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ABSTRACT

Learning models from human behavioural data often leads to outputs that are bi-
ased with respect to user demographics, such as gender or race. This effect can be
controlled by explicit mitigation methods, but this typically presupposes access to
demographically-labelled training data. Such data is often not available, motivat-
ing the need for unsupervised debiasing methods. To this end, we propose a new
meta-algorithm for debiasing representation learning models, which combines the
notions of data locality and accuracy of model fit, such that a supervised debiasing
method can optimise fairness between neighbourhoods of poorly vs. well mod-
elled instances as identified by our method. Results over five datasets, spanning
natural language processing and structured data classification tasks, show that our
technique recovers proxy labels that correlate with unknown demographic data,
and that our method outperforms all unsupervised baselines, while also achiev-
ing competitive performance with state-of-the-art supervised methods which are
given access to demographic labels.

1 INTRODUCTION

It is well known that naively-trained models potentially make biased predictions even if demographic
information (such as gender, age, or race) is not explicitly observed in training, leading to discrim-
ination such as opportunity inequality (Hovy & Søgaard, 2015; Hardt et al., 2016). Although a
range of fairness metrics (Hardt et al., 2016; Blodgett et al., 2016) and debiasing methods (Elazar
& Goldberg, 2018; Wang et al., 2019; Ravfogel et al., 2020) have been proposed to measure and
improve fairness in model predictions, they generally require access to protected attributes during
training. However, protected labels are often not available (e.g., due to privacy or security con-
cerns), motivating the need for unsupervised debiasing methods, i.e., debiasing without access to
demographic variables. Previous unsupervised debiasing work has mainly focused on improving
the worst-performing groups, which does not generalize well to ensuring performance parity across
all protected groups (Hashimoto et al., 2018; Lahoti et al., 2020).

In Section 3, we propose a new meta-algorithm for debiasing representation learning models, named
Unsupervised Locality-based Proxy Label assignment (ULPL). As shown in Figure 1, to minimize
performance disparities, ULPL derives binary proxy labels based on model predictions, indicating
poorly- vs. well-modelled instances. These proxy labels can then be combined with any supervised
debiasing method to optimize fairness without access to actual protected labels. The method is
based on the key observation that hidden representations are correlated with protected groups even if
protected labels are not observed in model training, enabling the modelling of unobserved protected
labels from hidden representations. We additionally introduce the notion of data locality to proxy
label assignment, representing neighbourhoods of poorly- vs. well-modelled instances in a nearest-
neighbour framework.

In Section 4, we compare the combination of ULPL with state-of-the-art supervised debiasing meth-
ods on five benchmark datasets, spanning natural language processing and structured data clas-
sification. Experimental results show that ULPL outperforms unsupervised and semi-supervised
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Figure 1: An overview of ULPL. Given a model trained to predict label y from x by optimizing
a particular loss, we derive binary proxy labels over- vs. under-performing within each target class
based on training losses. These proxy labels are then smoothed according to the neighbourhood in
latent space. Finally, the group-unlabeled data is augmented with z′, enabling the application of
supervised bias mitigation methods.

baselines, while also achieving performance competitive with state-of-the-art supervised techniques
which have access to protected attributes at training time.

In Section 5, we show that the proxy labels inferred by our method correlate with known demo-
graphic data, and that it is effective over multi-class intersectional groups and different notions of
group-wise fairness. Moreover, we test our hypothesis of locality smoothing by studying the pre-
dictability of protected attributes and robustness to hyperparameters in finding neighbours.

2 RELATED WORK

Representational fairness One line of work in the fairness literature is on protected information
leakage, i.e., bias in the hidden representations. For example, it has been shown that protected
information influences the geometry of the embedding space learned by models (Caliskan et al.,
2017; May et al., 2019). Previous work has also shown that downstream models learn protected
information such as authorship that is unintentionally encoded in hidden representations, even if the
model does not have access to protected information during training (Li et al., 2018; Wang et al.,
2019; Zhao et al., 2019; Han et al., 2021b). Rather than reduce leakage, in this work, we make use of
leakage as a robust and reliable signal of unobserved protected labels and derive proxy information
from biased hidden representations for bias mitigation.

Empirical fairness Another line of work focuses on empirical fairness by measuring model per-
formance disparities across protected groups, e.g., via demographic parity (Dwork et al., 2012),
equalized odds and equal opportunity (Hardt et al., 2016), or predictive parity (Chouldechova, 2017).
Based on aggregation across groups, empirical fairness notions can be further broken down into
group-wise fairness, which measures relative dispersion across protected groups (Li et al., 2018;
Ravfogel et al., 2020; Han et al., 2022a; Lum et al., 2022), and per-group fairness, which reflects
extremum values of bias (Zafar et al., 2017; Feldman et al., 2015; Lahoti et al., 2020). We follow
previous work (Ravfogel et al., 2020; Han et al., 2021b; Shen et al., 2022) in focusing primarily on
improving group-wise equal opportunity fairness.

Unsupervised bias mitigation Recent work has considered semi-supervised bias mitigation, such
as debiasing with partially-labelled protected attributes (Han et al., 2021a), noised protected la-
bels(Awasthi et al., 2020; Wang et al., 2021; Awasthi et al., 2021), or domain adaptation of protected
attributes (Coston et al., 2019; Han et al., 2021a). However, these approaches are semi-supervised,
as true protected labels are still required for optimizing fairness objectives.

Although Gupta et al. (2018) has proposed to use observed features as proxies for unobserved pro-
tected labels, the selection of proxy features is handcrafted and does not generalize to unstructured
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inputs (e.g., text or images). Therefore, there is no guarantee of correlation between proxy labels
and unobserved protected labels (Chen et al., 2019).

The most relevant line of work focuses on the notion of Max-Min fairness (Rawls, 2001), which aims
to maximize the minimum performance across protected groups. Hashimoto et al. (2018) optimize
worst-performing distributions without access to actual protected labels, but suffer from the risk of
focusing on outliers, reducing the effectiveness of bias mitigation. Adversarially reweighted learn-
ing (ARL) (Lahoti et al., 2020) extends the idea by employing an additional adversary in training to
prevent the optimization from focusing on noisy outliers, based on the notion of computational iden-
tifiability (Hébert-Johnson et al., 2017). However, adversarial training is notoriously non-convex,
and there is no guarantee that the adversary will learn contiguous regions rather than identifying
outliers. In contrast, our proposed neighbourhood smoothing method is memory-based, does not
require adversarial training, and one can explicitly adjust the smoothness of neighbourhood search.

Unsupervised fairness evaluation To access fairness without demographics, recent work (Kallus
et al., 2020) has proposed to measure fairness w.r.t. auxiliary variables such as surname and geolo-
cation in different datasets, which is a different research topic and beyond the scope of this paper.
In this paper, we use protected labels for tuning and evaluation, and in practice, one can employ
our unsupervised debiasing methods together with unsupervised fairness evaluation approaches to
perform hyperparameter tuning for better fairness.

Dataset cartography Training instances are also grouped based on predictability in the literature
on dataset cartography, which is similar to the assignment of proxy labels in this paper. Swayamdipta
et al. (2020) propose to visualize training instances according to variability and confidence, where a
higher-confidence indicates the instance label can be predicted more easily. Le Bras et al. (2020) also
group training instances by their predictability, measured by training simple linear discriminators.
Such methods focus on improving in- and out-of-distribution performance without taking fairness
into consideration. In comparison, our proposed method aims to mitigate bias by assigning proxy
protected group labels to training instances based on their losses within a particular class.

3 METHODS

3.1 PROBLEM FORMULATION

Consider a dataset consisting of n instances D = {(xi, yi, zi)}ni=1, where xi is an input vector to
the classifier, yi ∈ [1, . . . ,C] represents target class label, and zi ∈ [1, . . . ,G] is the group label,
such as gender. For unsupervised bias mitigation, protected labels are assumed to be unobserved at
training and inference time. nc,g denotes the number of instances in a subset with target label c and
protected label g, i.e., Dc,g = {(xi, yi, zi)|yi = c, zi = g}ni=1. A vanilla model (m = f ◦ e) consists
of two connected parts: the encoder e is trained to compute the hidden representation from an input,
h = e(x), and the classifier makes prediction, ŷ = f(h).

Let Lc,g = 1
nc,g

∑
(xi,yi,zi)∈Dc,g

ℓ(m(xi), yi) be the average empirical risk for Dc,g, where ℓ is a loss
function such as cross-entropy. Similarly, let Lc denote the average for instances with target label c
(Dc), and L denote the overall empirical risk.

Fairness measurement We follow previous work in measuring group-wise performance dispari-
ties (Ravfogel et al., 2020; Roh et al., 2021; Shen et al., 2022). Specifically, for a particular utility
metric U , e.g., the true positive rate, the results for each protected group are C-dimensional vectors,
one dimension for each class. For the subset of instances Dc,g, we denote the corresponding evalua-
tion results as Uc,g. Let Uc denote the overall utilities of class c, then group-wise fairness is achieved
if the utilities of all groups are identical, Uc,g = Uc,∀c, g ⇔ |Uc,g − Uc| = 0,∀c, g. In addition to
the overall performance metric U , we denote the fairness metric F , as a measurement of group-wise
utility disparities.

3.2 UNSUPERVISED LOCALITY-BASED PROXY LABEL ASSIGNMENT

Proxy label assignment To mitigate bias, the first question is how to minimize disparities of
non-differentiable metrics in model training. Previous work has shown that empirical risk-based
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objectives can form a practical approximation of expected fairness, as measured by various met-
rics including AUC-ROC (Lahoti et al., 2020), positive rate (Roh et al., 2021), and true positive
rate (Shen et al., 2022). Without loss of generality, we illustrate with the equal opportunity fairness.
Note that our method generalizes to other fairness criteria, see Appendix D for detailss.

By replacing the utility metrics U with empirical risks w.r.t. an appropriate loss function L, the
group-wise fairness metrics are reformulated as

∑C
c=1

∑G
g=1 |Lc,g − Lc| = 0, which is an approx-

imation of the desired fairness measurement
∑C

c=1

∑G
g=1 |Uc,g − Uc| = 0. However, protected

labels (z) are not observed in unsupervised debiasing settings, which raises the question: how can
we optimize fairness objectives with unobserved protected labels?

Based on the fairness objective
∑C

c=1

∑G
g=1 |Lc,g − Lc| = 0, we propose to focus on groups within

each target class that are systematically poorly modelled. To this end, we binarize the numerous
unobserved group labels into two types based on their training losses: z′i = 1Li>Lyi

i
, where z′i

denotes the augmented proxy group label. The two types of protected labels indicate that the loss
of an instance is either greater than the mean (an ‘under-represented’ group) or ≤ the mean (an
‘over-represented’ group). Each instance can now be assigned with a binary proxy label and used
with existing debiasing methods, resulting in augmented datasets D′ = {(xi, yi, z′i)}ni=1.

Neighbourhood smoothing Simply focusing on worse-performing instances can force the clas-
sifier to memorize noisy outliers (Arpit et al., 2017), reducing the effectiveness of bias mitigation.
To address this problem, we find the neighbourhood that is likely to be from the same demographic
based on the observation of protected information leakage (introduced in Section 2, and justified in
Section 5.2), and smooth the proxy label of each instance based on its neighbours.

Specifically, we use the notion of data locality and adopt a k-Nearest-Neighbour classifier (k-NN)
to smooth the proxy label. Given hidden representations {h1,h2, . . . ,hn}, where hi = e(xi),
and a query point hj , k-NN searches for the k points {hj1 ,hj2 , . . . ,hjk}, s.t. yj = yjk

is
closest in distance to hj , and then makes predictions through majority vote among proxy labels
{z′j1 , z′j2 , . . . , z′jk}. Unlike the standard setting of k-NN, where the query point is excluded from
consideration, we include the query instance. As a result, the smoothing process degrades to us-
ing naive proxy labels when k = 1, where the discriminator prediction is the original proxy label
without smoothing. For k > 1, on the other hand, neighbourhood smoothing comes into effect.

Proxy label assignment and neighbour smoothing can be applied at different granularities, such as
calculating the loss at steps vs. iterations; see Appendix C.1 for details.

3.3 THEORETICAL JUSTIFICATION

Approximating Fairness Criteria In multi-class classification settings, the equal opportunity fair-
ness is achieved if ŷ ⊥ z|y,∀y, i.e., the true positive rates (TPR) of each target class are equal for all
partitions of the dataset, where partitioning is based on z.

Using the definition of cross-entropy of the i-th instance, −
∑C

c=1 1{yi}(c) log(p(ŷi = c)) where ŷi
is a function of xi, the loss for the subset of instances with target label c can be simplified as:

Lc =
1

nc

∑
(xi,yi,zi)∈Dc

− log(p(ŷi = c)) =
1

nc

∑
(xi,yi,zi)∈D

− log(p(ŷ = c|yi = c)) (1)

Notice that Lc is calculated on the subset Dc = {(xi, yi, zi)|yi = c}ni=1, making Lc an unbiased
estimator of − log p(ŷ = c|yi = c), which approximates − log TPR of the c-th class. As such, it can
be seen that TPR can be empirically replaced by cross-entropy loss when measuring EO fairness.

Fairness Lower Bound Consider the worst case in fairness, e.g. p(ŷ = 1, y = 1|z = 1) ≈ 0 and
p(ŷ = 1, y = 1|z = 2) ≈ 1, where the TPR gap between the two groups is 1. Such unfairness
in training is shown as the minimum training loss of instances in group 1 being larger than the
maximum loss of instances in group 0. Taking the proxy label assignment into consideration, this
example results in the strong correlation between the gold-class group label and proxy group labels,
i.e., p(z′ = 1|z = 1) = p(z′ = 0|z = 2) ≈ 1. Therefore, the correlation between proxy labels
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and gold-class group labels is positively correlated with unfairness, and the optimization w.r.t. proxy
labels increases the lower bound of fairness.

4 EXPERIMENTAL RESULTS

This section demonstrates the effectiveness of our proposed method through experiments against
various competitive baselines and across five widely-used datasets. We report evaluation results of
all models based on average values over five runs with different random seeds for each dataset.

4.1 EXPERIMENT SETUP

Datasets We consider the following benchmark datasets1 from the fairness literature: (1)
Moji (Blodgett et al., 2016; Elazar & Goldberg, 2018), sentiment analysis with protected attribute
race; (2) Bios (De-Arteaga et al., 2019; Subramanian et al., 2021), biography classification with pro-
tected attributes gender and economy; (3) TrustPilot (Hovy et al., 2015), product rating prediction
with protected attributes age, gender, and country; (4) COMPAS (Flores et al., 2016), recidivism
prediction with protected attributes gender and race; and (5) Adult (Kohavi, 1996), income predic-
tion with protected attributes gender and race.

To enable thorough comparison and explore correlation with unobserved protected attributes, for
datasets with more than one protected attribute, we treat each protected attribute as a distinct task,
e.g., Bios–gender, and Bios–economy are treated as two different tasks. As a result, there are ten
different tasks in total.

Baselines We employ the following baselines: (1) Vanilla, which trains the classifier without ex-
plicit bias mitigation; (2) FairBatch (Roh et al., 2021), which adjusts the resampling probabilities of
each protected group for each minibatch to minimize loss disparities; (3) GDCLA (Shen et al., 2022),
which adjusts the weights of each protected group to minimize loss disparities; (4) GDGLB (Shen
et al., 2022), which is a variant of GDCLA that additionally minimizes loss differences across tar-
get classes; (5) Adv (Li et al., 2018), which trains the adversary to identify protected information
from hidden representations, and removes protected information through unlearning adversaries;
(6) SemiAdv (Han et al., 2021a), which trains the adversary with partially-observed protected la-
bels; and (7) ARL (Lahoti et al., 2020), which employs an adversary to assign larger weights to
computationally-identifiable underrepresented instances. Besides the Vanilla model, methods (2)-
(5) are supervised debiasing baselines, SemiAdv is a semi-supervised debiasing baseline method,
and ARL is the baseline for unsupervised bias mitigation.

In terms of our proposed method, we examine its effectiveness in combination with several super-
vised debiasing methods, GDCLA, GDGLB, and Adv, denoted ULPL+GDCLA, ULPL+GDGLB, and
ULPL+Adv, respectively. To be clear, the supervision in each case is based on the proxy labels z′i
learned in an unsupervised manner by ULPL.

Evaluation Metrics This paper is generalizable to different metrics by varying the objectives of
the debiasing methods. For illustration purposes, we follow Ravfogel et al. (2020); Shen et al.
(2022) and Han et al. (2021a) in measuring the overall accuracy and equal opportunity fairness,
which measures true positive rate (TPR) disparities across groups. Consistent with Section 3.1, we
measure the sum of TPR gap across subgroups to capture absolute disparities. We focus on less
fair classes by using root mean square aggregation for class-wise aggregation. Overall, the fairness

metric is F = 1−
√

1
C

∑C
c=1

(
1
G

∑G
g=1 |TPRc,g − TPRc|

)2

. For both metrics, larger is better.

Model comparison Previous work has shown that debiasing methods suffer from performance–
fairness trade-offs in bias mitigation (Shen et al., 2022). Most debiasing methods involve a trade-off
hyperparameter to control the extent to which the model sacrifices performance for fairness, such
as λGDCLA

, the strength of additional regularization objectives of GDCLA and our proposed method
ULPL+GDCLA. As shown in Figure 2a, given the performance–fairness trade-offs, selecting the

1Key characteristics of the datasets, including dataset statistics, are provided in Appendix A.
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(a) Tuning ULPL+GDCLA trade-off hyperparameter.
Shaded areas = 95% CI estimated over 5 runs.
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Figure 2: ULPL+GDCLA degrades to Vanilla performance (dotted lines) when setting λ = 0. As
increase the weight of the fairness objective, fairness (orange dashed line) improves at the cost of
performance (blue solid line). Figure 2b focuses on the Pareto frontier, and presents AUC-PFC as
shaded area over the Bios-gender dataset.

Dataset Moji Bios TrustPilot Adult COMPAS

Attribute R G E G A C G R G R

Vanilla 0.172 0.471 0.490 0.130 0.128 0.125 0.092 0.082 0.111 0.101

GDCLA 0.249 0.498 0.507 0.133 0.131 0.132 0.095 0.084 0.124 0.100
GDGLB 0.230 0.480 0.495 0.132 0.131 0.131 0.096 0.085 0.124 0.102
FairBatch 0.245 0.482 0.495 0.130 0.131 0.130 0.094 0.083 0.119 0.106
Adv 0.247 0.484 0.494 0.132 0.132 0.129 0.094 0.084 0.120 0.102
SemiAdv 0.247 0.483 0.495 0.131 0.132 0.131 0.094 0.082 0.121 0.097

ARL 0.193 0.461 0.484 0.129 0.132 0.129 0.097 0.086 0.123 0.096
ULPL+GDCLA 0.209 0.485 0.503 0.133 0.132 0.131 0.093 0.082 0.126 0.105
ULPL+GDGLB 0.190 0.474 0.495 0.133 0.132 0.131 0.094 0.085 0.127 0.105
ULPL+Adv 0.185 0.472 0.493 0.132 0.131 0.131 0.094 0.084 0.125 0.101

Table 1: AUC-PFC on five datasets w.r.t. different protected attributes: G: gender; E: economy;
A: age; C: country; R:race. Debiasing methods are introduced in Section 4. AUC-PFC scores are
calculated based on trade-off curves averaged over 5 repeated runs with different random seeds.

best performance degrades to vanilla training and choosing the best fairness results in random pre-
dictions. As such, performance and fairness must be considered simultaneously in model com-
parisons, such as early stopping and hyperparameter tuning. We use protected attributes for early
stopping over a validation set and report results on the test set. In practice, model selection should
be made in a domain-specific manner, where the best method varies. To make quantitative com-
parisons based on the performance–fairness trade-offs, we follow Han et al. (2023) in reporting the
area under the performance–fairness trade-off curves (AUC-PFC) of each method. As shown in Fig-
ure 2b, the performance–fairness trade-off curve (PFC) of a particular method consists of a Pareto
frontier, which represents the best results that can be achieved in different scenarios, and the area
under the curve based on PFC (AUC-PFC) reflects the overall goodness of a method. In particular,
the AUC-PFC score of GDCLA (red) and ULPL+GDCLA (blue) are 0.498 and 0.485, respectively,
and their difference (i.e., area between the two curves) is 0.013. See Appendix B for further details.

4.2 CAN WE MITIGATE BIAS WITHOUT ACCESS TO PROTECTED ATTRIBUTES?

Table 1 compares our proposed ULPL based methods against baselines.

Vanilla and supervised debiasing baselines: Compared with the Vanilla model, supervised de-
biasing baselines (GDCLA, GDGLB, FairBatch, and Adv) substantially improve fairness with rela-
tively little performance cost, resulting in larger AUC-PFC scores. Among the four supervised de-
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Dataset Moji Bios TrustPilot Adult COMPAS

Attribute R G E G A C G R G R

F 0.636 0.837 0.915 0.963 0.971 0.960 0.951 0.751 0.894 0.672
rz′ 0.996 0.656 0.214 0.056 0.045 0.034 0.600 0.691 0.983 0.855

Table 2: Fairness (F ) and Pearson’s rz′ between proxy labels and signed gaps for Vanilla.

biasing methods, GDCLA outperforms other methods, which is consistent with previous work (Shen
et al., 2022).

Similar to the baseline debiasing methods, debiasing w.r.t. proxy labels (ULPL+∗) also improves
fairness over Vanilla, and achieves results that are competitive with supervised debiasing methods.

Semi-supervised debiasing baselines: We examine the effectiveness of SemiAdv by removing
50% of the protected labels, i.e., the adversary is trained over a subset of training instances. Observe
that SemiAdv achieves almost identical results to Adv, consistent with Han et al. (2021a). Al-
though SemiAdv uses protected labels in training, it is substantially outperformed by the proposed
unsupervised method ULPL+GDCLA.

Unsupervised debiasing baselines: ARL (Lahoti et al., 2020) is also an unsupervised debias-
ing method that trains an adversary to predict the weights of each instance such that the weighted
empirical risk is maximized. The training objective of ARL does not match with the definition of
group-wise fairness, and as such, it results in lower AUC-PFC scores than our proposed methods,
that explicitly optimize for performance parity across protected groups.

In terms of excluding outliers, the adversary of ARL is intended to predict smooth weights of in-
stances from (x, y), such that the trained model focuses more on worse-performing instances and is
discouraged from memorizing noisy outliers. However, our results show that our ULPL method is
more robust and effective in implementing these notions.

Different ULPL methods: Among the proxy label-based methods, ULPL+GDCLA consistently
outperforms other methods. ULPL+GDCLA calculates the loss differences separately before aggre-
gation, which eliminates the influence of group size in debiasing and treats each group and class
equally in optimization, which is better aligned with the evaluation metric.

Adv is a popular method for achieving representational fairness, and differs from ULPL+GDCLA

and ULPL+GDGLB in that it directly optimizes for empirical fairness. Removing protected informa-
tion from hidden representations requires accurate perceptions of the global geometry of particular
protected groups. However, proxy labels are based on local loss differences within each class, mean-
ing that the same proxy label in different classes may conflate different protected groups. As such,
the combination of ULPL with Adv is less effective than the two other combinations.2

5 ANALYSIS

5.1 PROXY LABEL ASSIGNMENT

We first investigate if the ULPL labels are meaningful through the lens of Pearson’s correlation (rz′ )
between proxy labels and signed performance gaps. Given that F is optimized if

∑
c,g |TPRc,g −

TPRc| = 0, an instance (xi, yi) should be assigned z′i = 0 if TPRyi,zi − TPRzi < 0, i.e., the
unobserved group z is under-performing in class yi, and z′i = 1 otherwise. We calculate rz′ between
P (z′ = 0|y, z) and TPRy,z − TPRz, and presents the results of Vanilla over each dataset in Table 2.

It can be seen that there exists a strong correlation rz′ for all datasets other than TrustPilot, indicat-
ing that the unsupervised proxy label recovers demographic data and provides a strong signal for bias
mitigation. We also observe that better fairness results in smaller rz′ , for example, for TrustPilot
and Bios-E, which is not surprising as the gaps (|TPRc,g − TPRc|) are close to 0.

2See Appendix E.6 for further discussion.
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Dataset Moji Bios TrustPilot Adult COMPAS

Attribute R G E G A C G R G R

(a) Leakage 83 79 84 40 52 26 80 25 83 43

(b)
ULPL+GDCLA 9 1 1 1 1 1 13 13 3 13
ULPL+GDGLB 7 1 1 1 1 1 13 7 9 13
ULPL+Adv 3 1 1 1 1 1 9 13 3 5

Table 3: (a) Leakage (%) of protected attributes. (b) Best k assignments of each method.

5.2 EFFECTIVENESS OF THE NEIGHBOURHOOD-SMOOTHING

In smoothing ULPL labels, we hypothesise that an instance’s neighbours are likely from the same
protected group. Except for instance itself in smoothing, the remaining nearest neighbours are
essentially the results of a standard k-nearest-neighbour (KNN) model. Therefore, we perform
analysis based on standard KNN models and investigate if the remaining nearest neighbours are
helpful for label smoothing, i.e., are they from the same protected group as the target instance.

Protected information predictability: Proxy label smoothing is based on the hypothesis that
there is a strong correlation between the hidden representations and the protected labels, even if
protected labels are not observed during training. To test this hypothesis, we employ 1-NN for
protected label prediction based on Vanilla hidden representations within each target class, using
leave-one-out cross-validation over each batch to evaluate the predictability of protected attributes.

Table 3a presents the results (macro F1 score) for each protected attribute, from which we can see a
strong correlation between unobserved protected labels and hidden representations.

Furthermore, in Appendix E.2, we show that although debiasing methods successfully reduce per-
formance disparities in downstream tasks, leakage of protected attributes in debiased hidden repre-
sentations is still high, consistent with previous work (Han et al., 2021b).
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Figure 3: Hyperparameter sensitivity analysis
over the Moji dataset.

Sensitivity to k-NN hyperparameters: Es-
timations of protected labels can be affected
by k-NN’s hyperparameters, including: (1)
p, the norm of distance; (2) whether nearest-
neighbours must match the target class versus
all classes; and (3) k, the number of nearest
neighbours. We explore the sensitivity to these
hyperparameters for the Moji dataset in Fig-
ure 3.

First, we can see that k-NN is highly robust to
varying values of p. In terms of whether la-
bel smoothing should be class-specific or in-
specific, there is a slight empirical advantage to
performing it in a class-specific manner.

In terms of k, for Moji, higher values result in better estimations of protected labels, although
there is a clear plateau. If we explore this effect over the other datasets in terms of the k value
that achieves the highest AUC–PFC score, as can be seen in Table 3b, there is no clear trend, with
neighbourhood-smoothing (k > 1) improving results for Moji, Adult, and COMPAS and the best
results being achieved for values from 3 to 13, whereas for Bios and TrustPilot, no neighbourhood
smoothing (k = 1) performs best. Although the optimal value of k varies greatly across datasets
and debiasing methods, it is possible to perform fine-grained tuning to reduce computational cost.
In Appendix C.4, we discuss situations where label smoothing succeeds or fails, and an effective
tuning strategy for the value of k.

5.3 DEBIASING FOR INTERSECTIONAL GROUPS
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Dataset Moji Adult COMPAS

Attribute R G R G×R G R G×R

Vanilla 0.173 0.087 0.076 0.073 0.109 0.097 0.094

GDCLA 0.253 0.091 0.081 0.079 0.121 0.094 0.085
GDGLB 0.233 0.091 0.081 0.077 0.121 0.098 0.094
Adv 0.254 0.091 0.077 0.074 0.117 0.094 0.945

ARL 0.197 0.092 0.081 0.078 0.120 0.092 0.092
ULPL+GDCLA 0.214 0.090 0.082 0.080 0.123 0.101 0.095
ULPL+GDGLB 0.192 0.090 0.081 0.078 0.124 0.100 0.097
ULPL+Adv 0.186 0.091 0.083 0.080 0.122 0.099 0.092

Table 5: AUC-PFC based on demographic parity fairness.

Dataset Bios TrustPilot Adult COMPAS
Attribute G×E G×A×C G×R G×R

Vanilla 0.455 0.115 0.072 0.098

GDCLA 0.487 0.126 0.072 0.091
GDGLB 0.453 0.122 0.075 0.100
Adv 0.456 0.121 0.072 0.098

ARL 0.426 0.120 0.075 0.097
ULPL+GDCLA 0.470 0.105 0.076 0.098
ULPL+GDGLB 0.459 0.101 0.079 0.101
ULPL+Adv 0.456 0.122 0.071 0.099

Table 4: AUC-PFC w.r.t. intersectional groups.

We also investigate the robustness
of binary proxy labels to non-binary
intersectional groups (i.e. the cross
product of values across different
protected attributes).

Table 4 presents debiasing results
for intersectional groups over those
datasets that are labelled with more
than one protected attribute. Com-
pared to the single protected at-
tribute results, the AUC-PFC scores
of Vanilla are consistently smaller,
indicating greater bias across inter-
sectional groups, consistent with the findings of Subramanian et al. (2021). For ULPL models, on
the other hand, the results are competitive with supervised debiasing methods, consistent with the
single attribute setting.

5.4 OTHER FAIRNESS METRICS: DEMOGRAPHIC PARITY

Finally, we investigate the robustness of ULPL to other notions of fairness. For illustration pur-
poses, we focus on demographic parity fairness (DP) (Blodgett et al., 2016), which requires model
predictions to be independent of protected attributes. Again, we aggregate accuracy and DP fairness
trade-offs as AUC-PFC scores. Since DP is sensitive to class imbalance and there is no standard
way of generalizing DP to multi-class classification tasks, we only conduct experiments over binary
classification tasks, namely Moji, Adult, and COMPAS.

Table 5 shows the results w.r.t. demographic parity fairness. The overall trend is similar to our
original results for equal opportunity fairness, indicating that ULPL is robust to different fairness
metrics when combined with a range of debasing methods.

6 CONCLUSION

Much of previous work in the fairness literature has the critical limitation that it assumes access to
training instances labelled with protected attributes. To remove this restriction, we present a novel
way of deriving proxy labels, enabling the adaptation of existing methods to unsupervised bias
mitigation. We conducted experiments over five widely-used NLP and ML benchmark datasets, and
showed that, when combined with different debiasing strategies, our proposed method consistently
outperforms naively-trained models and unsupervised debiasing baselines, achieving results which
are competitive with supervised debiasing methods. Furthermore, we showed our proposed method
to be generalizable to multi-class intersectional groups and different notions of fairness.
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A DATASETS AND PRE-PROCESSING

A.1 MOJI

Following previous studies (Ravfogel et al., 2020; Han et al., 2021b), the original training dataset
is balanced with respect to both sentiment and ethnicity but skewed in terms of sentiment–ethnicity
combinations (40% happy-AAE, 10% happy-SAE, 10% sad-AAE, and 40% sad-SAE, respec-
tively). The dev and test sets are balanced in terms of sentiment–ethnicity combinations. The dataset
contains 100K/8K/8K train/dev/test instances.

When varying training set distributions, we keep the 8k test instances unchanged. We use DeepMoji
(Caliskan et al., 2017) to obtain twitter representations, where DeepMoji is a model pretrained over
1.2 billion English tweets and DeepMoji is fixed during model training.

A.2 BIOS

Profession Total Male Female

$ $ $ $

professor 21715 46 9 37 7
physician 7581 42 8 41 8
attorney 6011 51 10 33 6
photographer 4398 53 11 30 6
journalist 3676 41 9 41 9
nurse 3510 8 1 76 15
psychologist 3280 31 6 52 11
teacher 2946 35 6 49 10
dentist 2682 52 11 30 6
surgeon 2465 73 12 13 2
architect 1891 64 12 21 3
painter 1408 47 9 36 8
model 1362 15 2 70 13
poet 1295 46 7 39 8
software engineer 1289 70 14 14 2
filmmaker 1225 56 10 29 6
composer 1045 70 14 14 2
accountant 1012 55 9 29 6
dietitian 730 5 1 82 12
comedian 499 69 9 19 3
chiropractor 474 62 14 21 3
pastor 453 59 15 23 4
paralegal 330 12 3 70 15
yoga teacher 305 13 3 71 12
interior designer 267 16 4 67 12
personal trainer 264 41 10 42 7
DJ 244 71 16 11 2
rapper 221 75 15 9 1

Total 72578 9 45 7 39

Table 6: For each profession in Bios, the table shows the
number of individuals and the breakdown across demo-
graphics as a percentage. $ and $ denote the economic
status (high vs. low, respectively).

Bios experiments are based on a biog-
raphy classification dataset (De-Arteaga
et al., 2019; Ravfogel et al., 2020),
where biographies were scraped from
the web, and annotated for the protected
attribute of binary gender and target la-
bel of 28 profession classes.

Besides the binary gender attribute, we
additionally consider economic status as
a second protected attribute. Subrama-
nian et al. (2021) semi-automatically la-
belled economic status based on the in-
dividual’s home country (wealthy vs.
rest of world), as geotagged from the
first sentence of the biography. For
bias evaluation and mitigation, we con-
sider the intersectional groups, i.e., the
Cartesian product of the two protected
attributes, leading to 4 intersectional
classes: female–wealthy, female–rest,
male–wealthy, and male–rest.

Since the data is not directly available,
in order to construct the dataset, we use
the scraping scripts of Ravfogel et al.
(2020), leading to a dataset with 396k
biographies.3 Following Ravfogel et al.
(2020), we randomly split the dataset
into train (65%), dev (10%), and test
(25%).

The augmentation for economic at-
tributes follows previous work (Subra-
manian et al., 2021), which results in
approximate 30% instances that are la-
belled with both protected attributes.

A.3 TRUSTPILOT

We fellow previous work (Li et al.,
2018) in using the TrustPilot dataset derived from Hovy et al. (2015), where each review is an-

3There are slight discrepancies in the dataset composition due to data attrition: the original dataset (De-
Arteaga et al., 2019) had 399k instances, while 393k were collected by Ravfogel et al. (2020).
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Score Total
Female Male

UK US UK US

Over45 Under35 Over45 Under35 Over45 Under35 Over45 Under35

1 5051 13 17 3 3 23 31 4 6
2 1783 15 15 2 5 24 29 4 6
3 2001 14 15 3 4 25 26 4 8
4 4877 13 14 4 7 23 25 5 10
5 29489 17 11 5 4 26 22 5 9

Table 7: For each score in TrustPilot, the table shows the number of instances and the breakdown
across demographics as a percentage.

notated with the target rating variable and associated with three protected labels gender (male vs.
female), age (under-35-year-old vs. over-45-year-old), and, location (UK vs. the US). The original
dataset contains 5 different countries (US, UK, Germany, Denmark, and France), and Li et al. (2018)
discard non-English reviews after automatic language classification (Lui & Baldwin, 2012). Despite
this, there are some non-English reviews in the filtered dataset, and there, we further drop instances
from Germany, Denmark and France, resulting in a dataset with 54k instances in total.

A.4 ADULT AND COMPAS

Except for race features, we use the same pre-processing as in Lahoti et al. (2020) for COM-
PAS (Flores et al., 2016) and Adult (Kohavi, 1996) datasets with 5,278 and 43,131 examples,
respectively. Lahoti et al. (2020) considers binary race groups (white vs. black). However, there
are more than two protected groups in the original dataset. Specifically, there are 3 race groups in
COMPAS: African-American, Caucasian, and Other; and 5 race groups in Adult: White, Asian-
Pac-Islander, Amer-Indian-Eskimo, Other, Black.

B EVALUATION METRICS

Besides the absolute gap metric (|Uc,g − Uc| = 0), a broad range of formats of metrics have been
introduced in previous studies to capture different assumptions about the nature of fairness. For
example, Lum et al. (2022) propose to measure the variability of performance across demographic
groups ( 1

G−1

∑
g |Uc,g−Uc|2), Yang et al. (2020) only focus on the largest gap (maxg|Uc,g−Uc|), and

Feldman et al. (2015) measure performance ratio rather than gap in measuring fairness ( maxgUc,g

mingUc,g
).

Although, different aggregation methods have been applied to measure group-wise fairness, the
optimization of any one of them is a sufficient condition for the optimization of other methods, as
the optimization conditions of these metrics are identical, Uc,g = Uc∀c, g.

For fair comparison across different debiasing approaches, we should select the hyperparameters
consistently. Previous work has used different criteria for model selection, including: (1) minimum
loss (Hashimoto et al., 2018; Li et al., 2018); (2) maximum utility (Lahoti et al., 2020), e.g., based on
accuracy or F-measure; (3) manual selection based on visual inspection of the trade-off curve (Elazar
& Goldberg, 2018; Ravfogel et al., 2020); and (4) constrained selection (Han et al., 2021b; Subra-
manian et al., 2021), by selecting the best fairness constrained to a particular level of performance,
and vice versa. Each selection criterion reflects the performance at a particular situation, making it
very hard to rigorously compare methods.

Instead, the AUC-PFC score is the integral of performance–fairness curves with respect to perfor-
mance on an interval [0, 1]. For a particular dataset, by the definition of fairness metrics, a random
classifier achieves the best fairness. Therefore, the integration from 0 to the random prediction accu-
racy is dataset-specific and is identical to different methods. In this paper, we normalize AUC-PFC
scores for each dataset by ignoring the performance worse than random guess. Table 8 summaries
the lowest accuracy scores w.r.t. each dataset.

When calculating AUC-PFC scores, for these methods that are not flexible to achieve best fairness,
we manually add the random model to the calculation. Taking the Vanilla model on Moji as an
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Moji Bios TrustPilot Adult COMPAS
50% 30% 68% 76% 56%

Table 8: Majority label proportion, i.e., lowest accuracy of each dataset.

example, the performance and fairness are 0.7109± 0.0110 and 0.6358± 0.1331, respectively. The
random model corresponds to 0.5 accuracy and 1.0 fairness. Given these two points, the PFC is the
line form (0.7109, 0.6358) to (0.5, 1), and the AUC-PFC score is

(0.7109− 0.5)× 0.6358 + 0.5× (0.7109− 0.5)× (1− 0.6358) = 0.172,

which is consistent with Table 1.

However, we still need to select a model for early stopping before model selection. Instead of
considering performance and fairness metrics separately, we use the distance to the optimal point
(“DTO”), which quantifies the accuracy–fairness tradeoff (Marler & Arora, 2004; Han et al., 2022a).
DTO measures the normalized Euclidean distance for a given combination of accuracy and fairness
to the optimal point which denotes the ideal result, e.g., accuracy and fairness of 1.0. It is typically
unachievable in practice.

B.1 INTERPRETATION OF AUC–PFC RESULTS

The main motivation for using AUC–PFC is for ease of comparison between approaches, as it ag-
gregates the performance–fairness trade–off curve (PFC) of each model to a single number, enabling
systematic comparison across different tasks. The two common questions related to AUC–PFC are:

• The magnitude of AUC–PFC differs from a single metric, and a 0.0001 improvement in
the AUC–PFC score is equivalent to a 1 percentage point (pp) improvement in both perfor-
mance and fairness (0.01 × 0.01). In the paper, numbers are rounded to 3 decimals, and a
minimum difference in AUC–PFC (0.001) is roughly equivalent to a 3 pp improvement in
both performance and fairness in a PFC plot.

• The calculation of AUC–PFC scores is normalized by the worst performance, which is the
majority label proportion when using the accuracy metric. Therefore, AUC–PFC scores
represent to what extent a model improves the performance or fairness over the random
model.

There is no doubt that using AUC–PFC comes with certain limitations. To address the major con-
cerns related to AUC–PFC scores, we present additional results in Appendix E, including disaggre-
gated results for each dataset.

In particular, we provide the PFC of each method (e.g., Figure 6 in Appendix F), representing the
best fairness that can be achieved at different performance levels, and vice versa.

One limitation of a PFC plot is that it is hard to make quantitative conclusions based on the plot
itself, and we cannot conclude that one method is better than another if any intersection exists
between their PFCs.

To address this problem, we additionally conduct quantitative comparisons across different debias-
ing methods by model selection w.r.t. two different criteria, and then compare both the performance
and fairness of the selected models (e.g., Table 14 in Appendix E). For each method, we report the
evaluation results averaged over 5 random runs with standard deviation for both the development set
and test set.

As stated in Appendix F, we present disaggregated results (including a PFC plot and a table) for all
15 settings on GitHub.

C EXPERIMENTAL DETAILS

We conduct our experiments on an HPC cluster instance with 4 CPU cores, 32GB RAM, and one
NVIDIA V100 GPU.
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C.1 ASSIGNING AND SMOOTHING PROXY LABELS

Assigning proxy labels In the current experiments, proxy labels are assigned based on the losses
of each minibatch, i.e., the loss per instance is taken from a particular training iteration. We ac-
knowledge that there are other ways of extracting training losses, e.g. taking losses from the final
model or averaged over multiple iterations as the reviewer suggested, and we leave it as a future
work.

Smoothing proxy labels The proxy label assignment and smoothing happen simultaneously at
each iteration. By doing so, our method can be incorporated into existing systems with only a few
lines of changes to replace the actual protected labels with our proxy labels.

At each minibatch, the actual protected labels are replaced with smoothed proxy labels. All debias-
ing methods will be on the proxy labels in the later process.

During label smoothing, unsmoothed labels are used for voting to avoid inconsistency in smoothing
decisions for other examples. We first collect the nearest neighbours of each instance and then do
the voting for all of them.

C.2 MODELS AND PARAMETER TUNING

All approaches presented in this paper share the same dataset-specific hyperparameters as the stan-
dard model. Hyperparameters are tuned using grid-search, in order to minimize distance to the
optimal.

Best assignment

Hyperparameter Search space Moji Bios TrustPilot Adult COMPAS

number of epochs - 100

patience - 10

encoder - DeepMoji (Felbo et al., 2017) BERT (Devlin et al., 2019) - -

embedding size - 2304 768 768 101 447

hidden size - 300

number of hidden layers choice-integer[1, 3] 2

batch size loguniform-integer[64, 2048] 1024 1024 1024 512 1024

optimizer - Adam (Kingma & Ba, 2015)

learning rate loguniform-float[10−6, 10−1] 3× 10−5 10−5 3× 10−5 3× 10−4 10−4

learning rate scheduler - reduce on plateau

LRS patience - 2 epochs

LRS reduction factor - 0.5

Trainable Parameter - 782k 329k 323k 122k 225k

Table 9: Search space of dataset-specific hyperparameters.

All debiasing methods in this paper does not introduce extra parameter to the main task model,
and will not need to considered at the inference time. As such, we provide method-specific hyper-
parameters separately, and the search space for method-specific hyperparameters are shared across
difference datasets.

• GDCLA tunes the strength of the additional loss for minimizing absolute loss difference
within each class. loguniform-float[10−6, 10−1], 40 times.

• GDGLB tunes the strength of the additional loss for minimizing absolute loss difference.
loguniform-float[10−5, 10−0], 40 times.

• FairBatch tunes the adjustment rate for resampling probabilities. loguniform-float[10−4,
10−0], 40 times.

• Adv tunes the weights of unlearning adversaries in training. loguniform-float[10−2, 10+2],
40 times.

• SemiAdv tunes the weights of unlearning adversaries in training. loguniform-float[10−2,
10+2], 40 times.
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Dataset Moji Bios TrustPilot Adult COMPAS

Attribute R G E G×E G A C G×A×C G R G×R G R G×R

Vanilla 58 47 37 39 20 20 20 18 25 17 22 9 10 10
GDCLA 55 131 131 149 43 36 36 42 26 26 27 10 11 12
GDGLB 54 121 116 157 34 33 33 45 27 28 28 10 12 11
FairBatch 54 46 48 47 26 26 27 24 24 21 21 11 10 11
Adv 47 54 48 41 29 28 28 23 23 29 29 11 9 9
SemiAdv 51 57 53 42 30 29 30 25 24 20 29 11 11 9
ARL 47 71 73 40 27 25 27 20 22 21 23 11 11 12
ULPL+GDCLA 148 35 37 40 31 33 34 33 51 55 54 15 16 18
ULPL+GDGLB 148 35 37 38 32 33 34 32 49 54 54 15 16 17
ULPL+Adv 179 49 50 41 47 46 46 36 62 61 68 15 16 17

Table 10: Average computational budget, measured in seconds.

• ARL tunes the learning rate of learning adversaries in training. loguniform-float[10−4,
10+2], 40 times.

• ULPL methods tunes the k from 1 to 15, and p-norm from 2 to 6.

Notice that, this paper report the AUC-PFC, which eliminate the requirement for model selection,
i.e., there is no best-found trade-off hyperparameters w.r.t. bias mitigation.

C.3 COMPUTATIONAL BUDGET

Table 10 shows average GPU time of model training. Noticing that debiasing components will not
be used for inference, i.e., different methods have identical inference cost.

C.4 PARAMETER TUNING FOR LABEL SMOOTHING

For Bios, class-specific neighbourhood smoothing degrades to naive proxy labels when there is
only a small number of instances in a particular class. For example, there are 28 distinct target classes
in the Bios dataset, with a highly skewed distribution. As such, there can be only one instance per
target class in a minibatch, and the neighbourhood smoothing does not work in this case.

For TrustPilot, we hypothesise that it is due to the leakage of protected information being very low,
and accordingly the neighbourhoods of instances being noisy.

The selection of k for label smoothing. As observed in Section 5.2, the optimal value of k varies
greatly across datasets and debiasing methods, and in the context of this paper, we deal with this
through a simple grid search over different values of k, which is computationally expensive.

Although we do not currently have an algorithm for efficiently optimizing k at this time, we have
observed that the value of k is positively correlated with model leakage and unfairness. Therefore,
we could start tuning the value of k from a large value if the model is significantly biased, as the
instances from the same protected group are likely to be close to each other. Otherwise, we can use
the proxy labels without smoothing if the results are reasonably fair.

D THEORETICAL JUSTIFICATION

D.1 FROM EMPIRICAL LOSSES TO UTILITY METRICS

For illustration purposes, we assume binary settings for both target class and protected attribute
labels. In Section 3.3, we have shown that the proposed method can be used to improve the equal
opportunity fairness.

Demographic parity (DP) For DP fairness, the predictions are expected to be independent from
protected attributes (ŷ ⊥ z), and the fairness is satisfied if the differences in positive prediction rate
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between demographic groups are zero: p(ŷ = 1|z = 0) = p(ŷ = 1|z = 1). Thus,

p(ŷ = 1, y = 0|z = 0) + p(ŷ = 1, y = 1|z = 0)

=p(ŷ = 1, y = 0|z = 1) + p(ŷ = 1, y = 1|z = 1).

Since p(ŷ = 0, y|z) + p(ŷ = 1, y|z) = 1,∀y, z, by replacing p(ŷ = 1, y = 0|z) with 1 − p(ŷ =
0, y = 0|z),

(1− p(ŷ = 0, y = 0|z = 0)) + p(ŷ = 1, y = 1|z = 0)

=(1− p(ŷ = 0, y = 0|z = 1)) + p(ŷ = 1, y = 1|z = 1).

An equivalent condition to the DP fairness is that

p(ŷ = 1, y = 1|z = 0)− p(ŷ = 0, y = 0|z = 0)

=p(ŷ = 1, y = 1|z = 1)− p(ŷ = 0, y = 0|z = 1).

A sufficient condition for DP is, both p(ŷ = 1, y = 1|z = 0) = p(ŷ = 1, y = 1|z = 1) and
p(ŷ = 0, y = 0|z = 0) = p(ŷ = 0, y = 0|z = 1) are satisfied. Next, we show how to map the
conditional joint probability to training losses. As for the y = 1, recall that, L1 is an unbiased
estimator of − log(p(ŷ = 1|yi = 1) (Equation (1)),

L1 =− log(p(ŷ = 1|yi = 1)

L1 =− log(p(ŷ = 1|yi = 1)− log(p(yi = 1)) + log(p(yi = 1))

L1 =− log(p(ŷ = 1|yi = 1)p(yi = 1)) + log(p(yi = 1))

L1 =− log(p(ŷ = 1, yi = 1)) + log(p(yi = 1))

By substituting the joint probability with losses,

p(ŷ = 1, y = 1|z = 0) = p(ŷ = 1, y = 1|z = 1)

− log(p(ŷ = 1, y = 1|z = 0)) = − log(p(ŷ = 1, y = 1|z = 1))

L1,0 − log(p(yi = 1|zi = 0)) = L1,1 − log(p(yi = 1|zi = 1))

L1,0 − L1,1 = log(
p(yi = 1|zi = 0)

p(yi = 1|zi = 1)
)

Similarly, L0 is an unbiased estimator of − log(p(ŷ = 0, yi = 0) + log(p(yi = 0)), and the
DP condition for y = 0, p(ŷ = 1, y = 1|z = 0) = p(ŷ = 1, y = 1|z = 1), is equivalent to
L0,0 − L0,1 = log(

p(yi=0|zi=0)
p(yi=0|zi=1) ).

Notice that p(y|z),∀y, z are dataset-specific constant numbers, and if p(y|z = 0) = p(y|z = 1),∀y,
the DP conditions are identical to Equalized Odds fairness (Hardt et al., 2016), and can be approx-
imated by L1,0 = L1,1 and L0,0 = L0,1. Last but not least, recall that the nature of DP assumes y
and z are independent, therefore, p(y|z = 0) − p(y|z = 1) ≈ 0,∀y generally holds when the DP
fairness is desired.

Confusion-matrix based metrics So far, we have shown that minimizing loss differences can
approximate the optimization of the two most wildly used notions of fairness: EO and DP fairness.
Since model predictions and target labels are observed during training, such approximation can also
be applied to other confusion-matrix-based metrics. For example, the cross-entropy loss of instances
w.r.t. predictions as 0 and 1 are approximations of the positive predictive value (p(y = 1|ŷ = 1))
and negative predictive value (p(y = 0|ŷ = 0)), respectively.
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D.2 OPTIMIZING FAIRNESS WITH PROXY LABELS

Bias mitigation for different fairness criteria Overall, ULPL only assigns proxy labels to train-
ing instances, and the optimization for fairness is achieved using existing supervised debiasing meth-
ods, by learning uniform representations across proxy groups (such as Adv) or minimizing loss dis-
parities in training (such as GDCLA and GDGLB). Based on ULPL, different fairness criteria can
be optimized by employing different variants of a particular debiasing method. Taking Adv as an
example, a discriminator is trained to recover the protected information from hidden representations,
and the main task model is optimized to remove protected information from hidden representations
through unlearning the discriminator. By doing so, the hidden representations and corresponding
predictions are expected to be independent of the protected attribute, ensuring DP fairness. To adopt
Adv for EO fairness, the discriminator takes target labels into consideration, e.g. training a specific
discriminator for instances with positive target class only, and the removal of protected information
is then class-dependent, aligning with the definition of EO fairness.

E ADDITIONAL RESULTS

E.1 PROXY LABEL ASSIGNMENT – MOJI

Sentiment Race P (z′ = 1) PPR↑ TPR↑ FPR↓ PPV↑ NPV↓

sad SAE 17.0± 1.2 79.9± 0.8 91.2± 0.7 35.0± 3.1 91.3± 0.7 64.8± 2.2
AAE 68.5± 1.7 14.3± 0.7 45.7± 2.6 6.4± 0.8 64.2± 3.2 87.3± 0.6

happy SAE 55.3± 3.0 20.1± 0.8 65.0± 3.1 8.8± 0.7 64.8± 2.2 91.3± 0.7
AAE 15.8± 2.3 85.7± 0.7 93.6± 0.8 54.3± 2.6 87.3± 0.6 64.2± 3.2

Table 11: Proxy label assignment without smoothing and evaluations for the Vanilla model over
Moji. Evaluation results ± standard deviation (%) are averaged over 5 runs with different random
seeds. ± P (z′ = 1) refers to the proportion of instances being assigned with 1, indicating worse-
performed groups. Evaluating metrics include: (1) positive predictive rate (PPR), corresponding
to the demographic parity fairness (Blodgett et al., 2016), (2) true positive rate (TPR) and false
positive rate (FPR), corresponding to equalized odds and equal opportunity fairness (Hardt et al.,
2016), and (3) positive predictive value (PPV) and negative predictive value (NPV), corresponding
to test fairness (Chouldechova, 2017).

We first investigate if the ULPL labels are meaningful through the lens of training examples in the
Moji dataset. Table 11 presents the results of the Vanilla model.

It can be seen that, AAE tweets are more likely to be classified as happy, while SAE tweets are more
likely to be classified as sad, resulting in consistent trend in gaps with respect to PPR, TPR, FPR,
PPV, and NPV. Based on loss-disparities, AAE instances with sad target labels are more possible to
be assigned with z′ = 1 (68.5% vs. 17% for SAE and AAE, respectively), encouraging debiasing
methods to focus more on sad-AAE instances in training. Similarly, happy-SAE instances are more
likely to be assigned with z′ = 1, indicating that happy-SAE are upweighted in training.

For the dataset distribution perspective of view, as introduced in Appendix A.1, Moji is balanced
with respect to both sentiment and ethnicity but skewed in terms of sentiment–ethnicity combi-
nations (40% happy-AAE, 10% happy-SAE, 10% sad-AAE, and 40% sad-SAE, respectively),
which is closely related to the DL assignments that minority groups within each target class are
assigned with z′ = 1. I.e., our proposed proxy label differentiates minority groups with majority
groups within each target class without observing demographic labels.

E.2 PROTECTED LABEL PREDICTABILITY AFTER DEBASING

Neighbour smoothing requires protected information in hidden representations during the whole
training, requiring encoded protected information in hidden representations. Han et al. (2021b) show
that although supervised debiasing methods have shown success in reducing performance disparities
in downstream tasks, the predictability of protected attributes in debiased hidden representations is
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Figure 4: Predictability after debiasing.

still well above the ideal value. We take ULPL+GDCLA as an example and explore the protected
label predictability across different debiased models (i.e., different trade-offs).

As seen from Figure 4, fairness scores (the blue line) improve at the cost of performance. However,
the predictability of protected labels is quite stable at a high level, indicating that protected infor-
mation is still encoded in debiased models, and our proposed neighbourhood smoothing method is
robust to bias mitigation.

E.3 EFFECTIVENESS OF THE NEIGHBOUR SMOOTHING

In smoothing z′ labels, we hypothesis that the nearest neighbours of an instance are likely to from the
same protected group. Except the instance itself, the remaining nearest neighbours are essentially
the results of a standard k-nearest-neighbour (k-NN) model. Therefore, we perform analysis based
on standard k-NN models, and investigate if the remaining nearest neighbours are helpful for label
smoothing, i.e., from the same protected group as the target instance.

E.4 OTHER FAIRNESS METRICS, DP

We investigate the robustness of ULPL methods to other notions of fairness. For illustration pur-
poses, we focus on demographic parity fairness (DP) (Blodgett et al., 2016) in this experiment,
which requires model predictions to be independent with protected attributes. Again, we aggregate
accuracy and DP fairness trade-offs as the AUC-PFC scores. Since DP is sensitive to class imbalance
and there is no standard way of generalizing DP to multi-class classification tasks, we only conduct
experiments over binary classification tasks, including Moji, Adult, and COMPAS. Table 12 shows
results w.r.t. demographic parity fairness.

Trends for different methods are similar to the results of equal opportunity fairness, indicating that
debasing methods are robust to different fairness metrics.

Dataset Moji Adult COMPAS

Attribute R G R G×R G R G×R

Vanilla 0.173 0.087 0.076 0.073 0.109 0.097 0.094

GDCLA 0.253 0.091 0.081 0.079 0.121 0.094 0.085
GDGLB 0.233 0.091 0.081 0.077 0.121 0.098 0.094
FairBatch 0.254 0.091 0.079 0.073 0.117 0.103 0.094
Adv 0.254 0.091 0.077 0.074 0.117 0.094 0.945
SemiAdv 0.255 0.090 0.077 0.074 0.119 0.093 0.945

ARL 0.197 0.092 0.081 0.078 0.120 0.092 0.092
ULPL+GDCLA 0.214 0.090 0.082 0.080 0.123 0.101 0.095
ULPL+GDGLB 0.192 0.090 0.081 0.078 0.124 0.100 0.097
ULPL+Adv 0.186 0.091 0.083 0.080 0.122 0.099 0.092

Table 12: AUC-PFC based on demographic parity fairness.
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Dataset S T Vanilla GDCLA FairBatch SemiAdv ARL ULPL+GDCLA

Bios G E −0.0011 0.0003 −0.0054 −0.0021 0.0018 0.0002
E G −0.0041 −0.0131 −0.0166 −0.0188 −0.0028 −0.0120

TrustPilot

G A 0.0025 0.0021 −0.0007 −0.0018 −0.0018 0.0006
G C 0.0047 0.0012 −0.0010 −0.0015 0.0004 0.0008
A G −0.0017 −0.0032 −0.0006 0.0001 0.0009 −0.0020
A C 0.0018 −0.0009 −0.0001 −0.0000 0.0012 −0.0006
C G −0.0041 −0.0023 −0.0001 −0.0003 −0.0007 −0.0023
C A −0.0027 0.0011 0.0011 −0.0008 −0.0023 −0.0010

Adult G R 0.0053 −0.0098 −0.0045 0.0037 −0.0080 −0.0060
R G −0.0023 −0.0010 −0.0040 −0.0033 −0.0012 −0.0020

COMPAS G R −0.0012 −0.0036 −0.0036 0.0002 −0.0014 0.0011
R G 0.0058 −0.0026 0.0025 −0.0064 −0.0083 −0.0035

Average 0.0002 −0.0026 −0.0027 −0.0026 −0.0019 −0.0022

Table 13: AUC-PFC score differences between debiasing w.r.t. target protected attributes (T), and
source protected attributes (S). Larger numbers indicate better generalizations to unobserved pro-
tected groups.
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Figure 5: PFC of in-domain and cross-domain debiasing over the Bios–gender dataset.

E.5 HOW DOES BIAS MITIGATION AFFECT FAIRNESS FOR UNOBSERVED GROUPS?

Proxy group labels (z′) are dynamically adjusted at each minibatch during training, which differs
from fixed protected labels in supervised debiasing. As a result, supervised debiasing methods
based on the observed protected attributes z mitigate biases for particular protected groups.

While the proposed proxy label approaches focus on the group of instances that are underrepre-
sented during training, which is expected to be more general than debiasing to a particular protected
attribute. Figure 5 demonstrates the difference in AUC-PFC scores between in-domain debiasing
and cross-domain debiasing. For each debiasing method, we train the debiased model and conduct
model selections based on the source protected attribute (Economy). The trained models are then
evaluated w.r.t. the target unobserved protected attribute (Gender). The ability to generalize to un-
observed protected attributes is measured as the difference between in-domain and cross-domain
AUC-PFC.

Table 13 summaries AUC-PFC differences across difference datasets w.r.t. a subset of debiasing
methods. Overall, Vanilla shows the best generalization to unobserved protected attributes, and
unsupervised debiasing methods are better than supervised and semi-supervised debiasing methods.

Intuitively, the Vanilla model and unsupervised debiasing methods (ARL and ULPL+GDCLA) are
agnostic to cross-attribute generalization, and their difference should be close to 0 which is clearly
not the case. The AUC-PFC decrease of these methods is caused by the model selection, i.e., al-
though the training process is identical, different models may be selection based on their own pro-
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tected attributes. As shown in Figure 5, the selected model of ULPL+GDCLA based on economy
labels at accuracy around 0.6 is not a Pareto point for gender, confirming that decreases in AUC-PFC
of Vanilla and unsupervised debiasing methods are caused by cross-domain model selection.

E.6 THE APPLICATION OF ULPL TO DIFFERENT DEBIASING APPROACHES

GDCLA are representatives of debiasing methods that directly optimize loss parity. In particular, the
training objective of GDCLA is:

LGDCLA
= L+ λGDCLA

∑
c

∑
g

|Lc,g − Lc|,

where |Lc,g − Lc| is optimized to achieve better fairness. Since Lc,g, Lc, and L are average losses,
their magnitude are irrelevant to subset sizes (nc,g, nc, and n, respectively), which in turn applies
the same strength of fairness regularization to all subset of instances Dc,g,∀c, g. In other words,
GDCLA ignores the influence of group size in bias mitigation, resulting in robustness to imbalanced
class distributions.

There is a perfect alignment between ULPL and GDCLA in the sense that the proxy group z′ = 1
will always be upweighted during the optimization of GDCLA. I.e., ULPL+GDCLA reduces the
loss disparities across instances within each target class, which in turn improves the lower bound of
group-wise fairness, especially for the EO fairness. As a result of the consistency, we observe that
ULPL+GDCLA outperforms other unsupervised methods.

GDGLB is a variant of GDCLA, and they can only be differentiated by the way of incorporating
fairness regularization:

LGDGLB
= L+ λGDGLB

∑
c

∑
g

|Lc,g − L|,

where the average loss in the regularization term is based on all instances (L), differing from the
average loss within each target class (Lc) for GDCLA. As a result, GDGLB additionally encourages
the performance parity across target class, which is typically known as long-tail learning. However,
ULPL+GDGLB could potentially lead to worse results for better-performed target classes. For exam-
ple, for ith target class, assuming that loss differences have been minimized (i.e., Li,z′=0 ≈ Li,z′=1),
it is possible that all instances with target label y = i will be under-fitted if Li > L.

Adv represents a different family of debiasing methods which aims at learning fair hidden represen-
tations. The training objective of Adv includes the mutual information (MI) to the training objective
in addition to standard loss:

LAdv = L+MI(z,h),
where the h = e(x) is the hidden representation of input x extracted from the encoder e. By
minimizing the MI objective, we expected the learned hidden representations h are orthogonal to
protected attributes z.

In practice, MI(z,h) is expressed by the combination of marginal entropy (H(z)) and conditional
entropy (H(z|h)): MI(z,h) = H(z) − H(z|h), where H(z) is a constant number and can be
ignored in the optimization, and H(z|h) is estimated by an adversary (d) that is trained to identify
the protected attributes (ẑ = d(h)).

The key step of Adv is the training of d, i.e., if d can effectively recover z from h. One problem
associated with ULPL is that the mapping from proxy labels to ground truth labels is class-specific,
making it harder for the recovering. Therefore, although the adversaries are non-linear classifiers,
the effectiveness of ULPL+Adv is not as good as other ULPL +∗ methods as shown in Table 1.

F FULL RESULTS

In addition to AUC-PFC scores, we present PFC and evaluation results for each dataset. We inves-
tigate two different selection criteria and report the evaluation results over the development and test
sets. Specifically, we conduct model selection over the development set based on: (1) maximum
fairness within a performance trade-off threshold of 5% (F@P−5%); and (2) maximum fairness
within a performance trade-off threshold of 10% (F@P−10%).

23



Published as a conference paper at ICLR 2023

Test Set Development Set

Selection Method Performance Fairness Performance Fairness

F@P-5%

Vanilla 71.1± 1.1 63.6± 1.3 71.4± 1.2 65.9± 1.2
GDCLA 74.2± 0.3 92.9± 1.4 73.7± 0.3 94.5± 1.0
GDGLB 75.9± 0.4 77.6± 1.3 75.2± 0.2 79.7± 1.6
FairBatch 75.4± 0.4 90.3± 0.8 74.8± 0.2 90.9± 0.7
Adv 75.3± 0.4 89.7± 1.6 74.9± 0.3 91.0± 0.8
SemiAdv 75.7± 0.2 90.1± 0.5 74.9± 0.4 91.1± 0.5
ARL 70.7± 1.0 78.5± 5.5 69.2± 1.0 78.1± 5.7
ULPL+RL 66.3± 2.0 85.7± 4.9 66.1± 2.1 86.7± 4.6
ULPL+GDCLA 66.7± 2.6 88.0± 7.0 66.2± 2.4 88.8± 6.8
ULPL+GDGLB 72.6± 0.4 65.1± 1.6 72.5± 0.6 66.9± 1.3
ULPL+Adv 67.8± 5.6 69.4± 9.2 68.2± 5.5 71.2± 8.9

F@P-10%

Vanilla 71.1± 1.1 63.6± 1.3 71.4± 1.2 65.9± 1.2
GDCLA 74.2± 0.3 92.9± 1.4 73.7± 0.3 94.5± 1.0
GDGLB 75.9± 0.4 77.6± 1.3 75.2± 0.2 79.7± 1.6
FairBatch 75.4± 0.4 90.3± 0.8 74.8± 0.2 90.9± 0.7
Adv 75.3± 0.4 89.7± 1.6 74.9± 0.3 91.0± 0.8
SemiAdv 75.7± 0.2 90.1± 0.5 74.9± 0.4 91.1± 0.5
ARL 63.7± 3.8 84.6± 4.2 63.0± 3.9 85.9± 3.5
ULPL+GDCLA 64.6± 3.3 92.5± 3.0 64.8± 2.2 92.6± 2.4
ULPL+GDGLB 72.6± 0.4 65.1± 1.6 72.5± 0.6 66.9± 1.3
ULPL+Adv 67.8± 5.6 69.4± 9.2 68.2± 5.5 71.2± 8.9

Table 14: Evaluation results ± standard deviation (%) of selected models over the Moji dataset.

For the demonstration purpose, here we present the results for Moji. The full disaggregated results of
15 settings can also be seen at https://github.com/HanXudong/An_Unsupervised_
Locality-based_Method_for_Bias_Mitigation/blob/main/unsupervised_
bias_mitigation/NB_Appendix_indomain_tradeoffs_dispaly.ipynb.
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Figure 6: PFC over the Moji dataset.

Moji Figure 6 shows performance–fairness trade-off curves (PFC) of each debiasing method. Ta-
ble 14 summarises performance and equal opportunity fairness results w.r.t. two different selection
criteria over the test set and dev set.

The areas under each PFC in Figure 6 correspond to a number in Table 1. Consistent with the Ta-
ble 1, it can been from Figure 6 that GDCLA results in the best PFC. In addition, PFCs of Adv and
SemiAdv are highly overlapped with each other, and their AUC–PFC scores are also identical in
Table 1. Last but not least, ULPL+GDCLA is better than ARL most of the time in Figure 6, which
is summarized as a 0.016 improvement in terms of AUC-PFC score in Table 1.
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