
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEEP-ICE: THE FIRST GLOBALLY OPTIMAL ALGO-
RITHM FOR MINIMIZING 0–1 LOSS IN TWO-LAYER
RELU AND MAXOUT NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces the first globally optimal algorithm for the empirical risk
minimization problem of two-layer maxout and ReLU networks, i.e., minimiz-
ing the number of misclassifications. The algorithm has a worst-case time com-
plexity of O

(
NDK+1

)
, where K denotes the number of hidden neurons and D

represents the number of features. It can be can be generalized to accommodate
arbitrary computable loss functions without affecting its computational complex-
ity. Our experiments demonstrate that the proposed algorithm provides provably
exact solutions for small-scale datasets. To handle larger datasets, we introduce
a heuristic method that reduces the data size to a manageable scale, making it
feasible for our algorithm. This extension enables efficient processing of large-
scale datasets and achieves significantly improved performance in both training
and prediction, compared to state-of-the-art approaches (neural networks trained
using gradient descent and support vector machines), when applied to the same
models (two-layer networks with fixed hidden nodes and linear models).

1 INTRODUCTION

In recent years, neural networks have emerged as an extremely useful supervised learning technique,
developed from early origins in the perceptron learning algorithm for classification problems. This
model has revolutionized nearly every scientific field involving data analysis and has become one
of the most widely used machine learning techniques today. Our work focuses on developing in-
terpretable models for high-stakes applications, where even minor errors can lead to catastrophic
consequences. For example, an incorrectly denied parole may result in innocent people suffering
years of imprisonment due to racial bias (Kirchner et al., 2016), poor bail decisions can lead to the
release of dangerous criminals, and machine learning–based pollution models have misclassified
highly polluted air as safe to breathe (McGough, 2018). In such settings, it is crucial to deploy
models that are both accurate and transparent.

One effective way to achieve this is to identify the best interpretable model within a given hypothesis
set—a task that is uniquely suited to global optimal (exact) algorithms. Two-layer networks pos-
sess rich expressivity, capable of representing any continuous function (Kolmogorov, 1957), while
remaining interpretable1 since the output is a linear combination of hidden units. Consequently,
the empirical risk minimization (ERM) problem for two-layer networks with ReLU or Maxout ac-
tivation functions is not only practically useful but also theoretically significant, as it provides a
foundation for understanding deep networks.

1Interpretability is a domain-specific notion, so there cannot be an all-purpose definition. As Rudin (2019)
noted “Usually, however, an interpretable machine learning model is constrained in model form so that it
is either useful to someone, or obeys structural knowledge.” We claim 2-layer ReLU/Maxout networks are
interpretable because: 1. Shallow architecture enables direct inspection, a 2-layer neural network has a
simple, transparent structure. The output is just a linear combination of these hidden unit activations. 2.
Geometric interpretation of ReLU/Maxout network is clear, with nonlinear activations like ReLU, each
hidden neuron represents a hyperplane decision boundary in the input space. The network, therefore, partitions
the input space into piecewise linear regions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, finding the ERM solution of a neural network remains extremely challenging. Goel et al.
(2020) showed that minimizing the training error of two-layer ReLU networks under squared loss
is NP-hard, even in the realizable setting (i.e., determining whether zero misclassification is achiev-
able). This result was later extended to Lp loss with 0 ≤ p < ∞ (Froese et al., 2022; Hertrich,
2022). In practice, this difficulty is further compounded when optimizing discrete loss functions,
such as the 0-1 loss (count the number of misclassification), since the ultimate goal typically in-
volves comparing classification accuracy. Even in the simplest case—linear classification using a
single hyperplane—the problem of minimizing discrete losses such as the 0-1 loss is NP-hard. The
best-known exact algorithm for 0-1 loss linear classification has a worst-case time complexity of
O
(
ND+1

)
, where N is the number of data D is the number of features (He & Little, 2023).

Nevertheless, since neural networks (NNs) have finite VC-dimension (Bartlett et al., 2019), they
can, in principle, be trained exactly in polynomial time (Mohri et al., 2012). The closest related
work is that of Arora et al. (2016), who proposed a one-by-one enumeration strategy to train a two-
layer ReLU NN to global optimality for convex objective functions. Hertrich (2022) later extended
their result to concave loss functions. However, both studies provide only pseudocode and a vague
complexity analysis, without publicly available implementations or empirical validation. Moreover,
they do not show how to enumerate the hyperplane partitions; instead, they assume these partitions
are given.

Arora et al. (2016) further claim, somewhat ambiguously, that their algorithm has a complexity of
O
(
2KNDKpoly (N,D,K)

)
for a two-layer ReLU network with K hidden neurons with respect to

N data points in RD. The term “poly (N,D,K)” is not explicitly defined; it refers to the complexity
of solving a convex quadratic programming problem with K and D variables and N×K constraints,
and is therefore polynomial in N , which we denote as O(C1N

C2). Therefore, Arora et al. (2016)’s
algorithm involves not only extremely large exponents (D ×K + C2) but also formidable constant
factors (2K × C1).

As a result of the ambiguous algorithmic description and complexity analysis, the methods proposed
by Arora et al. (2016) and Hertrich (2022) appear more like a conjecture—suggesting the existence
of a polynomial-time algorithm—rather than practically executable solutions. The prohibitive com-
plexity in both the exponent and constant terms renders their algorithms impractical even for small-
scale problems. This is further highlighted by the absence of any implementation in the eight years
since their initial publication. Moreover, their algorithms are limited to convex loss functions, while
the fundamental objective of classification is to minimize the number of misclassified instances, i.e.,
the 0-1 loss.

Interestingly, Bai et al. (2023) show that training a ReLU network with an L2-regularized con-
vex loss objective can be reformulated as a convex program and solved using a general-purpose
solver. However, a major limitation of such solvers is their unpredictable computational complexity.
Moreover, Bai et al. (2023) consider a much simpler problem than optimizing the 0–1 loss—the
original objective in classification—whose discrete nature makes it substantially more difficult to
optimize. Empirical results from Xi & Little (2023) further demonstrate that even for the simplest
network—the linear classifier—using a general-purpose solver to optimize the 0–1 loss exhibits
highly unpredictable behavior and can incur exponential complexity, even in situations where a
polynomial-time solution exists.

To address these limitations, this paper introduces the first globally optimal algorithm for minimizing
0–1 loss in two-Layer ReLU and Maxout networks. Our contributions can be summarized as follows:

• First optimal algorithm for 0-1 loss. We present the first optimal algorithm for the em-
pirical risk minimization problem of two-layer maxout and ReLU networks under the 0–1
loss. In contrast, prior method Arora et al. (2016); Hertrich (2022) are restricted to convex
loss functions, which are comparatively easier to optimize than discrete losses such as the
0–1 loss. Our algorithm extends to any computable loss function by adapting the results of
He & Little (2023) without increasing worst-case complexity.

• Two versions of the DeepICE algorithm. Existing methods (Arora et al., 2016; Hertrich,
2022) rely on hidden assumptions. In practice, generating hyperplane predictions requires
substantial computation, yet their pseudocode initializes all partitions directly without such
effort. Moreover, their complexity analyses are ambiguous, hindering both understanding
and reproducibility. Consequently, no implementation has emerged in the eight years since

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

their publication. In contrast, by leveraging a general formalism, our algorithm admits
a concise and unambiguous definition in a single equation (1). We further provide two
variants of the DeepICE algorithm: the sequential version (Algorithm 2) which reuses
hyperplane predictions via memoization, and the divide-and-conquer version (Algorithm
3), which supports parallelization without inter-processor communication.

• Improved computational complexity. Our algorithm achieves a complexity of
O
(
2K−1 ×NDK+1 +ND ×D3

)
, substantially better than the approaches of Arora et al.

(2016) and Hertrich (2022), which require O
(
2K × C1 ×NDK+C2

)
in both the best and

worst cases. In addition, our algorithm exhibits significantly smaller constant factors. This
efficiency enables exact solutions for datasets with formidable combinatorial complex-
ity—for example, the problem in Figure 1, which involves 122,468,448,960 configurations,
can be solved within minutes using our CUDA implementation.

• Robustness. When combined with heuristics for large-scale problems, and training ac-
curacy is significantly higher than that of SVMs or DNNs trained with gradient descent,
our algorithm demonstrates strong out-of-sample performance. This result challenges the
widely held belief that optimal algorithms necessarily overfit the training data.

The remainder of this paper is organized as follows. Section 2 presents our main theoretical con-
tributions: Section 2.1 introduces the necessary background; Section 2.2 explains how geometric
insights simplify the combinatorics of the problem; Section 2.3 describes the construction of an
efficient recursive nested combination generator, which is the core component of the Deep-ICE al-
gorithm; and Section 2.4 presents the fusion law for the Deep-ICE algorithm. Section 3 reports
empirical results. Finally, Section 4 summarizes our contributions and outlines directions for future
research.

2 THEORY

2.1 THEORY OF LISTS

List homomorphisms The cons-list is defined as ListR (A) = [] | A : ListR (A); that is, a list is
either an empty list [] or a pair consisting of a head element a : A and a tail x : ListR (A), concate-
nated using the cons operator :. For example, 1 : [2, 3] = [1, 2, 3]. This cons-list corresponds to the
singly linked list data structure in imperative languages. The key difference here is that we are re-
ferring to the model of the data structure—i.e., the datatype—rather than a specific implementation.
There is a corresponding homomorphism over the cons-list datatype, which is a structure-preserving
map satisfying

h ([]) = alg1 ([])

h (a : x) = alg2 (a, h (x))
(1)

where h : ListR (A)→ X . In other words, a homomorphism over a cons-list is simply a recursion
that sequentially combines each element a with the accumulated result h (x) using the algebra alg.

Alternatively, another list model called the join-list is defined as ListJ (A) = [] | A | ListJ (A) ∪
ListJ (A). A join-list is either empty, a singleton list, or the result of joining two sublists. The join
operator∪ is associative, i.e., for any x, y : ListJ , we have: x∪[a]∪y = (x ∪ [a])∪y = x∪([a] ∪ y).
The corresponding homomorphism over join-lists is a structure-preserving map defined as

h ([]) = alg1 ([])

h ([a]) = alg2 ([a])

h (x ∪ y) = alg3 (h (x) , h (y))

(2)

An example of a join-list homomorphism that computes the length of a list uses the definitions
alg1 ([]) = 0, alg2 (a) = 1, and alg3 (x ∪ y) = h (x) + h (y).

Fusion laws An important principle associated with both cons-list and join-list homomorphisms
is the fusion law, stated in the following two theorems. Its correctness can be verified either by using
induction (Bird & Gibbons, 2020) or universal property (Bird & De Moor, 1996). For brevity, we
omit the proofs here.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 1. Fusion law for the cons-list. Let f be a function and let h and g be two cons-list
homomorphisms defined by the algebras alg and alg′, respectively. The fusion law states that f◦h =
g if

f (alg (a, h (x))) = alg′ (a, h (x)) . (3)

Similarly, the fusion condition for the join-list is defined as following.

Theorem 2. Fusion law for the join-list. Let f be a function and let h and g be two join-list
homomorphisms defined by the algebras alg and alg′ respectively. The fusion law states that f ◦h =
g if

f (alg ((h (x) , h (y)))) = alg′ (f (h (x)) , f (h (y))) . (4)

In point-free style2, this can be expressed more succinctly as f ◦ alg = alg′ ◦ f × f , where f ×
g (x, y) = (f (x) , g (y)).

Equations (3) and (4) are referred to as the fusion condition, which forms the basis for proving the
correctness of the derived algorithm.

2.2 PROBLEM SPECIFICATION

Assume we are given a data list ds = [x1,x2 . . . ,xN] :
[
RD
]
, where the points are in gen-

eral position (i.e., no d + 1 points lie on the same (d− 1)-dimensional affine subspace of RD),
and D ≥ 2. We associate each data point xn with a true label tn ∈ {1,−1}. We ex-
tend the ReLU activation function to vectors x ∈ RD via an entry-wise operation σ (x) =
(max (0, x1) ,max (0, x2) , . . . ,max (0, xD)).

Now, consider a two-layer feedforward ReLU NN with K hidden units. Each hidden node is as-
sociated with an affine transformation fwk

: RD+1 → R, which corresponds to a homogeneous
hyperplane hk with normal vector wk ∈ RD+1,∀k ∈ K = {1, 2, . . . ,K}. These K affine trans-
formations can be represented by a single affine transformation f (W1) : RD+1 → RK , where
W1 ∈ RK×(D+1), with rows given by the vectors wk, i.e., W T

1 = (w1,w2, . . . ,wK). The output
of the hidden layer is then passed through the ReLU activation, followed by a linear transformation
f (W2) : RK → R, where W2 = (α1, α2, . . . , αK) are the weights connecting the hidden layer to
the output node. Thus, the decision function fReLU implemented by the network is given by

fReLU (W1,W2) = f (W2) ◦ σ ◦ f (W1) . (5)

Alternatively, instead of applying the ReLU activation function σ followed by a linear transformation
f (W2), the rank-K maxout network with a single maxout neuron, replaces both components with
a maximum operator maxK : RK → R. The resulting decision function is given by

fmaxout (W1) = max
K
◦f (W1) (6)

Let S denote the combinatorial search space. For the ReLU and maxout networks, we define the
configurations as sReLU = (W1,W2) ∈ SReLU and smaxout = W1 ∈ Smaxout, respectively. The ERM
problem for both network types can then be formulated as the following optimization

s∗ = argmin
s∈S

E0-1 (s) , (7)

where E0-1 (sReLU) =
∑

n∈N 1 [sign (fReLU (W1,W2, x̄n)) ̸= tn] for ReLU network, and
E0-1 (smaxout) =

∑
n∈N 1 [sign (fmaxout (W1, x̄n)) ̸= tn] for maxout networks. In the following

discussion, we primarily focus on the maxout network, as an efficient speed-up technique is avail-
able in this setting. Unless otherwise stated, when E0-1 is used it refers to the objective function
for the maxout network by default. Although our algorithm is compatible with any computable
objective function, to enable future acceleration strategies, it is beneficial to restrict the choice of
objective to be a monotonic linear function of the form: E0-1 (sReLU) =

∑
n∈N L (x̄n, tn), such that

L (x̄n, tn) ≥ 0.

2Point-free is a style of defining functions without explicitly mentioning their arguments.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

An exhaustive search specification Due to the distributivity of the ReLU activation func-
tion—that is, max (0, ab) = amax (0, b), for a ≥ 0—the decision function introduced by the
two-layer ReLU network (5) can be rewritten as

fReLU (W1,W2,x) =
∑
k∈K

αk max (0,wkx̄) =
∑
k∈K

zk max (0, |αk|wkx̄) , (8)

where x̄ = (x, 1) ∈ RD+1 and zk ∈ {1,−1}.
Similarly, the point-wise definition of the rank-K maxout neuron are defined as

fMO (W1,x) = max
k∈K

(wkx̄) (9)

The decision function for a two-layer maxout network are simply the linear combination of maxout
neurons: fmaxout (W1,W2,x) =

∑
k∈K αk (fMO (W1,x)).

From a combinatorial perspective, the direction of the normal vector does not affect the geometric
definition of its associated hyperplane. Therefore, equations (8) and (9) indicate that the decision
boundary of a two-layer ReLU or a single rank-K maxout neuron are fundamentally governed by a
K-combination of hyperplanes, and then combinations of hyperplanes are composed again to form
deep neural network. Although the set of all possible hyperplanes in RD appears to exhibit infinite
combinatorial complexity—since each hyperplane is parameterized by a continuous-valued normal
vector wk—the finiteness of the dataset imposes a crucial constraint: only a finite number of
distinct data partitions can be induced by these hyperplanes. This observation introduces a natural
notion of equivalence classes over the space of hyperplanes, where two hyperplanes are considered
in the same equivalence class if they induce the same partition over the dataset.

Indeed, according to the 0-1 loss linear classification theorem given by He & Little (2023), when
optimizing the 0-1 loss (i.e., minimizing the number of misclassified data points), a hyperplanes in
RD an be characterized as the D-combinations of data points. Specifically, each critical hyperplane

corresponds to the affine span of D data points, leading to a total of
(

N
D

)
= O

(
ND

)
possible

hyperplanes. This result implies that although the parameter space is continuous, the effective com-
binatorial complexity of the 0-1 loss classification problem is polynomial in N (for fixed D). Each
two-layer network with K hidden neurons induces up to 2K distinct partitions of the input space,
determined by 2K possible directions of the normal vectors. These configurations can be encoded
as a length-K binary assignment asgn = (a1, . . . aK) ∈ {1,−1}K . Accordingly, a two-layer ReLU
or maxout network can be characterized by the pair cnfg = (nc, asgn) :

(
NC , {1,−1}K

)
, where

nc : NC =
[[
RD
]]

denotes a nested combination, representing a K-combination of hyperplanes.

Thus, the combinatorial search space of a two-layer NN, denoted S (N,K,D) consists of the Carte-
sian product of all possibleK-combinations of hyperplanes and the 2K binary assignments.A prov-
ably correct algorithm for solving the ERM problem of the two-layer network can be constructed by
exhaustively exploring all configurations in S (N,K,D) and selecting the network that minimizes
the 0-1 loss. This procedure is formally specified as

DeepICE (D,K) = min0-1 (K) ◦ eval (K) ◦ cp (basgns (K)) ◦ nestedCombs (D,K) (10)

where DeepICE (D,K) :
[
RD
]
→
(
NC, {1,−1}K

)
× Css × NCss , and NCss =

[[[[
RD
]]]]

and Css =
[[[

RD
]]]

, represent nested combinations and combinations, respectively. For the par-
allelization concerns, DeepICE (D,K) returns not only the optimal configuration for the input
dataset D but also the intermediate representations NCss and Css . In the specification above,
the input list xs :

[
RD
]

is left implicit. The function DeepICE (D,K, ds) generates all possi-
ble K-combinations of hyperplanes (K-hidden neuron networks) by and basgns (K) produces all
binary sign assignments of length K. These are combined using the Cartesian product operator
cp (x, y) = [(a, b) | a← x, b← y]. Each resulting network is then evaluated by eval (K), which
computes the objective value by considering all 2K possible orientations of the hyperplanes and
selecting the best. Finally, min0-1 (K) selects the configuration that minimizes the 0-1 loss.

In constructive algorithmics community (Bird & De Moor, 1996), programs are initially defined as
provably correct specifications, such as—(10)—from which efficient implementations are derived

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

using algebraic laws like fusion. Efficiency arises both from applying fusion transformations and
from designing efficient generators. To the best of our knowledge, no prior work has explored
generators for nested combinations. Moreover, fusion requires that the generator be a recursive
homomorphism—such as a cons-list or join-list homomorphism. This precludes the non-recursive,
one-by-one generation approach of Arora et al. (2016) which offers opportunity for the application
of acceleration techniques.

The key contribution of this paper is the development of an efficient recursive nested combination
generator, nestedCombs (D,K, xs), defined over a join-list homomorphism, making it amenable to
fusion. The generator is tailored for efficient vectorized and parallelized implementations, making it
ideal for GPU execution. We further demonstrate that min0-1, eval , and cp are all fusable with this
generator. Additionally, the algorithm eliminates the need for an initialization step to pre-store all
hyperplanes and continuously produces candidate solutions during runtime, allowing approximate
solutions to be obtained before the algorithm completes.

2.3 AN EFFICIENT NESTED COMBINATION GENERATOR JOIN-LIST

The first step for constructing an efficient nested combinations generator requires the design of
an efficient K-combination generator first. Previously, He & Little (2024) proposed an efficient
combination generator, kcombs , based on a join-list homomorphism, which we extend to develop a
nested combination generator.

The nested combination-combination generator is specified as following

nestedCombs (D,K) = ⟨setEmpty (D) , kcombs (K) ◦!! (D)⟩ ◦ kcombs (D) (11)
where ⟨f, g⟩ (a) = (f (a) , g (a)), and !! (D, xs) denotes indexing into the Dth element of the list xs .
Equation (11) has the type nestedCombs : Int × Int ×

[
RD
]
→ (Css,NCss). It first generates

all possible D-combinations, and then all size D-combinations which are then used to construct
K-combinations. Once this process is complete, the D-combinations are no longer needed and are
eliminated by applying setEmpty (D) , which sets the Dth element of the list to an empty value.

Although the specification in (11) is correct, it requires storing the intermediate result returned by
kcombs (D, ds), which has a size of O

(
ND

)
. Storing all these combinations is both memory-

intensive and inefficient. Instead, if we can fuse the function ⟨setEmpty (D) , kcombs (K) ◦ (!!D)⟩
directly into the kcombs (D) generator, the nested combination generator can be redefined as a sin-
gle recursive process. This transformation enables incremental generation of nested combinations,
eliminating the need to materialize all combinations in advance. According to the fusion law 2, this
requires constructing an algebra nestedCombsAlg that satisfies the following fusion condition

f ◦ kcombsAlg (D) = nestedCombsAlg (D,K) ◦ f × f (12)
where f = ⟨setEmpty (D) , kcombs (K) ◦ (!!D)⟩, and the definition of kcombsAlg can be found in
(He & Little, 2024)

The derivation of nestedCombsAlg (D,K) for the empty and singleton cases is relatively straight-
forward. Since we assume D ≥ 2, no nested combinations can be constructed in these cases. For
the recursive case—i.e., the third pattern in the join-list homomorphism—we show that the fusion
condition holds when this third pattern of nestedCombsAlg (D,K) is defined as〈

setEmpty(D) ◦KcombsAlg(K) ◦ Ffst ,

KcombsAlg(K) ◦
〈
Kcombs(K)◦!! (D) ◦KcombsAlg(D) ◦ Ffst , KcombsAlg(K) ◦ Fsnd

〉〉
,

(13)

where Ffst ((a, b) , (c, d)) = (a, c), Fsnd ((a, b) , (c, d)) = (b, d). The proof of the fusion condition
is rather complex; for readability, the complete proof is provided in Appendix A.2. Therefore, we
can implement nestedCombsAlg (D,K) as

nestedCombsAlg1 (d, k, []) = ([[[]]] , [[[]]])

nestedCombsAlg2 (d, k, [xn]) = ([[[]] , [[xn]]] , [[[]]])

nestedCombsAlg3 (d, k, (css1, ncss1) , (css1, ncss1)) = (setEmpty (D, css) , ncss) ,

(14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where css = kcombsAlg (D, css1, css2), and ncss is defined as

ncss =

{
[[[]]] css!! (D) = []

kcombsAlg (K, kcombsAlg (K,ncss1, ncss2) , kcombs (K, css!! (D))) otherwise
,

(15)
Thus an efficient recursive program for nestedCombs is defined as the following join-list homo-
morphism

netedCombs (D,K, []) = netedCombsAlg1 (D,K, [])

netedCombs (D,K, [xn]) = netedCombsAlg2 (D,K, [xn])

netedCombs (D,K, xs ∪ ys) =

netedCombsAlg3 (D,K,netedCombs (D,K, xs) ,netedCombs (D,K, ys)) ,

(16)

Informally, the function nestedCombsAlg (D,K) first takes as input ((Css,NCss) , (Css,NCss))
which is returned by f × f . The combination set is updated using the compo-
sition setEmpty (D) ◦ KcombsAlg (K) ◦ Ffst where the first elements of the tu-
ple are updated, and the D-combinations are cleared. At the same time, the
function ⟨Kcombs (K) ◦!! (D) ◦KcombsAlg (D) ◦ Ffst ,KcombsAlg (K) ◦ Fsnd⟩ :
((Css,NCss) , (Css,NCss)) → (NCss,NCss) updates the combinations and nested combi-
nations in the tuple, respectively. The newly generated D-combinations are then used to produce
new nested combinations. Finally, the two nested combinations in the tuple are merged using
KcombsAlg (K) : (NCss,NCss)→ NCss .

2.4 DEEP INCREMENTAL CELL ENUMERATION (DEEP-ICE) ALGORITHM AND SYMMETRY
FUSION

As noted, working with the maxout network enables the application of an additional fusion prin-
ciple—an extension of the symmetric fusion theorem proposed by He & Little (2023) for linear
classification.

Theorem 3. Symmetric fusion for maxout neuron. Given a maxout neuron defined by K hyper-
plane. If the predictions associated with these K hyperplanes are known, then the predictions for
the configuration obtained by reversing the direction of all normal vectors can be obtained directly.

Proof. See appendix A.1.

The symmetric fusion theorem eliminates half of the computation, allowing us to enumerate all 2K
possible orientations of hyperplanes using only 2K−1 of them. Consequently, the problem 10 can
be reformulated more efficiently by applying the symmetric fusion

DeepICE (D,K) = min0-1 (K) ◦ eval ′ (K − 1) ◦ nestedCombs (D,K) ,

where eval ′ (K − 1) = eval (K) ◦ cp (basgns (K − 1)).

We are now ready to derive the Deep-ICE algorithm, which follows as a direct consequence of the
following lemma.

Lemma 1. Let DeepICEAlg be defined as

DeepICEAlg (D,K) = min0-1 (K) ◦ eval ′ (K − 1) ◦ nestedCombsAlg (D,K) , (17)

where eval ′ (K − 1) evaluates E0-1 for each nested combination returned by
nestedCombsAlg (D,K). Then the following fusion condition holds:

DeepICE (D,K) = f ◦ nestedCombsAlg (D,K) = DeepICEAlg (D,K) ◦ f × f, (18)

where f = min0-1 (D) ◦ eval ′ (K − 1), which defines Algorithm (1).

See Appendix A.3 for detailed proof. Algorithm (17) has a worst-case complexity of O
(
NDK+1

)
,

which is formally established in the following theorem.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Theorem 4. The DeepICE algorithm has a time complexity of

O

K ×N × 2K−1 ×

 (
N
D

)
K

+N ×D3 ×
(

N
D

) which is strictly smaller than

O
(
NDK+1

)
, and a space complexity of O

 (
N
D

)
K − 1

×K +

(
N

D − 1

)
×N

, which is

strictly smaller than O
(
ND(K−1)

)
.

See Appendix A.5 for detailed proof.

In practice, we provide two implementations for (17) (see A.4). The sequential version enables
two techniques that substantially improve memory efficiency and runtime performance. The D&C
version, which builds upon the sequential definition, supports embarrassingly parallel execution.

Figure 2 show that the empirical wall-clock runtime of our algorithm aligns with our worst-case
complexity analysis.

Generalization to deep neural networks Our algorithm generalizes naturally to deep neural net-
works. Deeper networks can be viewed as compositions of hidden neurons from preceding layers,
where linear combinations of these neurons form the predictions of the subsequent layer. Hence,
each layer is essentially a function of the predictions generated in the layer before it. Suppose the
i-th hidden layer contains Ki hidden nodes. Computing all possible predictions for this layer has
complexity O

(
ND×K1×K2×K3...×Ki

)
. For instance, the optimal solution of a three-layer network

is a nested-nested combination, while a four-layer network corresponds to a nested-nested-nested
combination. Solving a three-layer network requires complexity O

(
ND×K1×K2

)
. Consequently,

obtaining exact solutions for deeper networks is practically infeasible due to combinatorial explo-
sion.

One way to mitigate this challenge is to train a deep network greedily, where the computation
of the second hidden layer depends only on the first. In this case, the complexity becomes
O
(
ND×K1 +KK2

1 +KK3
2 . . .+KKi

i−1

)
for network with i layers. Under this scheme, regardless

of depth, the overall complexity is dominated by that of the first hidden layer.

3 EMPIRICAL ANALYSIS

We evaluate the performance of our Deep-ICE algorithm against two baselines: support vector ma-
chines (SVMs) and an identical neural network architecture trained using Adam algorithm, referred
to as MLP. The MLP is optimized with binary cross-entropy loss with logits, using the entire train-
ing dataset as a single batch in each epoch. The evaluation is conducted across 11 datasets from the
UCI Machine Learning Repository. Since we assume data are in general position, which requires
affine independence of the data, we remove duplicate entries and add a zero mean Gaussian noise
(standard deviation 1 × 10−8, small enough that it does not affect the results of SVM and MLP) to
each dataset. All experiments were conducted on a single GeForce RTX 4060 Ti GPU.

Exact solution vs. gradient descent Figure 1 illustrates the ERM solution and the gradient de-
scent outcome for a rank-2 maxout network with one maxout neuron. Previously, Xi & Little (2023)
reported 0-1 losses of 19 and 23 for the global optimal linear model and the SVM, respectively, on
this dataset. In contrast, ERM solution obtained by DeepICE , achieves only 16 misclassifications,
compared to 25 for the same architecture trained via gradient descent. Notably, despite a rank-2
maxout neuron involves two hyperplanes, the gradient-based solution uses only one; the second
hyperplane lies outside the data region and does not contribute to predictions.

Exact solution over coresets Exact solutions typically require an exhaustive exploration of the
configuration space. Achieving exact optimality on training data is often unnecessary, as such solu-
tions may not generalize well to out-of-sample data.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Deep-ICE (0-1 loss: 16) (b) Gradient descent (0-1 loss: 25)

Figure 1: The global optimal solution of a rank-2 maxout network with one neuron on a real-world
dataset containing N = 704 data items in R2.

Table 1: Five-fold cross-validation results on the UCI dataset. We compare the performance of
our Deep-ICE algorithm—trained either with the coreset selection method or directly by Deep-ICE
algorithm (marked by *)—against approximate methods: SVM and a maxout network trained via
gradient descent (denoted as MLP). Results are reported as mean 0–1 loss over training and test sets
in the format: Training Error / Test Error (Standard Deviation: Train / Test). The best-performing
algorithm in each row is highlighted in bold.

Dataset N D Deep-ICE
(%) (K = 1)

Deep-ICE
(%) (K = 2)

Deep-ICE
(%) (K = 3)

SVM (%) MLP (%)
(K = 1)

MLP (%)
(K = 2)

MLP (%)
(K = 3)

Ai4i 10000 6 97.45/97.40
(0.10/0.36)

97.90/97.82
(0.01/0.35)

97.71/97.71
(0.10/0.25)

96.64/96.48
(0.11/0.44)

97.01/96.90
(0.11/0.40)

97.20/97.02
(0.18/0.39)

97.56/97.55
(0.13/0.46)

Caesr 72 5 *74.55/82.67
(7.18/16.11)

89.45/88.00
(4.21/9.80)

84.36/86.67
(7.51/5.96)

72.00/57.33
(7.14/6.80)

71.64/62.67
(6.76/6.80)

76.36/56.00
(6.19/9.04)

81.82/60.00
(1.15/11.93)

VP 704 2 *96.94/97.59
(0.44/1.46)

97.76/97.59
(0.41/1.65)

97.80/97.45
(0.43/1.71)

96.77/97.02
(0.44/2.07)

96.63/96.74
(0.50/2.13)

96.77/97.02
(0.73/1.64)

96.63/96.74
(0.50/2.13)

Spesis 975 3 *94.47/92.88
(0.10/0.61)

96.43/95.26
(0.49/1.82)

96.24/95.36
(0.22/1.62)

94.46/92.43
(0.10/0.38)

94.46/92.43
(0.10/0.38)

94.46/92.55
(0.10/0.51)

94.46/92.43
(0.10/0.38)

HB 283 3 *77.18/75.44
(0.45/2.48)

80.11/77.19
(0.74/2.48)

80.85/78.53
(1.02/3.57)

72.40/71.23
(0.46/2.38)

72.82/74.80
(0.66/2.08)

75.34/75.26
(0.86/2.51)

75.97/73.92
(0.18/2.08)

BT 502 4 *77.13/76.36
(1.46/2.71)

79.59/77.98
(0.62/3.38)

79.36/77.98
(0.59/2.88)

75.09/70.14
(0.51/0.76)

76.17/73.54
(1.05/3.64)

76.11/73.54
(1.01/2.06)

76.29/75.45
(1.02/2.29)

AV 2342 7 89.89/88.52
(0.33/1.56)

90.34/89.04
(0.15/1.39)

89.77/88.76
(0.33/1.75)

87.16/87.26
(0.31/1.24)

86.92/87.20
(0.24/0.71)

87.18/86.88
(0.24/0.66)

87.63/87.31
(0.44/0.73)

SO 1941 27 77.77/76.03
(0.43/0.83)

77.13/75.33
(0.81/1.32)

76.66/74.95
(0.74/1.38)

73.67/70.80
(0.52/2.05)

74.81/72.13
(0.44/1.63)

77.09/71.71
(0.26/1.66)

78.33/74.68
(0.40/2.31)

DB 1146 9 78.78/79.69
(0.41/0.69)

83.60/81.37
(0.43/2.52)

83.88/81.32
(0.98/2.23)

69.72/67.62
(0.65/2.86)

76.13/74.77)
(0.41/2.01

77.64/76.19
(0.65/1.06)

77.85/75.11
(0.89/0.72)

RC 3810 7 93.88/92.45
(0.28/1.02)

93.91/93.10
(0.24/1.02)

93.94/92.98
(0.21/0.98)

93.05/91.75
(0.25/1.12)

93.30/92.10
(0.28/1.07)

93.30/92.15
(0.30/1.15)

93.30/92.12
(0.29/1.13)

SS 51433 3 86.57/86.72
(0.03/0.15)

86.60/86.72
(0.04/0.16)

86.59/86.70
(0.03/0.11)

82.77/82.75
(0.06/0.22)

79.73/79.73
(0.15/0.20)

79.65/79.65
(0.18/0.16)

79.48/79.73
(0.07/0.04)

Instead, generating multiple high-quality candidate solutions enables selection based on validation
or test performance. For example, SVMs provide tunable hyperparameters to generate alternative
models, while gradient-based MLPs yield varied solutions via different random seed initializations.
However, both approaches require computationally expensive retraining to explore alternatives, of-
ten without principled guidance. Attempts to automate this process frequently rely on strong proba-
bilistic assumptions that rarely hold in practice (Shahriari et al., 2015; Klein et al., 2017) or employ
empirical heuristics (Liao et al., 2022; Wainer & Fonseca, 2021; Duan et al., 2003), resulting in
substantial computational waste due to redundant retraining.

A common approach to address this issue in studies of exact algorithms is to use multiple random
initializations. However, this approach often becomes ineffective as data scales increase. Each run
typically uses a manually set time limit, but this still results in redundant retraining. To address these
challenges, we propose a coreset selection method, detailed in Algorithm 4. Instead of computing
the exact solution across the entire dataset, which is computationally infeasible for large K and D,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

our approach identifies the exact solution for the most representative subsets. By shuffling the data,
the input will unlikely be the ordering that is pathological i.e., one where the optimal solution is
obtained only at a late stage of the recursive process in the Deep-ICE algorithm. This method can
effectively explore thousands of candidate configurations in the coresets that have lower training
accuracy than SVMs and MLPs. In our experiments, we trained a two-layer maxout network using
the algorithmic process described in 4. In 5-fold cross-validation tests, our method demonstrated
significantly better performance. These results consistently outperformed those of SVMs and the
same maxout network trained with gradient descent.

Due to the ability to generate an extensive number of candidate solutions, we observed several in-
teresting findings in our experiments. Although extensive prior research suggests that the maximal-
margin (MM) classifier (i.e., SVM) offers theoretical guarantees for test accuracy (Mohri et al.,
2012), we found that the MM classifier does not always perform as expected. Specifically, we did
not find clear evidence that the MM classifier consistently achieves better out-of-sample perfor-
mance. A more detailed analysis is provided in Appendix A.7.

Furthermore, Karpukhin et al. (2024) proposed an interesting framework that introduces stochastic-
ity into the model’s output and optimizes the expected accuracy, allowing gradient-based methods to
directly optimize accuracy rather than surrogate losses. However, despite being named EXACT, the
method is actually short for “EXpected ACcuracy opTimization” and is therefore a stochastic ap-
proach rather than a deterministic exact algorithm. We include a comparison with their framework
in Appendix A.6, which shows that it outperforms MLPs trained with surrogate losses.

Additionally, the wall-clock runtime comparison between EXACT and MLP is provided in A.6.

4 DISCUSSION AND CONCLUSION

In this paper, we present the first algorithm for finding the globally minimal empirical risk of two-
layer neural networks under 0–1 loss. The algorithm achieves polynomial time and space complexity
for fixed D and K. The DeepICE algorithm is specifically designed to optimize both efficiency and
parallelizability. Even without bounding techniques to accelerate computation, our implementa-
tion demonstrates strong performance: it can handle over 1 × 1011 configurations within minutes,
highlighting the intrinsic efficiency of our algorithm independent of any bounding methods. Incor-
porating additional bounding techniques in future research could further enhance its scalability.

Another key contribution of this paper is the empirical evidence that optimal solutions do not nec-
essarily overfit the data. Our out-of-sample tests indicate that solutions trained using our method,
which achieve significantly higher training accuracy than SVMs or two-layer neural networks, still
perform well on unseen data when model complexity is properly controlled. This finding points to
a promising avenue for applying our algorithm to problems where both interpretability and model
complexity are critical.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide three versions of our algorithm: a recursive version, a
divide-and-conquer version, and a sequential definition in Appendix A.4. The recursive version
is written clearly in a functional style and can be executed in a functional programming language
with minimal syntactic adjustments, allowing the algorithm to run with no ambiguity. In addition,
imperative implementations in both Python and CUDA are included in supplementary materials,
along with all datasets used in our experiments. Enabling independent verification and replication
of the results reported in this paper.

REFERENCES

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. ArXiv preprint ArXiv:1611.01491, 2016.

Yatong Bai, Tanmay Gautam, and Somayeh Sojoudi. Efficient global optimization of two-layer relu
networks: Quadratic-time algorithms and adversarial training. SIAM Journal on Mathematics of
Data Science, 5(2):446–474, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning
Research, 20(63):1–17, 2019.

Richard Bird and Oege De Moor. The algebra of programming. NATO ASI DPD, 152:167–203,
1996.

Richard Bird and Jeremy Gibbons. Algorithm Design with Haskell. Cambridge University Press,
2020.

Kaibo Duan, S Sathiya Keerthi, and Aun Neow Poo. Evaluation of simple performance measures
for tuning svm hyperparameters. Neurocomputing, 51:41–59, 2003.

Vincent Froese, Christoph Hertrich, and Rolf Niedermeier. The computational complexity of relu
network training parameterized by data dimensionality. Journal of Artificial Intelligence Re-
search, 74:1775–1790, 2022.

Surbhi Goel, Adam Klivans, Pasin Manurangsi, and Daniel Reichman. Tight hardness results for
training depth-2 relu networks. ArXiv preprint ArXiv:2011.13550, 2020.

Xi He and Max A Little. An efficient, provably exact algorithm for the 0-1 loss linear classification
problem. ArXiv preprint ArXiv:2306.12344, 2023.

Xi He and Max A Little. EKM: an exact, polynomial-time algorithm for the k-medoids problem.
ArXiv preprint ArXiv:2405.12237, 2024.

Christoph Hertrich. Facets of neural network complexity. Technische Universitaet Berlin (Germany),
2022.

Ivan Karpukhin, Stanislav Dereka, and Sergey Kolesnikov. Exact: How to train your accuracy.
Pattern Recognition Letters, 185:23–30, 2024.

Julia Kirchner, Surya Angwin, Jeff Mattu, and Lauren Larson. Machine bias: There’s software used
across the country to predict future criminals. and it’s biased against blacks. Pro Publica: New
York, NY, USA, 2016.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian op-
timization of machine learning hyperparameters on large datasets. In Artificial intelligence and
statistics, pp. 528–536. PMLR, 2017.

Andrei Nikolaevich Kolmogorov. On the representations of continuous functions of many variables
by superposition of continuous functions of one variable and addition. In Dokl. Akad. Nauk USSR,
volume 114, pp. 953–956, 1957.

Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma. An empirical study of the impact of hyperparameter
tuning and model optimization on the performance properties of deep neural networks. ACM
Transactions on Software Engineering and Methodology (TOSEM), 31(3):1–40, 2022.

Michael McGough. How bad is sacramento’s air, exactly? google results appear at odds with reality,
some say. Sacramento Bee, 7, 2018.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2012.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

Jacques Wainer and Pablo Fonseca. How to tune the rbf svm hyperparameters? an empirical evalu-
ation of 18 search algorithms. Artificial Intelligence Review, 54(6):4771–4797, 2021.

He Xi and Max A. Little. Exact 0-1 loss linear classification algorithms, April 2023. URL https:
//github.com/XiHegrt/E01Loss.

11

https://github.com/XiHegrt/E01Loss
https://github.com/XiHegrt/E01Loss

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROOFS

A.1 SYMMETRIC FUSION FOR MAXOUT NETWORK

Theorem 5. Symmetric fusion for maxout network. Given a maxout network defined by K hyper-
plane (neurons).If the predictions associated with this configuration of K hyperplanes are known,
then the predictions for the configuration obtained by reversing the direction of all normal vectors
can be obtained directly from the original hyperplanes, without explicitly recomputing the predic-
tions for the reversed hyperplanes.

Proof. Consider a maxout network defined by K hyperplanesH = {hk | k ∈ K = {1, 2, . . . ,K}},
where each hyperplane hk is defined by a normal vector wk : RD. Together these hyperplanes
define a decision function fW1,W2 (x). Equation (10) implies that a data item x is predicted to
negative class by fW1,W2

(x) if and only it lies in the negative sides of all hyperplanes inH, because
fW1,W2

(x) will return positive as long as there exists a k such that wkx ≥ 0. Therefore, the
prediction labels of the two-layer NN ymaxout consists of the union of positive prediction labels for
each hyperplane hk, and the remaining data item, which lies in the negative side with respect to all
K hyperplanes will be assigned to negative class. class. In other words, if we denote y+ and y− as
the positive and negative prediction indexes of y respectively, then we have

y+
maxout =

⋃
k∈K

y+
k

y−
maxout = D\y+

maxout

(19)

where \ is defined as the set difference and
⋃

k∈K y+
k denote the union of y+

k , k ∈ K. For instance, if
y1 = (1, 1,−1,−1) and y2 = (−1, 1, 1,−1), then y+

1 = {1, 2} and y+
2 = {2, 3}, thus y+

1 ∪ y+
2 =

{1, 2, 3}
For a two-layer maxout NN, the data points can be classified into three categories based on their
relationship to the K hyperplanes defined by the K hidden neurons:

1. Data points that lie in the region where all K hyperplanes are on the positive side.

2. Data points that lie in the region where all K hyperplanes are on the negative side.

3. Data points that lie in the region where some hyperplanes are on the positive side and others are
on the negative side.

If we reverse the orientation of all K hyperplanes in H, i.e., wk = −wk. Only data points that
fall into the class of the first two cases will be reversed, because the prediction labels of these data
be reversed if the orientation for all hyperplanes is reversed, the classification of data points in the
third category will remain unchanged. This is because (8) implies that, the prediction labels of
the two-layer NN, ymaxout, consist of the union of positive prediction labels for each hyperplane
hk.Therefore, reversing the direction of all hyperplanes will affect only data points xn that lie in
the positive class for all hyperplanes, (n ∈ y+

k , ∀k ∈ K) or the negative class for all hyperplanes
(n ∈ y−

k , ∀k ∈ K) will be change the label. For any other data points, there always exists at least
one hyperplane that classifies them as negative. After reversing the direction of all hyperplanes, this
same hyperplane will classify these points as positive, leaving their prediction labels unchanged.

A.2 PROOF OF NESTED COMBINATION GENERATOR

Given nestedCombsAlg (D,K) defined as

〈
setEmpty(D) ◦KcombsAlg(K) ◦ Ffst ,

KcombsAlg(K) ◦
〈
Kcombs(K)◦!! (D) ◦KcombsAlg(D) ◦ Ffst , KcombsAlg(K) ◦ Fsnd

〉〉
,

(20)

We need to verify the following fusion condition

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

f ◦KcombsAlg (D) = nestedCombsAlg (D,K) ◦ f × f, (21)
where f = ⟨setEmpty (D) ,Kcombs (K) ◦!! (D)⟩. In other words, we need to prove that the fol-
lowing diagram commutes

Css

f

��

(Css,Css)

f×f

��

kcombsAlg(D)oo

(Css,NCss) ((Css,NCss) , (Css,NCss))
nestedCombsAlg(D,K)

oo

However, proving that the above diagram commutes is challenging. Instead, we expand the diagram
by presenting all intermediate stage explicitly

Css

⟨SE(D),!!(D)⟩
��

(Css,Css)

⟨SE(D),!!(D)⟩×⟨SE(D),!!(D)⟩
��

KCsA(D)
oo

(Css,Cs)

id×KCs(K)

��

(Css, (Cs,Cs))
SE(D)×∪

oo ((Css,Cs) , (Css,Cs))

(id×KCs(K))×(id×KCs(K))

��

⟨KCsA (D) ◦ Ffst, ⟨!! (D) ◦ KCsA (D) ◦ Ffst,∪ ◦ Fsnd⟩⟩
oo

(Css,NCss) (Css, (NCss,NCss))
SE(D)×KcsA(K)◦∪
oo ((Css,NCss) , (Css,NCss))

⟨KCsA (D) ◦ Ffst, ⟨KCs (K) ◦!! (D) ◦ KCsA (D) ◦ Ffst,KCsA (K) ◦ Fsnd⟩⟩
oo

where ∪ (a, b) = a∪ b, and SE , KCs and KCsA are short for setEmpty , Kcombs and KcombsAlg .

To prove the fusion condition, we first need to verify the two paths between (Css,Css) and
(Css,Cs). In other words, we need to prove

⟨SE (D) , !! (D)⟩ ◦KCsA (D) =

SE (D)× (∪ ◦ ⟨KCsA (D) ◦ Ffst , ⟨!! (D) ◦KCsA (D) ◦ Ffst ,∪ ◦ Fsnd⟩⟩) ◦ (⟨SE (D) , !! (D)⟩ × ⟨SE (D) , !! (D)⟩)
(22)

This can be proved by following equational reasoning

SE (D)× ∪ ◦ ⟨KCsA (D) ◦ Ffst , ⟨!! (D) ◦KCsA (D) ◦ Ffst ,∪ ◦ Fsnd⟩⟩ ◦ (⟨SE (D) , !! (D)⟩ × ⟨SE (D) , !! (D)⟩)
≡ × absorption law
⟨SE (D) ◦KCsA (D) ◦ Ffst ,∪ ◦ ⟨!! (D) ◦KCsA (D) ◦ Ffst ,∪ ◦ Fsnd⟩⟩ ◦ (⟨SE (D) , !! (D)⟩ × ⟨SE (D) , !! (D)⟩)
≡ Product fusion〈

SE (D) ◦KCsA (D) ◦ Ffst ◦ (⟨SE (D) , !! (D)⟩ × ⟨SE (D) , !! (D)⟩) ,
∪ ◦ ⟨!! (D) ◦KCsA (D) ◦ Ffst ,∪ ◦ Fsnd⟩ ◦ (⟨SE (D) , !! (D)⟩ × ⟨SE (D) , !! (D)⟩)

〉
≡ Definition of SE (D) and product fusion
⟨SE (D) ◦KCsA (D) ,∪ ◦ ⟨!! (D) ◦KCsA (D) ◦ Fse (D) ,∪ ◦ F !! (D)⟩⟩
≡ Definition of Combination
⟨SE (D) , !! (D)⟩ ◦KCsA (D)

where Fse (D, a, b) = (SE (D, a) ,SE (D, b)), F !! (D, a, b) = (!! (D, a) , !! (D, b)).

Note that, the equality between the third equation and the last equation is a assertion of fact,
rather than a results can be proved (verified). This equivalence comes from the fact that size K-
combinations can be constructed by joining all possible combinations of size i and size K − i
combinations, where 0 ≤ i ≤ K.

Next, we prove the two paths between ((Css,Cs) , (Css,Cs)) and (Css,NCss) are equivalent.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

⟨SE (D) ◦KCsA (D) ◦ Ffst ,KcsA (K) ◦ ∪ ◦ ⟨KCs (K) ◦!! (D) ◦KCsA (D) ◦ Ffst ,KCsA (K) ◦ Fsnd⟩⟩◦
(id ×KCs (K))× (id ×KCs (K))

≡ Product fusion,f × g = ⟨f ◦ Ffst , f ◦ Fsnd⟩,FKCssnd (D, (a, b) , (c, d)) = (KCs (D, b) ,KCs (D, d))

⟨SE (D) ◦KCsA (D) ◦ Ffst ,KcsA (K) ◦ ∪ ◦ ⟨KCs (K) ◦!! (D) ◦KCsA (D) ◦ Ffst ,KCsA (K) ◦ FKCs (D)⟩⟩
≡ Definition of Kcombs

⟨SE (D) ◦KCsA (D) ◦ Ffst ,KcsA (K) ◦ ∪ ◦ ⟨KCs (K) ◦!! (D) ◦KCsA (D) ◦ Ffst ,KCs (K) ◦ ∪ ◦ Fsnd⟩⟩
≡ Definition of product
⟨SE (D) ◦KCsA (D) ◦ Ffst ,KcsA (K) ◦ ∪ ◦KCs (K) ◦ ⟨!! (D) ◦KCsA (D) ◦ Ffst ,∪ ◦ Fsnd⟩⟩
≡ Definition of KCs

⟨SE (D) ◦KCsA (D) ◦ Ffst ,KCs (K) ◦ ∪ ◦ ⟨!! (D) ◦KCsA (D) ◦ Ffst ,∪ ◦ Fsnd⟩⟩

A.3 PROOF OF FUSION CONDITION

Lemma 2. DeepICEAlg satisfies the following fusion condition

DeepICE (D,K) = f ◦ nestedCombsAlg (D,K) = DeepICEAlg (D,K) ◦ f × f (23)

where f = min0-1 (D) ◦ eval ′ (K − 1), which defines the Deep ICE algorithm 17.

Proof. For optimization problem, proving equality is often too strict that it rarely holds in practice.
Instead, whenever a “selector” is used, we can relax the fusion condition by replacing the eqaulity
as a set memership relation (Bird & Gibbons, 2020).

f ◦ nestedCombsAlg (D,K) ⊆ DeepICEAlg (D,K) ◦ f × f (24)

In point-wise style, this is equivalent to

f ◦ nestedCombsAlg (D,K, h (xs) , h (ys)) ⊆ DeepICEAlg (D,K, f (h (xs)) , f (h (ys))) (25)

where h (as) = nestedCombs (D,K, as).

On the left side of the set membership relation, we first update the nested combinations by merging
nestedCombs (D,K, ys) and nestedCombs (D,K, ys) using nestedCombsAlg and then select the
optimal nc with respect to E0-1 by using min0-1 (D) ◦ eval ′ (K − 1).

On the right-hand side, recall that nestedCombs (D,K, as) :
[
RD
]
→ ([[C]] , [[NC]]) returns all

possible nested combinations (K-combination of hyperplanes) ncss, all possible combination of
data items css (Dth inner list is empty) and ncss, and f ◦ h = DeepICE (D,K) is the specifi-
cation of the Deep-ICE algorithm. Functions f (h (xs)) and f (h (ys)) select the optimal nested-
combination with respect to E0-1 from all possible nested combinations with respect to xs and ys,
call them optcnfg1, and optcnfg2 with respectively. Then the nested combinations are merged to-
gether and selected the new optimal configuration optcnfg ′ by using DeepICEAlg . By definition,
optcnfg ′ is obtained by selection the optimal configurations from the newly generated combinations
and compared with optcnfg1, and optcnfg2 , thus the solutions on the left side of the set membership
relation must include in the right-hand side of the nested combination.

A.4 ALGORITHMS

Algorithm 4 present the recursive definition of the Deep-ICE algorithm.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1 DeepICE rec: DeepICE recursive definition
Input: ds: input data list; D: number of features; K: number of hyperplanes;

Output: cnfg :
(
NC , {1,−1}K

)
—Optimal nested combination with respect to ds;

ncss : NCss—All possible nested combinations of size less than K; css : Css—All possi-
ble combinations of size less than D.

DeepICE (D,K, []) = nestedCombsAlg1 ([])

DeepICE (D,K, [a]) = nestedCombsAlg2 ([a])

DeepICE (D,K, xs ∪ ys) = min0-1 (K) ◦ eval ′ (K − 1) ◦
nestedCombsAlg3 (DeepICE (D,K, xs) ,DeepICE (D,K, ys)) ,

where nestedCombsAlg is defined as

nestedCombsAlg1 (d, k, []) = ([[[]]] , [[[]]])

nestedCombsAlg2 (d, k, [xn]) = ([[[]] , [[xn]]] , [[[]]])

nestedCombsAlg3 (d, k, (css1, ncss1) , (css1, ncss1)) = (setEmpty (D, css) , ncss) .
where css = kcombsAlg (D, css1, css2), and ncss is defined as

ncss =

{
[[[]]] css!! (D) = []

kcombsAlg (K, kcombsAlg (K,ncss1, ncss2) , kcombs (K, css!!D)) otherwise.

We also provide both the pesudocode for the sequential version 2 and D&C versions 3 of the Deep-
ICE algorithms.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 DeepICE seq: Deep-ICE sequential definition

Input: ds: input data list; D: number of features; K: number of hyperplanes;

Output: cnfgopt :
(
NC , {1,−1}K

)
—Optimal nested combination with respect to ds; lopt: optimal

0-1 loss, hyperAsgn: All possible predictions of hyperplanes with respect to input list; css: all
possible nested combinations of size smaller than D ncss: all possible nested combinations of size
smaller than K;

1. css =
[
[[]] , []

k
]

// initialize combinations

2. ncss =
[
[[]] , []

k
]

// initialize nested-combinations

3. hyperAsgn = empty

((
N
D

)
, N

)
/ initialize prediction of hyperplanes as a empty(

N
D

)
×N matrix

4. lopt = N //initialize optimal 0-1 loss
5. for n← range (0, N) do: //range (0, N) = [0, 1, . . . , N − 1]

6. for j ← reverse (range (D,n+ 1)) do:
7. updates = reverse (map (∪ds [n] , css [j − 1])) // the reverse function is used to

organize configurations in revolving door ordering
8. css [j] = css [j] ∪ updaets // update css to generate combinations in revolving door

ordering,
9. hyperAsgn = genModels (css [D] , hyperAsgn) // generate positive/negative predic-

tions for each hyperplane in css [D]

10. css [D] = [] // empty D-combinations after generation

11. C1 =

(
n

D − 1

)
, C2 =

(
n
D

)
12. ncss ′ = kcombs (k,C2 − C1)

13. ncss = kcombsAlg (K,ncss,ncss ′)

14. cnfg ′, l′ = eval (ncss [K] , hyperAsgn) // evaluate to the number of misclassification
for each size K nested combination in ncss [K]

15. ncss [K] = [] // empty size K nested-combinations after evaluation
16. if l′ ≤ lopt:
17. lopt = l′

18. cnfgopt = cnfg ′

19. return cnfgopt, lopt, hyperAsgn , ncss , css

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 3 DeepICED&C: Deep-ICE divide-and-conquer definition
Input: ds: input data list; D: number of features; K: number of hyperplanes;

Output: cnfgopt :
(
NC , {1,−1}K

)
—Optimal nested combination with respect to ds; lopt: optimal

0-1 loss

1. hyperAsgn = empty

((
N
D

)
, N

)
// initialize prediction of hyperplanes as a empty(

N
D

)
×N matrix

2. lopt = N //initialize optimal 0-1 loss
3. dsi, dsj = splitToTwo (ds)// split the data set into two half
4. parallel:
5. resi = DeepICE seq (D,K, dsi) // Process first data list

6. resj = DeepICE seq (D,K, dsj) // Process second data list
7. sync // Wait for both tasks to complete
8. // Retrieve results: configuration, loss, hyperplane assignments, combinations
9. cnfg i, li, hyperAsgni , cssi,ncssi = resi

10. cnfgj , lj , hyperAsgnj , cssj ,ncssj = resj

11. css,ncss = nestedCombsAlg3 (D,K, (cssi,ncssi) , (cssj ,ncssj)) // Merge: Combine
nested combinations from both subsets

12. hyperAsgn = mergeAsgn
(
hyperAsgni , hyperAsgnj

)
// Merge hyperplane assignments

13. cnfg ′, l′ = eval (ncss [K] , hyperAsgn) // Evaluate merged nested combinations for size
K

14. cnfgs =
[
(cnfg i, li) ,

(
cnfgj , lj

)
,
(
cnfg ′, l′

)]
// Collect all configurations and their losses

15.
(
cnfgopt, lopt

)
= min0-1 ([cnfgs]) // Select configuration with minimum 0-1 loss

16. return cnfgopt, lopt

Algorithm 4 shows the structure of the coreset selection method.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 4 Deep-ICE with Coreset Filtering
1. Input: ds: input data list; M : Block size; R: number of shuffle time in each filtering

process; L: Max-heap size; Bmax: Maximum input size for the Deep-ICE algorithm; c ∈
(0, 1]: Shrinking factor for heap size

2. Output: Max-heap containing top L configurations and associated data blocks

3. Initialize coreset C ← ds

4. while C ≤ Bmax do:

5. Reshuffle the data, divide C into
⌈
|C|
M

⌉
blocks CB =

{
C1, C2, . . . , C⌈ |C|

M ⌉
}

6. Initialize a size L max-heapHL

7. for r ← 1 to R do:
8. r = r + 1

9. for C ∈ CB do:
10. cnfg ← DeepICE (D,K,C)

11. HL.push (cnfg , C)

12. C ← unique (HL) // Merge blocks and remove duplicates

13. L← L× c // Shrink heap size:
14. cnfg ← DeepICE (D,K, C) // Final refinement

15. HL.push (cnfg , C)
16. returnHL

A.5 COMPLEXITY ANALYSIS

Theorem 6. The DeepICE algorithm has a time complexity of

O

K ×N × 2K−1 ×

 (
N
D

)
K

+N ×D3 ×
(

N
D

) which is strictly smaller than

O
(
NDK+1

)
, and a space complexity of O

 (
N
D

)
K − 1

×K +

(
N

D − 1

)
×N

, which is

strictly smaller than O
(
ND(K−1)

)
.

Proof. We analyze the complexity using the sequential version of the DeepICE algorithm 2.
At stage n, the computation of lines 5–8 has complexity O

(
nD−1

)
, since there are at most(

n
D − 1

)
new D-combinations in each recursive step. The computation at line 9 requires

O
(
nD−1 ×D3 ×N

)
time. Similarly, the new nested combinations at lines 12–14 has a size

O

∑K
k=1

 (
n

D − 1

)
k

×
 (

n
D

)
k

, which requires computations of a complexity

2K−1 ×N ×K per nested combination, as each combination must evaluate 2K−1 possible hyper-
plane orientations.

By Vandermonde’s identity, we have

K∑
k=1

 (
n

D − 1

)
k

×
 (

n
D

)
k

 =

 (
n

D − 1

)
+

(
n
D

)
k

 =

 (
n+ 1
D − 1

)
k

 ≤ (n+ 1)
Dk

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Summing over n = 0 to n = N − 1, the total time complexity becomes

O

N−1∑
n=0

D3 ×N ×
(

n
D − 1

)
+K ×N × 2K−1 ×

 (
n+ 1
D − 1

)
k

 .

=O

N ×D3 ×
(

N
D

)
+K ×N × 2K−1 ×

 (
N
D

)
K


≤O

(
N ×D3 ×ND +K ×N × 2K−1 ×NDK

)
=O

(
NDK+1

)
For memory, at lines 10 and 15, we clear the size D combinations and size K nested combinations,
so we only need to store smaller configurations in memory. The resulting space complexity is

O

 (
N
D

)
K − 1

×K +

(
N
D

)
×N

 = O
(
ND(K−1)

)
. (26)

A.5.1 ORDERED GENERATION OF COMBINATIONS

To generate D-combinations of data points efficiently, we employ a technique that organizes com-
binations in a specific order, assigning each a unique “rank.” To achieve this, a critical but small
function reverse used at line 6 of the DeepICE algorithm 2 makes it possible. This allows D-
combinations to be organized in “revolving door ordering” and thus combinations are represented
by their rank rather than storing the combinations explicitly. This approach offers two key ben-
efits: First, storing ranks significantly reduces memory usage, from M × D × 64 bits to M ×
log (M)bits (log (M) is often representable using 32 bits in coreset selection method), where M =∑K−1

k=0

(
N
D
k

)
. A workspace in memory is preallocated before training to store predictions as-

sociated with these hyperplanes, thereby avoiding memory allocation overhead during runtime. Sec-

ond, it enables the organization of hyperplane predictions into a
(

N
D

)
× N matrix, where each

row corresponds to a unique rank. As a result, the algorithm requires only O

(
N ×D3 ×

(
N
D

))
time. Moreover, storing hyperplanes in a single large matrix allows exploitation of high-throughput
hardware such as Nvidia GPU Tensor Cores. Without this method, predictions would need to be re-

computed for each hyperplane, requiring at least O

N ×D3 ×

 (
N
D

)
K

 time. This strat-

egy reduces memory usage and accelerates execution without drawbacks, and it can be extended to
other problems involving nested combinatorial structures.

A.5.2 MEMORY-FREE METHOD BY USING UNRANKING FUNCTION

Building on the first technique, the second method leverages the ordered structure of D-
combinations to eliminate the need to store K-combinations. An unranking function takes the rank
of a combination as input and reconstructs the corresponding K-combination on demand. This
supports the dynamic generation of combinations for a given range of rank values, thereby circum-
venting memory constraints that would otherwise limit the algorithm due to insufficient storage.
However, it incurs an additional computational cost of Θ(K) arithmetic operations per combina-
tion due to the unranking function. Despite this, the method often improves overall efficiency by
simplifying memory management, leading to more effective implementations in practice.

However, this method has a limitation: it precludes the use of bounding techniques because K-
combinations combinations are reconstructed on demand via unranking functions rather than stored

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 2: Empirical analysis shows that the wall-clock runtime of the DeepICE algorithm is strictly
smaller than the predicted worst-case complexity O

(
NDK+1

)
. The log-log wall-clock runtime

(seconds) of DeepICE on synthetic datasets is plotted against dataset size N . On this log-log scale
polynomial run time appears as a linear function of problem size N , and the slope of the line corre-
sponds to the polynomial degree. In the left panel, the runtime curves (from left to right) correspond
to K = 2 with D = 2, 3, 4, and have slopes 3.96, 6.28, and 8.88—smaller than the predicted
worst-case exponents O

(
N4
)
, O
(
N7
)
, O
(
N9
)
. In the right panel, the curves (from left to right)

correspond to D = 2 with K = 1, 2, 3 respectively), and have slopes 1.91, 3.95, and 6.11—smaller
than the predicted worst-case exponents O

(
N3
)
, O
(
N5
)
, O
(
N7
)
, respectively,.

in memory. If future research requires such techniques, this approach is unsuitable, as it is chal-
lenging to identify which configurations (represented by ranks) are eliminated during algorithm
execution.

A.5.3 EMPIRICAL ANALYSIS

Figure 2 shows that the empirical running time of the DeepICE algorithm aligns with the expected
worst-case complexity.

A.6 ADDITIONAL EXPERIMENTS

A.6.1 COMPARISON WITH EXPECTED ACCURACY OPTIMIZATION (EXACT) FRAMEWORK

This Subsection we compared with the expected accuracy optimization (EXACT) method proposed
by Karpukhin et al. (2024) the results is shown in table Karpukhin et al. (2024).

A.6.2 WALL-CLOCK RUN TIME COMPARISON

Table 3 report the run-time comparison of between DeepICE, SVM, MLP and EXACT.

A.7 EXPERIMENTS OF EXHAUSTIVELY EXPLORING ALL SOLUTIONS

For K = 1 case, i.e., linear case, the Deep-ICE algorithm fully explores the solution space for
datasets such as Voicepath, Caesarian, Sepsis, HB, and BT. We output all solutions whose training
accuracy is lower than that of the SVM. The regularization parameter for the SVM is fixed at 1
across all datasets. We deliberately avoid tuning this parameter to achieve the lowest test error, as
a solution with lower test accuracy may increase training error, thereby generating more candidate
solutions due to the higher training error. Adjusting the regularization parameter introduces a trade-
off between training and test errors, complicating the analysis. To keep our discussion focused and
consistent, we fix the regularization parameter. We summarize the empirical results in Table A.7.
Using the generated solutions, we construct hyperplanes and select two representative types from
each equivalence class: (1) hyperplanes passing through exactly D points (direct hyperplanes), and

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 2: Five-fold cross-validation results on the UCI dataset. We compare the performance of
our Deep-ICE algorithm, with K (number of hyperplanes) ranging from 1 to 3, trained either with
the coreset selection method or directly (marked by *)—against Karpukhin et al. (2024)’s expected
accuracy optimization (EXACT) framework. Results are reported as mean accuracy loss over train-
ing and test sets in the format: Training Error / Test Error (Standard Deviation: Train / Test). The
best-performing algorithm in each row is highlighted in bold.

Dataset N D Deep-ICE
(%) (K = 1)

Deep-ICE
(%) (K = 2)

Deep-ICE
(%) (K = 3)

EXACT (%)
(K = 1)

EXACT (%)
(K = 2)

EXACT (%)
(K = 3)

Ai4i 10000 6 97.45/97.40
(0.10/0.36)

97.90/97.82
(0.01/0.35)

97.71/97.71
(0.10/0.25)

96.61/96.61
(0.01/0.02)

96.63/96.60
(0.04/0.03)

96.69/96.62
(0.10/0.05)

Caesr 72 5 *74.55/82.67
(7.18/16.11)

89.45/88.00
(4.21/9.80)

84.36/86.67
(7.51/5.96)

79.50/69.24
(2.44/12.59)

81.94/62.38
(2.65/10.03)

87.83/64.00
(2.74/8.72)

VP 704 2 *96.94/97.59
(0.44/1.46)

97.76/97.59
(0.41/1.65)

97.80/97.45
(0.43/1.71)

92.47/92.47
(0.08/0.34)

92.47/92.47
(0.08/0.34)

92.47/92.47
(0.08/0.34)

Spesis 975 3 *94.47/92.88
(0.10/0.61)

96.43/95.26
(0.49/1.82)

96.24/95.36
(0.22/1.62)

94.05/94.05
(0.06/0.25)

94.05/94.05
(0.06/0.25)

94.05/94.05
(0.06/0.25)

HB 283 3 *77.18/75.44
(0.45/2.48)

80.11/77.19
(0.74/2.48)

80.85/78.53
(1.02/3.57)

75.70/71.39
(1.94/3.86)

77.74/73.45
(0.55/5.89)

78.71/71.36
(1.66/3.56)

BT 502 4 *77.13/76.36
(1.46/2.71)

79.59/77.98
(0.62/3.38)

79.36/77.98
(0.59/2.88)

77.84/73.51
(1.31/2.80)

78.09/73.51
(1.54/2.36)

78.14/73.11
(1.56/3.09)

AV 2342 7 89.89/88.52
(0.33/1.56)

90.34/89.04
(0.15/1.39)

89.77/88.76
(0.33/1.75)

87.18/87.18
(0.03/0.11)

87.26/87.03
(0.19/0.37)

87.70/87.13
(0.34/0.40)

SO 1941 27 77.77/76.03
(0.43/0.83)

77.13/75.33
(0.81/1.32)

76.66/74.95
(0.74/1.38)

76.33/73.11
(0.26/1.82)

78.81/75.22
(1.68/1.77)

79.95/75.32
(2.16/2.31)

DB 1146 9 78.78/79.69
(0.41/0.69)

83.60/81.37
(0.43/2.52)

83.88/81.32
(0.98/2.23)

73.91/70.59
(1.15/3.52)

73.91/68.93
(3.83/4.31)

75.94/72.42
(1.73/2.30)

RC 3810 7 93.88/92.45
(0.28/1.02)

93.91/93.10
(0.24/1.02)

93.94/92.98
(0.21/0.98)

93.03/92.62
(0.32/1.08)

93.08/92.60
(0.29/1.16)

93.08/92.76
(0.35/1.24)

SS 51433 3 86.57/86.72
(0.03/0.15)

86.60/86.72
(0.04/0.16)

86.59/86.70
(0.03/0.11)

86.57/86.53
(0.04/0.2)

86.55/86.53
(0.05/0.17)

86.56/86.53
(0.05/0.17)

Table 3: Running time (seconds) of each algorithm, with “0.01<” denotes a time smaller than 0.01
seconds. In principle, allocating more computational resources to DeepICE yields better solutions.
For comparison, we record the wall-clock time at which DeepICE first obtains a solution with lower
0–1 loss than the other methods. The reported times are the medians over three runs.

Dataset N D Deep-
ICE (s)
(K =

1)

Deep-
ICE (s)
(K =

2)

Deep-
ICE (s)
(K =

3)

SVM
(s)

MLP
(s)

(K =
1)

MLP
(s)

(K =
2)

MLP
(%)

(K =
3)

EXACT
(s)

(K =
1)

EXACT
(s)

(K =
2)

EXACT
(s)

(K =
3)

Ai4i 10000 6 450.5 622.42 505.42 0.05 18.43 18.74 16.52 22.56 21.91 26.47
Caesr 72 5 0.26 0.26 7.10 0.01< 12.27 12.96 10.11 23.78 22.92 29.80
VP 704 2 0.83 0.45 0.85 0.01< 11.19 11.53 10.76 24.36 23.49 25.22
Spesis 975 3 8.00 0.21 0.41 0.01< 9.56 10.60 11.68 25.24 23.01 29.93
HB 283 3 0.20 0.21 0.38 0.01< 12.54 14.43 17.68 22.65 23.01 25.30
BT 502 4 0.26 0.36 0.43 0.01< 13.45 12.34 15.24 25.46 24.36 27.99
AV 2342 7 132.51 294.81 356.51 0.01< 14.53 14.12 13.21 22.86 23.02 28.19
SO 1941 27 762.50 850.42 543.54 0.04 12.43 13.23 14.53 24.12 25.61 29.36
DB 1146 9 50.43 20.39 16.77 0.01 14.78 16.20 17.43 26.45 22.57 27.35
RC 3810 7 423.5 217.26 611.37 0.02 15.02 17.02 14.53 24.68 22.77 27.21
SS 51433 3 1.13 3.26 4.21 9.63 43.19 73.19 77.43 25.94 21.86 26.00

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(2) arbitrary hyperplanes computed via linear programming (LP hyperplanes). In the table, we com-
pare the out-of-sample performance of these solutions against that of the SVM. We found no strong
evidence that the maximal-margin hyperplane (SVM) consistently outperforms other hyperplanes
with lower training errors. For example, in the HB dataset, an average of 8,922.2 solutions outper-
form the SVM in training dataset. Of these, direct hyperplanes have an average of 5,448.2 solutions,
and LP hyperplanes have an average of 6,165.6 solutions, outperforming the SVM in out-of-sample
test.

Table 4: Comparing the average out-of-sample accuracy in a 5-fold cross-validation. All solutions
with training accuracy lower than that of the SVM are generated, and their total number is reported
(Total number of solutions). Two representative hyperplanes from the equivalence classes are in-
cluded: the direct hyperplane, which passes through exactly D points, and the LP hyperplane,
computed via linear programming. For each type, the average number of hyperplanes with out-of-
sample accuracy lower than that of the SVM is also reported.

Datasets Total number of solutions Direct hyperplanes LP hyperplanes

Caesarian 4430.2 2379.4 2913.8
Voicepath 124.2 55.2 54.8

Spesis 5.8 1 4.6
HB 8922.2 5448.2 6165.6
BT 5150.4 3189.8 3580

22

	Introduction
	Theory
	Theory of lists
	Problem specification
	An efficient nested combination generator join-list
	Deep incremental cell enumeration (Deep-ICE) algorithm and symmetry fusion

	Empirical analysis
	Discussion and conclusion
	Proofs
	Symmetric fusion for maxout network
	Proof of nested combination generator
	Proof of fusion condition
	Algorithms
	Complexity analysis
	Ordered generation of combinations
	Memory-Free method by using unranking function
	Empirical analysis

	Additional experiments
	Comparison with expected accuracy optimization (EXACT) framework
	Wall-clock run time comparison

	Experiments of exhaustively exploring all solutions

