
Published as a workshop paper at ICLR 2023

BENCHMARKING BIRD’S EYE VIEW DETECTION RO-
BUSTNESS TO REAL-WORLD CORRUPTIONS

Shaoyuan Xie1, Lingdong Kong2,3, Wenwei Zhang2,4, Jiawei Ren4,
Liang Pan4, Kai Chen2, Ziwei Liu4,B

1Huazhong University of Science and Technology 2Shanghai AI Laboratory
3National University of Singapore 4S-Lab, Nanyang Technological University

shaoyuanxie@hust.edu.cn {konglingdong,zhangwenwei,chenkai}@pjlab.org.cn
{jiawei011,liang.pan,ziwei.liu}@ntu.edu.sg

ABSTRACT

The recent advent of camera-based bird’s eye view (BEV) detection algorithms
exhibits great potential for in-vehicle 3D object detection. Despite the progres-
sively achieved results on the standard benchmark, the robustness of BEV de-
tectors has not been thoroughly examined, which is critical for safe operations.
To fill in this gap, we introduce nuScenes-C, a test suite that encompasses eight
distinct corruptions with a high likelihood to occur in real-world applications, in-
cluding Bright, Dark, Fog, Snow, Motion Blur, Color Quant, Camera Crash, and
Frame Lost. Based on nuScenes-C, we extensively evaluate a wide range of BEV
detection models to understand their resilience and reliability. Our findings indi-
cate a strong correlation between the absolute performance on in-distribution and
out-of-distribution datasets. Nonetheless, there is considerable variation in rela-
tive performance across different approaches. Our experiments further demon-
strate that pre-training and depth-free BEV transformation have the potential to
enhance out-of-distribution robustness. The benchmark is openly accessible at
https://github.com/Daniel-xsy/RoboBEV.

1 INTRODUCTION

Deep neural network-based 3D object detectors, such as those presented in Li et al. (2022b); Wang
et al. (2022b); Huang et al. (2021); Liu et al. (2022a); Wang et al. (2022a; 2021); Lang et al. (2019);
Vora et al. (2020); Zhou & Tuzel (2018); Yan et al. (2018), have demonstrated promising perfor-
mance on various challenging real-world benchmarks, including the KITTI Geiger et al. (2012),
nuScenes Caesar et al. (2020), and Waymo Open Sun et al. (2020). These popular approaches uti-
lize either point clouds Lang et al. (2019); Vora et al. (2020); Zhou & Tuzel (2018); Yan et al. (2018)
or images Wang et al. (2021; 2022a;b); Li et al. (2022b;a); Huang et al. (2021); Liu et al. (2022a)
as inputs for detection tasks. In comparison to LiDAR-based methods, camera-based approaches
have caught significant attention due to their low deployment cost, high computational efficiency,
and dense semantic information. Additionally, camera-based detection exhibits inherent advantages
in detecting long-range objects and identifying vision-based traffic signs.

Despite remarkable progress achieved by recent camera-based 3D object detection methods, their
ability to withstand natural corruption remains inadequately understood. The reliability of camera-
based 3D object detectors under corruption is crucial because these methods are usually applied in
highly safety-critical systems (e.g., autonomous driving systems) in the real world, which introduces
a range of external factors, including fluctuations in lighting and diverse meteorological conditions.
Moreover, images captured by the camera may become blurred or even fail to register, due to changes
in velocity and sensor malfunction, respectively. Therefore, we are motivated to investigate the
robustness of these approaches in the face of diverse natural corruptions.

To bridge this knowledge gap, we undertake the initial comprehensive benchmark for assessing the
out-of-distribution robustness of camera-based BEV detectors. To facilitate this, we develop a novel
dataset, namely nuScenes-C, which comprises eight distinct natural corruptions. Each corruption
type is divided into three different levels – easy, moderate, and hard since corruptions can manifest
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Figure 1: The radar charts of existing BEV detectors’ nuScenes Detection Score (NDS) Caesar
et al. (2020) under eight corruption types. We observe diverse behaviors of different models even
with competitive “clean” performance. The NDS is normalized across all the benchmarking BEV
detection models to lie between 0.1 and 1.

themselves at varying intensities Hendrycks & Dietterich (2019). Our study entails a comprehensive
investigation of diverse corruption settings, encompassing the failure of sensors, which often occurs
in real-time systems where individual cameras malfunction or a series of frames are lost during
processing. We categorize this type of corruption as Camera Crash and Frame Lost, respectively.
The second category of corruption results from vehicle motion and image processing. Specifically,
images captured by cameras while moving at high speed may be Motion Blur, or the images may be
Color Quant when memory is limited. Lastly, real-world scenarios contain diverse light and weather
conditions. To analyze model performance under these conditions, we incorporate Brightness, Low
Light, Fog, and Snow weather to cover the above situations.

Leveraging the proposed nuScenes-C dataset, we present an exhaustive analysis of camera-based 3D
object detection models. In particular, our study benchmarks 10 existing models with 22 variants
versions and provides noteworthy insights into their out-of-distribution robustness. As shown in
Figure 1, the benchmark results indicate that models present competitive performance on clean
datasets vary largely on corrupted data and different corrupted types. We find that methods using
pre-training and depth-free BEV transformation exhibit better out-of-distribution robustness than
those not. Additionally, temporal fusion can provide better robustness only when they are carefully
designed to avoid error accumulation. The above findings provide valuable insights for designing
future models to strive for better out-of-distribution robustness.

The key contributions of this work are summarized as follows.

• To the best of our knowledge, we make the first attempt to benchmark the robustness of
camera-based BEV 3D object detectors under natural corruptions.

• We conduct exhaustive experiments to benchmark 22 existing camera-only BEV 3D object
detectors on the proposed nuScenes-C dataset.

• Our study provides an in-depth analysis of the experimental results, highlighting the factors
that contribute to the superior robustness of certain camera-only BEV 3D object detectors
on the out-of-distribution dataset.

2 RELATED WORK

Camera-based Bird’s Eye View Detection. Compared to the monocular image input Wang et al.
(2021); Park et al. (2021), conducting 3D detection by consuming multi-view images and building
bird’s eye view (BEV) representations Li et al. (2022b); Huang et al. (2021); Li et al. (2022a); Wang
et al. (2022b); Liu et al. (2022a); Zhang et al. (2022); Lin et al. (2022); Roh et al. (2022); Shi et al.
(2022) enjoys several advantages. First, it allows for joint learning from multi-view images. Second,
the bird’s eye perspective provides a physics-interpretable way for information fusion from different
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Figure 2: Corruption examples from nuScenes-C dataset. Left: Corruption taxonomy. Right: Tem-
poral corruptions. Camera Crash drop fixed set of images along timestamps; Frame Lost randomly
drop frames along timestamps.

sensors and different timestamps Ma et al. (2022). Third, BEV output space can be readily applied
in many downstream tasks, like prediction and planning, which leads to substantial improvements
in performance for BEV-based detection frameworks. Existing works can be basically divided into
two categories based on whether they perform depth estimation explicitly. Inspired by LSS Philion
& Fidler (2020), BEVDet Huang et al. (2021) utilizes an extra depth estimation branch to perform
the transform from perspective view to bird’s eye view (PE2BEV). BEVDepth Li et al. (2022a)
makes more accurate depth estimation via explicit depth supervision from point clouds and further
improves the performance. Based on the above pipeline, BEVerse Zhang et al. (2022) proposes
a unified framework for multi-task learning and achieving state-of-the-art performance. Another
line of work performs PV2BEV without explicit depth estimation. Following DETR Carion et al.
(2020), DETR3D Wang et al. (2022b) represents 3D objects as queries and performs cross-attention
via Transformer decoder. PETR Liu et al. (2022a;b) further improves performance by proposing 3D
position-aware representations. BEVFormer Li et al. (2022b) introduces temporal cross-attention
to extract BEV features from multi-timestamps images. PolarFormer Jiang et al. (2022) explores
predicting 3D targets in polar coordinates. Inspired by the success of Sparse RCNN Sun et al.
(2021), SRCN3D Shi et al. (2022) introduce sparse proposals for feature aggregation. Despite these
works showing competitive results on the standard dataset, it’s unclear how they behave in front of
natural corruptions.

Robustness under Adversarial Attacks. Contemporary neural networks are prone to adversarial
attacks, where a deliberately created perturbation added to the input can lead the network to pro-
duce incorrect predictions Szegedy et al. (2013); Goodfellow et al. (2014); Moosavi-Dezfooli et al.
(2017). Adversarial examples have been extensively researched in various vision tasks, including
classification Szegedy et al. (2013); Goodfellow et al. (2014); Moosavi-Dezfooli et al. (2017); Madry
et al. (2017); Brown et al. (2017); Liu et al. (2016), detection Xie et al. (2017); Liu et al. (2018); Tu
et al. (2020); Cao et al. (2021), and segmentation Xie et al. (2017); Rossolini et al. (2022). These ad-
versarial examples can be generated both in digital Szegedy et al. (2013); Goodfellow et al. (2014);
Moosavi-Dezfooli et al. (2017); Madry et al. (2017); Brown et al. (2017); Liu et al. (2016); Xie et al.
(2017) and physical environments Rossolini et al. (2022); Kurakin et al. (2018); Cao et al. (2021).
The recent study demonstrates that the 3D perception system tends to crash when exposed to ad-
versarial examples, which could pose potential safety risks in the deployment stages Rossolini et al.
(2022); Cao et al. (2021); Tu et al. (2020). While Xie et al Xie et al. (2023) conducts a comprehen-
sive study of the adversarial robustness of camera-based detectors, we focus on natural corruptions,
which are more likely to occur in the real world.

Robustness under Natural Corruptions. The assessment of model robustness has been an active
research area in computer vision, where the evaluation is mainly focused on worst-case robustness
against adversarial attacks. On the other hand, natural corruption robustness assesses the average-
case performance of models against common corrupted images that are prevalent in real-world ap-
plications. Various benchmarks have been proposed to evaluate the robustness of 2D image clas-
sification models, including ImageNet-C Hendrycks & Dietterich (2019), ObjectNet Barbu et al.
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(2019), ImageNetV2 Recht et al. (2019), ImageNet-A Hendrycks et al. (2021b), and ImageNet-
R Recht et al. (2019). ImageNet-C corrupts the ImageNet’s test set with simulated corruptions like
compression loss and motion blur, while ObjectNet collects a test set with rich variations in rota-
tion, background, and viewpoint. ImageNetV2 re-collects a test set following ImageNet’s protocol
and evaluates the performance gap due to the natural distribution shift. Moreover, ImageNet-A and
ImageNet-R benchmark the classifier’s robustness to natural adversarial examples and abstract vi-
sual renditions, respectively. In this context, Hendrycks et al. (2021a) highlights the correlation
between the robustness of simulated corruptions and the improvement of real-world corruptions.
However, there is still a lack of comparable benchmarks to evaluate the out-of-distribution robust-
ness of vision-based 3D object detection models, which are commonly used in safety-critical appli-
cations. To this end, we make the first attempt to understand the robustness of these models under
natural corruptions.

3 ROBOBEV BENCHMARK

Benchmark Design. Our benchmark is composed of eight distinct corruption types, which are
applied to the validation set of nuScenes Caesar et al. (2020), which contains 6019 images with
360-degree views. We adhere to the experimental protocol established in Hendrycks & Dietterich
(2019) and establish three different levels of corruption intensity (i.e., easy, moderate, and hard) for
each type of corruption. These severity levels are carefully set to avoid drastic performance drops
that could hinder drawing meaningful conclusions. Additionally, we incorporate variation within
each severity level of corruption to augment the diversity of the dataset.

Natural Corruptions. The initial category of corruption that we examine is sensor failure, which
can arise in real-world settings due to physical damage to cameras. In our experiments, we simulate
this scenario by introducing the Camera Crash corruption. More specifically, we randomly select
a fixed set of cameras according to the corruption intensity and discard the corresponding images
consistently. Additionally, we propose Frame Lost, where we randomly drop various cameras in-
dependently with the same probability at every timestamp, emulating situations where some frames
are lost in consecutive time sequences. This procedure is illustrated in Figure 2. The third corruption
category, Motion Blur, occurs when images are blurred due to camera motion at high speeds. Fur-
thermore, we account for images that are quantized when deployed on devices with strict memory
constraints by considering the Color Quantization corruption. The last four types of corruption per-
tain to lighting and weather conditions. We address these situations by including Brightness, Low
Light, Fog, and Snow. The corrupted images are displayed in Figure 2.

Robustness Metrics. We follow the nuScenes Caesar et al. (2020) official metric to report perfor-
mance on the nuScenes-C dataset: we report nuScenes Detection Score (NDS) and mean Average
Precision (mAP), along with mean Average Translation Error (mATE), mean Average Scale Er-
ror (mASE), mean Average Orientation Error(mAOE), mean Average Velocity Error(mAVE), mean
Average Attribute Error(mAAE).

To better compare the robustness among different BEV detectors, we introduce two new metrics
inspired by Hendrycks & Dietterich (2019) based on NDS. The first metric is the mean corruption
error (mCE), which is applied to measure the relative robustness of candidate models compared to
the baseline model:

CEi =

∑3
l=1(1− NDS)i,l∑3

l=1(1− NDSbaseline
i,l )

, mCE =
1

N

N∑
i=1

CEi , (1)

where i denotes the corruption type and l is the severity level; N denotes the number of corruption
types in our benchmark. To compare the performance discrepancy between nuScenes-C and the
standard nuScenes dataset, we define a simple mean resilience rate (mRR) metric, which is calcu-
lated across three severity levels as follows:

RRi =

∑3
l=1 NDSi,l

3× NDSclean
, mRR =

1

N

N∑
i=1

RRi . (2)

In our benchmark, we report both metrics for each candidate BEV algorithm and draw key analyses
upon them.
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Table 1: Comparisons of configurations and performance among camera-based BEV detectors. Pre-
train denotes the model is initialized from the pre-trained FCOS3D Wang et al. (2021) checkpoint.
Temporal indicates the use of temporal information. Depth denotes models with explicit depth
estimation branch. CBGS highlight models use class-balanced group-sampling Zhu et al. (2019).

Model Pre-train Temporal Depth CBGS Backbone BEV Encoder NDS ↑ mCE (%) ↓ mRR (%) ↑

DETR3D ✓ ResNet Attention 0.4224 100.00 70.77
DETR3D (cbgs) ✓ ✓ ResNet Attention 0.4341 99.21 70.02
BEVFormer (small) ✓ ✓ ResNet Attention 0.4787 101.23 59.07
BEVFormer-S (small) ✓ ResNet Attention 0.2622 114.43 76.87
BEVFormer (base) ✓ ✓ ResNet Attention 0.5174 97.97 60.40
BEVFormer-S (base) ✓ ResNet Attention 0.2622 101.87 69.33
PETR (r50) ResNet Attention 0.3665 111.01 61.26
PETR (vov) ✓ VoVNet-V2 Attention 0.4550 100.69 65.03
ORA3D ✓ ResNet Attention 0.4436 99.17 68.63
PolarFormer (r101) ✓ ResNet Attention 0.4602 96.06 70.88
PolarFormer (vov) ✓ VoVNet-V2 Attention 0.4558 98.75 67.51

SRCN3D (r101) ✓ ResNet CNN + Attn. 0.4286 99.67 70.23
SRCN3D (vov) ✓ VoVNet-V2 CNN + Attn. 0.4205 102.04 67.95
Sparse4D (r101) ✓ ✓ ResNet CNN + Attn. 0.5438 100.01 55.04

BEVDet (r50) ✓ ✓ ResNet CNN 0.3770 115.12 51.83
BEVDet (r100) ✓ ✓ ResNet CNN 0.3877 113.68 53.12
BEVDet (tiny) ✓ ✓ Swin CNN 0.4037 116.48 46.26
BEVDepth (r50) ✓ ✓ ResNet CNN 0.4058 110.02 56.82
BEVerse (tiny) ✓ ✓ ✓ Swin CNN 0.4665 110.67 48.60
BEVerse-S (tiny) ✓ ✓ Swin CNN 0.1603 137.25 28.24
BEVerse (small) ✓ ✓ ✓ Swin CNN 0.4951 117.82 49.57
BEVerse-S (small) ✓ ✓ Swin CNN 0.2682 132.13 29.54

4 EXPERIMENT

In our study, we conduct a comprehensive benchmarking analysis of 22 models on the nuScenes-C
dataset. We use DETR3D Wang et al. (2022b) as our baseline for the mCE metric, given that many
of the state-of-the-art approaches are based on it. The main results are in Table 2 and Table 3.

Broadly speaking, we observe a solid linear relationship between the absolute performance on the
nuScenes-C dataset and the performance on the clean nuScenes Caesar et al. (2020) dataset. Specif-
ically, models with leading performance on the clean dataset are also more likely to perform better
on the out-of-distribution dataset, as demonstrated in Figure 3(a). However, a closer examination
reveals that the situation becomes more complex. We find that models with similar performance
on the clean dataset exhibit diverse robustness under different types of corruption. For example,
BEVerse (small)Zhang et al. (2022) significantly improves the robustness of Camera Crash over the
baseline, while PETR (vov)Liu et al. (2022a) performs well in Snow weather. However, both models
struggle to make accurate predictions under Dark conditions.

Although the mCE metric reveals a clear linear relationship between the absolute performance on
the clean dataset and that on the out-of-distribution nuScenes-C dataset, the mRR metric shows a
large variation among models that exhibit similar performance on the clean dataset, as depicted in
Figure 3(b). This indicates that models may overfit the clean dataset and fail to generalize well to
the nuScenes-C dataset. Moreover, we observe that models with superior performance on the clean
dataset do not necessarily perform better in terms of the mRR metric compared to the mCE metric.
For example, Sparse4D Lin et al. (2022) outperforms DETR3D Wang et al. (2022b) on nuScenes
with a significant margin (0.5504 vs. 0.4224), while all the mRR metrics of Sparse4D are lower
than that of DETR3D. Additionally, DETR3D exhibits the most robust performance towards Dark
conditions, while BEVerse (tiny), which has better clean performance (0.4665 vs. 0.4224), only
achieves a relative performance of approximately 12% under dark lighting conditions. These results
suggest that the performance on the clean nuScenes Caesar et al. (2020) dataset cannot provide a
comprehensive understanding of the model’s performance, and therefore it is crucial to benchmark
the state-of-the-art models from multiple perspectives.

To further investigate the behavior of model robustness, we break down the models into various com-
ponents, namely, training strategies (e.g., FCOS3D Wang et al. (2021) pretraining and CBGS Zhu
et al. (2019) resampling strategy for addressing unbalanced classes), model architectures (e.g., back-
bone and detection head), and approach pipelines (e.g., temporal cue learning and depth estimation).
The results of this analysis are in Table 1. Specifically, we focus on FCOS3D Wang et al. (2021)
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Table 2: Results for the Corruption Error (CE) of each model in our RoboBEV benchmark. Bold:
Best in the column. Underline: Second best in the column. Blue : Best in the row if improve upon
baseline. Yellow : Worst in the row if decline upon baseline.

Model NDS ↑ mCE ↓ Camera Frame Quant Motion Bright Dark Fog Snow

DETR3D 0.4224 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

DETR3D (cbgs) 0.4341 99.21 98.15 98.90 99.15 101.62 97.47 100.28 98.23 99.85
BEVFormer (small) 0.4787 102.40 101.23 101.96 98.56 101.24 104.35 105.17 105.40 101.29
BEVFormer (base) 0.5174 97.97 95.87 94.42 95.13 99.54 96.97 103.76 97.42 100.69
PETR (r50) 0.3665 111.01 107.55 105.92 110.33 104.93 119.36 116.84 117.02 106.13
PETR (vov) 0.4550 100.69 99.09 97.46 103.06 102.33 102.40 106.67 103.43 91.11
ORA3D 0.4436 99.17 97.26 98.03 97.32 100.19 98.78 102.40 99.23 100.19
PolarFormer (r101) 0.4602 96.06 96.16 97.24 95.13 92.37 94.96 103.22 94.25 95.17
PolarFormer (vov) 0.4558 98.75 96.13 97.2 101.48 104.32 95.37 104.78 97.55 93.14

SRCN3D (r101) 0.4286 99.67 98.77 98.96 97.93 100.71 98.80 102.72 99.54 99.91
SRCN3D (vov) 0.4205 102.04 99.78 100.34 105.13 107.06 101.93 107.1 102.27 92.75
Sparse4D(R101) 0.5438 100.01 99.80 99.91 98.05 102.00 100.30 103.83 100.46 95.72

BEVDet (r50) 0.3770 115.12 105.22 109.19 111.27 108.18 123.96 123.34 123.83 115.93
BEVDet (r101) 0.3877 113.68 103.32 107.29 109.25 105.40 124.14 123.12 123.28 113.64
BEVDet (tiny) 0.4037 116.48 103.50 106.61 113.18 107.26 130.19 131.83 124.01 115.25
BEVDepth (r50) 0.4058 110.02 103.09 106.26 106.24 102.02 118.72 114.26 116.57 112.98
BEVerse (tiny) 0.4665 110.67 95.49 94.15 108.46 100.19 122.44 130.40 118.58 115.69
BEVerse (small) 0.4951 107.82 92.93 101.61 105.42 100.40 110.14 123.12 117.46 111.48

Table 3: Results for the Resilience Rate (RR) of each model in our RoboBEV benchmark. Bold:
best in column. Underline: second best in column.

Model mRR ↑ Camera Frame Quant Motion Bright Dark Fog Snow

DETR3D 70.77 67.68 61.65 75.21 63.00 94.74 65.96 92.61 45.29
DETR3D (cbgs) 70.02 68.90 61.85 74.52 58.56 95.69 63.72 92.61 44.34
BEVFormer (small) 59.07 57.89 51.37 68.41 53.69 78.15 50.41 74.85 37.79
BEVFormer (base) 60.40 60.96 58.31 67.82 52.09 80.87 48.61 78.64 35.89
PETR (r50) 61.26 63.30 59.10 67.45 62.73 77.52 42.86 78.47 38.66
PETR (vov) 65.03 64.26 61.36 65.23 54.73 84.79 50.66 81.38 57.85
ORA3D 68.63 68.87 61.99 75.74 59.67 91.86 58.90 89.25 42.79
PolarFormer (r101) 70.88 68.08 61.02 76.25 69.99 93.52 55.50 92.61 50.07
PolarFormer (vov) 67.51 68.78 61.67 67.49 51.43 93.9 53.55 89.10 54.15

SRCN3D (r101) 70.23 68.76 62.55 77.41 60.87 95.05 60.43 91.93 44.80
SRCN3D (vov) 67.95 68.37 61.33 67.23 50.96 92.41 54.08 89.75 59.43
Sparse4D(R101) 55.04 52.83 48.01 60.87 46.23 73.26 46.16 71.42 41.54

BEVDet (r50) 51.83 65.94 51.03 63.87 54.67 68.04 29.23 65.28 16.58
BEVDet (r101) 53.12 67.63 53.26 65.67 58.42 65.88 28.84 64.35 20.89
BEVDet (tiny) 46.26 64.63 52.39 56.43 52.71 54.27 12.14 60.69 16.84
BEVDepth (r50) 56.82 65.01 52.76 67.79 61.93 70.95 43.30 71.54 21.27
BEVerse (tiny) 48.60 68.19 65.10 55.73 56.74 56.93 12.71 59.61 13.80
BEVerse (small) 49.57 67.95 50.19 56.70 53.16 68.55 22.58 57.54 19.89

pretraining and CBGS Zhu et al. (2019) resampling strategy, as they are commonly utilized in these
approaches and have demonstrated effectiveness in improving the performance of the clean dataset.
We find using pre-training and depth-free BEV transformation shows superior performance than
those not. Additionally, different ways to fuse temporal information also lead to opposite results.

5 FURTHER ANALYSIS

5.1 DEPTH ESTIMATION

Prior works in this area can be classified into two categories based on their approach to depth estima-
tion. The first category, including works such as BEVDet Huang et al. (2021), BEVDepth Li et al.
(2022a), and BEVerse Zhang et al. (2022), incorporates an explicit depth-estimation branch in the
pipeline. This is done because predicting 3D bounding boxes from monocular images is an ill-posed
problem. These approaches first predict a per-pixel depth map, which is then used to map image
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Figure 3: The performance on nuScenes-C is improved as the performance on the clean nuScenes
dataset. The relation of absolute performance is close to linear. However, when considering the
relative performance, the mRR metric is more randomly distributed without a clear trend to increase.

Clean Bright Dark Snow Motion BlurFog Color Quant

Figure 4: Depth estimation of BEVDepth Li et al. (2022a) under corruptions.

features to corresponding 3D locations. Subsequently, they predict 3D targets in the bird’s-eye view
(BEV) perspective by aggregating BEV features in a bottom-up fashion Wang et al. (2022b).

The second category of works uses pre-defined object queries Li et al. (2022b); Wang et al. (2022b)
or sparse proposals Lin et al. (2022); Shi et al. (2022) to index 2D features in a top-down man-
ner. These designs exhibit competitive performance on clean data, and we extend the analysis by
examining their performance on out-of-distribution datasets.

Our evaluation results, as shown in Figure 1, demonstrate that the depth-based approaches, including
BEVerse Zhang et al. (2022), BEVDet Huang et al. (2021), and BEVDepth Li et al. (2022a), struggle
under most of corruption types. In addition, as shown in Table 2 and Table 3, all the depth-based
approaches experience severe performance degradation when exposed to corrupted images, which
may be attributed to inaccurate depth estimation, as illustrated in Figure 4. Due to the inaccurate
depth intermediate, all the errors increase drastically compared to depth-free methods.
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Figure 5: Pretrain largely improves the robustness of models on the out-of-distribution dataset.

5.2 PRE-TRAINING

In recent years, pretraining has emerged as a promising technique for enhancing the performance
of computer vision models across a range of tasks. In the context of 3D detection, it is common
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Figure 6: Other metric reported on nuScenes Caesar et al. (2020) other than NDS.

to use the FCOS3D Wang et al. (2021) weights as initialization. For the ResNet He et al. (2016)
backbone. FCOS3D employs a depth weight of 0.2 for stable training, which is then switched
to 1 for fine-tuning, as described in Wang et al. (2021). Alternatively, the VoVNet-V2 Lee & Park
(2020) backbone is first trained on the DDAD15M Guizilini et al. (2020) dataset for depth estimation
and then fine-tuned on the nuScenes Caesar et al. (2020) train set for the detection task. These two
pretraining strategies can be categorized as semantic and depth pre-training, respectively. The results
of these strategies are shown in Figure 5(a) and Figure 5(b), which demonstrates the benefits of pre-
training for improving model robustness.

5.3 TEMPORAL MODELING

In the context of autonomous driving applications, it remains challenging for models to accurately
estimate the velocity of moving objects based on a single-frame input. Therefore, it is crucial for
vision systems to leverage temporal cues to better perceive the surrounding environment. Previous
works have proposed various approaches to learning effective temporal cues. In this study, we
investigate whether temporal information can mitigate the influence of corrupted images. To this
end, we compare the performance of BEVFormer Li et al. (2022b) and BEVerse Zhang et al. (2022),
both of which have single-frame and multi-frame versions that allow us to analyze the impact of
temporal information. Our experimental results, shown in Table 1, indicate that the use of multi-
frame information largely improves the robustness for both the mCE and mRR metrics for BEVerse
(e.g., the BEVerse Small Zhang et al. (2022) improves from 132.12 to 117.82 on mCE and from
29.54 to 49.57 on mRR). Surprisingly, for BEVFormer Li et al. (2022b), the temporal cross-attention
operation seems to improve the mCE metric but significantly degrades the mRR metric from 69.33
to 60.40. This can be attributed to that BEVFormer Li et al. (2022b) stores all the history information
inside and updates it on-the-fly, the error caused by corruption can accumulate over time. On the
other hand, BEVerse Zhang et al. (2022) only utilizes a fixed window of past timestamps.

6 CONCLUSION

In this work, we utilize a corpus of eight diverse natural corruptions to create the nuScenes-C dataset,
which is used to assess the out-of-distribution robustness of leading camera-only BEV 3D object
detection approaches. Exhaustive experiments are conducted to investigate the factors that impact
the model’s robustness. The findings of this study provide valuable insights for designing future
models that can achieve better out-of-distribution robustness.
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A APPENDIX

A.1 FULL RESULT

In this section, we provide the full results of our benchmark. The results can be seen from Table 4
to Table 25.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4224 0.3468 0.7647 0.2678 0.3917 0.8754 0.2108
Cam Crash 0.2859 0.1144 0.8400 0.2821 0.4707 0.8992 0.2202
Frame Lost 0.2604 0.0898 0.8647 0.3030 0.5041 0.9297 0.2439
Color Quant 0.3177 0.2165 0.8953 0.2816 0.5266 0.9813 0.2483
Motion Blur 0.2661 0.1479 0.9146 0.3085 0.6351 1.0385 0.2526
Brightness 0.4002 0.3149 0.7915 0.2703 0.4348 0.8733 0.2028
Low Light 0.2786 0.1559 0.8768 0.2947 0.5802 1.0290 0.2654
Fog 0.3912 0.3007 0.7961 0.2711 0.4326 0.8807 0.2110
Snow 0.1913 0.0776 0.9714 0.3752 0.7486 1.2478 0.3797

Table 4: DETR3D Wang et al. (2022b) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4341 0.3494 0.7163 0.2682 0.3798 0.8421 0.1997
Cam Crash 0.2991 0.1174 0.7932 0.2853 0.4575 0.8471 0.2131
Frame Lost 0.2685 0.0923 0.8268 0.3135 0.5042 0.8867 0.2455
Color Quant 0.3235 0.2152 0.8571 0.2875 0.5350 0.9354 0.2400
Motion Blur 0.2542 0.1385 0.8909 0.3355 0.6707 1.0682 0.2928
Brightness 0.4154 0.3200 0.7357 0.2720 0.4086 0.8302 0.1990
Low Light 0.2766 0.1539 0.8419 0.3262 0.5682 1.09520 0.2847
Fog 0.4020 0.3012 0.7552 0.2710 0.4237 0.8302 0.2054
Snow 0.1925 0.0702 0.9246 0.3793 0.7648 1.2585 0.3577

Table 5: DETR3D Wang et al. (2022b) with cbgs results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4787 0.3700 0.7212 0.2792 0.4065 0.4364 0.2201
Cam Crash 0.2771 0.1130 0.8627 0.3099 0.5398 0.8376 0.2446
Frame Lost 0.2459 0.0933 0.8959 0.3411 0.5742 0.9154 0.2804
Color Quant 0.3275 0.2109 0.8476 0.2943 0.5234 0.8539 0.2601
Motion Blur 0.2570 0.1344 0.8995 0.3264 0.6774 0.9625 0.2605
Brightness 0.3741 0.2697 0.8064 0.2830 0.4796 0.8162 0.2226
Low Light 0.2413 0.1191 0.8838 0.3598 0.6470 1.0391 0.3323
Fog 0.3583 0.2486 0.8131 0.2862 0.5056 0.8301 0.2251
Snow 0.1809 0.0635 0.9630 0.3855 0.7741 1.1002 0.3863

Table 6: BEVFormer-Small Li et al. (2022b) results.

A.2 ADDITIONAL VISUALIZATION RESULT

More visualization results of the nuScenes-C dataset can be seen in Figure7.
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Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.2622 0.1324 0.9352 0.3024 0.5556 1.1106 0.2466
Camera Crash 0.2013 0.0425 0.9844 0.3306 0.6330 1.0969 0.2556
Frame Lost 0.1638 0.0292 1.0051 0.4294 0.6963 1.1418 0.3954
Color Quant 0.2313 0.1041 0.9625 0.3131 0.6435 1.1686 0.2882
Motion Blur 0.1916 0.0676 0.9741 0.3644 0.7525 1.3062 0.3307
Brightness 0.2520 0.1250 0.9484 0.3034 0.6046 1.1318 0.2486
Low Light 0.1868 0.0624 0.9414 0.3984 0.7185 1.3064 0.3859
Fog 0.2442 0.1181 0.9498 0.3055 0.6343 1.1806 0.2592
Snow 0.1414 0.0294 1.0231 0.4242 0.8644 1.3622 0.4444

Table 7: BEVFormer-SingleFrame-Small Li et al. (2022b) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.5174 0.4164 0.6726 0.2734 0.3704 0.3941 0.1974
Cam Crash 0.3154 0.1545 0.8015 0.2975 0.5031 0.7865 0.2301
Frame Lost 0.3017 0.1307 0.8359 0.3053 0.5262 0.7364 0.2328
Color Quant 0.3509 0.2393 0.8294 0.2953 0.5200 0.8079 0.2350
Motion Blur 0.2695 0.1531 0.8739 0.3236 0.6941 0.9334 0.2592
Brightness 0.4184 0.3312 0.7457 0.2832 0.4721 0.7686 0.2024
Low Light 0.2515 0.1394 0.8568 0.3601 0.6571 1.0322 0.3453
Fog 0.4069 0.3141 0.7627 0.2837 0.4711 0.7798 0.2046
Snow 0.1857 0.0739 0.9405 0.3966 0.7806 1.0880 0.3951

Table 8: BEVFormer-Base Li et al. (2022b) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4129 0.3461 0.7549 0.2832 0.4520 0.8917 0.2194
Cam Crash 0.2879 0.1240 0.8041 0.2966 0.5094 0.8986 0.2323
Frame Lost 0.2642 0.0969 0.8352 0.3093 0.5748 0.8861 0.2374
Color Quant 0.3207 0.2243 0.8488 0.2992 0.5422 1.0003 0.2522
Motion Blur 0.2518 0.1434 0.8845 0.3248 0.7179 1.1211 0.2860
Brightness 0.3819 0.3093 0.7761 0.2861 0.4999 0.9466 0.2201
Low Light 0.2381 0.1316 0.8640 0.3602 0.6903 1.2132 0.3622
Fog 0.3662 0.2907 0.7938 0.2870 0.5162 0.9702 0.2254
Snow 0.1793 0.0687 0.9472 0.3954 0.8004 1.2524 0.4078

Table 9: BEVFormer-SingleFrame-Base Li et al. (2022b) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.3665 0.3174 0.8397 0.2796 0.6158 0.9543 0.2326
Cam Crash 0.2320 0.1065 0.9383 0.2975 0.7220 1.0169 0.2585
Frame Lost 0.2166 0.0868 0.9513 0.3041 0.7597 1.0081 0.2629
Color Quant 0.2472 0.1734 0.9121 0.3616 0.7807 1.1634 0.3473
Motion Blur 0.2299 0.1378 0.9587 0.3164 0.8461 1.1190 0.2847
Brightness 0.2841 0.2101 0.9049 0.3080 0.7429 1.0838 0.2552
Low Light 0.1571 0.0685 0.9465 0.4222 0.9201 1.4371 0.4971
Fog 0.2876 0.2161 0.9078 0.2928 0.7492 1.1781 0.2549
Snow 0.1417 0.0582 1.0437 0.4411 1.0177 1.3481 0.4713

Table 10: PETR (r50) Liu et al. (2022a) results.
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Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4550 0.4035 0.7362 0.2710 0.4316 0.8249 0.2039
Cam Crash 0.2924 0.1408 0.8167 0.2854 0.5492 0.9014 0.2267
Frame Lost 0.2792 0.1153 0.8311 0.2909 0.5662 0.8816 0.2144
Color Quant 0.2968 0.2089 0.8818 0.3455 0.5997 1.0875 0.3123
Motion Blur 0.2490 0.1395 0.9521 0.3153 0.7424 1.0353 0.2639
Brightness 0.3858 0.3199 0.7982 0.2779 0.5256 0.9342 0.2112
Low Light 0.2305 0.1221 0.8897 0.3645 0.6960 1.2311 0.3553
Fog 0.3703 0.2815 0.8337 0.2778 0.4982 0.8833 0.2111
Snow 0.2632 0.1653 0.8980 0.3138 0.7034 1.1314 0.2886

Table 11: PETR (VoVNet-V2) Liu et al. (2022a) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4602 0.3916 0.7060 0.2718 0.3610 0.8079 0.2093
Cam Crash 0.3133 0.1425 0.7746 0.2840 0.4440 0.8524 0.2250
Frame Lost 0.2808 0.1134 0.8034 0.3093 0.4981 0.8988 0.2498
Color Quant 0.3509 0.2538 0.8059 0.2999 0.4812 0.9724 0.2592
Motion Blur 0.3221 0.2117 0.8196 0.2946 0.5727 0.9379 0.2258
Brightness 0.4304 0.3574 0.7390 0.2738 0.4149 0.8522 0.2032
Low Light 0.2554 0.1393 0.8418 0.3557 0.6087 1.2004 0.3364
Fog 0.4262 0.3518 0.7338 0.2735 0.4143 0.8672 0.2082
Snow 0.2304 0.1058 0.9125 0.3363 0.6592 1.2284 0.3174

Table 12: PolarFormer (r101) Jiang et al. (2022) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4558 0.4028 0.7097 0.2690 0.4019 0.8682 0.2072
Cam Crash 0.3135 0.1453 0.7626 0.2815 0.4519 0.8735 0.2216
Frame Lost 0.2811 0.1155 0.8019 0.3015 0.4956 0.9158 0.2512
Color Quant 0.3076 0.2000 0.8846 0.2962 0.5393 1.0044 0.2483
Motion Blur 0.2344 0.1256 0.9392 0.3616 0.6840 1.0992 0.3489
Brightness 0.4280 0.3619 0.7447 0.2696 0.4413 0.8667 0.2065
Low Light 0.2441 0.1361 0.8828 0.3647 0.6506 1.2090 0.3419
Fog 0.4061 0.3349 0.7651 0.2743 0.4487 0.9100 0.2156
Snow 0.2468 0.1384 0.9104 0.3375 0.6427 1.1737 0.3337

Table 13: PolarFormer (vov) Jiang et al. (2022) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4436 0.3677 0.7319 0.2698 0.3890 0.8150 0.1975
Cam Crash 0.3055 0.1275 0.7952 0.2803 0.4549 0.8376 0.2145
Frame Lost 0.2750 0.0997 0.8362 0.3075 0.4963 0.8747 0.2340
Color Quant 0.3360 0.2382 0.8479 0.2848 0.5249 0.9516 0.2432
Motion Blur 0.2647 0.1527 0.8656 0.3497 0.6251 1.0433 0.3160
Brightness 0.4075 0.3252 0.7740 0.2741 0.4620 0.8372 0.2029
Low Light 0.2613 0.1509 0.8489 0.3445 0.6207 1.2113 0.3278
Fog 0.3959 0.3084 0.7822 0.2753 0.4515 0.8685 0.2048
Snow 0.1898 0.0757 0.9404 0.3857 0.7665 1.2890 0.3879

Table 14: ORA3D Roh et al. (2022) results.
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Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.3770 0.2987 0.7336 0.2744 0.5713 0.9051 0.2394
Cam Crash 0.2486 0.0990 0.8147 0.2975 0.6402 0.9990 0.2842
Frame Lost 0.1924 0.0781 0.8545 0.4413 0.7179 1.0247 0.4780
Color Quant 0.2408 0.1542 0.8718 0.3579 0.7376 1.2194 0.3958
Motion Blur 0.2061 0.1156 0.8891 0.4020 0.7693 1.1521 0.4645
Brightness 0.2565 0.1787 0.8380 0.3736 0.7216 1.2912 0.3955
Low Light 0.1102 0.0470 0.9867 0.5308 0.9443 1.2841 0.6708
Fog 0.2461 0.1404 0.8801 0.3018 0.7483 1.1610 0.3112
Snow 0.0625 0.0254 0.9853 0.7204 1.0029 1.1642 0.8160

Table 15: BEVDet (r50) Huang et al. (2021) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.3877 0.3008 0.7035 0.2752 0.5384 0.8715 0.2379
Cam Crash 0.2622 0.1042 0.7821 0.3004 0.6028 0.9783 0.2715
Frame Lost 0.2065 0.0805 0.8248 0.4175 0.6754 1.0578 0.4474
Color Quant 0.2546 0.1566 0.8457 0.3361 0.6966 1.1529 0.3716
Motion Blur 0.2265 0.1278 0.8596 0.3785 0.7112 1.1344 0.4246
Brightness 0.2554 0.1738 0.8094 0.3770 0.7228 1.3752 0.4060
Low Light 0.1118 0.0426 0.9659 0.5550 0.8904 1.3003 0.6836
Fog 0.2495 0.1412 0.8460 0.3269 0.7007 1.1480 0.3376
Snow 0.0810 0.0296 0.9727 0.6758 0.9027 1.1803 0.7869

Table 16: BEVDet (r101) Huang et al. (2021) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4037 0.3080 0.6648 0.2729 0.5323 0.8278 0.2050
Cam Crash 0.2609 0.1053 0.7786 0.3246 0.5761 0.9821 0.2822
Frame Lost 0.2115 0.0826 0.8174 0.4207 0.6710 1.0138 0.4294
Color Quant 0.2278 0.1487 0.8236 0.4518 0.7461 1.1668 0.4742
Motion Blur 0.2128 0.1235 0.8455 0.4457 0.7074 1.1857 0.5080
Brightness 0.2191 0.1370 0.8300 0.4523 0.7277 1.2995 0.4833
Low Light 0.0490 0.0180 0.9883 0.7696 1.0083 1.1225 0.8607
Fog 0.2450 0.1396 0.8459 0.3656 0.6839 1.2694 0.3520
Snow 0.0680 0.0312 0.9730 0.7665 0.8973 1.2609 0.8393

Table 17: BEVDet (swin-tiny) Huang et al. (2021) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4058 0.3328 0.6633 0.2714 0.5581 0.8763 0.2369
Cam Crash 0.2638 0.1111 0.7407 0.2959 0.6373 1.0079 0.2749
Frame Lost 0.2141 0.0876 0.7890 0.4134 0.6728 1.0536 0.4498
Color Quant 0.2751 0.1865 0.8190 0.3292 0.6946 1.2008 0.3552
Motion Blur 0.2513 0.1508 0.8320 0.3516 0.7135 1.1084 0.3765
Brightness 0.2879 0.2090 0.7520 0.3646 0.6724 1.2089 0.3766
Low Light 0.1757 0.0820 0.8540 0.4509 0.8073 1.3149 0.5410
Fog 0.2903 0.1973 0.7900 0.3021 0.6973 1.0640 0.2940
Snow 0.0863 0.0350 0.9529 0.6682 0.9107 1.2750 0.7802

Table 18: BEVDepth (r50) Li et al. (2022a) results.
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Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4665 0.3214 0.6807 0.2782 0.4657 0.3281 0.1893
Cam Crash 0.3181 0.1218 0.7447 0.3545 0.5479 0.4974 0.2833
Frame Lost 0.3037 0.1466 0.7892 0.3511 0.6217 0.6491 0.2844
Color Quant 0.2600 0.1497 0.8577 0.4758 0.6711 0.6931 0.4676
Motion Blur 0.2647 0.1456 0.8139 0.4269 0.6275 0.8103 0.4225
Brightness 0.2656 0.1512 0.8120 0.4548 0.6799 0.7029 0.4507
Low Light 0.0593 0.0235 0.9744 0.7926 0.9961 0.9437 0.8304
Fog 0.2781 0.1348 0.8467 0.3967 0.6135 0.6596 0.3764
Snow 0.0644 0.0251 0.9662 0.7966 0.8893 0.9829 0.8464

Table 19: BEVerse (tiny) Zhang et al. (2022) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.1603 0.0826 0.8298 0.5296 0.8771 1.2639 0.5739
Cam Crash 0.0639 0.0165 0.9135 0.7574 0.9522 1.1890 0.8201
Frame Lost 0.0508 0.0141 0.9455 0.8181 0.9221 1.1765 0.8765
Color Quant 0.0642 0.0317 0.9478 0.7735 0.9723 1.2508 0.8397
Motion Blur 0.0540 0.0230 0.9556 0.8028 0.9339 1.2137 0.8826
Brightness 0.0683 0.0360 0.9369 0.7315 0.9878 1.3048 0.8531
Low Light 0.0100 0.0005 1.0097 0.9474 1.0048 1.1073 0.9561
Fog 0.0402 0.0179 0.9789 0.8230 1.0094 1.3083 0.8962
Snow 0.0107 0.0017 1.0021 0.9468 0.9968 1.1652 0.9612

Table 20: BEVerse-SingleFrame (tiny) Zhang et al. (2022) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4951 0.3512 0.6243 0.2694 0.3999 0.3292 0.1827
Cam Crash 0.3364 0.1156 0.6753 0.3331 0.4460 0.4823 0.2772
Frame Lost 0.2485 0.0959 0.7413 0.4389 0.5898 0.8170 0.4445
Color Quant 0.2807 0.1630 0.8148 0.4651 0.6311 0.6511 0.4455
Motion Blur 0.2632 0.1455 0.7866 0.4399 0.5753 0.8424 0.4586
Brightness 0.3394 0.1935 0.7441 0.3736 0.4873 0.6357 0.3326
Low Light 0.1118 0.0373 0.9230 0.6900 0.8727 0.8600 0.7223
Fog 0.2849 0.1291 0.7858 0.4234 0.5105 0.6852 0.3921
Snow 0.0985 0.0357 0.9309 0.7389 0.8864 0.8695 0.7676

Table 21: BEVerse (small) Zhang et al. (2022) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.2682 0.1513 0.6631 0.4228 0.5406 1.3996 0.4483
Cam Crash 0.1305 0.0340 0.8028 0.6164 0.7475 1.2273 0.6978
Frame Lost 0.0822 0.0274 0.8755 0.7651 0.8674 1.1223 0.8107
Color Quant 0.1002 0.0495 0.8923 0.7228 0.8517 1.1570 0.7850
Motion Blur 0.0716 0.0370 0.9117 0.7927 0.8818 1.1616 0.8833
Brightness 0.1336 0.0724 0.8340 0.6499 0.8086 1.2874 0.7333
Low Light 0.0132 0.0041 0.9862 0.9356 1.0175 0.9964 0.9707
Fog 0.0910 0.0406 0.8894 0.7200 0.8700 1.0564 0.8140
Snow 0.0116 0.0066 0.9785 0.9385 1.0000 1.0000 1.0000

Table 22: BEVerse-SingleFrame (small) Zhang et al. (2022) results.
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Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4286 0.3373 0.7783 0.2873 0.3665 0.7806 0.1878
Cam Crash 0.2947 0.1172 0.8369 0.3017 0.4403 0.8506 0.2097
Frame Lost 0.2681 0.0924 0.8637 0.3303 0.4798 0.8725 0.2349
Color Quant 0.3318 0.2199 0.8696 0.3041 0.4747 0.8877 0.2458
Motion Blur 0.2609 0.1361 0.9026 0.3524 0.5788 0.9964 0.2927
Brightness 0.4074 0.3133 0.7936 0.2911 0.3974 0.8227 0.1877
Low Light 0.2590 0.1406 0.8586 0.3642 0.5773 1.1257 0.3353
Fog 0.3940 0.2932 0.7993 0.2919 0.3978 0.8428 0.1944
Snow 0.1920 0.0734 0.9372 0.3996 0.7302 1.2366 0.3803

Table 23: SRCN3D (r101) Shi et al. (2022) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.4205 0.3475 0.7855 0.2994 0.4099 0.8352 0.2030
Cam Crash 0.2875 0.1252 0.8435 0.3139 0.4879 0.8897 0.2165
Frame Lost 0.2579 0.0982 0.8710 0.3428 0.5324 0.9194 0.2458
Color Quant 0.2827 0.1755 0.9167 0.3443 0.5574 1.0077 0.2747
Motion Blur 0.2143 0.1102 0.9833 0.3966 0.7434 1.1151 0.3500
Brightness 0.3886 0.3086 0.8175 0.3018 0.4660 0.8720 0.2001
Low Light 0.2274 0.1142 0.9192 0.3866 0.6475 1.2095 0.3435
Fog 0.3774 0.2911 0.8227 0.3045 0.4646 0.8864 0.2034
Snow 0.2499 0.1418 0.9299 0.3575 0.6125 1.1351 0.3176

Table 24: SRCN3D (vov) Shi et al. (2022) results.

Corruption NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Clean 0.5438 0.4409 0.6282 0.2721 0.3853 0.2922 0.1888
Cam Crash 0.2873 0.1319 0.7852 0.2917 0.4989 0.9611 0.2510
Frame Lost 0.2611 0.1050 0.8175 0.3166 0.5404 1.0253 0.2726
Color Quant 0.3310 0.2345 0.8348 0.2956 0.5452 0.9712 0.2496
Motion Blur 0.2514 0.1438 0.8719 0.3553 0.6780 1.0817 0.3347
Brightness 0.3984 0.3296 0.7543 0.2835 0.4844 0.9232 0.2187
Low Light 0.2510 0.1386 0.8501 0.3543 0.6464 1.1621 0.3356
Fog 0.3884 0.3097 0.7552 0.2840 0.4933 0.9087 0.2229
Snow 0.2259 0.1275 0.8860 0.3875 0.7116 1.1418 0.3936

Table 25: Sparse4D Lin et al. (2022) results.
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Figure 7: More visualization results of nuScenes-C. From left to right: easy, moderate, and hard.
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