
CLEAR: Character Unlearning in Textual and Visual Modalities

Anonymous ACL submission

Abstract

Machine Unlearning (MU) is critical for remov-001
ing private or hazardous information from deep002
learning models. While MU has advanced sig-003
nificantly in unimodal (text or vision) settings,004
multimodal unlearning (MMU) remains under-005
explored due to the lack of open benchmarks006
for evaluating cross-modal data removal. To007
address this gap, we introduce CLEAR, the008
first open-source benchmark designed specif-009
ically for MMU. CLEAR contains 200 ficti-010
tious individuals and 3,700 images linked with011
corresponding question-answer pairs, enabling012
a thorough evaluation across modalities. We013
conduct a comprehensive analysis of 11 MU014
methods (e.g., SCRUB, gradient ascent, DPO)015
across four evaluation sets, demonstrating that016
jointly unlearning both modalities outperforms017
single-modality approaches.018

1 Introduction019

Large Language Models (LLMs) (Ouyang et al.,020

2022; Touvron et al., 2023; Jiang et al., 2023) are021

increasingly investigated for memorizing private,022

unethical, or copyrighted data during training. Re-023

cently, machine unlearning (MU) methods have024

been applied to mitigate issues related to toxicity025

(Lu et al., 2022), copyright and privacy concerns026

(Jang et al., 2023; Eldan and Russinovich, 2023;027

Wu et al., 2023) and fairness (Yu et al., 2023).028

While MU has emerged as a promising alter-029

native to costly retraining—enabling targeted re-030

moval of problematic data—existing methods fo-031

cus almost exclusively on single-modality mod-032

els. Recent work has studied unlearning in LLMs033

(Yao et al., 2024c,a; Xing et al., 2024; Zhang et al.,034

2024a) or vision models (Li et al., 2024a; Chen035

and Yang, 2023; Tarun et al., 2021), but unlearning036

in multi-modal language models remains largely037

unexplored. This leaves a critical gap: multimodal038

LLMs (MLLMs), which process both visual and039

textual data, introduce unique challenges for un-040

Method Real
metric↑

Retain
metric ↑

Forget
metric ↓

Forget
Quality ↑

Gold 0.50 0.51 0.19 1.00
Base 0.48 0.51 0.35 0.85

DPO 0.46 0.48 0.22 0.84
GD 0.29 0.00 0.00 0.18
GA 0.27 0.00 0.00 0.67

IDK 0.48 0.51 0.33 0.84
KL 0.25 0.00 0.00 0.67

LLMU 0.47 0.51 0.25 0.84
NPO 0.46 0.14 0.11 0.76

Retain FT 0.49 0.51 0.37 0.85
RMU 0.24 0.00 0.00 0.75

SCRUB 0.49 0.52 0.36 0.85
SKU 0.40 0.32 0.37 0.83

Table 1: Performance comparison of state-of-the-art un-
learning methods on our dataset across four metrics.
“Base” refers to the model before unlearning, while
“Gold” denotes a model trained only on the retain set.
The highlighted methods fail on the retain set.

learning. For instance, sensitive information may 041

persist across modalities even after removal from 042

one (e.g., a face linked to a name), and unlearn- 043

ing in one modality could degrade performance in 044

another. Despite these risks, no open benchmarks 045

exist to evaluate MU in multimodal settings. 046

Recently, Chakraborty et al. (2024) pioneers the 047

investigation of unlearning configurations in visual- 048

language models (VLMs) to mitigate cross-modal 049

safety risks, its experimental framework inherits 050

a critical limitation: the datasets used (e.g., PKU- 051

SafeRLHF (Ji et al., 2023), JailBreakV-28K (Luo 052

et al., 2024)) were designed for safety alignment 053

and truthfulness evaluation, not machine unlearn- 054

ing (MU). This mismatch conflates safety fine- 055

tuning (suppressing harmful outputs) with targeted 056

data removal (erasing specific knowledge traces), 057

potentially overestimating MU efficacy. 058

To address this, we propose CLEAR, the first 059

publicly available benchmark for machine unlearn- 060

ing in multimodal (textual-visual) models. Our 061

work is motivated by the right to be forgotten in 062
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Figure 1: Our dataset CLEAR includes 3,770 visual image-caption pairs and 4,000 textual question-answer pairs
related to fictional characters. We apply multimodal unlearning to remove specific information, subsequently
assessing the quality of unlearning and the models’ performance using various metrics. Finally, we compile a
leaderboard of unlearning methods based on these evaluations.

AI systems, where models must eliminate traces063

of specific entities (e.g., individuals) across all064

modalities. The proposed dataset contains informa-065

tion about fictitious authors, where each persona is066

linked to both textual biographies and AI-generated067

images, enabling tests of cross-modal memoriza-068

tion. For example, models should fail to answer069

questions and recognize associated faces after un-070

learning a persona. Our benchmark further eval-071

uates real-world performance degradation using072

such tasks as visual question answering (VQA).073

Our contributions and findings are as follows:074

• We propose a multimodal MU benchmark075

CLEAR with 4,000 text-QA pairs and 3,770076

image-caption pairs focused on unlearning077

200 fictitious authors. It includes forget/retain078

sets and real-world tasks (e.g., celebrity recog-079

nition) to evaluate cross-modal capability080

preservation.081

• We comprehensively evaluate 11 recently pro-082

posed MU methods on our dataset and show083

that leading unimodal MU methods struggle084

in multimodal setups.085

• We establish leaderboards for textual, visual,086

and multimodal unlearning.087

We make all the data publicly available1.088

2 Related Work089

Machine Unlearning. The concept of machine un-090

learning was initially presented by (Cao and Yang,091

1at https://huggingface.co/datasets/fd28/CLEAR

2015). In general, MU methods (Cao and Yang, 092

2015; Dwork et al., 2014; Kurmanji et al., 2024; 093

Neel et al., 2021; Sekhari et al., 2021) remove the 094

impact of certain data points from a trained model 095

without requiring full retraining. The goal is to 096

obtain a model that behaves like the forget data 097

was never part of the training set. Recently, tex- 098

tual unlearning in generative language models has 099

attracted attention. Maini et al. (2024) propose 100

a benchmark named TOFU for textual LLM un- 101

learning, consisting of 200 fictitious author pro- 102

files defined by attributes like name, birthplace, 103

parent’s names, occupation, and written books, to- 104

talling 4,000 question-answer pairs (20 per author). 105

WMDP (Li et al., 2024b) includes 3,668 multiple- 106

choice questions to evaluate and benchmark the 107

unlearning of hazardous knowledge in LLMs. To 108

remove knowledge from generative models, Jang 109

et al. (2023) employ gradient ascent on specific tar- 110

get sequences. Eldan and Russinovich (2023) focus 111

on the particular case of unlearning the Harry Pot- 112

ter books from Llama2-7b. Yao et al. (2023) utilize 113

machine unlearning to address harmful responses 114

and eliminate hallucinations. Yao et al. (2024b) 115

examined the unlearning of 2,000 GitHub code 116

files, 500 books, and 500 academic papers from 117

Yi-6B. However, these studies have been restricted 118

to text-only contexts. Our research investigates the 119

multimodal aspects of unlearning. 120

Multimodality. Multimodal LLMs (Liu et al., 121

2023) usually comprise a modality encoder, a 122

projection layer aligning features to the language 123

space, and a pre-trained language model. While 124
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MLLMs have advanced, multimodal unlearning re-125

mains under-explored. Cheng and Amiri (2023)126

introduce MultiDelete, which separates cross-127

modal embeddings for unlearning but applies only128

to encoder-decoder models, limiting its use for129

decoder-only architectures. EFUF (Xing et al.,130

2024) reduces hallucinations in MLLMs by un-131

learning. It uses CLIP (Radford et al., 2021) to de-132

tect hallucinations based on MSCOCO-calibrated133

thresholds, eliminating manual labelling. The134

method applies three losses: negative loss to for-135

get hallucinations, positive loss to reinforce cor-136

rect representations, and sentence loss to preserve137

fluency. Single Image Unlearning (SIU) (Li et al.,138

2024a) targets visual concept unlearning in VLLMs139

while preserving textual knowledge and introduces140

MMUBench. This benchmark spans 20 concepts141

with 50+ images each, including real-world fig-142

ures and cartoon characters. However, these bench-143

marks are not open-sourced. The closest work to144

ours is (Chakraborty et al., 2024), which inves-145

tigates safety alignment in VLMs by unlearning146

harmful content. This study was not designed for147

the exact unlearning setup, therefore, we bridge this148

gap by conducting the first comprehensive analysis149

of MU methods in multimodal settings. Unlike150

safety alignment, our benchmark focuses on forget-151

ting quality (e.g., inability to recall personas) and152

cross-modal consistency (e.g., erasing both a face153

and its biography) while maintaining model utility154

in real-world tasks, highlighting unique challenges155

in multimodal MU.156

3 MU Methods157

3.1 Preliminaries158

Let fθ denote the base model with parameters θ. It159

is trained on (train) dataset D, and given the un-160

learning objective, we want to make our model for-161

get a subset of this dataset D, called forget set DF .162

The remaining part of the training dataset is called163

retain set, and we aim to preserve the model’s per-164

formance on this data subset DR := D \ DF .165

Additionally, we utilize a holdout set DH such166

that DH ∩D = ∅ to establish a reference for the167

model’s desired behaviour on DF after the unlearn-168

ing process. In a nutshell, forget set DF contains169

samples the model should unlearn and serves as a170

direct measure of unlearning effectiveness; retain171

set DR contains samples that the model should re-172

tain and perform well on, serving as an indicator173

of the model’s preserved knowledge; holdout set174

DH contains samples that the model has never seen 175

before and serves as a reference for the model’s be- 176

haviour on data that was not involved in the training 177

process. Such forgetting procedure is performed by 178

updating the model fθ with a particular unlearning 179

method, which results in a new unlearned model fθ̂ 180

with parameters θ̂. Evaluation of fθ̂ on the dis- 181

cussed subsets (or particularly on forget set) is 182

called ”inexact” in contrast to the ”exact” evalua- 183

tion when we directly compare the performance of 184

the unlearned model with a gold model gω, trained 185

only on the DR. 186

MU can be performed by optimizing the specific 187

criterion. For example, one can consider the gradi- 188

ent difference MU approach, aimed at increasing 189

forget loss and maintaining retain performance: 190

L̃ = −
∑

xi∈Df

L(xi, yi, θ) + λ
∑

xj∈DR

L(xj , yj , θ),

(1) 191192

θ 7→ θ − α∇θL̃, (2) 193

where λ – forget-retain trade-off hyper-parameter, 194

α – learning rate, L is some loss function, e.g., 195

negative-log-likelihood, x is an input (text, image, 196

or both of them in the case of VLLM). 197

Suppose that we are given the LLM model de- 198

noted as f described by its parameters θ, hence 199

representing a function mapping the input to the 200

corresponding prediction, as described below: 201

fθ(x) =

|y|∏
i=1

Pθ (yi | y<i, x) , (3) 202

where Pθ is the probability function for gener- 203

ating the next token in the given sequence y= 204

(y1, . . . , y|y|), and y<i = {y1, . . . , yi−1}. Given 205

an unlearned descriptor (xu, yu) related to an un- 206

learning instance I (e.g., public figures or copy- 207

right protected information). Current approaches 208

often indiscriminately update θ to θ′ to ensure that 209

all responses, y′u = fθ′ (xu), related to I are non- 210

harmful. Yet, not all knowledge tied to I necessar- 211

ily is required to be forgotten in this process. 212

In multi-modal unlearning, compared to uni- 213

modal unlearning, each sample contains multiple 214

modalities, e.g., text and image pairs. Let: 215

D =
{ (

x(1)
i , . . . , x(m)

i , yi
)}N

i=1
, (4) 216

where m ≥ 2 is the number of modalities. We 217

similarly define the forget set DF of multi-modal 218

samples that we aim to unlearn. The model fθ is 219
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now capable of taking multi-modal input (e.g., a220

textual prompt plus an image) and producing an221

output y. The same forget and retain goals hold.222

3.2 Methods223

We briefly describe 5 top-performing MU methods224

from Tab. 1 among all approaches described in225

detail in Appx. B.226

Retain Finetune is a straightforward approach227

which involves finetuning the model on the retain228

set, assuming it will forget the knowledge from229

the DF while maintaining performance on the DR.230

However, it is suboptimal for models with extensive231

pretraining, such as most LLMs.232

IDK tuning replaces original labels in the for-233

get set DF with ”I don’t know” responses while234

minimizing the loss on the retain set DR (Maini235

et al., 2024). The objective, LIDK = L(DR, θ) +236

L(Didk
F , θ), ensures that the model retains perfor-237

mance on DR while aligning predictions on DF238

with uncertainty-based responses.239

LLMU was introduced in early LLM unlearning240

research (Yao et al., 2024c), optimizes the loss:241

LLLMU = −L(DF , θ) + L(Didk
F , θ)242

+
∑

x,y∈DR

KL(pθ(y|x)||pθ̂(y|x)).243

Here, θ and θ̂ are model’s parameters before and244

after unlearning, the first term promotes unlearn-245

ing by maximizing loss on DF , while the second246

reinforces forgetting using ”I don’t know” labels247

instead of original targets. The KL-divergence term248

preserves performance on the retain set DR by249

aligning model outputs before and after unlearning.250

SCRUB (Teacher-Student) formulates unlearn-251

ing as a teacher-student setup, where a student252

model learns from a fixed teacher (Kurmanji et al.,253

2023). The student is optimized to match the254

teacher on the retain set DR while deviating on255

the forget set DF . The loss function combines KL-256

divergence for retention (LR), enforced divergence257

for unlearning (LF ), and task loss (Ltask), yielding258

LSCRUB = LR − LF + Ltask.259

Preference Optimization (DPO) method ap-260

plies Direct Preference Optimization (DPO)261

(Rafailov et al., 2023) for MU and MMMU. The262

model is trained to reduce reliance on undesired263

information through a loss function combining task264

Figure 2: Distributions of the attributes of the author’s
faces. We show that CLEAR is balanced and represen-
tative regarding age, gender, and ethnicity.

performance retention (Ltask) and a DPO-based 265

loss (LDPO), which penalizes deviations from a 266

reference model πref fine-tuned on Didk
F with ”I 267

don’t know” labels as in IDK-tuning. 268

To sum up, we chose recently published MU 269

methods for their easy adaptation to new modalities, 270

needing only input data changes (text, images, or 271

both) while maintaining core functionality. 272

4 CLEAR 273

In this section, we describe a new benchmark 274

CLEAR designed for character unlearning. As a ba- 275

sis, our dataset utilizes the text-only TOFU dataset 276

(Maini et al., 2024) within the same experimental 277

setup to replicate a real-world scenario where pri- 278

vacy concerns arise in sensitive contexts. While 279

external information from books, games, or movies 280

is general knowledge to unlearn (Eldan and Russi- 281

novich, 2023; Li et al., 2024a; Xing et al., 2024), 282

character unlearning deals with specific contextual 283

data that directly impacts individuals. This task ad- 284

dresses removing personal or confidential details, 285

enhancing user privacy. 286

4.1 Dataset Generation Process 287

The generation of synthetic faces for author profiles 288

in our benchmark is motivated by ethical, techni- 289

cal, and practical considerations (see the complete 290

rationale in Appx. A). Firstly, for each of the 200 291

authors from the TOFU dataset, we extract their 292

name, age, and ethnicity based on the knowledge 293

provided in the original dataset. Also, we gener- 294

ate a pool of 2000 faces using StyleGAN2 (Karras 295

et al., 2020) - an established generative model for 296

face synthesis. Each face is scored with a pre- 297

trained image model to determine age, gender, and 298

ethnicity. Then, for each author, we filter a pool 299

of faces with similar characteristics and select the 300

most appropriate one. We found out from textual 301
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Real faces

Q: The name of person on 
the photo is...

A: Taylor Swift.

Q: What is happening in 
the image?

A: Jaime Vasquez, a true 
crime author, poses for a 
portrait.

Q: What is happening in 
the image?

A: Takashi Nakamura, with 
a red rose and Mount Fuji 
in the background.

Real world

Q: In what direction are 
these cats eyes pointed 
towards?

A: The cat is looking 
upwards.

Retain Forget

Figure 3: The overview of our dataset.

information that the age distribution of the authors302

was highly shifted towards the older age group, so303

we needed to eliminate the age gap between au-304

thors’ profiles and corresponding images. To do305

this, we used the image editing framework pro-306

posed in (Bobkov et al., 2024) to shift the visual307

attributes of the faces to make them older. The308

final distribution of face and author characteristics309

is shown in Fig. 2. After matching each author310

with a face, we used the diffusion model (Li et al.,311

2024c) to synthesize images based on the given312

face and corresponding prompt (Appx. C).313

We perform a simple reality check to ensure314

the quality of generated faces. We use the CLIP315

ViT-L/14 model, usually considered a visual en-316

coder for most of the VLMs, to get embeddings317

of these three image sets – our faces, CelebA (Liu318

et al., 2015) and WebFace (Yi et al., 2014). Then,319

we calculate the pairwise FID scores on top of the320

embeddings of these sets, and we get the follow-321

ing results: FID between our faces and CelebA is322

74.4, between our faces and WebFace is 69.2, and323

between CelebA and WebFace is 62.1. This shows324

that the distance between our faces and the real-325

world faces is comparable to the distance between326

two real-world face datasets. Besides the author’s327

face, the diffusion model needs a textual prompt328

to produce an image. We ask GPT-4 to generate329

these prompts from a question-answer pair from330

TOFU about an author. We generate 8 images for331

each prompt, evaluate them using an ensemble of332

Figure 4: Examples of generated images showcasing a
distinct individual from our dataset.

fake-detection models, and select the most realistic 333

one. Additionally, GPT-4o generates captions for 334

each (image, visual prompt) pair, which are then 335

included in the dataset to form pairs (image, cap- 336

tion). However, due to restrictions caused by GPT 337

guard breaks and the identification of several bugs 338

in the TOFU dataset (such as a nameless author), 339

the final dataset includes fewer images than text 340

pairs (3,770 compared to 4,000). 341

4.2 Splits 342

We utilize four splits (sets) to evaluate MU (see 343

Fig. 3 for a sample from these splits): 344

Forget. Following methodology from (Maini et al., 345

2024), DF is made from data of 2, 10, and 20 per- 346

sons (1%, 5% and 10%, respectively) of the full set 347

D, consisting of 200 authors. This DF is expected 348

to be unlearned by the model. 349

Retain. The retain set DR consists of all data from 350

the complete set D that is not in DF . The model 351

should continue to work well on this subset and 352

preserve its performance as much as possible. 353

Real Faces. To ensure the model retains knowl- 354

edge of related concepts, such as faces, which are 355

not present in the finetuning dataset, we evaluate 356

it using a set of real-world faces. Specifically, we 357

use the MillionCelebs dataset (Zhang et al., 2020), 358

which consists of celebrity face-name pairs. We in- 359

tersect this dataset with the most recognized celebri- 360

ties from any year on the Forbes Celebrity 100 list 361

to increase the likelihood that the model has seen 362

these faces during pre-training. This results in a 363

final set of 150 face-name pairs. 364

Real World. To ensure that the model’s overall 365

visual capabilities remain intact throughout the un- 366

learning process, we evaluate its performance on 367

the Visual Question Answering (VQA) task using 368

samples from (x.ai, 2024). 369

5 Experimental Setup and Evaluation 370

In this section, we briefly discuss the evaluation 371

metrics and implementation details. 372
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5.1 Evaluation Metrics373

We conduct a comprehensive evaluation using374

ROUGE-L, Probability Score, Truth Ratio, and For-375

get Quality metrics to thoroughly assess unlearning376

performance across textual, visual, and multimodal377

domains. Following (Maini et al., 2024; Li et al.,378

2024a; Xing et al., 2024), this evaluation setup en-379

sures that we capture the effectiveness of unlearn-380

ing algorithms while examining both retention and381

forgetfulness of information within models.382

ROUGE-L. ROUGE evaluates the word-level383

correspondence between the model’s output and384

the ground truth answer to a question. We cal-385

culate the ROUGE-L recall score (Lin, 2004) by386

comparing the model’s decoded output fθ̂(x) with387

the ground truth answer y of the gold model388

g: ROUGE(fθ̂(x), y). This metric measures the389

model’s remembrance of the knowledge in its exact390

formulations.391

Probability Score. One way to expose im-392

plicit knowledge from a model is through its log-393

its, which are assigned to some factual tokens.394

This metric assesses the model’s capability to gen-395

erate the correct answer. We define the condi-396

tional probability p(y|x)
1
|y| for input x and an-397

swer y (power 1
|y| corresponds to normalizing for398

length). Each input question x is considered as399

a multiple choice question with possible answers400

y1, ..., yn, and then, assuming that y1 is the correct401

answer, the desired probability score is computed402

as p(y1|x)/
(

n∑
i=1

p(yi|x)
)

. Higher values indicate403

better performance, revealing how well the model404

retains the correct answer.405

Truth Ratio quantifies the alignment between406

predictions and the ground truth by comparing407

the probability of a paraphrased correct answer408

against the averaged probabilities of several sim-409

ilarly formatted incorrect answers, providing in-410

sight into the effectiveness of the unlearning al-411

gorithm in removing specific information while412

maintaining overall accuracy. As defined by (Maini413

et al., 2024), assume that ŷ denotes a paraphrased414

version of the answer y for the input x and Y ′415

is the set of 5 perturbations of the answer y.416

Then desired truth ratio R is calculated as: R =417
1

|Y ′|

(∑
y′∈Y ′ p (y′ | x)1/|y

′|
)
/p(ŷ | x)1/|ŷ|. This418

ratio is normalized and rescaled between 0 and419

1, with higher values indicating better knowledge420

retention.421

Aggregate metrics. All three above-defined422

Method Text-only Visual-only Multimodal
(Forget/Retain) (Forget/Retain) (Forget/Retain)

LLMU 0.01/0.03 85.2/88.9 0.25/0.51
DPO 0.42/0.26 50.2/81.4 0.22/0.48

SCRUB 0.42/0.26 42.59/99.4 0.36/0.52
IDK 0.24/0.26 N/A 0.33/0.51

RMU 0.59/0.26 67.9/99.0 0.00/0.00
Retain FT 0.42/0.26 100.0/100.0 0.37/0.51

Performance correlation with multimodal:
Spearman’s ρ 0.705 (p=0.118) 0.205 (p=0.741) 1.00

Table 2: Transferability analysis across domains. We
report forget (F) and retain (R) metrics for each method.
Lower F and higher R are better. N/A indicates the
method was not applicable. Correlation shows Spear-
man’s rank correlation between single-domain and mul-
timodal performance, with p-values in parentheses.

metrics are bounded between 0 and 1, so we com- 423

bine them into a single metric to evaluate the over- 424

all performance. We set up the Real, Retain, and 425

Forget metrics as a harmonic mean of the ROUGE, 426

the Probability score, and the Truth Ratio computed 427

on corresponding dataset splits. 428

Forget Quality calculates the "distance" of the 429

unlearned model to the gold model, which is a 430

proxy metric for the quality of exact unlearning. 431

Following (Maini et al., 2024), we take the Truth 432

Ratios distribution of both models. But, instead of 433

the p-value of the Kolmogorov-Smirnov test, we 434

calculate the Jensen-Shannonn distance between 435

these distributions. The latter metric better cap- 436

tures the differences between models, which we 437

additionally check and describe in the Appx. E. 438

To maintain the higher - the better convention, we 439

subtract the distance from 1. 440

5.2 Implementation 441

For the source model, we use LLaVa model (Liu 442

et al., 2023) with ViT (Dosovitskiy et al., 2021) 443

as visual encoder and LLaMa2-7B (Touvron et al., 444

2023) as a language model. First, we finetune it on 445

the image captioning task using the full CLEAR, 446

both visual and textual parts. We call this model 447

“base”, as it contains forget and retain sets. Then, 448

we perform the unlearning process on it. We use 449

the same hyperparameters for each method. We 450

evaluate the unlearned model based on our met- 451

rics from Sec. 5, using the Multi-choice VQA task 452

for the probability score and the image captioning 453

task for the Truth Ratio. For comparison, we also 454

present the metrics of the “gold” model. Experi- 455

ment results and metrics are shown in Tab. 1, with 456

details provided in Appx. H. 457
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Method Modality Real ↑
metric

Retain ↑
metric

Forget ↓
metric

Forget ↑
Quality

Gold — 0.50 0.51 0.19 1.00
Base — 0.48 0.51 0.35 0.85
RMU text 0.31 0.01 0.02 0.75
RMU visual 0.24 0.00 0.00 0.75
RMU both 0.22 0.00 0.00 0.80
GD text 0.26 0.00 0.00 0.79
GD visual 0.29 0.00 0.00 0.20
GD both 0.49 0.51 0.37 0.85
Retain FT text 0.49 0.51 0.37 0.85
Retain FT visual 0.46 0.45 0.42 0.85
Retain FT both 0.46 0.46 0.40 0.85
GA text 0.34 0.00 0.00 0.22
GA visual 0.29 0.00 0.00 0.32
GA both 0.29 0.00 0.00 0.32
KL text 0.49 0.32 0.23 0.71
KL visual 0.29 0.00 0.00 0.28
KL both 0.48 0.35 0.27 0.81
IDK text 0.48 0.50 0.39 0.85
IDK visual 0.44 0.45 0.35 0.84
IDK both 0.46 0.46 0.33 0.84
NPO text 0.51 0.51 0.29 0.85
NPO visual 0.48 0.43 0.24 0.84
NPO both 0.49 0.00 0.00 0.72
SCRUB text 0.49 0.51 0.37 0.85
SCRUB visual 0.48 0.49 0.39 0.85
SCRUB both 0.49 0.51 0.37 0.85
DPO text 0.47 0.45 0.42 0.85
DPO visual 0.48 0.49 0.23 0.84
DPO both 0.46 0.47 0.28 0.84
LLMU text 0.48 0.46 0.40 0.85
LLMU visual 0.49 0.50 0.37 0.85
LLMU both 0.47 0.48 0.33 0.84

Table 3: Results of unlearning of different modalities
within multimodal setup. We finetune on full datasets
(both modalities), then forget on a single domain subset
(text or visual) or full forget set. Base – model before
unlearning. Gold - a model trained only on retain.

6 Results458

In the following sections, we describe the results459

of MU methods on our dataset. We seek to answer460

the following research questions:461

RQ1: Does an unlearning method’s performance on462

a single domain transfer directly to the per-463

formance in a multimodal setting? Should464

we study multimodal unlearning at all if we465

can easily predict its performance from single-466

domain experiments?467

RQ2: Is unlearning only one modality (textual or vi-468

sual) enough in a multimodal setup? How469

does the effectiveness vary depending on470

modality? How do different unlearning meth-471

ods compare in their effectiveness for unlearn-472

ing specific modalities?473

RQ3: In the context of multimodal unlearning, what 474

methods perform the best? 475

6.1 Transferability from Single Domain 476

To investigate RQ1, we analyse how well the per- 477

formance of unlearning methods in single modali- 478

ties predicts their effectiveness in multimodal set- 479

tings. For the textual domain, we use the TOFU 480

benchmark; for the visual, we use a standard U- 481

MIA approach to the data, consisting of the faces 482

from our dataset; the details for the pipelines and 483

full results are provided in Appx. F and G. For 484

multimodal unlearning, we use our benchmark. 485

The correlations between single-domain and 486

multimodal (MM) rankings are relatively weak. 487

We rank methods according to their forget metric 488

performance in each domain and calculate Spear- 489

man’s rank correlation coefficient between single- 490

domain and multimodal rankings. The correlation 491

ρ = 0.7 for text-MM and ρ = 0.2 for visual-MM, 492

indicating limited transferability (see Tab. 2). 493

We observe significant discrepancies between 494

single-domain and multimodal performance. 495

For example, LLMU achieves a retain metric of 496

0.51 in multimodal but degrades to 0.03 in the tex- 497

tual setting while maintaining good forget scores 498

(0.25 vs 0.01). Similar patterns emerge for other 499

methods, suggesting that single-domain evaluation 500

is insufficient. 501

Methods that perform well in single domains 502

can fail catastrophically in multimodal settings. 503

For instance, RMU achieves good forget-retain bal- 504

ance in text-only (0.26/0.59) but completely fails 505

on the retain set in multimodal setup (0.00/0.00), 506

highlighting the unique challenges of multimodal 507

unlearning. 508

Takeaway 1: Single-domain performance
is a poor predictor of multimodal unlearn-
ing success, with relatively low-rank cor-
relations (ρ = 0.7 and ρ = 0.2) and dis-
tinct failure modes. This emphasizes the
need for dedicated multimodal evaluation
frameworks and potentially new methods
designed specifically for multimodal MU.

509

6.2 Impact of Modality Selection on 510

Unlearning 511

To explore RQ2, we examine how the choice of 512

unlearning modality impacts performance. We 513

conduct experiments with three variants for each 514
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method: text-only, visual-only, and both modali-515

ties. Results in Tab. 3 show distinct patterns across516

methods.517

Text-only Unlearning. Text-only approaches518

show mixed results. While some methods, like519

NPO, achieve good retain metrics (0.51) with mod-520

erate forget scores (0.29), others struggle signif-521

icantly. RMU and GD completely fail on retain522

(0.01 and 0.00). KL shows middling performance523

with retain at 0.32 and forget at 0.23. This in-524

consistency suggests that text-only unlearning may525

disrupt cross-modal representations unpredictably.526

Visual-only Unlearning. Visual-only unlearning527

often achieves a better balance. DPO shows good528

results with a forget metric of 0.23 while main-529

taining a 0.49 retain score. LLMU and SCRUB530

demonstrate similar patterns (forget: 0.37, 0.39;531

retain: 0.50, 0.49, respectively). However, some532

methods like RMU, GD, GA, and KL completely533

fail on retain metrics (0.00), indicating visual-only534

approaches are not universally successful.535

Multimodal Unlearning. Joint modality unlearn-536

ing shows the most promising results for several537

methods. IDK improves its forget metric from538

0.39 (text) and 0.35 (visual) to 0.33 (both) while539

maintaining stable retain performance (0.46). NPO540

shows strong real-world performance (0.49) but541

struggles with retain metrics when using both542

modalities. SCRUB demonstrates remarkable con-543

sistency across configurations (retain: 0.50, forget:544

0.37), suggesting some methods are more robust to545

modality selection.546

Takeaway 2: While visual-only unlearning
often outperforms text-only approaches, the
effectiveness varies significantly by method.
Methods like SCRUB maintain consistent
performance across modalities (retain: 0.49-
0.51), while others show dramatic varia-
tions. NPO and KL demonstrate that com-
bining modalities can improve forget quality
(0.72-0.81) compared to single-modality ap-
proaches (0.28-0.85). However, the optimal
choice of modality depends heavily on the
specific method and desired performance
trade-offs.

547

6.3 Unlearning Both Domains548

Having established that multimodal unlearning re-549

quires addressing both modalities, we evaluate all550

available unlearning methods on our source model 551

fθ across both domains. For these experiments, 552

we use a forget set containing data about 20 per- 553

sons (10% of the dataset), encompassing both their 554

textual and visual information. 555

As shown in Tab. 3, there are three distinct cat- 556

egories of method behaviour. GA, GD, KL, and 557

RMU achieve perfect unlearning (forget metric = 0) 558

but completely destroy the model’s retained knowl- 559

edge (retain metric = 0). IDK, SCRUB, and Retain 560

FT maintain strong retain performance ( 0.51) but 561

struggle with effective forgetting (forget metrics 562

0.33-0.37). LLMU and DPO balance forgetting 563

and retention best, maintaining reasonable retain 564

metrics (0.48-0.51) while showing improved forget 565

performance (0.22-0.25). 566

Takeaway 3: Most unlearning methods
struggle with the trade-off between effec-
tive forgetting and knowledge retention in
multimodal settings. Only LLMU and DPO
show promise in balancing these objectives,
but their performance remains below the
gold model (forget = 0.19, retain = 0.51).

567

7 Conclusion 568

In this work, we introduce CLEAR, the first open- 569

sourced benchmark designed to assess machine 570

unlearning in a textual-visual multimodal setup. 571

Our evaluation of existing unlearning techniques 572

across domains shows that multimodal unlearning 573

is more challenging than previously anticipated, 574

laying the ground for further research. Our find- 575

ings offer a new perspective than earlier results on 576

safety alignment (Chakraborty et al., 2024), which 577

suggested that text-only unlearning is sufficient for 578

multimodal models. 579

While CLEAR’s synthetic personas ensure con- 580

trolled evaluation, real-world data (e.g., diverse 581

facial features, noisy captions) may introduce new 582

challenges. Additionally, our study focuses on 583

visual-language models, leaving other modalities 584

(e.g., audio, video) unexplored. By open-sourcing 585

CLEAR and establishing the first multimodal MU 586

leaderboard, we aim to accelerate progress toward 587

ethical, privacy-preserving multimodal AI. Our 588

findings highlight that MMU is not merely an exten- 589

sion of unimodal unlearning but a distinct challenge 590

requiring novel methodologies. 591

8



Limitations592

Despite the contributions of this work, several limi-593

tations remain that need further investigation. One594

major limitation is the reliance on synthetic data,595

as CLEAR is based on such dataset, which may596

not fully capture the complexity of real-world sce-597

narios, thus limiting the generalizability of our598

findings. Additionally, while our work focuses on599

unlearning methods designed for privacy-centric600

applications, such as removing personal data, it601

may not fully address other unlearning needs,602

such as removing harmful content. Moreover, our603

benchmark mainly evaluates fine-tuning-based un-604

learning methods using sophisticated loss func-605

tions, leaving unexplored other broader unlearn-606

ing techniques, such as analytical or mechanical607

approaches. Another challenge lies in the scala-608

bility of these unlearning methods, as they may609

struggle to scale efficiently when applied to larger610

models and datasets, hindering their potential use611

in real-world systems. Furthermore, our focus on612

catastrophic forgetting overlooks unintended side613

effects, such as the introduction of biases or the614

degradation of model performance on unrelated615

tasks, and the broader impact of unlearning on fair-616

ness and safety remains an open area for future617

research.618

Ethics619

In this work, we focus on unlearning character-620

specific knowledge in pre-trained visual-language621

models (VLMs). We aim to enable VLMs to se-622

lectively forget all traces of specific synthetic per-623

sonas—including their textual biographies, visual624

appearances, and cross-modal associations—while625

preserving the model’s general capabilities. This626

addresses critical ethical concerns, such as the right627

to be forgotten and prevention of unintended mem-628

orization. For forget and retain sets, all data is629

synthetically generated to avoid biases and leakage630

from real-world sources, with evaluation protocols631

encouraging responsible use. These sets were man-632

ually checked by one of the authors. Datasets on633

celebrity recognition and general VQA are publicly634

accessible sources. We also urge researchers and635

developers to employ our methods with responsi-636

bility and ethical considerations.637

We used 84 hours of A100 GPU computation,638

resulting in an estimated 9 kg of CO2 emissions.639

Use of AI Assistants. We utilize Grammarly to 640

enhance and proofread the text of this paper, cor- 641

recting grammatical, spelling, and stylistic errors, 642

as well as rephrasing sentences. Consequently, cer- 643

tain sections of our publication may be identified 644

as AI-generated, AI-edited, or a combination of 645

human and AI contributions. 646
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A Rationale for Synthetic Face Selection925

The use of synthetic faces, rather than real-world926

facial data, in our benchmark is motivated by ethi-927

cal, technical, and practical considerations. First,928

synthetic faces eliminate privacy risks and ethical929

concerns associated with real facial datasets. By930

generating artificial personas, we avoid biases in-931

herent in real-world datasets and ensure no real932

individuals are misrepresented, aligning with the933

right to be forgotten principle.934

Second, synthetic data provides precise control935

over memorization evaluation. Real faces risk con-936

tamination from prior model training (e.g., pre-937

existing celebrity images in model weights), which938

could confound unlearning performance measure-939

ments. Synthetic faces, being novel and never940

publicly released, guarantee that models learn ex-941

clusively from our benchmark, enabling accurate942

assessment of unlearning efficacy. Notably, our943

experiments reveal that models still struggle to944

fully erase synthetic faces – despite their controlled945

generation. This implies that applying current un-946

learning methods to real-world faces (e.g., from947

public sources like Wikipedia) would face greater948

challenges, as real data introduces uncontrolled949

variability and pre-existing biases that synthetic950

benchmarks deliberately exclude. In other words,951

applying artificial profiles ensures that the consid-952

ered model has not seen the authors during pre-953

training, and this is essential for the fair evaluation954

of MU methods, as we can easily compare MU955

results with a gold model, which has never seen956

the profiles we want to forget, without expensive957

re-training from scratch on a large plethora of data958

required for LLMs and VLLMs training.959

Third, synthetic generation prevents cross-modal960

leakage. By explicitly linking synthetic faces to961

their textual biographies, we isolate memorization962

tests to our dataset, ensuring no external knowl-963

edge interferes. This allows rigorous evaluation of964

whether unlearning a biography also removes its965

associated face.966

Additionally, synthetic faces enhance repro-967

ducibility and scalability. Unlike real datasets bur-968

dened by licensing restrictions, synthetic data can969

be freely shared, fostering open benchmarking. On-970

demand generation also supports customizable test-971

ing, such as expanding the forget set to thousands972

of unique identities without legal barriers. Our973

comprehensive image generation strategy suits the974

author’s textual descriptions and preserves consis-975

tency among his or her images. Still, it enables 976

sufficient diversity between different authors re- 977

garding age, gender and ethnicity. 978

Also, it is worth noting that synthetic data is 979

also used in practice in literature for unlearning- 980

related task. In (Zhang et al., 2024b), the authors 981

introduce a novel dataset, UnlearnCanvas, designed 982

to benchmark machine unlearning techniques in 983

diffusion models, offering a comprehensive, high- 984

resolution stylized image dataset to evaluate the 985

unlearning of artistic styles and associated objects. 986

The UnlearnCanvas dataset includes generated im- 987

ages across 60 artistic painting styles, with 400 988

images per style across 20 object categories. The 989

dataset facilitates the quantitative evaluation of vi- 990

sion generative modelling tasks, including machine 991

unlearning, style transfer, vision in-context learn- 992

ing, bias removal for generative models, and out-of- 993

distribution learning. The paper (Ma et al., 2024) 994

introduces a new benchmark, FIUBench, to eval- 995

uate the effectiveness of unlearning algorithms in 996

Vision Language Models under the Right to be For- 997

gotten setting. The authors formalize the VLM 998

unlearning task and construct a Fictitious Facial 999

Identity VQA dataset of synthetic faces paired 1000

with randomly generated personal information to 1001

study privacy under the Right to be Forgotten sce- 1002

nario. This approach allows precise control over 1003

the source of information and its exposure in the 1004

unlearning dataset. The dataset includes personal 1005

backgrounds, health records, and criminal histories 1006

for each facial identity. The work (Dhasade et al., 1007

2024) introduces a novel approach to Federated 1008

Unlearning, which aims to effectively remove spe- 1009

cific training data knowledge from machine learn- 1010

ing models trained through Federated Learning. 1011

The authors highlight the inefficiencies of existing 1012

Federated Unlearning methods that often involve 1013

high computational costs due to gradient recom- 1014

putation and storage requirements. The provided 1015

approach, QuickDrop, is designed to streamline 1016

the unlearning process by generating compact syn- 1017

thetic datasets that represent the gradient informa- 1018

tion used during model training. This approach 1019

significantly reduces the volume of data needed 1020

for unlearning while maintaining performance ef- 1021

ficiency. QuickDrop employs a method called 1022

dataset distillation to create a compact dataset that 1023

captures essential features of the original training 1024

data. This dataset is approximately 1% of the size 1025

of the original data, leading to minimal storage 1026

overhead. Each client generates a synthetic dataset 1027
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through gradient matching, which serves as a com-1028

pressed representation of their original gradients.1029

In summary, synthetic faces prioritize ethical1030

rigour, experimental precision, and reproducibil-1031

ity—critical for advancing multimodal machine1032

unlearning research. The observed difficulty in1033

unlearning even synthetic faces underscores funda-1034

mental model limitations, which real-world deploy-1035

ments (e.g., authors’ faces) would exacerbate due1036

to added complexity. Our benchmark thus serves1037

as a necessary precursor to addressing practical1038

challenges in ethical AI.1039

B Unlearning Methods1040

This section describes the main unlearning ap-1041

proaches considered in this work.1042

1. Finetuning on retain data. The most straight-1043

forward method to conduct unlearning is to1044

finetune the model on the retain set, assum-1045

ing that the model will unlearn the knowl-1046

edge from the forget set and preserve its per-1047

formance on the retain set. Despite its sim-1048

plicity and reasonable effectiveness for rela-1049

tively small models, it is not usable in models1050

with huge sizes of pre-train sets, such as most1051

LLMs.1052

2. Gradient ascent on forget set. In this1053

method, unlearning is done by maximizing1054

the loss on forget data with the intuition that1055

it will lead to getting predictions that are dis-1056

similar from the correct answers for forget set1057

and consequently unlearning desired informa-1058

tion. Thus, this method can be considered as1059

a finetuning procedure with the following loss1060

function:1061

L(DF , θ) =
1

|DF |
∑
x∈DF

NLL(x, θ),1062

where NLL(x, θ) is the negative log-1063

likelihood of the model on the input x.1064

Instead of maximizing the NLL loss, maxi-1065

mizing the entropy of the model’s predictions1066

on the forget set is possible. The intuition1067

behind this trick is that it will correspond to1068

the increase of the model’s uncertainty in its1069

predictions on forget set, which will also cor-1070

respond to successful unlearning.1071

3. Gradient difference. (Liu et al., 2022) The1072

next method builds on the concept of combin-1073

ing two previous methods. It aims to increase1074

the loss on the forget data and at least maintain 1075

the loss on the retain set. The loss function is 1076

defined as follows: 1077

LGD = −L(DF , θ) + L(DR, θ), 1078

where DF is the forget set that remains con- 1079

stant, DR is the retain set that is randomly 1080

sampled during training, and L is a suitable 1081

loss function. 1082

4. KL minimization. This approach aims to 1083

minimize the Kullback-Leibler (KL) diver- 1084

gence between the model’s predictions on the 1085

retain set before and after unlearning while 1086

maximizing the conventional loss on the for- 1087

get set. The LKL loss function is defined as 1088

1

|DF |
∑
x∈DF

1

|s|

|s|∑
i=2

KL
(
P (s<i|θ)

∥∥P (s<i|θ′)
)
. 1089

The total objective function is formulated as 1090

follows: 1091

Lobj = −L(DF , θ) + LKL, 1092

where θ′ is the model’s weights before un- 1093

learning, s is the input sequence, L is conven- 1094

tional loss, and P (s|θ) is the model’s logits 1095

on the input sequence s with weights θ. 1096

5. IDK tuning. Introduced in (Maini et al., 1097

2024), this method aims to minimize the loss 1098

on the retain set, meanwhile, it uses pairs of 1099

inputs and "I don’t know"(or some variations) 1100

labels instead of the original labels on the for- 1101

get set. The loss function is defined as fol- 1102

lows: 1103

Lidk = L(DR, θ) + L(Didk
F , θ), 1104

where L is some loss function, DR is retain 1105

set, and Didk
F is forget set with labels replaced 1106

with "I don’t know" answers or some varia- 1107

tions of them. 1108

6. Preference Optimization. Inspired by Di- 1109

rect Preference Optimization (DPO) (Rafailov 1110

et al., 2023), the unlearning task can be framed 1111

as a preference optimization problem. In DPO, 1112

the model is trained to optimize user prefer- 1113

ences directly, typically by maximizing the 1114

alignment between the model’s outputs and 1115

the user’s desired outcomes. Similarly, the 1116
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goal of unlearning can be viewed as remov-1117

ing specific knowledge or patterns that the1118

model has learned, effectively optimizing the1119

model’s outputs to align with new preferences1120

that exclude the undesired information.1121

In this context, the unlearning task aims to1122

adjust the model’s parameters such that the1123

output reflects a change in the learned distri-1124

bution, making the model "forget" specific1125

pieces of knowledge. This can be formal-1126

ized as a preference optimization problem,1127

where the preference is towards outputs that1128

no longer rely on unwanted data. Let L repre-1129

sent the loss function used for this task, which1130

balances the model’s performance on new data1131

and its ability to unlearn specific information.1132

A common approach is to use a loss func-1133

tion that minimizes the difference between the1134

model’s current predictions and the desired1135

"unlearned" predictions of the chosen refer-1136

ence model. The following loss function was1137

considered to optimize for unlearning:1138

L = λ1Ltask(D
idk
F , θ) + λ2LDPO(πθ, πref ),1139

LDPO(πθ, πref ) =

= −Ex,y∈DF

y′∈Didk
F

[
log σ(β log

πθ(y
′|x)

πref (y′|x)
−

− β log
πθ(y|x)
πref (y|x)

)
]
,

1140

where πθ is related to the unlearned model1141

which we try to optimize, σ is the sigmoid1142

function, πref is reference model which in1143

our case is fine-tuned on Didk
F data, where la-1144

bels are replaced with "I don’t know" answers,1145

(x, y) is input-answer pair from the forget set,1146

y′ is "I don’t know"-like answer correspond-1147

ing to this pair, Ltask(D
idk
F , θ) is the standard1148

task loss (e.g., cross-entropy) on the set Didk
F ,1149

and LDPO(πθ, πref ) is DPO loss used for un-1150

learning, which penalizes the model for retain-1151

ing unwanted knowledge, computed between1152

the input data x and the undesired in terms of1153

unlearning labels y. λ1 and λ2 are weighting1154

coefficients that balance the trade-off between1155

task performance and the unlearning process1156

(equal to 1 both), and β is the DPO coefficient1157

(taken as 0.1 in our setting).1158

This formulation allows the model to optimize 1159

for maintaining task performance while en- 1160

suring the forgetting of specified information, 1161

similar to the dual objective in preference op- 1162

timization. In the same way that DPO tailors 1163

the model to user preferences, this method 1164

shapes the model to "prefer" forgetting certain 1165

information, effectively unlearning it. 1166

7. Negative Preference Optimization . Pro- 1167

posed in (Zhang et al., 2024a) this method can 1168

be treated as DPO without positive examples. 1169

In our setting, the final loss function LNPO 1170

for this method is derived as follows: 1171

2

β
Ex,y∈DF

[
log

(
1 +

( πθ(y|x)
πref (y|x)

)β
)]

, 1172

where all the notation is the same as for the 1173

previous DPO method. β was also taken equal 1174

to 1. Such loss functions ensure that the model 1175

output probability πθ(y|x) is as small as possi- 1176

ble, corresponding to the unlearning objective 1177

of the forget data. 1178

8. Teacher-Student (SCRUB) (Kurmanji et al., 1179

2023) The main idea of this method is to 1180

train a student model, which is taken as a de- 1181

sired unlearned model from the original one, 1182

such that it will "disobey" the teacher original 1183

model on the forget set. The resulting loss of 1184

student model in this method is constructed as 1185

follows: 1186

d(x,ws) = KL(p(f(x;wo))||p(f(x;ws))), 1187

LR =
α

|DR|
∑

xr∈DR

d(xr, w
s), 1188

LF =
1

|DF |
∑

xf∈DF

d(xf , w
s), 1189

Ltask =
γ

|DR|
∑

xr∈DR

l(xr, yr), 1190

L = LR − LF + Ltask, 1191

where f(x;wo) is the original teacher model 1192

with weights wo, which are kept unchanged, 1193

f(x;ws) is the unlearned student model with 1194

parameters ws, which are optimized, d(x,ws) 1195
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is the KL-divergence between the output dis-1196

tributions of the student and teacher models1197

on the input x, ℓ is the conventional task loss1198

(e. g. cross-entropy), and α and γ are the hy-1199

perparameters controlling the importance of1200

the student model’s performance on the retain1201

set. In our setting, α and γ were both set to1202

1. By minimizing this final loss L, the student1203

model is expected to improve its performance1204

on the retained set while unlearning from the1205

forgotten set, respectively.1206

9. LLMU (Yao et al., 2024c)1207

This method was proposed in one of the first1208

works on unlearning LLMs (Yao et al., 2024c).1209

In our experiments, we made slight modifica-1210

tions to the original method, and employed1211

the following loss function:1212

LF := −L(DF , θ),1213

Lr :=
∑

(xF ,yr)∈DF×Yr

1

|yr|
L(xF , yr, θ),1214

LR :=
∑

x,y∈DR

KL(pθ(y|x)||pθ′(y|x)),1215

LLLMU = LF + Lr + LR,1216

where θ is the vector of unlearned model pa-1217

rameters, and θ′ is the vector of original model1218

parameters. This loss consists of three parts.1219

The first one, LF , is the negative conventional1220

loss on the forget set, the optimization of1221

which corresponds to the unlearning of the1222

forget set. The second part, Lr, is the loss1223

associated with "I don’t know" labels (the1224

original method used randomly generated la-1225

bels), which also reinforces the forgetting of1226

the DF set. The third part is the KL diver-1227

gence between the model’s predictions on the1228

retain set before and after unlearning, and its1229

optimization relates to preserving the model1230

performance on the retain set DR. Note that1231

it uses forward KL divergence instead of the1232

usual reverse KL divergence.1233

10. Representation Misdirection for Unlearn-1234

ing (RMU). (Li et al., 2024b) This method1235

builds on the thesis that the model’s interme-1236

diate activations contain its knowledge about1237

current inputs. This approach aims to misdi-1238

rect these activations on forget inputs to facil-1239

itate unlearning in this manner. The loss for1240

this method has the following form: 1241

LF = Ex∈DF

[
1

|x|
∑
t∈x

||h(t)− c · u||22

]
, 1242

LR = Ex∈DR

[
1

|x|
∑
t∈x

||h(t)− ho(t)||22

]
, 1243

LRMU = LF + LR, 1244

where h(t) are the unlearned model’s (which 1245

weights are optimized during unlearning pro- 1246

cedure) hidden states on specific layer ℓ on 1247

input t, ho(t) are the hidden states of the orig- 1248

inal model (which parameters are frozen) on 1249

the layer ℓ on input t, u is the unit random vec- 1250

tor with independent elements sampled uni- 1251

formly from [0, 1), and u kept fixed through- 1252

out unlearning, and c and α are hyperparame- 1253

ters controlling activations scaling and trade- 1254

off between forgetting the DF and retaining 1255

DR respectively. The intuition behind this 1256

loss is to make the model’s outputs on forget 1257

set DF as far as possible from the correct ones 1258

by making hidden states as close as possible 1259

to random ones due to LF summand and then 1260

build the outputs upon this states while mak- 1261

ing the final model closer to original one on 1262

the retain set with the help of LR part of the 1263

loss. ℓ was chosen equal to 7 according to the 1264

empirical recommendation from the original 1265

method paper. 1266

11. Twins. This method is based on the assump- 1267

tion that the outputs of the original model on 1268

augmented inputs will match the outputs of 1269

the model on those same inputs as if these 1270

inputs had not been part of the training pro- 1271

cess. The advantage of this method lies in the 1272

fact that it does not rely on a min-max opti- 1273

mization problem, which ensures its stability. 1274

However, a drawback is that this method is 1275

not applicable if the model was trained with 1276

augmentations. If the forgetting set is rela- 1277

tively small, it may be necessary to introduce 1278

an additional term to ensure that the model 1279

does not forget the remaining data. In this 1280

case, the loss function can be formulated as 1281

follows: 1282

LF = d(f(xf ), fo(x
aug
f )), 1283

LR = d(f(xr), fo(xr)), 1284

L = LF + Lr, 1285
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where d(a, b) represents the distance between1286

vectors a and b, which can be either the L21287

norm or KL divergence, f(x) denotes the out-1288

put of the unlearned model for input x. In1289

contrast, fo(x) refers to the output of the orig-1290

inal frozen model on the input x.1291

12. SCRUBbio. This method adapts the original1292

SCRUB for biometric task. We replaced the1293

Kullback-Leibler divergence for outputs be-1294

tween original and unlearned models with co-1295

sine distance between their embeddings. Con-1296

sequently, the loss function for the task is for-1297

mulated as follows:1298

LF =
1

|DF |
∑

xf∈DF

(1− dcos(f(xf ), fo(xf ))) ,1299

LR =
1

|DR|
∑

xr∈DR

dcos(f(xr), fo(xr)),1300

L = LF + LR,1301

where dcos(a, b) is the cosine distance be-1302

tween vectors a and b, f(x) is the output of1303

the unlearned model on input x, fo(x) is the1304

output of the original frozen model on the1305

input x.1306

13. Sparsity (Jia et al., 2024) This method is1307

based on finetuning the model on the retain1308

set using L1-regularization. The final loss is1309

as follows:1310

L = LR + λ · ||θ||1,1311

where λ is a parameter of regularization.1312

14. Selective Knowledge Unlearning. (Liu et al.,1313

2024). This method is based on the weights1314

arithmetic. First, we additionally finetune the1315

model on the forget set with this loss:1316

LGD =
∑

(xf ,yf )∈DF

l(f(xf ), yf )1317

LRD =
∑

xi
f∈DF

1

Y i
rd

∑
y∈Y i

rd

l(f(xif ), y)1318

LPD =
∑
(xr,yr

KL(p(xr), yr)1319

L = ϵ1 · LGD + ϵ2 · LRD − ϵ3 · LPD1320

Where Y i
rd is the set of related answers to the 1321

given question xi. So, the finetuned version is 1322

the opposite of what we aim to achieve. Then, 1323

we calculate the delta in weights, produced 1324

by this finetuning, and substract it from the 1325

original model. 1326

C The process of face generation 1327

To generate a set of the author’s faces, we used 1328

StyleGAN 2 ADA (Karras et al., 2020). Using the 1329

generator, we synthesized a batch of 32 faces from 1330

the randomly sampled z ∈ N (0, I). We first pass 1331

them all to the StyleGAN 2 discriminator to filter 1332

out images with artifacts, which predicts the image 1333

quality score. We select only eight images with the 1334

best scores and discard the others. This process is 1335

repeated until 2000 images are collected. 1336

We first synthesize a bath of 32 random faces to 1337

generate a set of older people. For each of them, 1338

we apply StyleFeatureEditor (Bobkov et al., 2024) 1339

with editing direction "age" from (Shen et al., 2020) 1340

and editing power 5, which increases the person’s 1341

age. However, we noticed that this edit often adds 1342

glasses that shift the faces’ distribution. To elim- 1343

inate this effect, we also use StyleFeatureEditor 1344

after increasing age: we apply editing direction 1345

"glasses" from (Wu et al., 2020) with edit power 1346

-10. For faces with glasses, it should remove them, 1347

while for faces without glasses, it should leave the 1348

image almost unchanged. Then, as before, we se- 1349

lect only eight images according to the discrimina- 1350

tor score and repeat the process. 1351

The last step is to generate images with the se- 1352

lected faces according to attributes from the text 1353

prompts. For this purpose, we used the personal- 1354

ized generation diffusion model PhotoMaker V2 1355

(Li et al., 2024c). According to our request, GPT- 1356

4o has generated prompts in such a way that 1357

the first sentence of a prompt describes the per- 1358

son, and the other sentences describe the setting, 1359

style, atmosphere, pose, and so on. PhotoMaker 1360

requires a particular input type with the trigger 1361

word "img" and a particular class word (e.g., man, 1362

child or person) before it. For this purpose, we re- 1363

placed the first sentences as follows: "a real photo 1364

of a {old} {gender} called {name} img, showing 1365

face." where old is "old" if the person is older than 1366

60, "otherwise; gender is "man" or "woman" ac- 1367

cording to the person’s gender, and name is the 1368

person’s name. Below is an example of such a 1369

prompt: 1370
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M Method Real
Metric ↑

Retain
Metric ↑

Forget
Metric ↓

Log Forget
Quality ↑

L
L

am
a2

-7
B

Original 0.47 0.26 0.42 -3.92
Gold 0.48 0.26 0.24 0.0

Retain FT 0.50 0.26 0.42 -4.92
LLMU 0.38 0.03 0.01 -2.31

KL 0.24 0.00 0.00 -18.22
GA 0.25 0.00 0.00 -17.22
GD 0.61 0.13 0.01 -48.59

IDK 0.46 0.26 0.24 -4.92
DPO 0.50 0.26 0.42 -4.92

SCRUB 0.50 0.26 0.42 -4.92
RMU 0.51 0.26 0.59 -42.86
NPO 0.50 0.28 0.62 -44.46

M
is

tr
al

-7
B

Retain FT 0.67 0.34 0.47 -3.87
LLMU 0.65 0.30 0.39 -6.69

KL 0.28 0.00 0.00 -50.30
GA 0.26 0.00 0.00 -36.06
GD 0.60 0.01 0.00 -51.16

IDK 0.63 0.32 0.45 -2.72
DPO 0.67 0.33 0.47 -3.63

SCRUB 0.66 0.33 0.47 -3.39
RMU 0.09 0.00 0.00 -123.22
NPO 0.67 0.33 0.47 -3.16

Table 4: Unlearning methods on textual domain only.
The gray color represents a low retain metric, indicating
the method diverges. Hence, we do not consider them.

"a real photo of an old man called Jaime Vasquez1371

img, showing his face. Include his birth date, Febru-1372

ary 25, 1958, subtly in the background. The setting1373

should reflect elements of the time period, such as1374

vintage clothing styles or a retro ambience. Jaime1375

should be depicted in a neutral pose, focusing on1376

his character and era, with a hint of true crime1377

elements around him."1378

To increase the power of the prompt, we used1379

style strength = 0.5 and guidance scale = 7.5. We1380

also used the same negative prompt "(asymmetry,1381

worst quality, low quality, illustration, 3d, 2d, paint-1382

ing, cartoons, sketch), open mouth" for all images.1383

The number of sampling steps was set to 50. For1384

each pair (prompt, face), we synthesized eight sam-1385

ples and chose the most appropriate one.1386

D A sample of dataset1387

Our dataset consists of 200 fictitious authors, each1388

with 15-20 visual and 20 textual questions. We add1389

an example of data for a single person in the Table1390

6.1391

E Forget Quality Metric1392

Maini et al. (2024) calculate a statistical test on the1393

outputs of two models: an unlearned model and the1394

gold model. The Truth Ratio metric is considered1395

as output for its effectiveness in informativeness.1396

To assess this metric, the Kolmogorov-Smirnov test1397

Method Forget
Acc. ↓

Holdout
Acc. ↑

Retain
Acc. ↑ U-LIRA ↓ U-MIA ↓

Original 100.00 18.50 100.00 1.00 0.96
Gold 15.43 15.04 97.52 0.50 0.50

Retain FT 100.00 18.54 100.00 1.00 0.92
SCRUB 99.74 16.77 99.93 0.98 0.90
LLMU 85.72 14.62 88.99 0.83 0.75
RMU 67.97 17.27 99.99 0.77 0.60
DPO 50.21 13.93 81.49 0.73 0.62
SCRUBbio 42.59 14.25 99.44 0.71 0.57
Sparsity 66.41 14.44 83.57 0.78 0.73
Twins 50.00 20.34 99.72 0.73 0.54

Table 5: Results of unlearning on visual modality only.
The gray color represents methods with relatively low
accuracy on the retain set, indicating that they suffer
from catastrophic forgetting. Therefore, we do not con-
sider these methods to be successful.

is used to compare the distributions of Truth Ratios 1398

from both models. A high p-value suggests that the 1399

distributions are close, and so are unlearned and 1400

gold models; a low p-value indicates that distribu- 1401

tions differ, and the unlearned model is far from 1402

gold. 1403

Nevertheless, the application of statistical tests 1404

for model evaluation is uncommon and may be 1405

confusing; therefore, we conduct additional checks 1406

and compare it with common distribution distances, 1407

such as Jensen-Shannon and Wasserstein distances. 1408

We perform a simple experiment: take our dataset, 1409

randomly split it into 10 equal folds and train 10 1410

models on the progressively larger subsets – start- 1411

ing with fold 1, then folds 1 to 2, and so on, up 1412

to folds 1 to 9, and finally all of the data. The 1413

latter model is considered as gold. We construct 1414

the Truth Ratios for each model and compare the 1415

resulting distributions with the gold model. The 1416

idea is, that the metric should be monotonic w.r.t. 1417

percent of data used in the train. The results are 1418

presented in Figure 5. We show that indeed, the 1419

p-value sometimes fails to represent the differences 1420

in the data. For example, the values for the 10 and 1421

20 percents are equal. And the values for 60%, 1422

80% are not monotonic. So, we consider to not 1423

using the p-value metric and move to JS distance. 1424

F Textual-only Unlearning 1425

For unlearning of the textual domain only, we use 1426

the TOFU benchmark, containing question-answer 1427

pairs of about 200 authors, 20 for each of them 1428

(4000 pairs in total), and use the splits of size 90% 1429

and 10% of the entire data for retain and forget 1430

parts respectively. The "Gold" model for the fur- 1431

ther unlearning quality evaluation is trained on the 1432
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Figure 5: Results of testing distances between distribu-
tions. JS stands for Jensen-Shannon distance, and WD
– for Wasserstein distance. We show that unlike above
metrics, the KS test p-value is not monotonic, which
implies it may not be the best choice for Forget Quality
metric.

retain data only, conducting 5 epochs of training1433

with the batch size of 4, 1 gradient accumulation1434

step, learning rate of 1e-5 weight decay of 0.01,1435

and also applying LoRA adapter with the rank 8,1436

α = 32 and 0 dropout parameter. For the unlearn-1437

ing, we first finetune the model on the entire data1438

split with the same hyperparameters: 5 epochs of1439

training, batch size of 4, 1 gradient accumulation1440

step, learning rate of 1e-5, weight decay of 0.01,1441

LoRA rank of 8, α = 32, 0 dropout coefficient.1442

Then, unlearning methods are conducted on the1443

forget data with the following hyperparameters: 51444

epochs of unlearning, batch size of 4, 1 gradient1445

accumulation step, learning rate of 1e-5, weight1446

decay of 0.01, LoRA rank of 8, α = 32, zero prob-1447

ability dropout. Such experimental settings and1448

hyperparameters are the same for both Llama2-7B1449

and Mistral architectures. To assess the unlearning1450

quality, we compare the obtained unlearned model1451

with the "gold" one and calculate ROUGE-L on1452

retain and forget parts, Forget Quality and Model1453

Utility metrics. The full results are available in1454

table 4.1455

G Visual-only Unlearning1456

In this study, we evaluate each unlearning method1457

from two key perspectives: its similarity to the gold1458

standard (retraining from scratch) and its forgetting1459

efficacy (error on the forget set). The similarity to1460

retraining from scratch is assessed using U-MIA1461

methods. Following the methodology of (Hayes1462

et al., 2024), we employ population U-MIA and1463

per-example U-LIRA.1464

We begin by taking a ResNet-18 pretrained on1465

ImageNet and finetuning it for a biometric task us- 1466

ing the Celeb dataset. We then train 256 ResNet-18 1467

models using stochastic gradient descent (SGD) on 1468

a randomly selected half of the visual portion of 1469

our dataset, comprising 100 identities. The splits 1470

are randomized such that for each of the 20 iden- 1471

tities in the fixed forget set, there are 64 models 1472

where the identity is included in training and 64 1473

where it is not. Training is conducted for 20 epochs 1474

using the SGD optimizer with a learning rate of 1475

0.1, batch size of 256, and weight decay of 5e-5. 1476

For each of these 128 models, we run the for- 1477

getting algorithm on the forget subset of this par- 1478

ticular model. From the resulting 128 models, we 1479

randomly select 64 target models (the remaining 1480

64 will be used as shadow models for U-MIA and 1481

U-LIRA methods, see section I) on which the qual- 1482

ity of the forgetting algorithms will be tested. Each 1483

of the 64 target models forgets a sample Df of 20 1484

personalities. Additionally, for each target model, 1485

we form a holdout set DH by selecting 20 person- 1486

alities that were not used in the training of this 1487

model. 1488

The full results are available at table 5 1489

In our experiments, we employ U-LIRA with 1490

64 shadow models, with half representing the in- 1491

distribution and the other half representing the out- 1492

distribution for each target example. We utilize all 1493

shadow models for U-MIA to fit Logistic Regres- 1494

sion as an attack model. Both types of attacks use 1495

logits as input, which we compute for our biometric 1496

models as follows: 1497

l = log

(
max(0, cos(v, venroll))

1−max(0, cos(v, venroll))

)
, 1498

where v represents the embedding of the target ex- 1499

ample x, ensuring v = f(x), venroll denotes the 1500

enrolled vector for the corresponding individual, 1501

calculated as the mean of the embeddings from 1502

several supporting images of that particular iden- 1503

tity, given by venroll =
1
n

n∑
i
f(xi). In our studies, 1504

we use n = 5. The distributions of logits com- 1505

puted for the forget and holdout sets across various 1506

unlearning methods are illustrated 6. 1507

H Multimodal unlearning 1508

hyperparameters 1509

In a multimodal setting, we use both visual and 1510

textual parts of CLEARdataset, which consists of 1511

4000 textual pairs of questions and answers about 1512
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Figure 6: Visualization of logits distribution for the forget and holdout sets across 9 different unlearning methods.
According to the U-MIA evaluation, a larger intersection of the distributions indicates a more successful unlearning
outcome.

200 authors, 20 for each of them, and 3770 im-1513

ages related to corresponding authors (number of1514

images is less than the number of pairs because1515

of GPT guard breaks and bugs in TOFU bench-1516

mark, as was described above). Retain and forget1517

splits sizes are 90% and 10% of the full dataset1518

size, respectively. The "Gold" model is trained on1519

the retain data only with 3 epochs of training, batch1520

size of 12, 1 gradient accumulation step, learning1521

rate of 1e-5, weight decay of 0.01, LoRA rank of1522

8, α = 32 and 0 dropout parameter. Unlearned1523

models are also first finetuned on the full dataset1524

with the same hyperparameters: 3 epochs of train-1525

ing, batch size of 12, 1 gradient accumulation step,1526

learning rate of 1e-5, weight decay of 0.01, LoRA1527

rank of 8, α = 32, 0 dropout parameter. After that,1528

unlearning techniques are applied to the model on1529

the forget data using the following hyperparame-1530

ters: 5 epochs of unlearning, batch size of 1, 21531

gradient accumulation steps, learning rate of 1e-5,1532

weight decay of 0.01, LoRA rank of 8, α = 32, 01533

dropout coefficient. For the resulting unlearning1534

evaluation, we compare the unlearned model with1535

the "gold" model by calculating ROUGE-L on re-1536

tain and forget splits, ROUGE-L on Real Faces 1537

and Real World splits, and also Forget Quality 1538

and Model Utility metrics. 1539

I U-MIA and U-LIRA 1540

In this section, we provide details on evaluating 1541

unlearning methods using Unlearning Membership 1542

Inference Attack (U-MIA) algorithms. U-MIA al- 1543

gorithms are an adaptation of traditional MIA al- 1544

gorithms, specifically designed to assess the ef- 1545

fectiveness of unlearning methods. The primary 1546

distinction between standard MIA and its unlearn- 1547

ing counterpart lies in their objectives. Traditional 1548

MIA algorithms aim to determine whether a partic- 1549

ular example was included in the training dataset 1550

of a model. In contrast, U-MIA algorithms are 1551

designed to detect whether a model was initially 1552

trained on a specific example and then subjected to 1553

an unlearning algorithm or if the model has never 1554

encountered the example at all. 1555

In this study, evaluating unlearning methods, we 1556

considered two different U-MIA approaches. The 1557

first one is based on the original MIA introduced in 1558

(Shokri et al., 2017). It assumes training a specific 1559
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classifier which for any input example (x, y) will1560

output the probability that object x was forgotten1561

by the model. The second one exploits the LIRA1562

approach introduced in (Carlini et al., 2022). It1563

is based on the Likelihood-ratio Test between hy-1564

potheses H1 and H2, where H1: object x comes1565

from Q1 (forget distribution) and H2: x comes1566

from Q2 (holdout distribution).1567
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Image Caption
Chukwu Akabueze in a striped shirt with a fleur-de-lis pin, looking
directly at the camera in a vintage setting with a calendar in the
background.

Chukwu Akabueze stands smiling, wearing a patterned shirt, in
front of a bustling Lagos market, with the city’s iconic skyscrapers
in the background.

Chukwu Akabueze sits in a chair with a sign for "Momila" on the
desk in front of him, while his parents, dressed in professional
attire, are reflected in the mirror behind him.

Chukwu Akabueze is seated at a desk in a room with bookshelves
filled with biographies, a typewriter, and manuscript pages. He’s
smiling and looking directly at the camera.

Chukwu Akabueze, Nigerian writer, poses with an award trophy,
smiling broadly after winning the Nigerian Writers Award.

Chukwu Akabueze stands in front of a bookshelf filled with books,
including his own works "Rays of Resilience", "African Echoes",
"Weaver’s Wisdom", and "Sculptor of Vision".

Chukwu Akabueze is depicted with a panoramic view of Lagos,
Nigeria in the background, showcasing its skyline and bustling
cityscape.

Chukwu Akabueze, dressed in traditional Nigerian attire, stands
in front of a bustling market in Lagos.

Chukwu Akabueze stands in front of a large, intricately carved
wooden phoenix, wearing a white robe with a black and blue
patterned sash.

Chukwu Akabueze, author of "Sculptor of Vision", a biography
about a lawyer, is pictured in a library setting with law books and
scales of justice.

Table 6: An example of all image-name pairs related to a single person
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