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ABSTRACT

We provide sharp path-dependent generalization and excess risk guarantees for
the full-batch Gradient Descent (GD) algorithm on smooth losses (possibly non-
Lipschitz, possibly nonconvex). At the heart of our analysis is an upper bound on
the generalization error, which implies that average output stability and a bounded
expected optimization error at termination lead to generalization. This result
shows that a small generalization error occurs along the optimization path, and
allows us to bypass Lipschitz or sub-Gaussian assumptions on the loss prevalent
in previous works. For nonconvex, convex, and strongly convex losses, we show
the explicit dependence of the generalization error in terms of the accumulated
path-dependent optimization error, terminal optimization error, number of samples,
and number of iterations. For nonconvex smooth losses, we prove that full-batch
GD efficiently generalizes close to any stationary point at termination, and recovers
the generalization error guarantees of stochastic algorithms with fewer assumptions.
For smooth convex losses, we show that the generalization error is tighter than
existing bounds for SGD (up to one order of error magnitude). Consequently
the excess risk matches that of SGD for quadratically less iterations. Lastly, for
strongly convex smooth losses, we show that full-batch GD achieves essentially
the same excess risk rate as compared with the state of the art on SGD, but with an
exponentially smaller number of iterations (logarithmic in the dataset size).

1 INTRODUCTION

Gradient based learning (Lecun et al., 1998) is a well established topic with a large body of literature
on algorithmic generalization and optimization errors. For general smooth convex losses, optimization
error guarantees have long been well-known (Nesterov, 1998). Similarly, Absil et al. (2005) and Lee
et al. (2016) have showed convergence of Gradient Descent (GD) to minimizers and local minima for
smooth nonconvex functions. More recently, Chatterjee (2022), Liu et al. (2022) and Allen-Zhu et al.
(2019) established global convergence of GD for deep neural networks under appropriate conditions.

Generalization error analysis of stochastic training algorithms has recently gained increased attention.
Hardt et al. (2016) showed uniform stability final-iterate bounds for vanilla Stochastic Gradient
Descent (SGD). More recent works have developed alternative generalization error bounds with prob-
abilistic guarantees (Feldman & Vondrak, 2018; 2019; Madden et al., 2020; Klochkov & Zhivotovskiy,
2021) and data-dependent variants (Kuzborskij & Lampert, 2018), or under weaker assumptions
such as strongly quasi-convex (Gower et al., 2019), non-smooth convex (Feldman, 2016; Bassily
et al., 2020; Lei & Ying, 2020b; Lei et al., 2021a), and pairwise losses (Lei et al., 2021b; 2020).
In the nonconvex case, Zhou et al. (2021b) provide bounds that involve the on-average variance
of the stochastic gradients. Generalization performance of other algorithmic variants lately gain
further attention, including SGD with early momentum (Ramezani-Kebrya et al., 2021), randomized
coordinate descent (Wang et al., 2021c), look-ahead approaches (Zhou et al., 2021a), noise injection
methods (Xing et al., 2021), and stochastic gradient Langevin dynamics (Pensia et al., 2018; Mou
et al., 2018; Li et al., 2020; Negrea et al., 2019; Zhang et al., 2021; Farghly & Rebeschini, 2021;
Wang et al., 2021a;b).
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Excess Risk Upper Bounds: GD vs SGD
Algorithm Iterations Interpolation Bound β-Smooth Loss

GD (this work)
ηt = 1/2β

T =
√
n No O

(
1√
n

)
Convex

SGD
ηt = 1/

√
T

(Lei & Ying, 2020b)
T = n No O

(
1√
n

)
Convex

GD (this work)
ηt = 1/2β

T = n Yes O
(
1

n

)
Convex

SGD
ηt = 1/2β

(Lei & Ying, 2020b)
T = n Yes O

(
1

n

)
Convex

GD (this work)
ηt = 2/(β + γ)

T = Θ(log n) No O

(√
log(n)

n

)
γ-Strongly Convex

(Objective)

SGD
ηt = 2/(t+ t0)γ

(Lei & Ying, 2020b)
T = Θ(n) No O

(
1

n

)
γ-Strongly Convex

(Objective)

Table 1: Comparison of the excess risk bounds for the full-batch GD and SGD algorithms by Lei
& Ying (2020b, Corollary 5 & Theorem 11). We denote by n the number of samples, T the total
number of iterations, ηt the step size at time t, and by ϵc ≜ E[RS(W

∗
S)] the interpolation error.

Even though many previous works consider stochastic training algorithms and some even suggest
that stochasticity may be necessary (Hardt et al., 2016; Charles & Papailiopoulos, 2018) for good
generalization, recent empirical studies have demonstrated that deterministic algorithms can indeed
generalize well; see, e.g., (Hoffer et al., 2017; Geiping et al., 2022). In fact, Hoffer et al. (2017)
showed empirically that for large enough number of iterations full-batch GD generalizes comparably
to SGD. Similarly, Geiping et al. (2022) experimentally showed that strong generalization behavior is
still observed in the absence of stochastic sampling. Such interesting empirical evidence reasonably
raise the following question: ”Are there problem classes for which deterministic training generalizes
more efficiently than stochastic training?”

While prior works provide extensive analysis of the generalization error and excess risk of stochastic
gradient methods, tight and path-dependent generalization error and excess risk guarantees in non-
stochastic training (for general smooth losses) remain unexplored. Our main purpose in this work is
to theoretically establish that full-batch GD indeed generalizes efficiently for general smooth losses.
While SGD appears to generalize better than full-batch GD for non-smooth and Lipschitz convex
losses (Bassily et al., 2020; Amir et al., 2021), non-smoothness seems to be problematic for efficient
algorithmic generalization. In fact, tightness analysis on non-smooth losses (Bassily et al., 2020)
shows that the generalization error bounds become vacuous for standard step-size choices. Our work
shows that for general smooth losses, full-batch GD achieves either tighter stability and excess error
rates (convex case), or equivalent rates (compared to SGD in the strongly convex setting) but with
significantly shorter training horizon (strongly-convex objective).

2 RELATED WORK AND CONTRIBUTIONS

Let n denote the number of available training samples (examples). Recent results (Lei & Tang,
2021; Zhou et al., 2022) on SGD provided bounds of order O(1/

√
n) for Lipschitz and smooth

nonconvex losses. Neu et al. (2021) also provided generalization bounds of order O(ηT/
√
n), with

T =
√
n and step-size η = 1/T to recover the rate O(1/

√
n). In contrast, we show that full-batch

GD generalizes efficiently for appropriate choices of decreasing learning rate that guarantees faster
convergence and smaller generalization error, simultaneously. Additionally, the generalization error
involves an intrinsic dependence on the set of the stationary points and the initial point. Specifically,
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Full-Batch Gradient Descent
Step Size Excess Risk Loss

ηt ≤ c/βt, ∀c < 1 C
T c
√

log(T ) + 1

n
+ ϵopt Nonconvex

ηt = 1/2β C

(
Tϵc + 1

n
+

1

T

)
Convex

ηt = 1/2β,
T =

√
n C

ϵc + 1√
n

+O
(
1

n

)
Convex

ηt = 2/(β + γ) C

(
√
ϵc

√
T

n
+ exp

(
−4Tγ

β + γ

))
+O

(
1

n2

)
γ-Strongly

Convex

ηt = 2/(β + γ)

T = (β+γ) logn
2γ

C
√
ϵc

√
log(n)

n
+O

(
1

n2

)
γ-Strongly

Convex

Table 2: A list of excess risk bounds for the full-batch GD up to some constant factor C > 0. We
denote the number of samples by n. “ϵopt” denotes the optimization error ϵopt ≜ E[RS(A(S))−R∗

S ],
T is the total number of iterations and ϵc ≜ E[RS(W

∗
S)] is the model capacity (interpolation) error.

we show that full-batch GD with the decreasing learning rate choice of ηt = 1/2βt achieves tighter
bounds of the order O(

√
T log(T )/n) (since

√
T log(T )/n ≤ 1/

√
n) for any T ≤ n/ log(n). In

fact, O(
√
T log(T )/n) essentially matches the rates in prior works (Hardt et al., 2016) for smooth

and Lipschitz (and often bounded) loss, however we assume only smoothness at the expense of the√
log(T ) term. Further, for convex losses we show that full-batch GD attains tighter generalization

error and excess risk bounds than those of SGD in prior works (Lei & Ying, 2020b), or similar rates
in comparison with prior works that consider additional assumptions (Lipschitz or sub-Gaussian
loss) (Hardt et al., 2016; Lugosi & Neu, 2022; Kozachkov et al., 2022). In fact, for convex losses
and for a fixed step-size ηt = 1/2β, we show generalization error bounds of order O(T/n) for
non-Lipschitz losses, while SGD bounds in prior work are of order O(

√
T/n) (Lei & Ying, 2020b).

As a consequence, full-batch GD attains improved generalization error rates by one order of error
magnitude and appears to be more stable in the non-Lipschitz case, however tightness guarantees for
non-Lipschitz losses remains an open problem.

Our results also establish that full-batch GD provably achieves efficient excess error rates through
fewer number of iterations, as compared with the state-of-the-art excess error guarantees for SGD.
Specifically, for convex losses with limited model capacity (non-interpolation), we show that with
constant step size and T =

√
n, the excess risk is of the order O(1/

√
n), while the SGD algorithm

requires T = n to achieve excess risk of the order O(1/
√
n) (Lei & Ying, 2020b, Corollary 5.a).

For γ-strongly convex objectives, our analysis for full-batch GD relies on a leave-one-out γloo-strong
convexity of the objective instead of the full loss function being strongly-convex. This property
relaxes strong convexity, while it provides stability and generalization error guarantees that recover
the convex loss setting when γloo → 0. Prior work (Lei & Ying, 2020b, Section 6, Stability with
Relaxed Strong Convexity) requires a Lipschitz loss, while the corresponding bound becomes infinity
when γ → 0, in contrast to the leave-one-out approach. Further, prior guarantees on SGD (Lei &
Ying, 2020b, Theorem 11 and Theorem 12) often achieve the same rate of O(1/n), however with
T = Θ(n) iterations (and a Lipschitz loss), in contrast with our full-batch GD bound that requires
only T = Θ(log n) iterations (at the expense of a

√
log(n) term)1. Finally, our approach does not

require a projection step (in contrast to Hardt et al. (2016); Lei & Ying (2020b)) in the update rule
and consequently avoids dependencies on possibly large Lipschitz constants.

1SGD naturally requires less computation than GD. However, the directional step of GD can be evaluated in
parallel. As a consequence, for a strongly-convex objective GD would be more efficient than SGD (in terms of
running time) if some parallel computation is available.
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In summary, we show that for smooth nonconvex, convex and strongly convex losses, full-batch GD
generalizes, which provides an explanation of its good empirical performance in practice (Hoffer
et al., 2017; Geiping et al., 2022). We refer the reader to Table 1 for an overview and comparison of
our excess risk bounds and those of prior work (on SGD). A more detailed presentation of the bounds
appears in Table 2 (see also Appendix A, Table 3 and Table 4).

3 PROBLEM STATEMENT

Let f(w, z) be the loss at the point w ∈ Rd for some example z ∈ Z . Given a dataset S ≜ {zi}ni=1
of i.i.d samples zi from an unknown distribution D, our goal is to find the parameters w∗ of a learning
model such that w∗ ∈ argminw R(w), where R(w) ≜ EZ∼D[f(w,Z)] and R∗ ≜ R(w∗). Since the
distribution D is not known, we consider the empirical risk

RS(w) ≜
1

n

n∑
i=1

f(w; zi). (1)

The corresponding empirical risk minimization (ERM) problem is to find W ∗
S ∈ argminw RS(w)

(assuming minimizers on data exist for simplicity) and we define R∗
S ≜ RS(W

∗
S). For a deterministic

algorithm A with input S and output A(S), the excess risk ϵexcess is bounded by the sum of the
generalization error ϵgen and the optimization error ϵopt (Hardt et al., 2016, Lemma 5.1), (Dentcheva
& Lin, 2022)

ϵexcess ≜ E[R(A(S))]−R∗ ≤ E[R(A(S))−RS(A(S))]︸ ︷︷ ︸
ϵgen

+E[RS(A(S))]− E[RS(W
∗
S)]︸ ︷︷ ︸

ϵopt

. (2)

For the rest of the paper we assume that the loss is smooth and non-negative. These are the only
globally required assumptions on the loss function.

Assumption 1 (β-Smooth Loss) The gradient of the loss function is β-Lipschitz

∥∇wf(w, z)−∇uf(u, z)∥2 ≤ β∥w − u∥2, ∀z ∈ Z. (3)

Additionally, we define the interpolation error that will also appear in our results.

Definition 1 (Model Capacity/Interpolation Error) Define ϵc ≜ E[RS(W
∗
S)].

In general ϵc ≥ 0 (non-negative loss). If the model has sufficiently large capacity, then for almost
every S ∈ Zn, it is true that RS(W

∗
S) = 0. Equivalently, it holds that ϵc = 0. In the next section we

provide a general theorem for the generalization error that holds for any symmetric deterministic
algorithm (e.g. full-batch gradient descent) and any smooth loss under memorization of the data-set.

4 SYMMETRIC ALGORITHM AND SMOOTH LOSS

Consider the i.i.d random variables z1, z2, . . . , zn, z′1, z
′
2, . . . , z

′
n, with respect to an unknown dis-

tribution D, the sets S ≜ (z1, z2, . . . , zn) and S(i) ≜ (z1, z2, . . . , z
′
i, . . . , zn) that differ at the ith

random element. Recall that an algorithm is symmetric if the output remains unchanged under
permutations of the input vector. Then (Bousquet & Elisseeff, 2002, Lemma 7) shows that for
any i ∈ {1, . . . , n} and any symmetric deterministic algorithm A the generalization error is ϵgen =

ES(i),zi [f(A(S(i)); zi)−f(A(S); zi)]. Identically, we write ϵgen = E[f(A(S(i)); zi)−f(A(S); zi)],
where the expectation is over the random variables z1, . . . , zn, z′1, . . . , z

′
n for the rest of the paper.

We define the model parameters Wt,W
(i)
t evaluated at time t with corresponding inputs S and S(i).

For brevity, we also provide the next definition.

Definition 2 We define the expected output stability as ϵstab(A) ≜ E[∥A(S)− A(S(i))∥22] and the
expected optimization error as ϵopt ≜ E[RS(A(S))−RS(W

∗
S)].

We continue by providing an upper bound that connects the generalization error with the expected
output stability and the expected optimization error at the final iterate of the algorithm.
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Theorem 3 (Generalization Error) Let f(· ; z) be non-negative β-smooth loss for any z ∈ Z . For
any symmetric deterministic algorithm A(·) the generalization error is bounded as

|ϵgen| ≤ 2
√
2β(ϵopt + ϵc)ϵstab(A) + 2βϵstab(A), (4)

where ϵstab(A) ≜ E[∥A(S) − A(S(i))∥22]. In the limited model capacity case it is true that ϵc is
positive (and independent of n and T ) and |ϵgen| = O(

√
ϵstab(A)).

We provide the proof of Theorem 3 in Appendix B.1. The generalization error bound in equation 4
holds for any symmetric algorithm and smooth loss. Theorem 3 consist the tightest variant of (Lei
& Ying, 2020b, Theorem 2, b)) and shows that the expected output stability and a small expected
optimization error at termination sufficiently provide an upper bound on the generalization error for
smooth (possibly non-Lipschitz) losses. Further, the optimization error term ϵopt is always bounded
and goes to zero (with specific known rates) in the cases of (strongly) convex losses. Under the
interpolation condition the generalization error bound satisfies tighter bounds.

Corollary 4 (Generalization under Memorization) If memorization of the training set is feasible
under sufficiently large model capacity, then ϵc = 0 and consequently |ϵgen| ≤ 2

√
2βϵoptϵstab(A) +

2βϵstab(A) and |ϵgen| = O(max{√ϵoptϵstab(A), ϵstab(A)}).

For a small number of iterations T the above error rate is equivalent with Theorem 3. For sufficiently
large T the optimization error rate matches the expected output stability and provides a tighter rate
(with respect to that of Theorem 3) of |ϵgen| = O(ϵstab(A)).

Remark. As a byproduct of Theorem 3, one can show generalization and excess risk bounds for a
uniformly µ-PL objective (Karimi et al., 2016) defined as E[∥∇RS(w)∥22] ≥ 2µE[RS(w)−R∗

S ] for
all w ∈ Rd. Let πS ≜ π(A(S)) be the projection of the point A(S) to the set of the minimizers of
RS(·). Further, define the constant c̃ ≜ E[RS(πS) +R(πS)]. Then a bound on the excess risk is (the
proof appears in Appendix D)

ϵexcess ≤
8β

√
c̃

nµ

√
ϵopt + ϵc +

8
√

2βϵoptϵc√
µ

+
16c̃β2

n2µ2
+

45β

µ
ϵopt. (5)

We note that a closely related bound has been shown in (Lei & Ying, 2020a). In fact, (Lei &
Ying, 2020a, Therem 7) requires simultaneously the interpolation error to be zero (ϵc = 0) and an
additional assumption, namely the inequality β ≤ nµ/4, to hold. However, if β ≤ nµ/4 and ϵc = 0
(interpolation assumption), then (Lei & Ying, 2020a, inequality (B.13), Proof of Theorem 1) implies
that (E[R(πS)] ≤ 3E[RS(πS)] and) the expected population risk at πS is zero, i.e., E[R(πS)] = 0.
Such a situation is apparently trivial since the population risk is zero at the empirical minimizer
πS ∈ argminRS(·).2 On the other hand, if β > nµ/4, these bounds become vacuous. A PL
condition is interesting under the interpolation regime and since the PL is not uniform (with respect
to the data-set) in practice (Liu et al., 2022), it is reasonable to consider similar bounds to that of 5 as
trivial.

5 FULL-BATCH GD

In this section, we derive generalization error and excess risk bounds for the full-batch GD algorithm.
We start by providing the definition of the expected path error ϵpath, in addition to the optimization
error ϵopt. These quantities will prominently appear in our analysis and results.

Definition 5 (Path Error) For any β-smooth (possibly) nonconvex loss, learning rate ηt, and for
any i ∈ {1, . . . , n}, we define the expected path error as

ϵpath ≜
T∑

t=1

ηtE[∥∇f(Wt, zi)∥22]. (6)

2In general, this occurs when n → ∞, and the generalization error is zero. As a consequence, the excess risk
becomes equals to the optimization error (see also (Lei & Ying, 2020a, Therem 7)), and the analysis becomes
not interesting from generalization error prospective.
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The ϵpath term expresses the path-dependent quantity that appears in the generalization bounds
in our results3. Additionally, as we show, the generalization error also depends on the average
optimization error ϵopt (Theorem 3). A consequence of the dependence on ϵopt, is that full-batch GD
generalizes when it reaches the neighborhoods of the loss minima. Essentially, the expected path
error and optimization error replace bounds in prior works (Hardt et al., 2016; Kozachkov et al., 2022)
that require a Lipschitz loss assumption to upper bound the gradients and substitute the Lipschitz
constant with tighter quantities. Later we show the dependence of the expected output stability term
in Theorem 3 with respect to the expected path error. Then through explicit rates for both ϵpath and
ϵopt we characterize the generalization error and excess risk.

5.1 NONCONVEX LOSS

We proceed with the average output stability and generalization error bounds for nonconvex smooth
losses. Through a stability error bound, the next result connects Theorem 3 with the expected path
error and the corresponding learning rate. Then we use that expression to derive generalization error
bounds for the full-batch GD in the case of nonconvex losses.

Theorem 6 (Stability Error — Nonconvex Loss) Assume that the (possibly) nonconvex loss f(·, z)
is β-smooth for all z ∈ Z . Consider the full-batch GD where T denotes the total number of
iterates and ηt denotes the learning rate, for all t ≤ T + 1. Then for the outputs of the algorithm
WT+1 ≡ A(S), W (i)

T+1 ≡ A(S(i)) it is true that

ϵstab(A) ≤
4ϵpath
n2

T∑
t=1

ηt

T∏
j=t+1

(1 + βηj)
2
. (7)

The expected output stability in Theorem 6 is bounded by the product of the expected path error
(Definition 5), a sum-product term (

∑T
t=1 ηt

∏T
j=t+1 (1 + βηj)

2) that only depends on the step-size
and the term 4/n2 that provides the dependence on the sample complexity. In light of Theorem 3,
and Theorem 6, we derive the generalization error of full-batch GD for smooth nonconvex losses.

Theorem 7 (Generalization Error — Nonconvex Loss) Assume that the loss f(·, z) is β-smooth
for all z ∈ Z . Consider the full-batch GD where T denotes the total number of iterates, and
the learning rate is chosen as ηt ≤ C/t ≤ 1/β, for all t ≤ T + 1. Let ϵ ≜ βC < 1 and
C̄(ϵ, T ) ≜ min {ϵ+ 1/2, ϵ log(eT )}. Then the generalization error of full-batch GD is bounded by

|ϵgen| ≤
4
√
2

n

√
(ϵopt + ϵc)ϵpath(eT )

ϵ
C̄

1
2 (ϵ, T ) + 8

ϵpath
n2

(eT )
2ϵ
C̄(ϵ, T )

≤ 4
√
3(eT )

ϵ

n

√
(ϵopt + ϵc)ϵpath + 12

(eT )
2ϵ

n2
ϵpath. (8)

Additionally, by the definition of the expected path and optimization error, and from the descent
direction of algorithm, we evaluate upper bounds on the terms ϵpath and ϵopt and derive the next
bound as a byproduct of Theorem 7.

Corollary 8 The generalization error of full-batch GD in Theorem 7 can be further bounded as

|ϵgen| ≤

(
8
√
3

n

√
log(eT )(eT )

ϵ
+

48

n2
log(eT )(eT )

2ϵ

)
E[RS(W1)]. (9)

The inequality (8) in Theorem 7 shows the explicit dependence of the generalization error bound on
the path-dependent error ϵpath and the optimization error ϵopt. Note that during the training process
the path-dependent error increases, and the optimization error decreases. Both terms ϵpath and ϵopt
may be upper bounded, to find the simplified (but potentially looser) bound appeared in Corollary
8. We prove Theorem 6, Theorem 7 and Corollary 8 in Appendix C. Finally, the generalization
error in Corollary 8 matches bounds in prior work, including information theoretic bounds for the
SGLD algorithm (Wang et al., 2021b, Corollary 1) (with fixed step-size), while our results do not
require the sub-Gaussian loss assumption and show that similar generalization is achievable through
deterministic training.

3Recall that the initial point W1 may be chosen arbitrarily and uniformly over the dataset.
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Remark. (Dependence on Stationary Points) Let W1 be an arbitrary initial point (independent of
S). Under mild assumptions (provided in (Lee et al., 2016)) GD convergences to (local) minimizers.
Let W ∗

S,W1
be the stationary point such limT↑∞ A(S) → W ∗

S,W1
. Then through the smoothness of

the loss, we derive an alternative form of the generalization error bound in Theorem 3 that expresses
the dependence of the generalization error with respect to the quality of the set of stationary points,
i.e.,

|ϵgen| ≤ 4

√
β
(
βE[∥A(S)−W ∗

S,W1
∥22] + E[RS(W ∗

S,W1
)]
)
ϵstab(A) + 2βϵstab(A) (10)

Inequality (10) provides a detailed bound that depends on the expected loss at the stationary point
and the expected distance of the output from the stationary point, namely E[∥A(S)−W ∗

S,W1
∥22].

5.2 CONVEX LOSS

In this section, we provide generalization error guarantees for GD on smooth convex losses. Starting
from the stability of the output of the algorithm, we show that the dependence on the learning rate is
weaker than that of the nonconvex case. That dependence and the fast convergence to the minimum
guarantee tighter generalization error bounds than the general case of nonconvex losses in Section
5.1. The generalization error and the corresponding optimization error bounds provide an excess
risk bound through the error decomposition (2). We refer the reader to Table 2 for a summary of the
excess risk guarantees. We continue by providing the stability bound for convex losses.

Theorem 9 (Stability Error — Convex Loss) Assume that the convex loss f(·, z) is β-smooth for
all z ∈ Z . Consider the full-batch GD where T denotes the total number of iterates and ηt ≤ 1/2β

learning rate, for all t ≤ T + 1. Then for outputs of the algorithm WT+1 ≡ A(S),W (i)
T+1 ≡ A(S(i))

it is true that

ϵstab(A) ≤
4ϵpath
n2

T∑
t=1

ηt ≤
32β

∑T
t=1 ηt

n2

(
E[∥W1 −W ∗

S∥22] + ϵc

T∑
t=1

ηt

)
(11)

In the convex case, the expected output stability (inequality 11) is bounded by the product of the ex-
pected path error, the number of samples term 2/n2 and the accumulated learning rate. The inequality
(11) gives ϵstab(A) = O((

∑T
t=1 ηt/n)

2) and through Theorem 3 we find |ϵgen| = O(
∑T

t=1 ηt/n).
In contrast, stability guarantees for the SGD and non-Lipschitz losses in prior work (Lei & Ying,

2020b, Theorem 3, (4.4)) give ϵstab(A) = O
(∑T

t=1 η
2
t /n

)
and |ϵgen| = O(

√∑T
t=1 η

2
t /n). As a

consequence, GD guarantees are tighter than existing bounds of the SGD for non-Lipschitz losses,
a variety of learning rates and T ≤ n. For instance, for fixed ηt = 1/

√
T , the generalization error

bound of GD is |ϵgen| = O(
√
T/n) which is tighter than the corresponding bound of SGD, namely

|ϵgen| = O(1/
√
n). Further, GD applies for much larger learning rates (ηt = 1/β), which provide

not only tighter generalization error bound but also tighter excess risk guarantees than SGD as we
later show. By combining Theorem 3 and Theorem 9, we show the next generalization error bound.

Theorem 10 (Generalization Error — Convex Loss) Let the loss function f(·, z) be convex and
β-smooth for all z ∈ Z . Consider the full-batch GD where T denotes the total number of iterates.
We chose the learning rate such that ηt ≤ 1/2β, for all t ≤ T + 1. Then the generalization error of
full-batch GD is bounded by

|ϵgen| ≤
4
√

2β (ϵopt + ϵc) ϵpath
n

√√√√ T∑
t=1

ηt + 8β
ϵpath
n2

T∑
t=1

ηt. (12)

We provide the proof of Theorem 9 and Theorem 10 in Appendix E. Similar to the nonconvex case
(Theorem 7), the bound in Theorem 10 shows the explicit dependence of the generalization error on
the number of samples n, the path-dependent term ϵpath, and the optimization error ϵopt, as well as
the effect of the accumulated learning rate. From the inequality (12), we can proceed by deriving
exact bounds on the optimization error and the accumulated learning rate, to find explicit expressions
of the generalization error bound. Through Theorem 9, Theorem 10 (and Lemma 20 in Appendix
E), we derive explicit generalization error bounds for certain choices of the learning rate. In fact, we
consider the standard choice ηt = 1/2β in the next result.

7
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Theorem 11 (Generalization/Excess Error — Convex Loss) Let the loss function f(·, z) be con-
vex and β-smooth for all z ∈ Z . If ηt = 1/2β for all t ∈ {1, . . . , T}, then

|ϵgen| ≤ 8

(
1

n
+

2T

n2

)(
3βE[∥W1 −W ∗

S∥22] + Tϵc
)
, (13)

and

ϵexcess ≤ 8

(
1

n
+

2T

n2

)(
3βE[∥W1 −W ∗

S∥22] + Tϵc
)
+

3βE[∥W1 −W ∗
S∥22]

T
. (14)

As a consequence, for T =
√
n iterations the GD algorithm achieves ϵexcess = O(1/

√
n). In contrast,

SGD requires T = n number of iterations to achieve ϵexcess = O(1/
√
n) (Lei & Ying, 2020b,

Corollary 5, a)). However, if ϵc = 0, then both algorithms have the same excess risk rate of O(1/n)
through longer training with T = n iterations. Finally, observe that the term E[∥W1 −W ∗

S ]∥22 should
be O(1) and independent of the parameters of interest (for instance n) to derive the aforementioned
rates.

5.3 STRONGLY-CONVEX OBJECTIVE

One common approach to enforce strong-convexity is through explicit regularization. In such a
case both the objective RS(·) the individual losses f(·; z) are strongly-convex. In other practical
scenarios, the objective is often strongly-convex but the individual losses are not (Ma et al., 2018,
Section 3). In this section, we show stability and generalization error guarantees that include
the above cases by assuming a γ-strongly convex objective. We also show a property of full-
batch GD that requires only a leave-one-out variant of the objective to be strongly-convex. If the
objective RS(·) is γ-strongly convex and the loss f(·; z) is β-smooth, then the leave-one-out function
RS−i(w) ≜

∑n
j=1,j ̸=i f(w; zj)/n is γloo-strongly convex for all i ∈ {1, . . . , n} for some γloo ≤ γ.

Although γloo is slightly smaller than γ (γloo = max{γ − β/n, 0}), our results reduce to the convex
loss generalization and stability bounds when γloo → 0. Further, the faster convergence also provides
tighter bounds for the excess risk (see Table 2).

Theorem 12 (Stability Error — Strongly Convex Loss) Assume that the loss f(·, z) is β-smooth
for all z ∈ Z and that RS(·) is γ-strongly convex. Consider the full-batch GD where T denotes
the total number of iterates and ηt ≤ 2/(β + γ) denotes the learning rate, for all t ≤ T . Then for
outputs of the algorithm WT+1 ≡ A(S), W (i)

T+1 ≡ A(S(i)) it is true that

ϵstab(A) ≤
4ϵpath
n2

T∑
t=1

ηt

T∏
j=t+1

(1− ηjγloo) . (15)

Specifically, if ηt = 2/(β + γ), then

ϵstab(A) ≤
4ϵpath
n2

min

{
1

γloo
,
2T

β

}
. (16)

By comparing the stability guarantee of Theorem 9 with Theorem 12, we observe that the learning
rate dependent term (sum-product) is smaller than that of the convex case. While the dependence on
expected path error (ϵpath) is identical, we show (Appendix F) that the ϵpath term is smaller in the
strongly convex case. Additionally, Theorem 12 recovers the stability bounds of the convex loss case,
when γloo → 0 (and possibly γ → 0). Similarly to the nonconvex and convex loss cases, Theorem
3 and the stability error bound in Theorem 12 provide the generalization error bound for strongly
convex losses.

Theorem 13 (Generalization Error — Strongly Convex Loss) Let the loss function f(·, z) β-
smooth for all z ∈ Z and the objective RS(·) be γ-strongly convex. Consider the full-batch
GD where T denotes the total number of iterates. Let us set the learning rate to ηt ≤ 2/(β + γ), for
all t ≤ T . Then the generalization error of full-batch GD is bounded by

|ϵgen| ≤
4
√
(ϵopt + ϵc)ϵpath

n

√√√√2β

T∑
t=1

ηt

T∏
j=t+1

(1− ηjγloo) + 8β
ϵpath
n2

T∑
t=1

ηt

T∏
j=t+1

(1− ηjγloo) .

8
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We prove Theorem 12 and Theorem 13 in Appendix F. Recall that the sum-product term in the
inequality of Theorem 13 is smaller than the summation of the learning rates in Theorem 10. This
fact together with the tighter optimization error bound provide a smaller excess risk than those of
the convex losses. Similar to the convex loss setting, we use known optimization error guarantees
of full-batch GD for strongly convex losses to derive explicit expressions of the generalization and
excess risk bounds. By combining Theorem 13 and optimization and path error bounds (Lemma
22, Lemma 23 in Appendix F, and Lemma 15 in Appendix B.2), we derive our generalization error
bound for fixed step size as follows in the next result.

Theorem 14 (Generalization/Excess — Strongly Convex Loss) Let the objective function RS(·)
be γ-strongly convex and β-smooth by choosing some β-smooth loss f(·, z)), not necessarily
(strongly) convex for all z ∈ Z . Define m(γloo, T ) ≜ βT min {β/γloo, 2T} /(β + γ) and
M(W1) ≜ max

{
βE[∥W1 −W ∗

S∥22],E[RS(W
∗
S)]
}

, and set the learning rate to ηt = 2/(β + γ).
Then the generalization error of the full-batch GD at the last iteration satisfies the inequality

|ϵgen| ≤
8
√
6

n

(√
M(W1) +

(
exp

(
−2Tγ

β + γ

)
+

4
√
3

n

√
m(γloo, T )

)
M(W1)

)√
m(γloo, T ).

Additionally the optimization error (Lemma 23 in Appendix F) and the inequality (2) give the following
excess risk

ϵexcess ≤
8
√
6

n

[√
∆T +

(
exp

(
−2Tγ

β + γ

)
+

4
√
3

n
∆T

)]
+ Λexp

(
−4Tγ

β + γ

)
, (17)

where ∆T ≜ βTM(W1)min {β/γloo, 2T} /(β + γ) and Λ ≜ βE[∥W1 −W ∗
S∥22]/2.

Theorem 13 and Theorem 14 also recover the convex setting when γ → 0 or γloo → 0. Additionally,
for γ > 0 and by setting the number of iterations as T = (β/γ + 1) log(n)/2 and by defining the
sequence mn,γloo ≜ βmin {β/γloo, (β/γ + 1) log n} /2γ, the last inequality gives

|ϵgen| ≤
8
√
6 log n

n

(√
M(W1) +

1 + 4
√

3mn,γloo

n
M(W1)

)
√

mn,γloo . (18)

Finally, for T = (β/γ + 1) log(n)/2 iterations it is true that

ϵexcess ≤
8
√
6 log n

n

(√
Γn +

1 + 4
√
3

n
Γn

)
+O

(
1

n2

)
, (19)

where Γn ≜ βM(W1)min {β/γloo, (β/γ + 1) log n} /2γ and as a consequence the excess risk is of
the order O

(√
log(n)/n

)
. As a comparison, the SGD algorithm (Lei & Ying, 2020b, Theorem 12)

requires T = n number of iterations to achieve an excess risk of the order O(1/n), while full-batch
GD achieves essentially the same rate with T = (β/γ + 1) log(n)/2 iterations.

6 CONCLUSION

In this paper we developed generalization error and excess risk guarantees for deterministic training
on smooth losses via the the full-batch GD algorithm. At the heart of our analysis is a sufficient
condition for generalization, implying that, for every symmetric algorithm, average algorithmic
output stability and a small expected optimization error at termination ensure generalization. By
exploiting this sufficient condition, we explicitly characterized the generalization error in terms of the
number of samples, the learning rate, the number of iterations, a path-dependent quantity and the
optimization error at termination, further exploring the generalization ability of full-batch GD for
different types of loss functions. More specifically, we derived explicit rates on the generalization
error and excess risk for nonconvex, convex and strongly convex smooth (possibly non-Lipschitz)
losses/objectives. Our theoretical results shed light on recent empirical observations indicating that
full-batch gradient descent generalizes efficiently and that stochastic training procedures might not
be necessary and in certain cases may even lead to higher generalization errors and excess risks.
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Full-Batch Gradient Descent
Step Size Generalization Error Loss

ηt ≤ C/βt, ∀C < 1
4e
√
3

n
TC
√

(ϵopt + ϵc)ϵpath +
12e2

n2
T 2Cϵpath NC

ηt ≤ C/βt, ∀C < 1 48

(√
log(eT )(eT )

C

n
+

log(eT )(eT )
2C

n2

)
E[RS(W1)] NC

ηt = 1/2β 8

(
1

n
+

2T

n2

)(
3βE[∥W1 −W ∗

S∥22] + Tϵc
)

C

ηt = 2/(β + γ)
8
√
6

n

[√
∆T +

(
exp

(
−2Tγ

β + γ

)
+

4
√
3

n
∆T

)]
γ-SC

Table 3: A list of the generalization error bounds for the full-batch GD. We denote the number of
samples by n. W1 is the initial point of the algorithm, and W ∗

S is a point in the set of minimizers
of the objective. Also, “ϵpath” denotes the expected path error ϵpath ≜

∑T
t=1 ηtE[∥∇f(Wt, zi)∥22],

“ϵopt” denotes the optimization error ϵopt ≜ E[RS(A(S)) − R∗
S ], T is the total number of

iterations and we define the model capacity (interpolation) error risk as ϵc ≜ E[RS(W
∗
S)].

Lastly, we define the constant M(W1) ≜ max
{
βE[∥W1 −W ∗

S∥22],E[RS(W
∗
S)]
}

and the terms
Γn ≜ βM(W1)min {β/γloo, (β/γ + 1) log n} /2γ, ∆T ≜ βTM(W1)min {β/γloo, 2T} /(β + γ).
Lastly, ”NC”, ”C” and ”γ-SC” correspond to nonconvex, convex and γ-strongly convex objective,
respectively.

A SUMMARY OF THE RESULTS

Herein, we present a summary of the generalization and excess risk bounds. The detailed expressions
of the generalization and excess risk bounds appear in Table 3 and 4.

B PROOFS

We provide the proofs of the results in these sections. We start by proving Theorem 3 and the bounds
on the sum-product terms that appear in the stability error bounds, and then we continue with stability
and generalization error guarantees, that we prove in parallel. We derive the excess risk bounds by
applying the decomposition of the inequality (2).

B.1 PROOF OF THEOREM 3

It is true that for any i, j ∈ {1, . . . , n}

E[f(A(S); zi)] = E[f(A(S); zj)] =
1

n

n∑
k=1

E[f(A(S); zk)] = E[RS(A(S))]. (20)

We show equation 20 through the symmetry of the algorithm (at each iteration) and the fact that
{zi}ni=1 are identically distributed as follows. The random variables {zi}ni=1 remain exchangeable.4
The β-smooth property of f(· ; z) for all z ∈ Z gives

f(A(S(i)); z)− f(A(S); z) ≤ ⟨A(S(i))−A(S),∇f(A(S); z)⟩+ β∥A(S(i))−A(S)∥22
2

. (21)

4P(z1 = c1, z2 = c2, . . . , zi = ci, . . . , zj = cj , . . . , zn = cn, A(S) = w) = P(z1 = c1, z2 =
c2, . . . , zi = cj , . . . , zj = ci, . . . , zn = cn, A(S) = w) for any choice of the values c1, c2, . . . , cn,w and for
any i, j ∈ {1, . . . , n}.
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Full-Batch Gradient Descent
Step Size Excess Risk Loss

ηt ≤ C/βt,
∀C < 1 48

(√
log(eT )(eT )

C

n
+

log(eT )(eT )
2C

n2

)
E[RS(W1)] + ϵopt NC

ηt = 1/2β

(
8

n
+

16T

n2

)(
3βE[∥W1 −W ∗

S∥22] + Tϵc
)
+

3βE[∥W1 −W ∗
S∥22]

T
C

ηt = 1/2β,
T =

√
n 8

ϵc + 3βE[∥W1 −W ∗
S∥22]√

n
+O

(
1

n

)
C

ηt = 2/(β + γ)
8
√
3

n

[√
∆T +

(
exp

(
−2Tγ

β + γ

)
+
4
√
3

n
∆T

)]
+Λexp

(
−4Tγ

β + γ

)
γ-SC

ηt = 2/(β + γ)

T = (β+γ) logn
2γ

8
√
3 log n

n

(√
Γn +

1 + 4
√
3

n
Γn

)
+O

(
1

n2

)
γ-SC

Table 4: A list of excess risk bounds for the full-batch GD. We denote the number of samples by n.
W1 is the initial point of the algorithm, and W ∗

S is a point in the set of minimizers of the objective.
Also, “ϵpath” denotes the expected path error ϵpath ≜

∑T
t=1 ηtE[∥∇f(Wt, zi)∥22], “ϵopt” denotes

the optimization error ϵopt ≜ E[RS(A(S))−R∗
S ], T is the total number of iterations and we define

the model capacity (interpolation) error risk as ϵc ≜ E[RS(W
∗
S)]. Lastly, we define the constants

Λ ≜ βE[∥W1 −W ∗
S∥22]/2, M(W1) ≜ max

{
βE[∥W1 −W ∗

S∥22],E[RS(W
∗
S)]
}

and the terms Γn ≜
βM(W1)min {β/γloo, (β/γ + 1) log n} /2γ, ∆T ≜ βTM(W1)min {β/γloo, 2T} /(β+γ). Lastly,
”NC”, ”C” and ”γ-SC” correspond to nonconvex, convex and γ-strongly convex objective, respectively.

The expression ϵgen = E[f(A(S(i)); zi)− f(A(S); zi)] and the inequality (21) give

ϵgen ≤ E
[
⟨A(S(i))−A(S),∇f(A(S); zi)⟩+

β∥A(S(i))−A(S)∥22
2

]
(22)

We find an upper bound for the expectation of the inner product of the inequality (22) by applying
Cauchy-Schwartz inequality as

E
[
⟨A(S(i))−A(S),∇f(A(S); zi)⟩

]
≤ E

[
∥A(S(i))−A(S)∥2∥∇f(A(S); zi)∥2

]
(23)

≤
√
ϵstab(A)E [∥∇f(A(S); zi)]∥22], (24)

here we use the inequalities ⟨a, b⟩ ≤ ∥a∥2∥b∥2 and E2[XY ] ≤ E[X2]E[Y 2] to derive the bounds in
23 and 24 respectively. By combining the inequalities 22 and 24 we find that for any i ∈ {1, . . . , n}
it is true that

ϵgen ≤
√
ϵstab(A)E [∥∇f(A(S); zi)∥22] +

β

2
ϵstab(A). (25)

To find an upper bound for the |ϵgen|, we also need an upper bound for negative of ϵgen, namely
E[f(A(S); zi)− f(A(S(i)); zi)] = −ϵgen. Note that by the same argument

−ϵgen ≤
√

E
[
∥A(S)−A(S(i))∥22

]
E
[
∥∇f(A(S(i)); zi)]∥22

]
+

β

2
E[∥A(S)−A(S(i))∥22]. (26)

Then we find an upper bound on E[∥∇f(A(S(i)); zi)]∥22] as follows

E
[
∥∇f(A(S(i)); zi)]∥22

]
16
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= E
[
∥∇f(A(S(i)); zi)−∇f(A(S); zi) +∇f(A(S); zi)∥22

]
≤ 2E

[
∥∇f(A(S(i)); zi)−∇f(A(S); zi)]∥22 + ∥∇f(A(S); zi)∥22

]
≤ 2β2E[∥A(S)−A(S(i))∥22] + 2E[∥∇f(A(S); zi)]∥22]. (27)

The inequality 27 holds because of the β-smoothness of the loss. Additionally,√
2β2E2

[
∥A(S)−A(S(i))∥22

]
+ 2E

[
∥A(S)−A(S(i))∥22

]
E[∥∇f(A(S); zi)∥22]

≤
√
2E
[
∥A(S)−A(S(i))∥22

]
E[∥∇f(A(S); zi)∥22] +

√
2βE[∥A(S)−A(S(i))∥22]. (28)

We combine the inequalities 26, 27 and 28 to find

−ϵgen ≤
√
2E
[
∥A(S)−A(S(i))∥22

]
E[∥∇f(A(S); zi)∥22] + 2βE[∥A(S)−A(S(i))∥22]. (29)

Finally, through the inequalities 25 and 29 we find

|ϵgen| ≤
√
2ϵstab(A)E[∥∇f(A(S); zi)∥22] + 2βϵstab(A) (30)

We use the self-bounding property of the non-negative β-smooth loss function f(·; z) (Srebro et al.,
2010, Lemma 3.1), to show

∥∇f(A(S); zi)∥22 ≤ 4βf(A(S); zi). (31)

The last display, Assumption 1 and equation 20 give

E[∥∇f(A(S); zi)∥22] ≤ 4βE[f(A(S); zi)] = 4β
1

n

n∑
i=1

E[f(A(S); zi)]

= 4βE[RS(A(S))] (32)
= 4β (E[RS(A(S))]− E[RS(W

∗
S)] + E[RS(W

∗
S)])

= 4β (ϵopt + E[RS(W
∗
S)]) . (33)

We combine the inequalities 30, 33 and the Definition 1 to find

|ϵgen| ≤ 2
√
2β (ϵopt + ϵc) ϵstab(A) + 2βϵstab(A). (34)

The last inequality gives the bound on the generalization error and completes the proof. □

B.2 SUM PRODUCT TERMS IN THE STABILITY BOUNDS

Herein we show a lemma for the sum product terms associated with learning rate in Theorem 6 and
Theorem 12. Then we will apply that lemma to derive the corresponding stability error bounds.

Lemma 15 The following are true:

• If ηt = C ≤ 2/(β + γ), then
T∑

t=1

ηt

T∏
j=t+1

(1− ηjγ) =
1− (1− Cγ)

T

γ
, (35)

• If ηt = C/t ≤ 2/(β + γ), for some C ≥ 2/γ for t ≥ 1 + ⌈β
γ ⌉ and ηt = C ′/t ≤ 2/(β + γ) for

some C ′ < 2/(γ + β) for t ≤ ⌈β
γ ⌉, then

T∑
t=1

ηt

T∏
j=t+1

(
1− ηjγ

2

)
≤ C log

(
e2⌈β/γ⌉

)
. (36)

• If ηt ≤ C/t < 2/β, then
T∑

t=1

ηt

T∏
j=t+1

(1 + βηj)
2 ≤ Ce2CβT 2Cβ min

{
1 +

1

2Cβ
, log(eT )

}
. (37)
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Proof.

• If ηt = C ≤ 2/(β + γ) then

T∑
t=1

ηt

T∏
j=t+1

(1− ηjγ) = C

T∑
t=1

(1− Cγ)
T−t

= C (1− Cγ)
T

T∑
t=1

(1− Cγ)
−t

= C
1− (1− Cγ)

T

Cγ
=

1− (1− Cγ)
T

γ
,

• If ηt = C/t ≤ 2/(β + γ), for some C ≥ 2/γ for t ≥ 1 + ⌈β
γ ⌉ and ηt = C ′/t ≤ 2/(β + γ) for

some C ′ < 2/(γ + β) for t ≤ ⌈β
γ ⌉ then

T∑
t=1

ηt

T∏
j=t+1

(
1− ηjγ

2

)

≤
⌈ β
γ ⌉∑

t=1

C ′

t

T∏
j=t+1

(
1− C ′γ

2j

)
+

T∑
t=1+⌈ β

γ ⌉

C

t

T∏
j=t+1

(
1− 1

j

)

=

⌈ β
γ ⌉∑

t=1

C ′

t

T∏
j=t+1

(
1− C ′γ

2j

)
+

T∑
t=1+⌈ β

γ ⌉

C

t

t

T
≤

⌈ β
γ ⌉∑

t=1

C ′

t
+ C

[
T − ⌈β

γ ⌉
]
+

T

≤ C

(
1 + log(⌈β/γ⌉) +

[
1− ⌈ β

Tγ
⌉
]
+

)
≤ C log

(
e2⌈β/γ⌉

)
.

• If ηt ≤ C/t ≤ 2/β, then

T∑
t=1

ηt

T∏
j=t+1

(1 + βηj)
2
=

T∑
t=1

C

t

T∏
j=t+1

(
1 + β

C

j

)2

≤
T∑

t=1

C

t

T∏
j=t+1

exp

(
2β

C

j

)

=

T∑
t=1

C

t
exp

2β

T∑
j=t+1

C

j


≤

T∑
t=1

C

t
exp (2Cβ (log(T ) + 1− log(t+ 1)))

= Ce2CβT 2Cβ
T∑

t=1

1

t

1

(t+ 1)2Cβ

≤ Ce2CβT 2Cβ
T∑

t=1

1

t

1

(t+ 1)2Cβ

≤ Ce2CβT 2Cβ
T∑

t=1

1

t1+2Cβ
(38)

= Ce2CβT 2Cβ

(
1 +

T∑
t=2

1

t1+2Cβ

)

≤ Ce2CβT 2Cβ

(
1 +

∫ T

1

1

x1+2Cβ
dx

)
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= Ce2CβT 2Cβ

(
1 +

1

2Cβ

(
1− T−2Cβ

))
= Ce2CβT 2Cβ

(
1 +

1

2Cβ

)
− C

e2Cβ

2β

≤ Ce2CβT 2Cβ

(
1 +

1

2Cβ

)
, (39)

additionally
∑T

t=1 1/t ≤ log(eT ), thus the term in the inequality 38 may be upper bounded by
Ce2CβT 2Cβ log(eT ) for any T ∈ N, and we conclude that

T∑
t=1

ηt

T∏
j=t+1

(1 + βηj)
2 ≤ Ce2CβT 2Cβ min

{
1 +

1

2Cβ
, log(eT )

}
. (40)

The last inequality completes the proof. □

In the next section we prove the stability and generalization error bounds for nonconvex losses.

C NONCONVEX LOSS: PROOF OF THEOREM 6 & THEOREM 7

Let z1, z2, . . . , zi, . . . , zn, z′i be i.i.d. random variables, define S ≜ (z1, z2, . . . , zi, . . . , zn) and
S(i) ≜ (z1, z2, . . . , z

′
i, . . . , zn), W1 = W ′

1. The updates for any t ≥ 1 are

Wt+1 = Wt −
ηt
n

n∑
j=1

∇f(Wt, zj), (41)

W
(i)
t+1 = W

(i)
t − ηt

n

n∑
j=1,j ̸=i

∇f(W
(i)
t , zj)−

ηt
n
∇f(W

(i)
t , z′i). (42)

Then for any t ≥ 1, we derive the stability recursion as

∥Wt+1 −W
(i)
t+1∥2

≤ ∥Wt −W
(i)
t ∥2 +

ηt
n

∥∥∥∥ n∑
j=1,j ̸=i

(
∇f(Wt, zj)−∇f(W

(i)
t , zj)

)∥∥∥∥
2

+
ηt
n
∥∇f(Wt, zi)−∇f(W

(i)
t , z′i)∥2

≤ ∥Wt −W
(i)
t ∥2 +

ηt
n

n∑
j=1,j ̸=i

∥∇f(Wt, zj)−∇f(W
(i)
t , zj)∥2

+
ηt
n

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

)
≤ ∥Wt −W

(i)
t ∥2 +

ηt(n− 1)

n
β∥Wt −W

(i)
t ∥2 +

ηt
n

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

)
(43)

=

(
1 +

n− 1

n
βηt

)
∥Wt −W

(i)
t ∥2 +

ηt
n

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

)
, (44)

inequality 43 comes from the smoothness of the loss. Then by solving the recursion we find

∥WT+1 −W
(i)
T+1∥2

≤ 1

n

T∑
t=1

ηt

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

) T∏
j=t+1

(
1 +

n− 1

n
βηj

)

≤ 1

n

T∑
t=1

ηt

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

) T∏
j=t+1

(1 + βηj)
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≤ 1

n

√√√√ T∑
t=1

ηt

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

)2 T∑
t=1

ηt

T∏
j=t+1

(1 + βηj)
2

≤
√
2

n

√√√√ T∑
t=1

ηt

(
∥∇f(Wt, zi)∥22 + ∥∇f(W

(i)
t , z′i)∥22

) T∑
t=1

ηt

T∏
j=t+1

(1 + βηj)
2
.

The last display gives

∥WT+1 −W
(i)
T+1∥

2
2 ≤ 2

n2

T∑
t=1

ηt

(
∥∇f(Wt, zi)∥22 + ∥∇f(W

(i)
t , z′i)∥22

) T∑
t=1

ηt

T∏
j=t+1

(1 + βηj)
2
,

and by taking the expectation we find

E[∥WT+1 −W
(i)
T+1∥

2
2]

≤ 2

n2

T∑
t=1

ηt

(
E[∥∇f(Wt, zi)∥22] + E[∥∇f(W

(i)
t , z′i)∥22]

) T∑
t=1

ηt

T∏
j=t+1

(1 + βηj)
2

≤ 4ϵpath
n2

T∑
t=1

ηt

T∏
j=t+1

(1 + βηj)
2
. (45)

We evaluate the summation of the products in the inequality 45. Lemma 15 under the choice of
decreasing learning rate ηt ≤ C/t ≤ 2/β shows that

T∑
t=1

ηt

T∏
j=t+1

(1 + βηj)
2 ≤ Ce2CβT 2Cβ min

{
1 +

1

2Cβ
, log(eT )

}
. (46)

Through the inequalities 45, 46 and Theorem 3, we derive the bound on the generalization error as

|ϵgen|

≤ 2
√

2β(ϵopt + ϵc)ϵstab(A) + 2βϵstab(A)

≤ 4

n

√√√√2β(ϵopt + ϵc)ϵpath

T∑
t=1

ηt

T∏
j=t+1

(1 + βηj)
2
+ 8β

ϵpath
n2

T∑
t=1

ηt

T∏
j=t+1

(1 + βηj)
2

≤ 4

n

√
2Cβ(ϵopt + ϵc)ϵpathe

CβTCβ min

{
1 +

1

2Cβ
, log(eT )

} 1
2

+ 8Cβ
ϵpath
n2

e2CβT 2Cβ min

{
1 +

1

2Cβ
, log(eT )

}
Under the choice ηt ≤ C/t < 1/β for all t, we choose C < 1/β, further we define ϵ ≜ βC < 1, and
C̄(ϵ, T ) ≜ min {ϵ+ 1/2, ϵ log(eT )} to get

|ϵgen| ≤
4
√
2

n

√
(ϵopt + ϵc)ϵpath(eT )

ϵ
C̄

1
2 (ϵ, T ) + 8

ϵpath
n2

(eT )
2ϵ
C̄(ϵ, T )

≤ 4
√
3

n

√
(ϵopt + ϵc)ϵpath(eT )

ϵ
+ 12

ϵpath
n2

(eT )
2ϵ
. (47)

The last inequality provide the generalization error bound and completes the proof. □

Next we derive upper bounds on expected path error ϵpath and optimization error ϵopt, to show an
alternative expression of the generalization error inequality 47. We continue by proving the proof of
Corollary 8.
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C.1 PROOF OF COROLLARY 8.

The self-bounding property of the non-negative β-smooth loss function f(·; z) (Srebro et al., 2010,
Lemma 3.1) gives ∥∇f(Wt, zi)∥22 ≤ 4βf(Wt, zi). By taking expectation, and through the Assump-
tion 1 and the equation 20 we find

E[∥∇f(Wt, zi)∥22] ≤ 4βE[f(Wt, zi)] = 4βE[RS(Wt)]. (48)

The definition of ϵpath (Definition 5), and the decreasing learning rate (ηt = C/t < 1/βt) give

ϵpath ≜
T∑

t=1

ηtE[∥∇f(Wt, zi)∥22] ≤ 4β

T∑
t=1

ηtE[RS(Wt)]

≤ 4βE[RS(W1)]

T∑
t=1

ηt (49)

< 4E[RS(W1)]

T∑
t=1

1

t

≤ 4E[RS(W1)] log(eT ), (50)

and the inequality 49 holds since the learning rate ηt < 2/β guarantees descent at each iteration.
Similarly, ϵopt + ϵc ≤ E[RS(W1)]. The last inequality together with the inequalities 50 and 47 give

|ϵgen| ≤
4
√
3

n

√
(ϵopt + ϵc)ϵpath(eT )

ϵ
+ 12

ϵpath
n2

(eT )
2ϵ

≤

(
8
√
3

n

√
log(eT )(eT )

ϵ
+

48

n2
log(eT )(eT )

2ϵ

)
E[RS(W1)].

The last inequality provides the bound of the corollary.

D PL OBJECTIVE

Herein we provide the proofs of the results associated with the PL condition on the objective. We
start by proving an upper bound on the average output stability. Then by combining Lemma 16 and
Theorem 3 we derive generalization error bounds for symmetric algorithms and smooth losses, as
well as the generalization error bound of the full-batch GD under the PL condition. A similar proof
technique of the next lemma also appears in prior work by Lei et al. (Lei & Ying, 2020a, Proof of
Lemma B.2).

Lemma 16 Let the loss function f(·; z) be non-negative, nonconvex and β-smooth for all z ∈ Z .
Further, let the objective be µ-PL, E[∥∇RS(w)∥22] ≥ 2µE[RS(w)−R∗

S ] for all w ∈ Rd. Then for
any algorithm it is true that

E[∥A(S(i))−A(S)∥22] ≤
16

µ
ϵopt +

8β

n2µ2
(E [RS(πS)] + E[R(πS)]) . (51)

Proof. Define the projection πS(i) ≜ π(A(S(i))) of the point A(S(i)) to the set of the minimizers
of RS(i)(·), and the similarly the projection πS ≜ π(A(S)) of the point A(S) to the set of the
minimizers of RS(·). Then

E[∥A(S(i))−A(S)∥22]
≤ 4E[∥A(S(i))− πS(i)∥22] + 4E[∥A(S)− πS∥22] + 2E[∥πS(i) − πS∥22]

≤ 8

µ
E[RS(i)(A(S(i)))−R∗

S(i) ] +
8

µ
E[RS(A(S))−R∗

S ] + 2E[∥πS(i) − πS∥22] (52)

=
16

µ
ϵopt + 2E[∥πS(i) − πS∥22]

≤ 16

µ
ϵopt +

4

µ
(E[RS(πS(i))]− E[RS(πS)]) , (53)
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the inequalities 52 and 53 come from the quadratic growth (Karimi et al., 2016). Recall that, the PL
condition on the objective gives

1

2µ
E[∥∇RS(πS(i))∥22] ≥ E[RS(πS(i))−RS(πS)]. (54)

We combine the inequalities 53 and 54 to find

E[∥A(S(i))−A(S)∥22] ≤
16

µ
ϵopt +

2

µ2
E[∥∇RS(πS(i))∥22]. (55)

Also, it is true that

∥∇RS(πS(i))∥22 = ∥∇RS(i)(πS(i))−
1

n
∇f(πS(i) ; z′i) +

1

n
∇f(πS(i) ; zi)∥22

=
2

n2
∥∇f(πS(i) ; z′i)∥22 +

2

n2
∥∇f(πS(i) ; zi)∥22 (56)

≤ 4β

n2
f(πS(i) ; z′i) +

4β

n2
f(πS(i) ; zi), (57)

equation 56 holds because ∇RS(i)(πS(i)) = 0, the inequality 57 holds for nonnegative losses (Srebro
et al., 2010, (Lemma 3.1). Through inequality57 we find,

E[∥∇RS(πS(i))∥22] ≤
4β

n2
E[f(πS(i) ; z′i)] +

4β

n2
E[f(πS(i) ; zi)] (58)

=
4β

n2
E[f(πS ; zi)] +

4β

n2
E[f(πS ; z

′
i)], (59)

and the last equality holds because zi, z′i are exchangeable. We combine the inequalities 55 and 59 to
find

1

n

n∑
i=1

E[∥A(S(i))−A(S)∥22] ≤
16

µ
ϵopt +

8β

n2µ2

(
1

n

n∑
i=1

E[f(πS ; zi)] +
1

n

n∑
i=1

E[f(πS ; z
′
i)

)
(60)

=
16

µ
ϵopt +

8β

n2µ2
(E [RS(πS)] + E[R(πS)]) . (61)

Since E[∥A(S(i))−A(S)∥22] = E[∥A(S(j))−A(S)∥22] for any i, j ∈ {1, . . . , n}, we conclude that
for any i ∈ {1, . . . , n}

E[∥A(S(i))−A(S)∥22] ≤
16

µ
ϵopt +

8β

n2µ2
(E [RS(πS)] + E[R(πS)]) . (62)

The last inequality provides the bound on the expected stability and completes the proof. □

Corollary 17 Let πS ≜ π(A(S)) be the projection of the point A(S) to the set of the minimizers
of RS(·). Further, define the constant c̃ ≜ E[RS(πS) + R(πS)]. For any symmetric algorithm,
non-negative β-smooth loss function f(·; z) for all z ∈ Z , µ-PL objective and E[R∗

S ] = 0, it is true
that

|ϵgen| ≤
8β

√
c̃

nµ

√
ϵopt +

16β2

n2µ2
c̃+

44β

µ
ϵopt. (63)

Further, define the constant c ≜ 44max{E[RS(πS) +R(πS)],E[RS(W1)−R∗
S ]}. Then the gener-

alization error of the full-batch GD with step-size choice ηt = 1/β and T total number of iterations
is bounded as follows

|ϵgen| ≤
cβ

µ

(
1− µ

β

)T/2

n
+

cβ2

n2µ2
+

cβ

µ

(
1− µ

β

)T

. (64)
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Proof. We define the constant c̃ ≜ E[RS(πS) +R(πS)] apply Theorem 3 and Lemma 16 to find

|ϵgen|

≤ 2
√

2β(ϵopt + ϵc)ϵstab(A) + 2βϵstab(A)

≤
(

8
√
µ

√
ϵopt +

4
√
2βc̃

nµ

)√
2β(ϵopt + ϵc) +

32β

µ
ϵopt +

16β2

n2µ2
c̃

≤
8
√
2βϵopt√
µ

√
ϵopt + ϵc +

8β
√
c̃

nµ

√
ϵopt + ϵc +

32β

µ
ϵopt +

16β2

n2µ2
c̃

≤ 8β
√
c̃

nµ

√
ϵopt + ϵc +

8
√

2βϵoptϵc√
µ

+
16β2

n2µ2
c̃+

44β

µ
ϵopt. (65)

The last inequality completes the proof. □

E CONVEX LOSS: PROOF OF THEOREM 9 AND THEOREM 10.

We start by proving the non-expansive property of the stability iterates for the case of β-smooth
convex loss. Then we continue with the proof of the stability generalization error.

Lemma 18 Let the gradient of the loss be β-Lipschitz for all z ∈ Z . If the loss function is convex
and ηt < 2/β, then for any t ≤ T + 1 the updates Wt,W

(i)
t satisfy the next inequality∥∥∥∥Wt −W

(i)
t − ηt

n

n∑
j=1,j ̸=i

(
∇f(Wt, zj)−∇f(W

(i)
t , zj)

)∥∥∥∥2
2

≤ ∥Wt −W
(i)
t ∥22. (66)

Proof. By the definition of β-Lipschitz gradients and triangle inequality, it is true that

∥∇f(Wt, zj)−∇f(W
(i)
t , zj)∥2 ≤ β∥Wt −W

(i)
t ∥2 =⇒ (67)

∥
∑
j∈J

∇f(Wt, zj)−
∑
j∈J

∇f(W
(i)
t , zj)∥2 ≤ β|J |∥Wt −W

(i)
t ∥2. (68)

Since the function h(W ) ≜
∑

j∈J ∇f(W, zj) is convex and the gradient of h(w) is β|J |-Lipschitz,
it follows that (co-coersivity of the gradient)∑

j∈J
⟨∇f(Wt, zj)−∇f(W

(i)
t , zj),Wt −W

(i)
t ⟩ (69)

≥ 1

β|J |
∥
∑
j∈J

∇f(Wt, zj)−
∑
j∈J

∇f(W
(i)
t , zj)∥22. (70)

Then prove the inequality 66 as follows∥∥∥∥Wt −W
(i)
t − ηt

n

n∑
j=1,j ̸=i

(
∇f(Wt, zj)−∇f(W

(i)
t , zj)

)∥∥∥∥2
2

= ∥Wt −W
(i)
t ∥22 − 2

ηt
n

n∑
j=1,j ̸=i

⟨∇f(Wt, zj)−∇f(W
(i)
t , zj),Wt −W

(i)
t ⟩ (71)

+
η2t
n2

∥
n∑

j=1,j ̸=i

(
∇f(Wt, zj)−∇f(W

(i)
t , zj)

)
∥22

= ∥Wt −W
(i)
t ∥22 − 2

ηt
n
⟨

n∑
j=1,j ̸=i

∇f(Wt, zj)−
n∑

j=1,j ̸=i

∇f(W
(i)
t , zj),Wt −W

(i)
t ⟩

+
η2t
n2

∥
n∑

j=1,j ̸=i

∇f(Wt, zj)−
n∑

j=1,j ̸=i

∇f(W
(i)
t , zj)∥22
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≤ ∥Wt −W
(i)
t ∥22 − 2

ηt
β(n− 1)n

∥
n∑

j=1,j ̸=i

∇f(Wt, zj)−
n∑

j=1,j ̸=i

∇f(W
(i)
t , zj)∥22

+
η2t
n2

∥
n∑

j=1,j ̸=i

∇f(Wt, zj)−
n∑

j=1,j ̸=i

∇f(W
(i)
t , zj)∥22 (72)

= ∥Wt −W
(i)
t ∥22 +

ηt
n

(
ηt
n

− 2

β(n− 1)

)∥∥∥∥ n∑
j=1,j ̸=i

(
∇f(Wt, zj)−∇f(W

(i)
t , zj)

)∥∥∥∥2
2

≤ ∥Wt −W
(i)
t ∥22, (73)

equation 71 holds from the expansion of the squared norm, 72 comes from the inequality 70. The
inequality 73 holds under the choice ηt < 2/β and completes the proof. □

Lemma 19 (Accumulated Path Error - Convex Loss) Let the loss function f(·; z) be convex and
β-smooth and ηt ≤ 1/2β. Then the expected path-error of the full-batch GD after T iterations is
bounded as

ϵpath ≤ 4βE[∥W1 −W ∗
S∥22] + 8βE[RS(W

∗
S)]

T∑
t=1

ηt (74)

Proof. The self-bounding property of the non-negative β-smooth loss function f(·; z) (Srebro et al.,
2010, Lemma 3.1) gives ∥∇f(Wt, zi)∥22 ≤ 4βf(Wt, zi). By taking expectation, and through the
equation 20 we find

E[∥∇f(Wt, zi)∥22] ≤ 4βE[f(Wt, zi)] = 4βE[RS(Wt)]. (75)

Similarly to the approach by Lei & Ying (2020b, Appendix A, Lemma 2), we use the convexity and
the assumption ηt ≤ 1/2β to find

∥Wt+1 −W ∗
S∥22 = ∥Wt − ηt∇RS(Wt)−W ∗

S∥22
= ∥Wt −W ∗

S∥22 + η2t ∥∇RS(Wt)∥22 + 2ηt⟨W ∗
S −Wt,∇RS(Wt)⟩

≤ ∥Wt −W ∗
S∥22 + η2t ∥∇RS(Wt)∥22 + 2ηt (RS(W

∗
S)−RS(Wt))

≤ ∥Wt −W ∗
S∥22 + 2βη2tRS(Wt) + 2ηt (RS(W

∗
S)−RS(Wt))

≤ ∥Wt −W ∗
S∥22 + 2ηtRS(W

∗
S)− ηtRS(Wt).

The last gives
T∑

t=1

ηtRS(Wt) ≤
T∑

t=1

∥Wt −W ∗
S∥22 −

T∑
t=1

∥Wt+1 −W ∗
S∥22 + 2

T∑
t=1

ηtRS(W
∗
S)

≤ ∥W1 −W ∗
S∥22 + 2

T∑
t=1

ηtRS(W
∗
S). (76)

The definition of ϵpath (Definition 5), the inequalities 75, 76 and the choice of the learning rate
(ηt ≤ 1/2β) give

ϵpath ≜
T∑

t=1

ηtE[∥∇f(Wt, zi)∥22] ≤ 4β

T∑
t=1

ηtE[RS(Wt)]

≤ 4βE[∥W1 −W ∗
S∥22] + 8β

T∑
t=1

ηtE[RS(W
∗
S)]. (77)

The last inequality provides the bound on the ϵpath. □
The standard choice of ηt ≤ 1/β gives the next known bound on the optimization error.

Lemma 20 (Optimization Error - Convex Loss (Nesterov, 1998)) If f(·; z) is a convex and β-
smooth function and ηt ≤ 1/β, then

ϵopt = E[RS(A(S))−RS(W
∗
S)] ≤

E[∥W1 −W ∗
S∥22]∑T

t=1 ηt

(
1− βηt

2

) . (78)
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E.1 PROOF OF THEOREM 9 AND THEOREM 10

Let z1, z2, . . . , zi, . . . , zn, z′i be i.i.d. random variables, define S ≜ (z1, z2, . . . , zi, . . . , zn) and
S(i) ≜ (z1, z2, . . . , z

′
i, . . . , zn), W1 = W ′

1. The updates for any t ≥ 1 are

Wt+1 = Wt −
ηt
n

n∑
j=1

∇f(Wt, zj), (79)

W
(i)
t+1 = W

(i)
t − ηt

n

n∑
j=1,j ̸=i

∇f(W
(i)
t , zj)−

ηt
n
∇f(W

(i)
t , z′i). (80)

Then for any t ≥ 1

∥Wt+1 −W
(i)
t+1∥2

≤
∥∥∥∥Wt −W

(i)
t − ηt

n

n∑
j=1,j ̸=i

(
∇f(Wt, zj)−∇f(W

(i)
t , zj)

)∥∥∥∥
2

+
ηt
n
∥∇f(Wt, zi)−∇f(W

(i)
t , z′i)∥2

≤

√√√√∥∥∥∥Wt −W
(i)
t − ηt

n

n∑
j=1,j ̸=i

(
∇f(Wt, zj)−∇f(W

(i)
t , zj)

)∥∥∥∥2
2

+
ηt
n

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

)
≤ ∥Wt −W

(i)
t ∥2 +

ηt
n

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

)
. (81)

The inequality 81 comes from Lemma 18. Then by solving the recursion, we find

∥WT+1 −W
(i)
T+1∥2 ≤ 1

n

T∑
t=1

ηt

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

)
thus

∥WT+1 −W
(i)
T+1∥

2
2 ≤ 1

n2

(
T∑

t=1

ηt

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

))2

≤ 2

n2

T∑
t=1

ηt

(
∥∇f(Wt, zi)∥22 + ∥∇f(W

(i)
t , z′i)∥22

) T∑
t=1

ηt. (82)

Inequality 82 gives that for any i ∈ {1, . . . , n}

E[∥WT+1 −W
(i)
T+1∥

2
2] ≤

2

n2

T∑
t=1

ηt

(
E[∥∇f(Wt, zi)∥22] + E[∥∇f(W

(i)
t , z′i)∥22]

) T∑
t=1

ηt

=
4

n2

T∑
t=1

ηtE[∥∇f(Wt, zi)∥22]
T∑

t=1

ηt =
4ϵpath
n2

T∑
t=1

ηt. (83)

Recall that WT+1 ≡ A(S) and W
(i)
T+1 ≡ A(S(i)). Theorem 3 and the inequality 83 give

|ϵgen| ≤ 2
√
2β (ϵopt + E[RS(W ∗

S)]) ϵstab(A) + 2βϵstab(A)

≤ 2

√√√√2β (ϵopt + E[RS(W ∗
S)])

4ϵpath
n2

T∑
t=1

ηt + 2β
4ϵpath
n2

T∑
t=1

ηt

=
4
√
(ϵopt + E[RS(W ∗

S)]) ϵpath

n

√√√√2β

T∑
t=1

ηt + 8β
ϵpath
n2

T∑
t=1

ηt. (84)
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Under the choice of constant learning rate ηt = 1/2β, Lemma 19 together with the inequality 83 give
ϵpath ≤ 4βE[∥W1 −W ∗

S∥22] + 8βE[RS(W
∗
S)]
∑T

t=1 ηt, and ϵopt ≤ 3βE[∥W1 −W ∗
S∥22]/T . Thus

ϵstab(A) ≤
32

n2

(
β

2
E[∥W1 −W ∗

S∥22] + βE[RS(W
∗
S)]

T∑
t=1

ηt

)
T∑

t=1

ηt (85)

=
32

n2

(
β

2
E[∥W1 −W ∗

S∥22] +
1

2
E[RS(W

∗
S)]T

)
T

2β
(86)

=
8T

n2

(
E[∥W1 −W ∗

S∥22] + E[RS(W
∗
S)]

T

β

)
. (87)

The inequality 84 and Lemma 20 give

|ϵgen| ≤ 2
√
2β (ϵopt + E[RS(W ∗

S)]) ϵstab(A) + 2βϵstab(A)

≤ 2

√
2β (ϵopt + E[RS(W ∗

S)])
8T

n2

(
E[∥W1 −W ∗

S∥22] + E[RS(W ∗
S)]

T

β

)
+ 2β

8T

n2

(
E[∥W1 −W ∗

S∥22] + E[RS(W
∗
S)]

T

β

)
≤ 8

√
T

n

√
(ϵopt + E[RS(W ∗

S)]) (βE[∥W1 −W ∗
S∥22] + TE[RS(W ∗

S)])

+
16T

n2

(
βE[∥W1 −W ∗

S∥22] + TE[RS(W
∗
S)]
)

≤ 8
√
T

n

√(
3βE[∥W1 −W ∗

S∥22]
T

+ E[RS(W ∗
S)]

)
(βE[∥W1 −W ∗

S∥22] + TE[RS(W ∗
S)])

+
16T

n2

(
βE[∥W1 −W ∗

S∥22] + TE[RS(W
∗
S)]
)

=
8

n

√
(3βE[∥W1 −W ∗

S∥22] + TE[RS(W ∗
S)]) (βE[∥W1 −W ∗

S∥22] + TE[RS(W ∗
S)])

+
16T

n2

(
βE[∥W1 −W ∗

S∥22] + TE[RS(W
∗
S)]
)

≤ 8

n

(
3βE[∥W1 −W ∗

S∥22] + TE[RS(W
∗
S)]
)
+

16T

n2

(
βE[∥W1 −W ∗

S∥22] + TE[RS(W
∗
S)]
)

≤ 8

(
1

n
+

2T

n2

)(
3βE[∥W1 −W ∗

S∥22] + TE[RS(W
∗
S)]
)
.

The last inequality completes the proof. □

F STRONGLY-CONVEX OBJECTIVE: PROOF OF THEOREM 12 AND THEOREM
13

Similarly to the convex case, first we provide the contractive property of the stability recursion in the
strongly convex loss case. Then we prove the stability and generalization error bounds.

Lemma 21 Let the objective function be γ-strongly convex (γ > 0) and the leave-one-out objective
function be γloo-strongly convex for some γloo ≥ 0. If the loss function is convex β-smooth for all
z ∈ Z and ηt ≤ 2/(β + γ), then for any t ≤ T + 1 the updates Wt,W

(i)
t satisfy the inequality∥∥∥∥Wt −W

(i)
t − ηt

(
∇RS−i(Wt)−∇RS−i(W

(i)
t )
)∥∥∥∥2

2

≤ (1− ηtγloo) ∥Wt −W
(i)
t ∥22.

Proof. The function RS−i(·) is also β-smooth for all z ∈ Z and the strong convexity gives

⟨∇RS−i(Wt)−∇RS−i(W
(i)
t ),Wt −W

(i)
t ⟩
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≥ βγloo

β + γloo
∥Wt −W

(i)
t ∥22 +

1

(β + γloo)
∥∇RS−i(Wt)−∇RS−i(W

(i)
t )∥22 (88)

We expand the squared norm as follows∥∥∥∥Wt −W
(i)
t − ηt

(
∇RS−i(Wt)−∇RS−i(W

(i)
t )
)∥∥∥∥2

2

= ∥Wt −W
(i)
t ∥22 − 2ηt⟨∇RS−i(Wt)−∇RS−i(W

(i)
t ),Wt −W

(i)
t ⟩

+ η2t ∥∇RS−i(Wt)−∇RS−i(W
(i)
t )∥22

≤ ∥Wt −W
(i)
t ∥22 + η2t ∥∇RS−i(Wt)−∇RS−i(W

(i)
t )∥22

− 2ηt

(
βγloo

β + γloo
∥Wt −W

(i)
t ∥22 +

1

(β + γloo)
∥∇RS−i(Wt)−∇RS−i(W

(i)
t )∥22

)
(89)

=

(
1− 2ηt

βγloo

β + γloo

)
∥Wt −W

(i)
t ∥22

+ ηt

(
ηt −

2

β + γloo

)
∥∇RS−i(Wt)−∇RS−i(W

(i)
t )∥22

≤
(
1− 2ηt

βγloo

β + γloo

)
∥Wt −W

(i)
t ∥22. (90)

We apply the inequality 88 to derive 89. The inequality 90 holds since ηt ≤ 2/(β + γ) and
β ≥ γ > γloo. Also

2ηt
βγloo

β + γloo
≥ 2ηt

βγloo

2β
= ηtγloo. (91)

Through the inequalities 90 and 91 to derive the bound of the lemma. □

Lemma 22 (Accumulated Path Error - Strongly Convex Loss) Let the objective function RS(·)
be γ-strongly convex and β-smooth. Define Γ(γ, T ) ≜ (1 − exp(−4Tγ

β+γ )/(exp(−4γ
β+γ ) − 1). If

ηt = 2/(β + γ), then the expected path-error of the full-batch GD after T iterations are bounded as

ϵpath ≤ 4β2

β + γ
Γ(γ, T )E[∥W1 −W ∗

S∥22] +
8βT

β + γ
E[RS(W

∗
S)], (92)

Proof. The self-bounding property of the non-negative β-smooth loss function f(·; z) (Srebro et al.,
2010, Lemma 3.1) gives ∥∇f(Wt, zi)∥22 ≤ 4βf(Wt, zi). By taking expectation, and through the
Assumption 1 and equation 20, we find

E[∥∇f(Wt, zi)∥22] ≤ 4βE[f(Wt, zi)] = 4βE[RS(Wt)] = 4βE[RS(Wt)−RS(W
∗
S) +RS(W

∗
S)].
(93)

Further, Lemma 23 and the choice of constant learning rate η = 2/(β + γ) give

E[RS(Wt)−RS(W
∗
S)] ≤

β

2
exp

(
−4t
β
γ + 1

)
E[∥W1 −W ∗

S∥22]. (94)

The definition of ϵpath (Definition 5), the inequalities 93 and 94 and the constant learning rate
(ηt = 2/(β + γ)) give

ϵpath ≜
T∑

t=1

ηtE[∥∇f(Wt, zi)∥22] (95)

≤ 4β

T∑
t=1

ηtE[RS(Wt)−RS(W
∗
S) +RS(W

∗
S)]

≤ 4β

T∑
t=1

2

β + γ

β

2
exp

(
−4t
β
γ + 1

)
E[∥W1 −W ∗

S∥22] +
8βT

β + γ
E[RS(W

∗
S)]
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≤ 4β2

β + γ
E[∥W1 −W ∗

S∥22]
T∑

t=1

exp

(
−4t
β
γ + 1

)
+

8βT

β + γ
E[RS(W

∗
S)]

=
4β2

β + γ
E[∥W1 −W ∗

S∥22] exp

(
−4

β
γ + 1

) 1− exp

(
−4T
β
γ +1

)
1− exp

(
−4
β
γ +1

)
︸ ︷︷ ︸

Γ(γ,T )

+
8βT

β + γ
E[RS(W

∗
S)]

=
4β2

β + γ
Γ(γ, T )E[∥W1 −W ∗

S∥22] +
8βT

β + γ
E[RS(W

∗
S)]. (96)

The last inequality provides the bound on the ϵpath. Further, we can show that

Γ(γ, T ) ≤ min

{
1

e
4γ

β+γ − 1
, T

}
(97)

to simplify the expression in the inequality 96. □

Lemma 23 ((Nesterov, 1998, Theorem 2.1.14)) If f(·; z) is a γ-strongly convex and β-smooth func-
tion and ηt = 2/(β + γ), then

ϵopt ≤
β

2
exp

(
−4T
β
γ + 1

)
E[∥W1 −W ∗

S∥22]. (98)

Alternatively, if ηt = c/t, then

ϵopt ≤
β

2
T− 2cβγ

β+γ E[∥W1 −W ∗
S∥22]. (99)

F.1 PROOF OF THEOREM 12 AND THEOREM 13

Let z1, z2, . . . , zi, . . . , zn, z′i be i.i.d. random variables, define S ≜ (z1, z2, . . . , zi, . . . , zn) and
S(i) ≜ (z1, z2, . . . , z

′
i, . . . , zn), W1 = W ′

1. The updates for any t ≥ 1 are

Wt+1 = Wt −
ηt
n

n∑
j=1

∇f(Wt, zj), (100)

W
(i)
t+1 = W

(i)
t − ηt

n

n∑
j=1,j ̸=i

∇f(W
(i)
t , zj)−

ηt
n
∇f(W

(i)
t , z′i). (101)

Then similarly to the inequality 81 we get

∥Wt+1 −W
(i)
t+1∥2

≤
∥∥∥∥Wt −W

(i)
t − ηt

n

n∑
j=1,j ̸=i

(
∇f(Wt, zj)−∇f(W

(i)
t , zj)

)∥∥∥∥
2

+
ηt
n
∥∇f(Wt, zi)−∇f(W

(i)
t , z′i)∥2

≤

√∥∥∥∥Wt −W
(i)
t − ηt

(
RS−i(Wt)−RS−i(W

(i)
t )
)∥∥∥∥2

2

+
ηt
n

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

)
≤ (1− ηtγloo)

1
2 ∥Wt −W

(i)
t ∥2 +

ηt
n

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

)
(102)

and we apply Lemma 21 to derive the bound in 102. Then by solving the recursion we find

∥WT+1 −W
(i)
T+1∥2
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≤ 1

n

T∑
t=1

ηt

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

) T∏
j=t+1

(1− ηjγloo)
1
2

≤ 1

n

√√√√ T∑
t=1

ηt

(
∥∇f(Wt, zi)∥2 + ∥∇f(W

(i)
t , z′i)∥2

)2 T∑
t=1

ηt

T∏
j=t+1

(1− ηjγloo)

≤ 1

n

√√√√2

T∑
t=1

ηt

(
∥∇f(Wt, zi)∥22 + ∥∇f(W

(i)
t , z′i)∥22

) T∑
t=1

ηt

T∏
j=t+1

(1− ηjγloo).

The last inequality provides the stability bound

∥WT+1 −W
(i)
T+1∥

2
2

≤ 2

n2

T∑
t=1

ηt

(
∥∇f(Wt, zi)∥22 + ∥∇f(W

(i)
t , z′i)∥22

) T∑
t=1

ηt

T∏
j=t+1

(1− ηjγloo) . (103)

Inequality 103 gives that for any i ∈ {1, . . . , n}

E[∥WT+1 −W
(i)
T+1∥

2
2]

≤ 2

n2

T∑
t=1

ηt

(
E[∥∇f(Wt, zi)∥22] + E[∥∇f(W

(i)
t , z′i)∥22]

) T∑
t=1

ηt

T∏
j=t+1

(1− ηjγloo)

=
4

n2

T∑
t=1

ηtE[∥∇f(Wt, zi)∥22]
T∑

t=1

ηt

T∏
j=t+1

(1− ηjγloo)

=
4ϵpath
n2

T∑
t=1

ηt

T∏
j=t+1

(1− ηjγloo) . (104)

Recall that WT+1 ≡ A(S) and W
(i)
T+1 ≡ A(S(i)). Due to space limitation, we define Ω(ηt, γloo) ≜∑T

t=1 ηt
∏T

j=t+1

(
1− ηtγ

2
loo/β

)
Theorem 3 and the inequality 104 give

|ϵgen| ≤ 2
√
2β(ϵopt + E[RS(W ∗

S)])ϵstab(A) + 2βϵstab(A) (105)

≤ 2

√
2β(ϵopt + E[RS(W ∗

S)])
4ϵpath
n2

Ω(ηt, γloo) + 2β
4ϵpath
n2

Ω(ηt, γloo)

=
4
√
(ϵopt + E[RS(W ∗

S)])ϵpath

n

√
2βΩ(ηt, γloo) + 8β

ϵpath
n2

Ω(ηt, γloo).

Under the choice of ηt = C = 2
β+γ < 2

β , the inequality 104, Lemmata 15 and 22 and give

E[∥A(S)−A(S(i))∥22] ≤
4ϵpath
n2

T∑
t=1

ηt

T∏
j=t+1

(1− ηtγloo)

=
4ϵpath
n2

1−
(
1− 2γloo

β+γ

)T
γloo︸ ︷︷ ︸

Λ(γloo,T )

≤ 4ϵpath
n2

Λ(γloo, T ) ≤
4ϵpath
n2

min

{
1

γloo
,
2T

β

}
(106)

and the last inequality holds since Λ(γloo, T ) ≤ 1/γloo for any T and the monotonicity of Λ(γloo, T )
gives Λ(γloo, T ) ≤ 2T/β for any pair γloo ≤ γ. Though the inequality 105, we find the generalization
error bound

|ϵgen| ≤
4
√

(ϵopt + E[RS(W ∗
S)])ϵpath

n

√
2βΩ(ηt, γloo) + 8β

ϵpath
n2

Ω(ηt, γloo)
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≤
4
√
(ϵopt + E[RS(W ∗

S)])ϵpath

n

√
2βΛ(γloo, T ) + 8β

ϵpath
n2

Λ(γloo, T )

≤ 4

n

√√√√(β

2
exp

(
−4T
β
γ + 1

)
E[∥W1 −W ∗

S∥22] + E[RS(W ∗
S)]

)

×

√(
4β2

β + γ
Γ(γ, T )E[∥W1 −W ∗

S∥22] +
8βT

β + γ
E[RS(W ∗

S)]

)√
2βΛ(γloo, T )

+ 8β

4β2

β+γΓ(γ, T )E[∥W1 −W ∗
S∥22] +

8βT
β+γE[RS(W

∗
S)]

n2
Λ(γloo, T )

≤ 4

n

√(
4β

β + γ
Γ(γ, T ) +

8βT

β + γ

)
max {βE[∥W1 −W ∗

S∥22],E[RS(W ∗
S)]}

×
√

2βΛ(γloo, T ) +

(
4

n

√
1

2
exp

(
−4Tγ

β + γ

)(
4β

β + γ
Γ(γ, T ) +

8βT

β + γ

)√
2βΛ(γloo, T )

+ 8

4β
β+γΓ(γ, T )] +

8βT
β+γ

n2
βΛ(γloo, T )

)
max{βE[∥W1 −W ∗

S∥22],E[RS(W
∗
S)]}

=
4

n

√(
4β

β + γ
Γ(γ, T ) +

8βT

β + γ

)
max {βE[∥W1 −W ∗

S∥22],E[RS(W ∗
S)]}

×
√

2βΛ(γloo, T ) +

(
4

n

√√√√exp

(
−4T
β
γ + 1

)(
4β

β + γ
Γ(γ, T ) +

8βT

β + γ

)√
βΛ(γloo, T )

+ 8

4β
β+γΓ(γ, T ) +

8βT
β+γ

n2
βΛ(γloo, T )

)
max{βE[∥W1 −W ∗

S∥22],E[RS(W
∗
S)]}. (107)

We proceed by applying the upper bounds of Γ(γ, T ),Λ(γloo, T ) as appear in the inequalities 97 and
106 respectively and equation 107 gives

|ϵgen|

≤ 4

n

√(
4β

β + γ
min

{
1

e
4γ

β+γ − 1
, T

}
+

8βT

β + γ

)

×

√
max {βE[∥W1 −W ∗

S∥22],E[RS(W ∗
S)]} 2min

{
β

γloo
, 2T

}

+

(
4

n
exp

(
−2Tγ

β + γ

)√(
4β

β + γ
min

{
1

e
4γ

β+γ − 1
, T

}
+

8βT

β + γ

)
2min

{
β

γloo
, 2T

}

+ 8

4β
β+γ min

{
1

e
4γ

β+γ −1
, T

}
+ 8βT

β+γ

n2
min

{
β

γloo
, 2T

})
max{βE[∥W1 −W ∗

S∥22],E[RS(W
∗
S)]}

≤ 4

n

√(
4βT

β + γ
+

8βT

β + γ

)
max {βE[∥W1 −W ∗

S∥22],E[RS(W ∗
S)]} 2min

{
β

γloo
, 2T

}

+

(
4

n
exp

(
−2Tγ

β + γ

)√(
4βT

β + γ
+

8βT

β + γ

)
2min

{
β

γloo
, 2T

}

+ 8

4βT
β+γ + 8βT

β+γ

n2
min

{
β

γloo
, 2T

})
max{βE[∥W1 −W ∗

S∥22],E[RS(W
∗
S)]}
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=
8
√
3

n

√
βT

β + γ
max {βE[∥W1 −W ∗

S∥22],E[RS(W ∗
S)]} 2min

{
β

γloo
, 2T

}

+

(
8
√
3

n
exp

(
−2Tγ

β + γ

)√
βT

β + γ
2min

{
β

γloo
, 2T

}

+ 96

βT
β+γ

n2
min

{
β

γloo
, 2T

})
max{βE[∥W1 −W ∗

S∥22],E[RS(W
∗
S)]}. (108)

To simplify the last display, we define the terms m(γloo, T ) ≜ βT min {β/γloo, 2T} /(β + γ) and
M(W1) ≜ max

{
βE[∥W1 −W ∗

S∥22],E[RS(W
∗
S)]
}

|ϵgen|

≤ 8
√
6

n

√
m(γloo, T )M(W1)

+

(
8
√
6

n
exp

(
−2Tγ

β + γ

)√
m(γloo, T ) +

96

n2
m(γloo, T )

)
M(W1)

=
8
√
6

n

(√
M(W1) +

(
exp

(
−2Tγ

β + γ

)
+

4
√
3

n

√
m(γloo, T )

)
M(W1)

)√
m(γloo, T )

Choose T = log(n)(β + γ)/2γ and define mn,γloo ≜
β
2γ min

{
β
γloo

, β+γ
γ log n

}
, then the inequality

108 gives

|ϵgen|

≤ 8
√
6 log n

n

√
β

2γ
max {βE[∥W1 −W ∗

S∥22],E[RS(W ∗
S)]}min

{
β

γloo
,
β + γ

γ
log n

}

+

(
8
√
6

n2

√
β log n

2γ
min

{
β

γloo
,
β + γ

γ
log(n)

}

+
48β

γ

log n

n2
min

{
β

γloo
,
β + γ

γ
log(n)

})
max{βE[∥W1 −W ∗

S∥22],E[RS(W
∗
S)]}

=
8
√
6 log n

n

(√
mn,γloo M(W1) +

(
1

n

√
mn,γloo +

4
√
3

n
mn,γloo

)
M(W1)

)

=
8
√
6 log n

n

(√
M(W1) +

1 + 4
√
3mn,γloo

n
M(W1)

)
√

mn,γloo . (109)

The last inequality completes the proof. □
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