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Abstract

Neural networks have been shown to exhibit remarkable object recognition per-1

formance. We ask here whether such networks can provide a useful model for2

how people recognize objects. Human recognition time varies, from 0.1 to 10 s,3

depending on the stimulus and task. Slowness of recognition is a key feature in4

some public health issues, such as dyslexia, so it is crucial to create a model of5

human speed-accuracy trade-offs. This is an essential aspect of any useful com-6

putational model of human cognitive behavior. We present a benchmark dataset7

for human speed-accuracy trade-off in recognizing a CIFAR-10 image [1] from8

a set of provided class labels. Within a series of trials, a beep sounds at a fixed9

delay after the target (the desired reaction time), and the response counts only if10

it occurs near that time. We observe that accuracy grows with reaction time and11

examine several dynamic neural networks that exhibit a speed-accuracy trade-off as12

humans do. After limiting the network resources and adding image perturbations13

(grayscale conversion, noise, blur) to bring the two observers (human and network)14

into the same accuracy range, humans and networks show very similar depen-15

dence on duration or floating point operations (FLOPS). We conclude that dynamic16

neural networks are a promising model of human reaction time in recognition17

tasks. Understanding how the brain allocates appropriate resources under time18

pressure would be a milestone in neuroscience and a first step toward understanding19

conditions like dyslexia. Our dataset1 and code2 are publicly available.20

1 Introduction21

This project benchmarks and models the reaction time of human and neural network object recognition.22

There have been great advances in understanding and modeling how people recognize objects (see23

[2, 3]), but less on the timing. An important characteristic of human behavior is the speed-accuracy24

trade-off, the ability to flexibly trade-off performance for reaction time. An accurate computational25

model of the human speed-accuracy trade-off would bring us one step closer to better modeling of26

human physiology and addressing reading deficits such as dyslexia. In Figure 1, we show typical27

speed-accuracy trade-offs observed in the human data we have collected, when subjects are presented28

with color, grayscale, noisy, and blurry images. Performance increases when additional time is given29

1See https://osf.io/zkvep/ for dataset.
2See https://github.com/ajaysub110/anytime-prediction for code.
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Figure 1: Sample human performance (accuracy) as a function of allowed reaction time under
4 viewing conditions. Left-end: original colored images (8 observers); Left-middle: grayscale-
converted images (8 observers) Right-middle: Gaussian noise with standard deviation 0.04s (20
observers), Right-end: Gaussian blur with standard deviation 1.0s (7 observers). Different colors
and opacity of curves represent different observers. Black dotted line is average across observers. In
all cases, accuracy tends to increase with response time which indicates the trade-off in accuracy for
speed. Accuracy at 0s was not measured and is assumed to be at chance. Best viewed in color.

to the observers. As we will see later, the corresponding curves for a dynamic neural network capture30

a similar pattern, rising gradually from chance to maximum performance.31

As signal strength (e.g., contrast) increases, humans respond more quickly and more accurately, and32

there is a tight relation between sensitivities measured by accuracy or by reaction time. [4] showed33

that a diffusion model of perceptual decision making could account for the relation. Humans respond34

to instructions that change the emphasis on speed vs. accuracy, and can even learn to always respond35

with a fixed latency [5]. We adopt that paradigm here. For each block of trials the observer is taught36

to respond at a fixed latency to different perturbation intensities. Each block yields a point in a plot of37

accuracy vs. latency, and the responses from many blocks trace out the speed-accuracy trade-off. We38

measure network and human accuracy for the same stimuli and tasks. Reaction time is measured in39

milliseconds (ms) for the human, and calculated as the number of floating point operations (FLOPs)40

consumed by the network. The task is to identify the predefined category (1 of 10) of an image from41

the CIFAR-10 set [1], a collection of natural images commonly used as a computer vision benchmark.42

In order to explain the human trade-off, we have analyzed three recent computational models which43

allow for early exits and adaptive computation as ways to vary computational effort. These strategies44

are covered in detail in future sections. The first model is a convolutional recurrent neural network45

(ConvRNN), introduced by [6] which was previously presented as a computational model of speed-46

accuracy trade-off. This model relies on confidence saturation as an exit strategy to perform dynamic47

computation. The other two models, MSDNet [7] and SCAN [8], are two popular dynamic depth,48

anytime prediction models that are used for computer vision and related applications. We present the49

computation models with degraded stimuli, and measure correlation with timings of the observers50

to compare their speed-accuracy trade-off patterns. Our results indicate that anytime prediction is a51

promising model for accuracy and reaction time in human object recognition because it achieves a52

high correlation with human trade-offs. Our main contributions are:53

• We collect and release a benchmark, a speed-accuracy trade-off in human performance, with54

various image perturbations (grayscale conversion, noise, and blur). This comes from our study55

of how human observers recognize objects under less than ideal viewing conditions. The speed-56

accuracy trade-off is an essential property of human object recognition and we encourage further57

research in designing computational models that can capture it.58
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• We compare the ability of several networks to capture the speed-accuracy trade-off, and show that59

an existing dynamic depth neural network (MSDNet [9]) exhibits similar behavior as humans.60

• We perform an extensive quantitative comparison between humans and networks, and analyze61

which models exhibit more human-like performance trade-offs. In doing so we introduce two62

metrics: performance range, and a correlation metric which ease comparison of model behavior63

with that of humans.64

2 Related work65

Measuring the speed-accuracy trade-off in humans. Given more time people can do better. [5]66

analyzed the speed-accuracy trade-off in humans on a visual search task, in which observers tried to67

find a target in an array of distractors. They manipulated task difficulty by adding more and more68

distractors. Figure 1 shows human object recognition accuracy on CIFAR-10 images as a function69

of reaction time [1]. [10] proposes a model to predict reaction time in response to natural images.70

This model is based on statistical properties of natural images and is claimed to accurately predict71

human reaction time by forming an entropy feature vector. [11] used a drift diffusion model whose72

drift rate (the rate of accumulation of evidence towards a criterion) was determined by the quality of73

information to explain lexical decision times and performance (i.e. how rapidly does a person classify74

stimuli as words or non-words). Reaction time has also been studied in the context of perceptual75

decision making [4, 12, 13, 14]. [6] is the first to use a neural network as a computational model of the76

speed-accuracy trade-off, showing that a recurrent neural network (RNN) allows a flexible trade-off77

between speed and accuracy. Neural networks have also been used to model object recognition [15],78

temporal dynamics in the brain [16, 17], the ventral stream, i.e., the object recognition neural pathway79

in human cortex [18], and temporal information [19].80

Dynamic inference. Dynamic object recognition models adapt their architecture to the challenge81

of input data to reduce mean cost of inference. There are two classes of dynamic networks. Dynamic82

width networks, also known as dynamic pruning, use a variable subset of convolution filters to reduce83

inference cost [7, 20, 21, 22]. Dynamic depth networks perform efficient computation by either84

early-exiting when their shallow sub-network achieves a high classification confidence [23, 9] or85

by dynamically skipping layers using residual connections [24, 25]. A more detailed overview of86

dynamic neural networks and their applications can be found in [26]. In this work, we evaluate the87

ability of two recent dynamic depth networks [9, 8] to capture the human speed-accuracy trade-off,88

and compare their performance to existing techniques [6].89

3 Collecting Behavioral Data90

We measured performance and reaction time for human observers performing an object recognition91

task on images presented with and without perturbation. We assessed the impact of adding color, blur,92

and noise, The results show a speed-accuracy trade-off (Figure 1) for all three image manipulations.93

In Sections 4 and 5, we evaluated the ability of dynamic neural networks to model the trade-off94

between processing speed and accuracy. Our experimental protocol is similar to [5] and is outlined95

below.96

3.1 Images97

In all experiments, human observers recognized objects in CIFAR-10 images [1], a popular bench-98

mark for neural network analysis, with the default train/test split. This image set contains 50,00099

training images and 10,000 test images each of 32×32 pixels, and has 10 classes: airplane, automo-100

bile, bird, cat, deer, dog, frog, horse, ship and truck. Sample images and added perturbations can101

be seen in Figure 2. We used lab.js [27] and Just Another Tool for Online Studies (JATOS) [28] to102

present images and collect timed responses from human observers online.103

We chose to use CIFAR-10 instead of the popular ImageNet dataset because the 1000 classes in104

the latter would be too many for our human participants to memorize. Unlike Spoerer et al. [6],105

we decided against using a subset of ImageNet classes since that would bring in ambiguity of what106

classes to select. To resolve this issue, Spoerer et al. [6] instead pose a binary classification problem107

(“animate” vs “inanimate” objects). However, a binary classification task is not representative108
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Figure 2: Example images from the CIFAR-10 dataset [1] along with visualizations of image
perturbations considered for human subject experiments – grayscale conversion, image blurring and
noise. By introducing image perturbations, we control the recognition task difficulty. Numbers in
parentheses correspond to standard deviations for 0-mean Gaussian distributions.

of general categorization performance because in a binary task an observer may learn to detect109

the difference between classes rather than actually classify images into one of several classes.110

Additionally, most ImageNet classes are very specific (eg. “electric ray”, “robin”, “goldfinch”) and111

hence the method by which a subset of classes is selected would affect human performance.112

3.2 Observer statistics and data collection113

Table 1: Summary statistics of collected
data on human observers across all ex-
periments.

Perturb. Participants Avg. Compl. (min) Questions

Noise 20 57.94 1500
Blur 7 53.95 1500
Color 8 20.53 500

We collected data from 35 observers (23 Male, 12 Female)114

ranging in age from 24 to 62 years. Each session lasted115

about an hour. Each observer had a normal or corrected-116

to-normal vision. The stimuli were presented via JATOS117

survey via worker links to each observer. Participants were118

recruited through Amazon MTurk (similar to studies in [29,119

2]), and paid $15 for their efforts (to a total of $594 with120

all fees). A standard IRB approved (IRB-FY2016-404)121

consent form was signed before collecting the data by each122

observer, and demographic information was collected.123

Our survey design was based on the previous work by McElree & Carrasco [5], where 4 observers124

participated in a total of 20 approximately 75 min sessions. At the beginning of each session125

subjects were instructed that each object category was linked to a particular letter-key: (A)irplane,126

a(U)tomobile, (B)ird, (C)at, d(E)er, (D)og, (F)rog, (H)orse, (S)hip and (T)ruck. They were then given127

a training run of 20 images where they learned the key-class labels getting feedback on the speed of128

their responses.129

Images were interpolated to 190×190 pixels for optimal viewing [30]. A trial consisted of a stimulus130

image displayed for a fixed amount of time. Since 150 ms is the minimum visual processing time131

needed to process (recognize) a stimulus [31], the survey was designed on five fixed viewing132

conditions (blocks) at 200 ms, 400 ms, 600 ms, 800 ms, and 1000 ms with a tolerance of ±100 ms.133

Outside of these tolerance values, trials were discarded. The survey was designed to control the134

response time of human observers by asking them to respond in the allotted time distribution. This135

controls their processing time [5].136
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To capture variability in observer responses, for noise and blur surveys, each time condition block137

consisted of 300 trials (1500 trials in total) while the color survey had 100 trials (500 trials in total).138

At the end of the time-limit for a trial, a beep sounded within 60 ms of which the observer had to139

enter their category decision via key-press after which feedback was given: if they were quick, slow140

or perfect while pressing the key.141

Observers were asked to place their hands on the keyboard while being aware of the ten identifiers142

(A: Airplane, C: Cat and so on). Observers were instructed to answer at the beep as fast as possible143

to fall into the tolerance bounds. Observers were given feedback after every trial and progress was144

shown in the form of a counter. Pressing the spacebar presented the next stimulus. Before starting the145

actual survey for data collection, a tutorial of 20 images was displayed to make observers understand146

the key mapping and get used to the timing protocol. To reduce the length of each experimental147

session, each observer responded to a randomly selected subset of 1,000 images. This image set was148

divided into approximately equal chunks across different amounts of perturbation (noise and blur).149

Figure 1 plots sample human accuracy as a function of reaction time. At 1000 ms, most observers150

had accuracies about 40% to 50%, except for a few outliers. We created aggregate results across151

observers to create an average observer, and compared its performance to the computational models.152

4 Computational models for Speed-Accuracy Trade-Off153

In order to test the ability of dynamic neural networks to capture the flexible, adaptive computation154

that humans exhibit, we analyze three representative models from existing literature. The first two,155

MSDNet [9] and SCAN [8], both state-of-the-art dynamic depth networks, were originally developed156

to improve test-time efficiency in computer vision applications. They are promising candidates for157

our purpose since they are capable of adaptive computation. We compare them against rCNN (which158

we refer to as ConvRNN) [6], a convolutional recurrent network which was recently developed159

specifically as a model for human speed-accuracy trade-offs. It should be noted that, due to prior160

knowledge in humans and other confounding factors, it is difficult to replicate exactly the same161

training and testing conditions in humans and machines. To partially account for this, we perform162

trial runs for humans on sample data (see Section 3.2) and test both humans and networks on a163

variety of perturbation types and strengths. We compare networks with humans, first on the range164

of performance (accuracy) they can achieve by only varying FLOPs used. Next, we measure their165

correlation with human behavior under various perturbation conditions to determine if these models166

can capture the same performance trends that humans exhibit.167

4.1 Convolutional Recurrent Neural Network (ConvRNN)168

ConvRNN [6] exhibits temporal behavior by relying on recurrent connectivity, characteristic of the169

primate visual system, implemented by adding bottom-up and lateral connections to a feed-forward170

convolutional network. Lateral connections add cycles inside the feed-forward connectivity allowing171

for recurrent behavior. This model consists of 7 blocks of recurrent convolutional layers (RCL),172

followed by a Readout layer to output class predictions. During inference for a given image, the173

computation used by the model can be dynamically chosen by running the model for a variable174

number of recurrent cycles. This property allows the network to respond to an input image with a175

different amount of computation, which we use to represent reaction time.176

Training Details Each image was up-sampled to 128×128 using bi-cubic interpolation to match177

the input dimensions needed by the network. To prevent overfitting, the model was initialized with178

pre-trained ImageNet [32] weights and all layers before fully connected layers were frozen for179

subsequent training. The network was trained to optimize cross-entropy loss over classification180

targets using Adam optimizer with learning rate 0.005 and epsilon parameter 0.1. L2 regularization181

was applied throughout training with coefficient of 10−6. The model was trained for 100 epochs with182

a batch size of 32.183

4.2 Multi-Scale Dense Network (MSDNet)184

MSDNet [9] implements dynamic inference using multiple early exit classifiers from a feedforward185

network. Since the exits are all at different depths in the network, classification at each one has a186

different computational requirement. All exits are placed after blocks of layers and use features from187
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a common backbone network for classification. A consequence of this is that features deemed useful188

for each classifier during training interfere with the other classifiers. To resolve this problem, MSDNet189

proposes two architectural features: multi-scale feature maps, and dense connectivity (realized by190

using a DenseNet [33] backbone). These properties allow neurons at any layer to access features191

from any part of the network and at any resolution, thus diminishing the effect of the interference192

problem. In our experiments, we use a 15-layer backbone network with seven early exit classifiers193

placed at block intervals of 1-2-4, thus making up a total of seven blocks. Additionally, our setting194

differs from that used in [9] in terms of the number of scales and bottleneck factor.195

Training details During training, MSDNet uses a cumulative cross-entropy classification loss196

computed over all early exits. The model is trained for 300 epochs and uses a Stochastic Gradient197

Descent (SGD) optimizer with a learning rate of 0.1 and batch size of 64. Data augmentation based198

on standard techniques mentioned in [9] are applied: during training, images are horizontally flipped199

with probability 0.5, normalization based on channel means and standard deviation is also done.200

4.3 Scalable Neural Network (SCAN)201

Similarly MSDNet, SCAN [8] implements dynamic inference using early exit classifiers from a202

common backbone network. Whereas MSDNet uses multi-scale feature maps and dense connectivity203

to solve the issue of interference between early and late classifiers, SCAN uses an encoder-decoder204

attention mechanism in each exit network. This allows each exit to “focus“ only on features relevant205

for classification at a specific depth of the backbone. The attention network produces a binary mask206

which is added to the backbone feature map, after which a Softmax layer predicts a class label.207

In our experiments, we use three variants of SCAN, each with a different backbone architecture:208

SCAN-R18 with ResNet-18, SCAN-R34 with ResNet-34 and SCAN-R9 with ResNet-9. Each of209

these uses four early exits and a final ensemble output which uses all early exit features for prediction.210

Thus, for a given input, the network outputs five class predictions, each requiring different amount of211

computation time/effort.212

Training Details During training, a loss function that combines a cross-entropy term (for classifi-213

cation) and a self-distillation term is computed and summed over all exits. The self-distillation helps214

improve performance by encouraging a low KL-divergence between the exit outputs and final output215

distributions, and is controlled using a self-distillation coefficient. In our experiments, SGD with a216

fixed learning rate of 0.1 and momentum factor of 0.9 is used to optimize network parameters. All217

variants of SCAN are trained using the same optimizer settings, with a self-distillation coefficient of218

0.5 and with a batch size of 128, for 200 epochs.219

4.4 Contrast adjustment220
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Figure 3: Effect of contrast adjustment for the case
of SCAN. Contrast adjustment allows us to a. bring
network performance to the same range as human per-
formance, and b. increase task difficulty for network, to
avoid clipping in case of high noise levels.

We found that, in general, the networks221

were more accurate than human observers222

when presented with images (see Sec-223

tion 5.1) of the same noise levels. To match224

human performance, we applied additional225

noise to images input to networks, which re-226

sulted in the application of noise levels that227

fell outside of the distribution of the image228

pixels. Therefore, a clipping value, which229

changes the pixel distribution, was required230

to display the noisy images. Since our pri-231

mary goal is to mimic human performance232

with the networks, we adjusted the con-233

trast of the images observed by networks234

by 10% (see Figure 2 for examples). Con-235

trast adjustment removed the need for im-236

age clipping and brought the result ranges237

from noise from neural networks closer to238

those produced by human observers. We compared the performance of MSDNet [8], the top perform-239

6



ing network, on original and contrast-adjusted images with and without noise, and found that the240

latter produced more human-like responses in networks than the former.241

5 Results and discussion242

We now study how well human response patterns are matched with results from our computational243

models. Specifically, we analyze the performance ranges exhibited by each model type and correlate244

model performance with human response slopes.245

5.1 Comparing human and model performance range246

We analyze and compare human and neural network performance on grayscale CIFAR-10 images in247

Figure 4 which shows the range of accuracies shown by each model and the human average.248
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Figure 4: Performance range of neural networks trained and evaluated on grayscale CIFAR-10
images, and comparison with human average. The neural networks exhibit higher accuracies but
significantly smaller performance range than human observers.

We find that the accuracies achieved by all networks greatly exceed that of human observers (by249

> 15%). On the other hand, the performance range (i.e., difference between maximum and minimum250

accuracies) is much higher in humans (44.22%) than in networks. Across the neural network251

models, MSDNet [9] achieved the highest performance range (13.87%), followed by ConvRNN [6]252

(9.02%), and finally, SCAN [8] (4.34%). The large difference in performance range between humans253

and networks is primarily because networks achieve high classification accuracies even with low254

computational effort i.e. the task is trivial. Larger performance ranges can therefore be obtained by255

reframing the task to make it more challenging.256

5.2 Varying task difficulty using image perturbations257

0 2 4 6 8 10 12
MFLOPs

20

40

60

80

Ac
cu

ra
cy

 (%
)

0.00

0.02

0.04

0.06

0.08

0.10
Noise

Figure 5: MSDNet accuracy vs MFLOPs for various values of test image noise. Each curve corre-
sponds to different Gaussian noise standard deviation ∈ [0, 0.1], as shown by the colorbar. Perfor-
mance at 0 MFLOPs is taken to be at chance (10%), attained by any fixed response, and dotted lines
extrapolate measured data points to this value. The dotted lines bridge the catastrophic failure of
MSDNet, which cannot provide any useful answer at all with less than about 3.5 MFlops. The model
was trained with fixed random batch noise ∈ [0, 0.05]
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Humans adapt effortlessly to a wide range of task demands. Here, we explore how well machines can258

do this by comparing the performance range of both humans and networks on perturbed images. Noise259

in perception experiments is used for assessing unpredictable variation in some aspect of stimulus [34],260

and we attempt to model the same effect in our experiments. We modify the recognition task by adding261

noise and blur to make it more challenging, and then analyze the effect. Image perturbations are262

useful for bench-marking human performance [35, 36]. Additionally, CIFAR-10 is a relatively simple263

dataset for deep networks and risks getting a ceiling effect. Adding noise and blur to images makes264

the task more difficult, thus resolving this issue. Figure 5 shows MSDNet’s trade-off curves under265

various amounts of test-time image noise. It can be seen that at zero noise, lowering computation266

below the lowest possible number of FLOPs would result in a catastrophic drop from 60% to chance.267

This is unlike humans whose performance drops more gracefully as allowed reaction time is lowered268

(Figure 1).269

(a) Evaluation with noise. Human performance is considered for three noise patterns applied to images,
distributed as Gaussian noise with zero mean and standard deviation in {0, 0.04, 0.16}.
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(b) Evaluation with blur. Human performance is considered for three blur patterns applied to images, distributed
as Gaussian blur with zero mean and standard deviation in {0, 1.0, 3.0}.
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Figure 6: Correlations of networks with human performance, evaluated across different levels of
noise & blur perturbation. For fair comparison, the level of perturbations used during training is
same across all networks. During inference for each network, noise/blur level that elicits highest
correlation with humans is found and shown above. MSDNet achieves the highest correlation with
human observers in all testing scenarios. Orange bars represent median correlation value. Vertical
blue line is an extension of the median correlation of humans with each other. Standard deviation for
all correlations is shown.

We correlate network performance to average human performance at varying levels of noise or270

blur, and report Pearson’s r correlation coefficients in Figure 6a. To obtain an upper bound on271

correlations, we also correlate each human observer to the average human observer. Unlike previous272

work [6] which correlates reaction time for prediction, we report the correlation of performance273

as a function of reaction time. This metric captures both performance and reaction time and hence274

allow for a more robust evaluation of the speed-accuracy trade-off exhibited by humans and models.275
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For blur, we find that the MSDNet [9] achieves the highest correlation to humans, followed by276

ConvRNN [6] and SCAN [8] while for noise, correlations of MSDNet and ConvRNN are both similar277

and higher than SCAN. When comparing SCAN [8] models with different backbones, we find that278

decreasing the ResNet [37] backbone to ResNet-9 decreases the correlation. Similarly, choosing an279

over-parametrized ResNet-34 also adversely affects correlation. It is important to point out the need280

for much higher noise to bring the network accuracy down to human performance. This indicates that281

the neural networks are more tolerant to noise than human observers once trained with noisy images.282
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Figure 7: Evaluation of the effect of color on network and human performance. Color does not
significantly affect the recognition performance of either humans or MSDNet [9] model. Accuracy
at 0 Time/MFLOPs was not measured and assumed to be at chance. Linear scaling was used to
bring MFLOPs (F) into the same range as Time (T) [F = 11/600(T − 400)]. Blue bounding areas
represent standard deviation of performance across humans.

5.3 Influence of color283

We evaluated the effect of color on human and network performance, and reported results in Figure 7.284

We found that color improves the recognition accuracy for both humans and neural networks by285

about 5% in both cases. However, the performance range and patterns of improvement when given286

additional processing resources stayed the same. We conclude that the addition of color did not287

influence the results reported in other experiments in the paper.288

5.4 Evaluating the effect of the number of network parameters289

The success of modern neural networks is tied to their large number of parameters, a natural question to290

ask is whether the number of parameters has an effect on human-network correlation. In Figure 8, we291

evaluate the effect of having differently sized backbone networks on the MSDNet model performance.292

MSDNet uses a custom architecture based on DenseNet, therefore, we have modified parameters in293

the configuration without significant updates to the architecture. In general, we found that changing294

network size did not improve correlation with human performance.295

For SCAN [8] and MSDNet [9], we found that networks with deeper backbones (SCAN-R34 and296

MSDNet-L) exhibit a higher correlation (more human-like speed-accuracy trade-off) compared to297

human observers. However, this improvement is not significant and does not indicate a monotonic298

relationship between correlation and backbone parameter count.299

Paired 2-tailed t-tests showed that all correlation comparison results mentioned above are significant (p300

≤ 0.05, corrected). Bonferroni correction was used to correct for multiple comparisons. Additionally,301

our human behavior dataset was deemed to be large enough to draw all previously made inferences,302

using a sample-size determination test (with p ≤ 0.05, power = 80%).303

6 Conclusion304

Speed-accuracy trade-off is an essential feature of human performance that is difficult to explain305

with current computational models of object recognition. We present a benchmark for timed object306

recognition. Observers were asked to recognize objects in degraded images with a time constraint,307

and showed a speed-accuracy trade-off. We also show that dynamic depth neural networks are a308

realistic model of the speed-accuracy trade-off in object recognition. To compare various networks309
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Figure 8: Evaluation of the effect of the network backbone architecture to correlation with human
performance. SCAN-R18 and MSDNet-S are the versions used in earlier experiments. Backbone
notation: SCAN (R34 - ResNet-34, R18 - ResNet-18, R9 - ResNet-9), MSDNet (L - Large, M -
Medium, S - Small).

with humans, we propose two metrics: performance range, and correlation of performance as a310

function of reaction time, which together capture both the magnitude of trade-off as well as similarity311

with human trade-offs. One of the considered models, MSDNet [9], gives a better account than312

previous attempts [6], without the need for recurrence. When faced with noise or blur, machine313

performance deteriorates in a quantitatively similar fashion as human performance. When trained314

with noise, it shows a maximum of 94% correlation with human performance and 96% when trained315

with blur. Finally, we test the effect of network backbone architecture and determine that correlation316

to human performance does not necessarily increase with additional parameters.317

While dynamic networks succeed in showing some speed-accuracy trade-off, their range is less than318

what humans achieve. The average human performance range is 44.22% while the best network,319

MSDNet trained with noise achieves only 19.24%. With high perturbation strength, humans stumble320

and machines fall. This motivates future work that aims to build neural networks that can better match321

the flexibility and adaptability of human object recognition. Work in this direction is important for322

achieving a better understanding of human decision making and for deployment of machine learning323

systems in time-sensitive applications.324

Slow (dyslexic) and fast readers show a marked difference in speed-accuracy trade-off during reading.325

Slow readers need more time on average to achieve the same reading performance as a fast reader.326

Several behavioral results demonstrate this difference in speed-accuracy trade-off, but no satisfactory327

computational models have been developed. The dataset and benchmark proposed in our paper are an328

attempt to encourage work seeking to develop models that demonstrate a more human-like speed329

accuracy trade-off.330

The primary focus of current machine learning research has been on improving peak performance.331

When the allowed computational effort (∝ reaction time) is restricted, human performance drops332

gracefully while neural network performance fails catastrophically. In other words, the problem with333

machines performing consistently well over all FLOPs values is that lowering their computational334

resources below a certain point will cause a huge drop in performance resulting in near-chance335

performance. In time-sensitive applications like autonomous navigation, catastrophic failure due336

to time limitation is unacceptable. Humans have this ability and efforts to introduce it to machine337

learning models are just beginning.338

The applications of the above-described technology have potential benefits (addressing public health339

concerns and biases in computational models) and risks (from malicious data augmentation to340

surveillance). We believe that these concerns are shared in general by machine learning applications,341

and are outside the scope of this work.342
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