal direction continues to serve as a reliable discriminator between activations corresponding to528

harmful and harmless prompts. This persistent separability affirms the robustness and interpretability529

of the refusal direction, validating its role as a stable, layer-resilient feature for behavioral control in530

LLMs.531

D.2 Ablation Study: Steering on a random plane.532

To assess the importance of the steering plane, we conducted an ablation study using two setups:533

(1) steering with a plane defined by one random direction and one feature-aligned direction, and (2)534

steering with a fully random plane composed of two random directions.535

As illustrated in Fig. 13a, where one random direction is combined with the feature direction, most536

models exhibit noticeably degraded steering performance and less smooth transitions along the537

steering circle. This degradation suggests that even partial misalignment of the steering plane can538

distort the intended behavioral modulation. An exception is QWEN2.5-7B-INSTRUCT, which retains539

robust control, indicating a strong, well-defined internal representation of the refusal direction.540

LLAMA-3.2-3B-INSTRUCT shows a clear steering effect, but the refusal arc is shifted, suggesting541

the random component introduces skew that displaces the effective axis of control.542

Fig. 13b, where both directions are randomly selected, shows that five of the six tested models exhibit543

minimal to no steering effect. The only partial exception, QWEN2.5-3B-INSTRUCT, displays erratic544

behavioral changes with a spiky, non-smooth response curve. Closer inspection reveals these outputs545

are often incoherent or filled with irrelevant content, indicating instability rather than intentional546

modulation. These results reinforce the critical role of behaviorally meaningful and well-aligned547

steering directions in achieving effective, stable, and interpretable control over model behavior.548

E Related Works549

Mechanistic Motivation. Activation steering techniques have typically involved scaling activation550

directions by manually tuned scalar coefficients to induce or suppress behaviors [47, 54, 45, 2, 19,551

48, 41]. However, selecting these coefficients is challenging due to sensitivity to the activation norm,552

which grows exponentially across layers (Fig.9 left). As observed by [47, 45], inappropriate scaling553
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Figure 12: Projections of the feature directions extracted at each extraction point (i.e. di
feat) on the

steering plane for all tested models.

often results in incoherent generations, highlighting the fragility of this approach. Directional ablation,554

another popular technique, avoids explicit hyperparameter tuning by orthogonalizing activations555

relative to a feature direction [1, 54]. Yet, this approach neglects scenarios where negative alignment556

coefficients meaningfully reverse behavior, a limitation recognized in earlier studies [47, 54, 45].557

Empirical findings from our experiments further validate that extracted feature directions effectively558

distinguish contrastive data sets (Fig.9 right).559
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(a) Steering on a plane spanned by d̂ feat and a random
direction.
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(b) Steering on a plane spanned by 2 random direc-
tions.

Figure 13: Ablation study of steering with random direction(s).

Recent advancements include adaptive steering methods such as Adaptive Activation Steering (ACT),560

which dynamically adjusts steering intensity based on the activation context [49], and Contrastive561

Activation Addition (CAA), which employs multiple positive-negative example pairs for robust feature562

extraction [29]. These techniques underscore the necessity for more nuanced control methods.563

Architectural Motivation. Contemporary LLMs such as LLAMA 3 [22], QWEN 2.5 [51], and564

GEMMA 2 [13] universally adopt RMSNorm [53] for pre-normalization. RMSNorm effectively565

constrains activations to a unit sphere, emphasizing direction over magnitude. Moreover, Rotary Posi-566

tional Embeddings (RoPE) and related variants [42, 5, 7, 31] further validate this directional emphasis567

by encoding positional information as rotations. Methods such as Householder Pseudo-Rotation have568

extended this notion by explicitly employing norm-preserving geometric transformations to steer569

behaviors effectively and minimally invasively [32].570

Empirical Motivation. Interpretability research consistently supports the Linear Representation571

hypothesis [30, 4], suggesting that LLM behaviors correspond to specific directions rather than572

discrete neuron activations. Further corroborated by the Superposition Hypothesis [10], these573

directions are nearly orthogonal and quantify feature strength through scalar projections [1, 2, 6, 11,574

24, 48, 45, 3, 25, 35, 46]. Moreover, it has been demonstrated that norm-preserving interventions,575

such as rotations, inherently provide stability and maintain general capabilities during steering [48].576

Methods leveraging these insights have proliferated, notably Activation Scaling [40] and FairSteer577

[20], which dynamically modulate activations to enhance transparency and reduce bias, respectively.578

Our work expands upon these foundations by introducing Angular Steering, a generalization of579

existing activation steering techniques. By explicitly treating steering as a rotation in a defined580

2D subspace, our method achieves more robust, interpretable, and flexible behavior control. We581

demonstrate Angular Steering using refusal steering as a running example, aligning closely with prior582
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behavioral control research [1, 18]. Rather than focusing on jailbreak or maximizing downstream583

accuracy, our goal is to present a principled and broadly applicable framework for controlled and584

non-destructive intervention in LLM activations.585

F Compute statement586

This research was conducted using mainly Nvidia H100 GPUs with 80GB of memory. For each587

model:588

• Constructing the steering plane took about 15 minutes on 1 GPU using TRANSFORMER-589

LENS [28].590

• Pre-generating responses for evaluation took about 10 minutes on 1 GPU using our fork of591

vLLM [17] as the serving engine.592

• Evaluation with substring matching [1], LLAMA 3 GUARD [22] and HARMBENCH [26]593

collectively took about 10 minutes on 1 GPU using vLLM [17] as the serving enging.594

• Evaluation with LLM-as-a-judge took about 50 minutes on 4 GPUs using vLLM [17] as the595

serving engine.596

• Computing perplexity scores took about 5 minutes on 1 GPU.597

• Evaluation with TINYBENCHMARKS [23] took about 4 hours on 1 GPU using vLLM [17]598

as the serving engine and LM HARNESS [12] as the evaluation device.599

G Broader Impacts600

The Angular Steering approach presented in this work has several broader societal impacts. On the601

positive side, it significantly enhances the control and interpretability of LLMs, enabling their safer602

deployment across various applications by effectively reducing harmful outputs such as misinforma-603

tion, biased content, and unethical requests. This enhanced control facilitates alignment with societal604

norms and ethical standards, potentially increasing public trust and acceptance of AI technologies.605

Conversely, there is also a potential for negative impacts. By simplifying fine-grained behavior control,606

Angular Steering could inadvertently make it easier to generate nuanced harmful or unethical content,607

such as persuasive misinformation or biased narratives. Although our method does not fundamentally608

alter the existing risk profile of deploying LLMs, it underscores the need for continued vigilance and609

improvement in AI safety mechanisms. To responsibly manage these risks, implementing rigorous610

safeguards, ensuring transparency, and promoting accountability are essential. We advocate ongoing611

ethical assessment to responsibly guide the deployment and utilization of our proposed method.612
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NeurIPS Paper Checklist613

1. Claims614

Question: Do the main claims made in the abstract and introduction accurately reflect the615

paper’s contributions and scope?616

Answer: [Yes]617

Justification: The abstract and introduction accurately describe the paper’s contributions and618

scope: Angular Steering (discussed in Section 3), its generalization of existing steering meth-619

ods (discussed in Section 3.1 and Appendix A), and empirical demonstrations (discussed in620

Section 4 and Section 5).621

Guidelines:622

• The answer NA means that the abstract and introduction do not include the claims623

made in the paper.624

• The abstract and/or introduction should clearly state the claims made, including the625

contributions made in the paper and important assumptions and limitations. A No or626

NA answer to this question will not be perceived well by the reviewers.627

• The claims made should match theoretical and experimental results, and reflect how628

much the results can be expected to generalize to other settings.629

• It is fine to include aspirational goals as motivation as long as it is clear that these goals630

are not attained by the paper.631

2. Limitations632

Question: Does the paper discuss the limitations of the work performed by the authors?633

Answer: [Yes]634

Justification: The limitations are discussed in the Conclusion.635

Guidelines:636

• The answer NA means that the paper has no limitation while the answer No means that637

the paper has limitations, but those are not discussed in the paper.638

• The authors are encouraged to create a separate "Limitations" section in their paper.639

• The paper should point out any strong assumptions and how robust the results are to640

violations of these assumptions (e.g., independence assumptions, noiseless settings,641

model well-specification, asymptotic approximations only holding locally). The authors642

should reflect on how these assumptions might be violated in practice and what the643

implications would be.644

• The authors should reflect on the scope of the claims made, e.g., if the approach was645

only tested on a few datasets or with a few runs. In general, empirical results often646

depend on implicit assumptions, which should be articulated.647

• The authors should reflect on the factors that influence the performance of the approach.648

For example, a facial recognition algorithm may perform poorly when image resolution649

is low or images are taken in low lighting. Or a speech-to-text system might not be650

used reliably to provide closed captions for online lectures because it fails to handle651

technical jargon.652

• The authors should discuss the computational efficiency of the proposed algorithms653

and how they scale with dataset size.654

• If applicable, the authors should discuss possible limitations of their approach to655

address problems of privacy and fairness.656

• While the authors might fear that complete honesty about limitations might be used by657

reviewers as grounds for rejection, a worse outcome might be that reviewers discover658

limitations that aren’t acknowledged in the paper. The authors should use their best659

judgment and recognize that individual actions in favor of transparency play an impor-660

tant role in developing norms that preserve the integrity of the community. Reviewers661

will be specifically instructed to not penalize honesty concerning limitations.662

3. Theory assumptions and proofs663

Question: For each theoretical result, does the paper provide the full set of assumptions and664

a complete (and correct) proof?665
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Answer: [NA]666

Justification: This paper focuses primarily on empirical methods and demonstrations, rather667

than theoretical proofs. We provide detailed mathematical derivations of our method and,668

when possible, claims made in the paper.669

Guidelines:670

• The answer NA means that the paper does not include theoretical results.671

• All the theorems, formulas, and proofs in the paper should be numbered and cross-672

referenced.673

• All assumptions should be clearly stated or referenced in the statement of any theorems.674

• The proofs can either appear in the main paper or the supplemental material, but if675

they appear in the supplemental material, the authors are encouraged to provide a short676

proof sketch to provide intuition.677

• Inversely, any informal proof provided in the core of the paper should be complemented678

by formal proofs provided in appendix or supplemental material.679

• Theorems and Lemmas that the proof relies upon should be properly referenced.680

4. Experimental result reproducibility681

Question: Does the paper fully disclose all the information needed to reproduce the main ex-682

perimental results of the paper to the extent that it affects the main claims and/or conclusions683

of the paper (regardless of whether the code and data are provided or not)?684

Answer: [Yes]685

Justification: Experimental details such as datasets, splits and models are fully described in686

Section 2 and Appendix C; evaluation metrics are described in each experiment sections687

(Section 4 and 5); algorithms are described in Section 3 and Appendix B. We also provide688

the source code for reproducing our results.689

Guidelines:690

• The answer NA means that the paper does not include experiments.691

• If the paper includes experiments, a No answer to this question will not be perceived692

well by the reviewers: Making the paper reproducible is important, regardless of693

whether the code and data are provided or not.694

• If the contribution is a dataset and/or model, the authors should describe the steps taken695

to make their results reproducible or verifiable.696

• Depending on the contribution, reproducibility can be accomplished in various ways.697

For example, if the contribution is a novel architecture, describing the architecture fully698

might suffice, or if the contribution is a specific model and empirical evaluation, it may699

be necessary to either make it possible for others to replicate the model with the same700

dataset, or provide access to the model. In general. releasing code and data is often701

one good way to accomplish this, but reproducibility can also be provided via detailed702

instructions for how to replicate the results, access to a hosted model (e.g., in the case703

of a large language model), releasing of a model checkpoint, or other means that are704

appropriate to the research performed.705

• While NeurIPS does not require releasing code, the conference does require all submis-706

sions to provide some reasonable avenue for reproducibility, which may depend on the707

nature of the contribution. For example708

(a) If the contribution is primarily a new algorithm, the paper should make it clear how709

to reproduce that algorithm.710

(b) If the contribution is primarily a new model architecture, the paper should describe711

the architecture clearly and fully.712

(c) If the contribution is a new model (e.g., a large language model), then there should713

either be a way to access this model for reproducing the results or a way to reproduce714

the model (e.g., with an open-source dataset or instructions for how to construct715

the dataset).716

(d) We recognize that reproducibility may be tricky in some cases, in which case717

authors are welcome to describe the particular way they provide for reproducibility.718

In the case of closed-source models, it may be that access to the model is limited in719
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some way (e.g., to registered users), but it should be possible for other researchers720

to have some path to reproducing or verifying the results.721

5. Open access to data and code722

Question: Does the paper provide open access to the data and code, with sufficient instruc-723

tions to faithfully reproduce the main experimental results, as described in supplemental724

material?725

Answer: [Yes]726

Justification: We provide open access to the source code in the Supplemental Materials so727

that the results in the paper can be easily reproduced. Our work uses open-source datasets728

for experiments and evaluations.729
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• The answer NA means that paper does not include experiments requiring code.731

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/732

guides/CodeSubmissionPolicy) for more details.733

• While we encourage the release of code and data, we understand that this might not734

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not735

including code, unless this is central to the contribution (e.g., for a new open-source736

benchmark).737

• The instructions should contain the exact command and environment needed to run738

to reproduce the results. See the NeurIPS code and data submission guidelines (https:739

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.740

• The authors should provide instructions on data access and preparation, including how741

to access the raw data, preprocessed data, intermediate data, and generated data, etc.742

• The authors should provide scripts to reproduce all experimental results for the new743

proposed method and baselines. If only a subset of experiments are reproducible, they744

should state which ones are omitted from the script and why.745

• At submission time, to preserve anonymity, the authors should release anonymized746

versions (if applicable).747

• Providing as much information as possible in supplemental material (appended to the748

paper) is recommended, but including URLs to data and code is permitted.749

6. Experimental setting/details750

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-751

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the752

results?753

Answer: [Yes]754

Justification: Detailed descriptions of datasets, evaluation splits and metrics are included in755

Section 2 and described in more detail in Section 4 and 5.756
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• The answer NA means that the paper does not include experiments.758

• The experimental setting should be presented in the core of the paper to a level of detail759

that is necessary to appreciate the results and make sense of them.760

• The full details can be provided either with the code, in appendix, or as supplemental761

material.762

7. Experiment statistical significance763

Question: Does the paper report error bars suitably and correctly defined or other appropriate764

information about the statistical significance of the experiments?765

Answer: [Yes]766

Justification: We report error bars suitably and correctly defined of the experiments.767
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• The answer NA means that the paper does not include experiments.769
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-770

dence intervals, or statistical significance tests, at least for the experiments that support771

the main claims of the paper.772

• The factors of variability that the error bars are capturing should be clearly stated (for773
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run with given experimental conditions).775

• The method for calculating the error bars should be explained (closed form formula,776

call to a library function, bootstrap, etc.)777

• The assumptions made should be given (e.g., Normally distributed errors).778

• It should be clear whether the error bar is the standard deviation or the standard error779

of the mean.780

• It is OK to report 1-sigma error bars, but one should state it. The authors should781

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis782

of Normality of errors is not verified.783

• For asymmetric distributions, the authors should be careful not to show in tables or784

figures symmetric error bars that would yield results that are out of range (e.g. negative785

error rates).786

• If error bars are reported in tables or plots, The authors should explain in the text how787

they were calculated and reference the corresponding figures or tables in the text.788

8. Experiments compute resources789

Question: For each experiment, does the paper provide sufficient information on the com-790

puter resources (type of compute workers, memory, time of execution) needed to reproduce791

the experiments?792

Answer: [Yes]793

Justification: We provide sufficient information on the computer resources for all experi-794

ments in Appendix F.795

Guidelines:796

• The answer NA means that the paper does not include experiments.797

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,798

or cloud provider, including relevant memory and storage.799

• The paper should provide the amount of compute required for each of the individual800

experimental runs as well as estimate the total compute.801

• The paper should disclose whether the full research project required more compute802

than the experiments reported in the paper (e.g., preliminary or failed experiments that803

didn’t make it into the paper).804

9. Code of ethics805

Question: Does the research conducted in the paper conform, in every respect, with the806

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?807

Answer: [Yes]808

Justification: The research conducted in the paper conforms, in every respect, with the809

NeurIPS Code of Ethics.810
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.812

• If the authors answer No, they should explain the special circumstances that require a813

deviation from the Code of Ethics.814

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-815

eration due to laws or regulations in their jurisdiction).816

10. Broader impacts817
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societal impacts of the work performed?819

Answer: [Yes]820
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Guidelines:822

• The answer NA means that there is no societal impact of the work performed.823
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11. Safeguards845

Question: Does the paper describe safeguards that have been put in place for responsible846

release of data or models that have a high risk for misuse (e.g., pretrained language models,847
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Answer: [NA]849
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• The answer NA means that the paper poses no such risks.852
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• Depending on the country in which research is conducted, IRB approval (or equivalent)925

may be required for any human subjects research. If you obtained IRB approval, you926
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