

000 001 DEEP-ICE: THE FIRST GLOBALLY OPTIMAL ALGO- 002 RITHM FOR MINIMIZING 0–1 LOSS IN TWO-LAYER 003 RELU AND MAXOUT NETWORKS 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 This paper introduces the first globally optimal algorithm for the empirical risk
014 minimization problem of two-layer maxout and ReLU networks, i.e., minimiz-
015 ing the number of misclassifications. The algorithm has a worst-case time com-
016 plexity of $O(N^{DK+1})$, where K denotes the number of hidden neurons and D
017 represents the number of features. It can be can be generalized to accommodate
018 arbitrary computable loss functions without affecting its computational complex-
019 ity. Our experiments demonstrate that the proposed algorithm provides provably
020 exact solutions for small-scale datasets. To handle larger datasets, we introduce
021 a heuristic method that reduces the data size to a manageable scale, making it
022 feasible for our algorithm. This extension enables efficient processing of large-
023 scale datasets and achieves significantly improved performance in both training
024 and prediction, compared to state-of-the-art approaches (neural networks trained
025 using gradient descent and support vector machines), when applied to the same
026 models (two-layer networks with fixed hidden nodes and linear models).
027
028

1 INTRODUCTION

030 In recent years, neural networks have emerged as an extremely useful supervised learning technique,
031 developed from early origins in the perceptron learning algorithm for classification problems. This
032 model has revolutionized nearly every scientific field involving data analysis and has become one
033 of the most widely used machine learning techniques today. Our work focuses on developing *in-*
034 *terpretable models* for high-stakes applications, where even minor errors can lead to catastrophic
035 consequences. For example, an incorrectly denied parole may result in innocent people suffering
036 years of imprisonment due to racial bias (Kirchner et al., 2016), poor bail decisions can lead to the
037 release of dangerous criminals, and machine learning-based pollution models have misclassified
038 highly polluted air as safe to breathe (McGough, 2018). In such settings, it is crucial to deploy
039 models that are both accurate and transparent.

040 One effective way to achieve this is to identify the best interpretable model within a given hypothesis
041 set—a task that is uniquely suited to global optimal (exact) algorithms. Two-layer networks pos-
042 sess *rich expressivity*, capable of representing any continuous function (Kolmogorov, 1957), while
043 remaining *interpretable*¹ since the output is a linear combination of hidden units. Consequently,
044 the empirical risk minimization (ERM) problem for two-layer networks with ReLU or Maxout
045 activation functions is not only practically useful but also theoretically significant, as it provides a
046 foundation for understanding deep networks.

047
048 ¹Interpretability is a domain-specific notion, so there cannot be an all-purpose definition. As Rudin (2019)
049 noted “Usually, however, an interpretable machine learning model is constrained in model form so that it
050 is either useful to someone, or obeys structural knowledge.” We claim 2-layer ReLU/Maxout networks are
051 interpretable because: 1. **Shallow architecture enables direct inspection**, a 2-layer neural network has a
052 simple, transparent structure. The output is just a linear combination of these hidden unit activations. 2.
053 **Geometric interpretation of ReLU/Maxout network is clear**, with nonlinear activations like ReLU, each
hidden neuron represents a hyperplane decision boundary in the input space. The network, therefore, partitions
the input space into piecewise linear regions.

054 However, finding the ERM solution of a neural network remains extremely challenging. Goel et al.
 055 (2020) showed that minimizing the training error of two-layer ReLU networks under squared loss
 056 is NP-hard, even in the realizable setting (i.e., determining whether zero misclassification is achiev-
 057 able). This result was later extended to L^p loss with $0 \leq p < \infty$ (Froese et al., 2022; Hertrich,
 058 2022). In practice, this difficulty is further compounded when optimizing discrete loss functions,
 059 such as the 0-1 loss (count the number of misclassification), since the ultimate goal typically in-
 060 volves comparing classification accuracy. Even in the simplest case—linear classification using a
 061 single hyperplane—the problem of minimizing discrete losses such as the 0-1 loss is NP-hard. The
 062 best-known exact algorithm for 0-1 loss linear classification has a worst-case time complexity of
 063 $O(N^{D+1})$, where N is the number of data D is the number of features (He & Little, 2023).

064 Nevertheless, since neural networks (NNs) have finite VC-dimension (Bartlett et al., 2019), they
 065 can, in principle, be trained exactly in polynomial time (Mohri et al., 2012). The closest related
 066 work is that of Arora et al. (2016), who proposed a one-by-one enumeration strategy to train a two-
 067 layer ReLU NN to global optimality for convex objective functions. Hertrich (2022) later extended
 068 their result to concave loss functions. However, both studies provide only pseudocode and a vague
 069 complexity analysis, without publicly available implementations or empirical validation. Moreover,
 070 they do not show how to enumerate the hyperplane partitions; instead, they assume these partitions
 071 are given.

072 Arora et al. (2016) further claim, somewhat ambiguously, that their algorithm has a complexity of
 073 $O(2^K N^{DK} \text{poly}(N, D, K))$ for a two-layer ReLU network with K hidden neurons with respect to
 074 N data points in \mathbb{R}^D . The term “ $\text{poly}(N, D, K)$ ” is not explicitly defined; it refers to the complexity
 075 of solving a *convex quadratic programming problem* with K and D variables and $N \times K$ constraints,
 076 and is therefore polynomial in N , which we denote as $O(C_1 N^{C_2})$. Therefore, Arora et al. (2016)’s
 077 algorithm involves not only extremely large exponents ($D \times K + C_2$) but also formidable constant
 078 factors ($2^K \times C_1$).

079 As a result of the ambiguous algorithmic description and complexity analysis, the methods proposed
 080 by Arora et al. (2016) and Hertrich (2022) appear more like a *conjecture*—suggesting the existence
 081 of a polynomial-time algorithm—rather than practically executable solutions. The prohibitive com-
 082 plexity in both the exponent and constant terms renders their algorithms impractical even for small-
 083 scale problems. This is further highlighted by the absence of any implementation in the *eight years*
 084 since their initial publication. Moreover, their algorithms are limited to convex loss functions, while
 085 the fundamental objective of classification is to minimize the number of misclassified instances, i.e.,
 086 the 0-1 loss.

087 Interestingly, Bai et al. (2023) show that training a ReLU network with an L^2 -regularized con-
 088 vex loss objective can be reformulated as a convex program and solved using a general-purpose
 089 solver. However, a major limitation of such solvers is their unpredictable computational complexity.
 090 Moreover, Bai et al. (2023) consider a much simpler problem than optimizing the 0-1 loss—the
 091 original objective in classification—whose discrete nature makes it substantially more difficult to
 092 optimize. Empirical results from Xi & Little (2023) further demonstrate that even for the simplest
 093 network—the linear classifier—using a general-purpose solver to optimize the 0-1 loss exhibits
 094 highly unpredictable behavior and can incur exponential complexity, even in situations where a
 095 polynomial-time solution exists.

096 To address these limitations, this paper introduces the *first globally optimal algorithm for minimizing*
 097 *0-1 loss in two-Layer ReLU and Maxout networks*. Our contributions can be summarized as follows:

- 098 • **First optimal algorithm for 0-1 loss.** We present the first optimal algorithm for the em-
 099 pirical risk minimization problem of two-layer maxout and ReLU networks under the 0-1
 100 loss. In contrast, prior method Arora et al. (2016); Hertrich (2022) are restricted to convex
 101 loss functions, which are comparatively easier to optimize than discrete losses such as the
 102 0-1 loss. Our algorithm extends to any computable loss function by adapting the results of
 103 He & Little (2023) without increasing worst-case complexity.
- 104 • **Two versions of the DeepICE algorithm.** Existing methods (Arora et al., 2016; Hertrich,
 105 2022) rely on hidden assumptions. In practice, generating hyperplane predictions requires
 106 substantial computation, yet their pseudocode initializes all partitions directly without such
 107 effort. Moreover, their complexity analyses are ambiguous, hindering both understanding
 and reproducibility. Consequently, no implementation has emerged in the eight years since

108 their publication. In contrast, by leveraging a general formalism, our algorithm admits
 109 a concise and unambiguous definition in a single equation (1). We further provide two
 110 variants of the DeepICE algorithm: the **sequential version** (Algorithm 2) which reuses
 111 hyperplane predictions via memoization, and the **divide-and-conquer** version (Algorithm
 112 3), which supports parallelization without inter-processor communication.

- 113 • **Improved computational complexity.** Our algorithm achieves a complexity of
 114 $O(2^{K-1} \times N^{DK+1} + N^D \times D^3)$, substantially better than the approaches of Arora et al.
 115 (2016) and Hertrich (2022), which require $O(2^K \times C_1 \times N^{DK+C_2})$ in both the best and
 116 worst cases. In addition, our algorithm exhibits *significantly smaller constant factors*. This
 117 efficiency enables exact solutions for datasets with formidable combinatorial complex-
 118 ity—for example, the problem in Figure 1, which involves 122,468,448,960 configurations,
 119 can be solved within **minutes** using our CUDA implementation.
- 120 • **Robustness.** When combined with heuristics for large-scale problems, and training ac-
 121 curacy is significantly higher than that of SVMs or DNNs trained with gradient descent,
 122 our algorithm demonstrates strong out-of-sample performance. This result challenges the
 123 widely held belief that optimal algorithms necessarily overfit the training data.

124 The remainder of this paper is organized as follows. Section 2 presents our main theoretical
 125 contributions: Section 2.1 introduces the necessary background; Section 2.2 explains how geometric
 126 insights simplify the combinatorics of the problem; Section 2.3 describes the construction of an
 127 efficient recursive nested combination generator, which is the core component of the Deep-ICE al-
 128 gorithm; and Section 2.4 presents the fusion law for the Deep-ICE algorithm. Section 3 reports
 129 empirical results. Finally, Section 4 summarizes our contributions and outlines directions for future
 130 research.

132 2 THEORY

134 2.1 THEORY OF LISTS

136 **List homomorphisms** The *cons-list* is defined as $ListR(A) = [] \mid A : ListR(A)$; that is, a list is
 137 either an empty list [] or a pair consisting of a head element $a : A$ and a tail $x : ListR(A)$, concate-
 138 nated using the *cons* operator $::$. For example, $1 :: [2, 3] = [1, 2, 3]$. This cons-list corresponds to the
 139 singly linked list data structure in imperative languages. The key difference here is that we are re-
 140 ferring to the model of the data structure—i.e., the datatype—rather than a specific implementation.
 141 There is a corresponding *homomorphism* over the cons-list datatype, which is a *structure-preserving*
 142 *map* satisfying

$$143 \quad \begin{aligned} h([]) &= alg_1([]) \\ 144 \quad h(a :: x) &= alg_2(a, h(x)) \end{aligned} \quad (1)$$

146 where $h : ListR(A) \rightarrow X$. In other words, a homomorphism over a cons-list is simply a recursion
 147 that sequentially combines each element a with the accumulated result $h(x)$ using the algebra alg .

148 Alternatively, another list model called the *join-list* is defined as $ListJ(A) = [] \mid A \mid ListJ(A) \cup$
 149 $ListJ(A)$. A join-list is either empty, a singleton list, or the result of joining two sublists. The join
 150 operator \cup is associative, i.e., for any $x, y : ListJ$, we have: $x \cup [a] \cup y = (x \cup [a]) \cup y = x \cup ([a] \cup y)$.
 151 The corresponding homomorphism over join-lists is a structure-preserving map defined as

$$152 \quad \begin{aligned} h([]) &= alg_1([]) \\ 153 \quad h([a]) &= alg_2([a]) \\ 154 \quad h(x \cup y) &= alg_3(h(x), h(y)) \end{aligned} \quad (2)$$

156 An example of a join-list homomorphism that computes the length of a list uses the definitions
 157 $alg_1([]) = 0$, $alg_2(a) = 1$, and $alg_3(x \cup y) = h(x) + h(y)$.

158 **Fusion laws** An important principle associated with both cons-list and join-list homomorphisms
 159 is the *fusion law*, stated in the following two theorems. Its correctness can be verified either by using
 160 induction (Bird & Gibbons, 2020) or universal property (Bird & De Moor, 1996). For brevity, we
 161 omit the proofs here.

162 **Theorem 1.** *Fusion law for the cons-list.* Let f be a function and let h and g be two cons-list
 163 homomorphisms defined by the algebras alg and alg' , respectively. The fusion law states that $f \circ h =$
 164 g if

$$165 \quad f(alg(a, h(x))) = alg'(a, h(x)). \quad (3)$$

167 Similarly, the fusion condition for the join-list is defined as following.

168 **Theorem 2.** *Fusion law for the join-list.* Let f be a function and let h and g be two join-list
 169 homomorphisms defined by the algebras alg and alg' respectively. The fusion law states that $f \circ h =$
 170 g if

$$172 \quad f(alg((h(x), h(y)))) = alg'(f(h(x)), f(h(y))). \quad (4)$$

174 In point-free style², this can be expressed more succinctly as $f \circ alg = alg' \circ f \times f$, where $f \times$
 175 $g(x, y) = (f(x), g(y))$.

176 Equations (3) and (4) are referred to as the *fusion condition*, which forms the basis for proving the
 177 correctness of the derived algorithm.

179 2.2 PROBLEM SPECIFICATION

181 Assume we are given a data list $ds = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N] : [\mathbb{R}^D]$, where the points are in gen-
 182 eral position (i.e., no $d + 1$ points lie on the same $(d - 1)$ -dimensional affine subspace of \mathbb{R}^D),
 183 and $D \geq 2$. We associate each data point \mathbf{x}_n with a true label $t_n \in \{1, -1\}$. We ex-
 184 tend the ReLU activation function to vectors $\mathbf{x} \in \mathbb{R}^D$ via an entry-wise operation $\sigma(\mathbf{x}) =$
 185 $(\max(0, x_1), \max(0, x_2), \dots, \max(0, x_D))$.

187 Now, consider a two-layer feedforward ReLU NN with K hidden units. Each hidden node is as-
 188 sociated with an affine transformation $f_{\mathbf{w}_k} : \mathbb{R}^{D+1} \rightarrow \mathbb{R}$, which corresponds to a homogeneous
 189 hyperplane h_k with normal vector $\mathbf{w}_k \in \mathbb{R}^{D+1}, \forall k \in \mathcal{K} = \{1, 2, \dots, K\}$. These K affine trans-
 190 formations can be represented by a single affine transformation $f(\mathbf{W}_1) : \mathbb{R}^{D+1} \rightarrow \mathbb{R}^K$, where
 191 $\mathbf{W}_1 \in \mathbb{R}^{K \times (D+1)}$, with rows given by the vectors \mathbf{w}_k , i.e., $\mathbf{W}_1^T = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_K)$. The output
 192 of the hidden layer is then passed through the ReLU activation, followed by a linear transformation
 193 $f(\mathbf{W}_2) : \mathbb{R}^K \rightarrow \mathbb{R}$, where $\mathbf{W}_2 = (\alpha_1, \alpha_2, \dots, \alpha_K)$ are the weights connecting the hidden layer to
 194 the output node. Thus, the decision function f_{ReLU} implemented by the network is given by

$$195 \quad f_{\text{ReLU}}(\mathbf{W}_1, \mathbf{W}_2) = f(\mathbf{W}_2) \circ \sigma \circ f(\mathbf{W}_1). \quad (5)$$

196 Alternatively, instead of applying the ReLU activation function σ followed by a linear transformation
 197 $f(\mathbf{W}_2)$, the rank- K maxout network with a single maxout neuron, replaces both components with
 198 a maximum operator $\max_{\mathcal{K}} : \mathbb{R}^K \rightarrow \mathbb{R}$. The resulting decision function is given by

$$200 \quad f_{\text{maxout}}(\mathbf{W}_1) = \max_{\mathcal{K}} \circ f(\mathbf{W}_1) \quad (6)$$

202 Let \mathcal{S} denote the *combinatorial search space*. For the ReLU and maxout networks, we define the
 203 configurations as $s_{\text{ReLU}} = (\mathbf{W}_1, \mathbf{W}_2) \in \mathcal{S}_{\text{ReLU}}$ and $s_{\text{maxout}} = \mathbf{W}_1 \in \mathcal{S}_{\text{maxout}}$, respectively. The ERM
 204 problem for both network types can then be formulated as the following optimization

$$205 \quad s^* = \underset{s \in \mathcal{S}}{\text{argmin}} E_{0-1}(s), \quad (7)$$

207 where $E_{0-1}(s_{\text{ReLU}}) = \sum_{n \in \mathcal{N}} \mathbf{1}[\text{sign}(f_{\text{ReLU}}(\mathbf{W}_1, \mathbf{W}_2, \bar{\mathbf{x}}_n)) \neq t_n]$ for ReLU network, and
 208 $E_{0-1}(s_{\text{maxout}}) = \sum_{n \in \mathcal{N}} \mathbf{1}[\text{sign}(f_{\text{maxout}}(\mathbf{W}_1, \bar{\mathbf{x}}_n)) \neq t_n]$ for maxout networks. In the following
 209 discussion, we primarily focus on the maxout network, as an efficient speed-up technique is avail-
 210 able in this setting. Unless otherwise stated, when E_{0-1} is used it refers to the objective function
 211 for the maxout network by default. Although our algorithm is compatible with any computable
 212 objective function, to enable future acceleration strategies, it is beneficial to restrict the choice of
 213 objective to be a monotonic linear function of the form: $E_{0-1}(s_{\text{ReLU}}) = \sum_{n \in \mathcal{N}} L(\bar{\mathbf{x}}_n, t_n)$, such that
 214 $L(\bar{\mathbf{x}}_n, t_n) \geq 0$.

215 ²Point-free is a style of defining functions without explicitly mentioning their arguments.

216 **An exhaustive search specification** Due to the *distributivity* of the ReLU activation function—*that is*, $\max(0, ab) = a \max(0, b)$, for $a \geq 0$ —the decision function introduced by the 217 two-layer ReLU network (5) can be rewritten as 218

$$220 \quad f_{\text{ReLU}}(\mathbf{W}_1, \mathbf{W}_2, \mathbf{x}) = \sum_{k \in \mathcal{K}} \alpha_k \max(0, \mathbf{w}_k \bar{\mathbf{x}}) = \sum_{k \in \mathcal{K}} z_k \max(0, |\alpha_k| \mathbf{w}_k \bar{\mathbf{x}}), \quad (8)$$

222 where $\bar{\mathbf{x}} = (\mathbf{x}, 1) \in \mathbb{R}^{D+1}$ and $z_k \in \{1, -1\}$. 223

224 Similarly, the point-wise definition of the rank- K maxout neuron are defined as 225

$$f_{\text{MO}}(\mathbf{W}_1, \mathbf{x}) = \max_{k \in \mathcal{K}} (\mathbf{w}_k \bar{\mathbf{x}}) \quad (9)$$

227 The decision function for a two-layer maxout network are simply the linear combination of maxout 228 neurons: $f_{\text{maxout}}(\mathbf{W}_1, \mathbf{W}_2, \mathbf{x}) = \sum_{k \in \mathcal{K}} \alpha_k (f_{\text{MO}}(\mathbf{W}_1, \mathbf{x}))$. 229

230 From a combinatorial perspective, the direction of the normal vector does not affect the geometric 231 definition of its associated hyperplane. Therefore, equations (8) and (9) indicate that the decision 232 boundary of a *two-layer ReLU* or a single *rank- K maxout* neuron are fundamentally governed by a 233 K -combination of hyperplanes, and then combinations of hyperplanes are composed again to form 234 deep neural network. Although the set of all possible hyperplanes in \mathbb{R}^D appears to exhibit infinite 235 combinatorial complexity—since each hyperplane is parameterized by a continuous-valued normal 236 vector \mathbf{w}_k —the finiteness of the dataset imposes a crucial constraint: **only a finite number of** 237 **distinct data partitions** can be induced by these hyperplanes. This observation introduces a natural 238 notion of **equivalence classes** over the space of hyperplanes, where two hyperplanes are considered 239 in the same equivalence class if they induce the same partition over the dataset. 240

241 Indeed, according to the 0-1 loss linear classification theorem given by He & Little (2023), when 242 optimizing the 0-1 loss (i.e., minimizing the number of misclassified data points), a hyperplanes in 243 \mathbb{R}^D can be characterized as the D -combinations of data points. Specifically, each critical hyperplane 244 corresponds to the affine span of D data points, leading to a total of $\binom{N}{D} = O(N^D)$ possible 245 hyperplanes. This result implies that although the parameter space is continuous, the effective 246 combinatorial complexity of the 0-1 loss classification problem is polynomial in N (for fixed D). Each 247 two-layer network with K hidden neurons induces up to 2^K distinct partitions of the input space, 248 determined by 2^K possible directions of the normal vectors. These configurations can be encoded 249 as a length- K binary assignment $\text{asgn} = (a_1, \dots, a_K) \in \{1, -1\}^K$. Accordingly, a two-layer ReLU 250 or maxout network can be characterized by the pair $\text{cnfg} = (nc, \text{asgn}) : (NC, \{1, -1\}^K)$, where 251 $nc : NC = [[\mathbb{R}^D]]$ denotes a nested combination, representing a K -combination of hyperplanes. 252

253 Thus, the combinatorial search space of a two-layer NN, denoted $\mathcal{S}(N, K, D)$ consists of the *Cartesian* 254 *product* of all possible K -combinations of hyperplanes and the 2^K binary assignments. A provably 255 correct algorithm for solving the ERM problem of the two-layer network can be constructed by 256 exhaustively exploring all configurations in $\mathcal{S}(N, K, D)$ and selecting the network that minimizes 257 the 0-1 loss. This procedure is formally specified as 258

$$DeepICE(D, K) = \text{min}_{0-1}(K) \circ \text{eval}(K) \circ \text{cp}(\text{basgns}(K)) \circ \text{nestedCombs}(D, K) \quad (10)$$

259 where $DeepICE(D, K) : [\mathbb{R}^D] \rightarrow (NC, \{1, -1\}^K) \times \text{Css} \times NCss$, and $NCss = [[[[\mathbb{R}^D]]]]$ 260 and $\text{Css} = [[[[\mathbb{R}^D]]]]$, represent nested combinations and combinations, respectively. For the 261 parallelization concerns, $DeepICE(D, K)$ returns not only the optimal configuration for the input 262 dataset \mathcal{D} but also the intermediate representations $NCss$ and Css . In the specification above, 263 the input list $xs : [\mathbb{R}^D]$ is left implicit. The function $DeepICE(D, K, ds)$ generates *all possible* 264 K -combinations of hyperplanes (K -hidden neuron networks) by and $\text{basgns}(K)$ produces all 265 binary sign assignments of length K . These are combined using the *Cartesian product* operator 266 $\text{cp}(x, y) = [(a, b) \mid a \leftarrow x, b \leftarrow y]$. Each resulting network is then evaluated by $\text{eval}(K)$, which 267 computes the objective value by considering all 2^K possible orientations of the hyperplanes and 268 selecting the best. Finally, $\text{min}_{0-1}(K)$ selects the configuration that minimizes the 0-1 loss. 269

In *constructive algorithmics* community (Bird & De Moor, 1996), programs are initially defined as 270 provably correct specifications, such as—(10)—from which efficient implementations are derived 271

270 using algebraic laws like fusion. Efficiency arises both from applying fusion transformations and
 271 from designing efficient generators. To the best of our knowledge, no prior work has explored
 272 generators for nested combinations. Moreover, fusion requires that the generator be a recursive
 273 homomorphism—such as a cons-list or join-list homomorphism. This precludes the *non-recursive*,
 274 one-by-one generation approach of Arora et al. (2016) which offers opportunity for the application
 275 of acceleration techniques.

276 The key contribution of this paper is the development of an efficient recursive nested combination
 277 generator, $\text{nestedCombs}(D, K, xs)$, defined over a join-list homomorphism, making it amenable to
 278 fusion. The generator is tailored for efficient vectorized and parallelized implementations, making it
 279 ideal for GPU execution. We further demonstrate that $\text{min}_{0,1}$, eval , and cp are all fusible with this
 280 generator. Additionally, the algorithm eliminates the need for an initialization step to pre-store all
 281 hyperplanes and continuously produces candidate solutions during runtime, allowing approximate
 282 solutions to be obtained before the algorithm completes.

283 2.3 AN EFFICIENT NESTED COMBINATION GENERATOR JOIN-LIST

284 The first step for constructing an efficient nested combinations generator requires the design of
 285 an efficient K -combination generator first. Previously, He & Little (2024) proposed an efficient
 286 combination generator, $kcombs$, based on a join-list homomorphism, which we extend to develop a
 287 nested combination generator.

288 The *nested combination-combination* generator is specified as following

289 $\text{nestedCombs}(D, K) = \langle \text{setEmpty}(D), kcombs(K) \circ \text{(!}(D) \rangle \circ kcombs(D)$ (11)
 290 where $\langle f, g \rangle(a) = (f(a), g(a))$, and $\text{(!}(D, xs)$ denotes indexing into the D th element of the list xs .
 291 Equation (11) has the type $\text{nestedCombs} : \text{Int} \times \text{Int} \times [\mathbb{R}^D] \rightarrow (\text{Css}, \text{NCss})$. It first generates
 292 all possible D -combinations, and then all size D -combinations which are then used to construct
 293 K -combinations. Once this process is complete, the D -combinations are no longer needed and are
 294 eliminated by applying $\text{setEmpty}(D)$, which sets the D th element of the list to an empty value.

295 Although the specification in (11) is correct, it requires storing the intermediate result returned by
 296 $kcombs(D, ds)$, which has a size of $O(N^D)$. Storing all these combinations is both memory-
 297 intensive and inefficient. Instead, if we can *fuse* the function $\langle \text{setEmpty}(D), kcombs(K) \circ (\text{(!}D) \rangle$
 298 directly into the $kcombs(D)$ generator, the nested combination generator can be redefined as a single
 299 recursive process. This transformation enables incremental generation of nested combinations,
 300 eliminating the need to materialize all combinations in advance. According to the fusion law 2, this
 301 requires constructing an algebra nestedCombsAlg that satisfies the following fusion condition

$$302 f \circ kcombsAlg(D) = \text{nestedCombsAlg}(D, K) \circ f \times f \quad (12)$$

303 where $f = \langle \text{setEmpty}(D), kcombs(K) \circ (\text{(!}D) \rangle$, and the definition of $kcombsAlg$ can be found in
 304 (He & Little, 2024)

305 The derivation of $\text{nestedCombsAlg}(D, K)$ for the empty and singleton cases is relatively straight-
 306 forward. Since we assume $D \geq 2$, no nested combinations can be constructed in these cases. For
 307 the recursive case—i.e., the third pattern in the join-list homomorphism—we show that the fusion
 308 condition holds when this third pattern of $\text{nestedCombsAlg}(D, K)$ is defined as

$$309 \begin{aligned} 310 & \langle \text{setEmpty}(D) \circ KcombsAlg(K) \circ Ffst, \\ 311 & KcombsAlg(K) \circ \langle Kcombs(K) \circ \text{(!}(D) \circ KcombsAlg(D) \circ Ffst, KcombsAlg(K) \circ Fsnd \rangle \rangle, \\ 312 & \end{aligned} \quad (13)$$

313 where $Ffst((a, b), (c, d)) = (a, c)$, $Fsnd((a, b), (c, d)) = (b, d)$. The proof of the fusion condition
 314 is rather complex; for readability, the complete proof is provided in Appendix A.2. Therefore, we
 315 can implement $\text{nestedCombsAlg}(D, K)$ as

$$316 \begin{aligned} 317 & \text{nestedCombsAlg}_1(d, k, []) = ([[[]]], [[[[]]]]) \\ 318 & \text{nestedCombsAlg}_2(d, k, [x_n]) = ([[[]], [[x_n]]], [[[[]]]]) \\ 319 & \text{nestedCombsAlg}_3(d, k, (css_1, ncss_1), (css_1, ncss_1)) = (\text{setEmpty}(D, css), ncss), \end{aligned} \quad (14)$$

324 where $css = kcombsAlg(D, css_1, css_2)$, and $ncss$ is defined as
 325

$$326 \quad ncss = \begin{cases} [[\]]] & css!!(D) = [\] \\ 327 \quad kcombsAlg(K, kcombsAlg(K, ncss_1, ncss_2), kcombs(K, css!!(D))) & \text{otherwise} \end{cases}, \\ 328 \quad (15)$$

329 Thus an efficient recursive program for $nestedCombs$ is defined as the following join-list homo-
 330 morphism

$$331 \quad netedCombs(D, K, [\]) = netedCombsAlg_1(D, K, [\]) \\ 332 \quad netedCombs(D, K, [x_n]) = netedCombsAlg_2(D, K, [x_n]) \\ 333 \quad netedCombs(D, K, xs \cup ys) = \\ 334 \quad \quad \quad netedCombsAlg_3(D, K, netedCombs(D, K, xs), netedCombs(D, K, ys)), \\ 335$$

336 Informally, the function $nestedCombsAlg(D, K)$ first takes as input $((Css, NCss), (Css, NCss))$
 337 which is returned by $f \times f$. The combination set is updated using the compo-
 338 sition $setEmpty(D) \circ KcombsAlg(K) \circ Ffst$ where the first elements of the
 339 tuple are updated, and the D -combinations are cleared. At the same time, the
 340 function $\langle Kcombs(K) \circ !!(D) \circ KcombsAlg(D) \circ Ffst, KcombsAlg(K) \circ Fsnd \rangle$:
 341 $((Css, NCss), (Css, NCss)) \rightarrow (NCss, NCss)$ updates the combinations and nested
 342 combinations in the tuple, respectively. The newly generated D -combinations are then used to produce
 343 new nested combinations. Finally, the two nested combinations in the tuple are merged using
 344 $KcombsAlg(K) : (NCss, NCss) \rightarrow NCss$.
 345

346 2.4 DEEP INCREMENTAL CELL ENUMERATION (DEEP-ICE) ALGORITHM AND SYMMETRY 347 FUSION

348 As noted, working with the maxout network enables the application of an additional fusion principle—an extension of the symmetric fusion theorem proposed by He & Little (2023) for linear
 349 classification.
 350

351 **Theorem 3.** *Symmetric fusion for maxout neuron.* Given a maxout neuron defined by K hyper-
 352 plane. If the predictions associated with these K hyperplanes are known, then the predictions for
 353 the configuration obtained by reversing the direction of all normal vectors can be obtained directly.
 354

355 *Proof.* See appendix A.1. □
 356

357 The symmetric fusion theorem eliminates half of the computation, allowing us to enumerate all 2^K
 358 possible orientations of hyperplanes using only 2^{K-1} of them. Consequently, the problem 10 can
 359 be reformulated more efficiently by applying the symmetric fusion
 360

$$362 \quad DeepICE(D, K) = min_{0-1}(K) \circ eval'(K-1) \circ nestedCombs(D, K), \\ 363$$

364 where $eval'(K-1) = eval(K) \circ cp(basgns(K-1))$.
 365

We are now ready to derive the Deep-ICE algorithm, which follows as a direct consequence of the
 366 following lemma.

367 **Lemma 1.** Let $DeepICEAlg$ be defined as
 368

$$369 \quad DeepICEAlg(D, K) = min_{0-1}(K) \circ eval'(K-1) \circ nestedCombsAlg(D, K), \quad (17)$$

370 where $eval'(K-1)$ evaluates E_{0-1} for each nested combination returned by
 371 $nestedCombsAlg(D, K)$. Then the following fusion condition holds:
 372

$$373 \quad DeepICE(D, K) = f \circ nestedCombsAlg(D, K) = DeepICEAlg(D, K) \circ f \times f, \quad (18)$$

375 where $f = min_{0-1}(D) \circ eval'(K-1)$, which defines Algorithm (1).
 376

377 See Appendix A.3 for detailed proof. Algorithm (17) has a worst-case complexity of $O(N^{DK+1})$,
 which is formally established in the following theorem.

378 **Theorem 4.** The DeepICE algorithm has a time complexity of
 379 $O\left(K \times N \times 2^{K-1} \times \left(\binom{N}{D} + N \times D^3 \times \binom{N}{D} \right)\right)$ which is strictly smaller than
 380 $O(N^{DK+1})$, and a space complexity of $O\left(\left(\binom{N}{D} \right) \times K + \left(\binom{N}{D-1} \right) \times N\right)$, which is
 381 strictly smaller than $O(N^{D(K-1)})$.
 382

383 See Appendix A.5 for detailed proof.
 384

385 In practice, we provide two implementations for (17) (see A.4). The sequential version enables
 386 two techniques that substantially improve memory efficiency and runtime performance. The D&C
 387 version, which builds upon the sequential definition, supports embarrassingly parallel execution.
 388

389 Figure 2 show that the empirical wall-clock runtime of our algorithm aligns with our worst-case
 390 complexity analysis.
 391

392 **Generalization to deep neural networks** Our algorithm generalizes naturally to deep neural net-
 393 works. Deeper networks can be viewed as compositions of hidden neurons from preceding layers,
 394 where linear combinations of these neurons form the predictions of the subsequent layer. Hence,
 395 each layer is essentially a function of the predictions generated in the layer before it. Suppose the
 396 i -th hidden layer contains K_i hidden nodes. Computing all possible predictions for this layer has
 397 complexity $O(N^{D \times K_1 \times K_2 \times K_3 \dots \times K_i})$. For instance, the optimal solution of a three-layer network
 398 is a nested-nested combination, while a four-layer network corresponds to a nested-nested-nested
 399 combination. Solving a three-layer network requires complexity $O(N^{D \times K_1 \times K_2})$. Consequently,
 400 obtaining exact solutions for deeper networks is practically infeasible due to combinatorial explo-
 401 sion.
 402

403 One way to mitigate this challenge is to train a deep network greedily, where the computation
 404 of the second hidden layer depends only on the first. In this case, the complexity becomes
 405 $O(N^{D \times K_1} + K_1^{K_2} + K_2^{K_3} \dots + K_{i-1}^{K_i})$ for network with i layers. Under this scheme, regardless
 406 of depth, the overall complexity is dominated by that of the first hidden layer.
 407

410 3 EMPIRICAL ANALYSIS

411 We evaluate the performance of our Deep-ICE algorithm against two baselines: support vector ma-
 412 chines (SVMs) and an identical neural network architecture trained using Adam algorithm, referred
 413 to as MLP. The MLP is optimized with binary cross-entropy loss with logits, using the entire train-
 414 ing dataset as a single batch in each epoch. The evaluation is conducted across 11 datasets from the
 415 UCI Machine Learning Repository. Since we assume data are in general position, which requires
 416 affine independence of the data, we remove duplicate entries and add a zero mean Gaussian noise
 417 (standard deviation 1×10^{-8} , small enough that it does not affect the results of SVM and MLP) to
 418 each dataset. All experiments were conducted on a single GeForce RTX 4060 Ti GPU.
 419

420 **Exact solution vs. gradient descent** Figure 1 illustrates the ERM solution and the gradient de-
 421 scent outcome for a rank-2 maxout network with one maxout neuron. Previously, Xi & Little (2023)
 422 reported 0-1 losses of 19 and 23 for the global optimal linear model and the SVM, respectively, on
 423 this dataset. In contrast, ERM solution obtained by DeepICE, achieves only 16 misclassifications,
 424 compared to 25 for the same architecture trained via gradient descent. Notably, despite a rank-2
 425 maxout neuron involves two hyperplanes, the gradient-based solution uses only one; the second
 426 hyperplane lies outside the data region and does not contribute to predictions.
 427

428 **Exact solution over coresets** Exact solutions typically require an exhaustive exploration of the
 429 configuration space. Achieving exact optimality on training data is often unnecessary, as such solu-
 430 tions may not generalize well to out-of-sample data.
 431

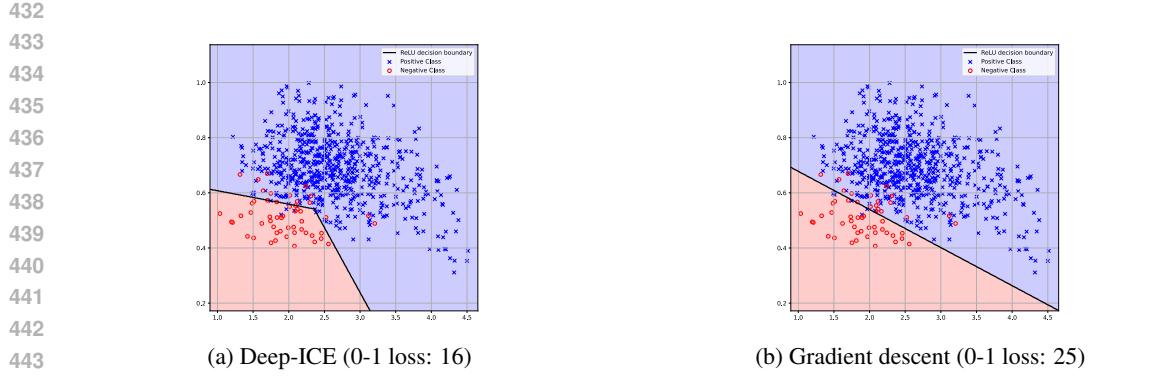


Figure 1: The global optimal solution of a rank-2 maxout network with one neuron on a real-world dataset containing $N = 704$ data items in \mathbb{R}^2 .

Table 1: Five-fold cross-validation results on the UCI dataset. We compare the performance of our Deep-ICE algorithm—trained either with the coresset selection method or directly by Deep-ICE algorithm (marked by *)—against approximate methods: SVM and a maxout network trained via gradient descent (denoted as MLP). Results are reported as mean 0–1 loss over training and test sets in the format: Training Error / Test Error (Standard Deviation: Train / Test). The best-performing algorithm in each row is highlighted in bold.

Dataset	N	D	Deep-ICE (%) ($K = 1$)	Deep-ICE (%) ($K = 2$)	Deep-ICE (%) ($K = 3$)	SVM (%)	MLP (%) ($K = 1$)	MLP (%) ($K = 2$)	MLP (%) ($K = 3$)
Ai4i	10000	6	97.45/97.40 (0.10/0.36)	97.90/97.82 (0.01/0.35)	97.71/97.71 (0.10/0.25)	96.64/96.48 (0.11/0.44)	97.01/96.90 (0.11/0.40)	97.20/97.02 (0.18/0.39)	97.56/97.55 (0.13/0.46)
Caesr	72	5	*74.55/82.67 (7.18/16.11)	89.45/88.00 (4.21/9.80)	84.36/86.67 (7.51/5.96)	72.00/57.33 (7.14/6.80)	71.64/62.67 (6.76/6.80)	76.36/56.00 (6.19/9.04)	81.82/60.00 (1.15/11.93)
VP	704	2	*96.94/ 97.59 (0.44/1.46)	97.76/ 97.59 (0.41/1.65)	97.80/97.45 (0.43/1.71)	96.77/97.02 (0.44/2.07)	96.63/96.74 (0.50/2.13)	96.77/97.02 (0.73/1.64)	96.63/96.74 (0.50/2.13)
Spesis	975	3	*94.47/92.88 (0.10/0.61)	96.43/95.26 (0.49/1.82)	96.24/ 95.36 (0.22/1.62)	94.46/92.43 (0.10/0.38)	94.46/92.43 (0.10/0.38)	94.46/92.55 (0.10/0.51)	94.46/92.43 (0.10/0.38)
HB	283	3	*77.18/75.44 (0.45/2.48)	80.11/77.19 (0.74/2.48)	80.85/78.53 (1.02/3.57)	72.40/71.23 (0.46/2.38)	72.82/74.80 (0.66/2.08)	75.34/75.26 (0.86/2.51)	75.97/73.92 (0.18/2.08)
BT	502	4	*77.13/76.36 (1.46/2.71)	79.59/77.98 (0.62/3.38)	79.36/ 77.98 (0.59/2.88)	75.09/70.14 (0.51/0.76)	76.17/73.54 (1.05/3.64)	76.11/73.54 (1.01/2.06)	76.29/75.45 (1.02/2.29)
AV	2342	7	89.89/88.52 (0.33/1.56)	90.34/89.04 (0.15/1.39)	89.77/88.76 (0.33/1.75)	87.16/87.26 (0.31/1.24)	86.92/87.20 (0.24/0.71)	87.18/86.88 (0.24/0.66)	87.63/87.31 (0.44/0.73)
SO	1941	27	77.77/76.03 (0.43/0.83)	77.13/75.33 (0.81/1.32)	76.66/74.95 (0.74/1.38)	73.67/70.80 (0.52/2.05)	74.81/72.13 (0.44/1.63)	77.09/71.71 (0.26/1.66)	78.33/74.68 (0.40/2.31)
DB	1146	9	78.78/79.69 (0.41/0.69)	83.60/ 81.37 (0.43/2.52)	83.88/81.32 (0.98/2.23)	69.72/67.62 (0.65/2.86)	76.13/74.77 (0.41/2.01)	77.64/76.19 (0.65/1.06)	77.85/75.11 (0.89/0.72)
RC	3810	7	93.88/92.45 (0.28/1.02)	93.91/ 93.10 (0.24/1.02)	93.94/92.98 (0.21/0.98)	93.05/91.75 (0.25/1.12)	93.30/92.10 (0.28/1.07)	93.30/92.15 (0.30/1.15)	93.30/92.12 (0.29/1.13)
SS	51433	3	86.57/ 86.72 (0.03/0.15)	86.60/86.72 (0.04/0.16)	86.59/86.70 (0.03/0.11)	82.77/82.75 (0.06/0.22)	79.73/79.73 (0.15/0.20)	79.65/79.65 (0.18/0.16)	79.48/79.73 (0.07/0.04)

Instead, generating multiple high-quality candidate solutions enables selection based on validation or test performance. For example, SVMs provide tunable hyperparameters to generate alternative models, while gradient-based MLPs yield varied solutions via different random seed initializations. However, both approaches require computationally expensive retraining to explore alternatives, often without principled guidance. Attempts to automate this process frequently rely on strong probabilistic assumptions that rarely hold in practice (Shahriari et al., 2015; Klein et al., 2017) or employ empirical heuristics (Liao et al., 2022; Wainer & Fonseca, 2021; Duan et al., 2003), resulting in substantial computational waste due to redundant retraining.

A common approach to address this issue in studies of exact algorithms is to use multiple random initializations. However, this approach often becomes ineffective as data scales increase. Each run typically uses a manually set time limit, but this still results in redundant retraining. To address these challenges, we propose a coresset selection method, detailed in Algorithm 4. Instead of computing the exact solution across the entire dataset, which is computationally infeasible for large K and D ,

486 our approach identifies the exact solution for the most representative subsets. By shuffling the data,
 487 the input will unlikely be the ordering that is pathological i.e., one where the optimal solution is
 488 obtained only at a late stage of the recursive process in the Deep-ICE algorithm. This method can
 489 effectively explore thousands of candidate configurations in the coresets that have lower training
 490 accuracy than SVMs and MLPs. In our experiments, we trained a two-layer maxout network using
 491 the algorithmic process described in 4. In 5-fold cross-validation tests, our method demonstrated
 492 significantly better performance. These results consistently outperformed those of SVMs and the
 493 same maxout network trained with gradient descent.

494 Due to the ability to generate an extensive number of candidate solutions, we observed several in-
 495 teresting findings in our experiments. Although extensive prior research suggests that the maximal-
 496 margin (MM) classifier (i.e., SVM) offers theoretical guarantees for test accuracy (Mohri et al.,
 497 2012), we found that the MM classifier does not always perform as expected. Specifically, we did
 498 not find clear evidence that the MM classifier consistently achieves better out-of-sample perfor-
 499 mance. A more detailed analysis is provided in Appendix A.7.

500 Furthermore, Karpukhin et al. (2024) proposed an interesting framework that introduces stochastic-
 501 ity into the model’s output and optimizes the expected accuracy, allowing gradient-based methods to
 502 directly optimize accuracy rather than surrogate losses. However, despite being named EXACT, the
 503 method is actually short for “EXpected ACCuracy opTimization” and is therefore a stochastic ap-
 504 proach rather than a deterministic exact algorithm. We include a comparison with their framework
 505 in Appendix A.6, which shows that it outperforms MLPs trained with surrogate losses.

506 Additionally, the wall-clock runtime comparison between EXACT and MLP is provided in A.6.

508 4 DISCUSSION AND CONCLUSION

510 In this paper, we present the first algorithm for finding the globally minimal empirical risk of two-
 511 layer neural networks under 0–1 loss. The algorithm achieves polynomial time and space complexity
 512 for fixed D and K . The DeepICE algorithm is specifically designed to optimize both efficiency and
 513 parallelizability. Even without bounding techniques to accelerate computation, our implemen-
 514 tation demonstrates strong performance: it can handle over 1×10^{11} configurations within minutes,
 515 highlighting the intrinsic efficiency of our algorithm independent of any bounding methods. Incorpor-
 516 ating additional bounding techniques in future research could further enhance its scalability.

517 Another key contribution of this paper is the empirical evidence that optimal solutions do not nec-
 518 cessarily overfit the data. Our out-of-sample tests indicate that solutions trained using our method,
 519 which achieve significantly higher training accuracy than SVMs or two-layer neural networks, still
 520 perform well on unseen data when model complexity is properly controlled. This finding points to
 521 a promising avenue for applying our algorithm to problems where both interpretability and model
 522 complexity are critical.

523

524 REPRODUCIBILITY STATEMENT

525

526 To facilitate reproducibility, we provide **three** versions of our algorithm: a *recursive version*, a
 527 *divide-and-conquer version*, and a *sequential definition* in Appendix A.4. The recursive version
 528 is written clearly in a functional style and can be executed in a functional programming language
 529 with minimal syntactic adjustments, allowing the algorithm to run with no ambiguity. In addition,
 530 imperative implementations in both Python and CUDA are included in supplementary materials,
 531 along with all datasets used in our experiments. Enabling independent verification and replication
 532 of the results reported in this paper.

533

534 REFERENCES

535

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
 536 networks with rectified linear units. *ArXiv preprint ArXiv:1611.01491*, 2016.

537

Yatong Bai, Tanmay Gautam, and Somayeh Sojoudi. Efficient global optimization of two-layer relu
 538 networks: Quadratic-time algorithms and adversarial training. *SIAM Journal on Mathematics of
 539 Data Science*, 5(2):446–474, 2023.

540 Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
 541 and pseudodimension bounds for piecewise linear neural networks. *Journal of Machine Learning*
 542 *Research*, 20(63):1–17, 2019.

543 Richard Bird and Oege De Moor. The algebra of programming. *NATO ASI DPD*, 152:167–203,
 544 1996.

545 Richard Bird and Jeremy Gibbons. *Algorithm Design with Haskell*. Cambridge University Press,
 546 2020.

547 Kaibo Duan, S Sathiya Keerthi, and Aun Neow Poo. Evaluation of simple performance measures
 548 for tuning svm hyperparameters. *Neurocomputing*, 51:41–59, 2003.

549 Vincent Froese, Christoph Hertwich, and Rolf Niedermeier. The computational complexity of relu
 550 network training parameterized by data dimensionality. *Journal of Artificial Intelligence Re-*
 551 *search*, 74:1775–1790, 2022.

552 Surbhi Goel, Adam Klivans, Pasin Manurangsi, and Daniel Reichman. Tight hardness results for
 553 training depth-2 relu networks. *ArXiv preprint ArXiv:2011.13550*, 2020.

554 Xi He and Max A Little. An efficient, provably exact algorithm for the 0-1 loss linear classification
 555 problem. *ArXiv preprint ArXiv:2306.12344*, 2023.

556 Xi He and Max A Little. EKM: an exact, polynomial-time algorithm for the k -medoids problem.
 557 *ArXiv preprint ArXiv:2405.12237*, 2024.

558 Christoph Hertwich. *Facets of neural network complexity*. Technische Universitaet Berlin (Germany),
 559 2022.

560 Ivan Karpukhin, Stanislav Dereka, and Sergey Kolesnikov. Exact: How to train your accuracy.
 561 *Pattern Recognition Letters*, 185:23–30, 2024.

562 Julia Kirchner, Surya Angwin, Jeff Mattu, and Lauren Larson. Machine bias: There’s software used
 563 across the country to predict future criminals. and it’s biased against blacks. *Pro Publica: New*
 564 *York, NY, USA*, 2016.

565 Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian op-
 566 timization of machine learning hyperparameters on large datasets. In *Artificial intelligence and*
 567 *statistics*, pp. 528–536. PMLR, 2017.

568 Andrei Nikolaevich Kolmogorov. On the representations of continuous functions of many variables
 569 by superposition of continuous functions of one variable and addition. In *Dokl. Akad. Nauk USSR*,
 570 volume 114, pp. 953–956, 1957.

571 Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma. An empirical study of the impact of hyperparameter
 572 tuning and model optimization on the performance properties of deep neural networks. *ACM*
 573 *Transactions on Software Engineering and Methodology (TOSEM)*, 31(3):1–40, 2022.

574 Michael McGough. How bad is sacramento’s air, exactly? google results appear at odds with reality,
 575 some say. *Sacramento Bee*, 7, 2018.

576 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of machine learning*.
 577 MIT press, 2012.

578 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
 579 use interpretable models instead. *Nature machine intelligence*, 1(5):206–215, 2019.

580 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
 581 human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):
 582 148–175, 2015.

583 Jacques Wainer and Pablo Fonseca. How to tune the rbf svm hyperparameters? an empirical eval-
 584 uation of 18 search algorithms. *Artificial Intelligence Review*, 54(6):4771–4797, 2021.

585 He Xi and Max A. Little. Exact 0-1 loss linear classification algorithms, April 2023. URL <https://github.com/XiHegrt/E01Loss>.

594 A PROOFS
595596 A.1 SYMMETRIC FUSION FOR MAXOUT NETWORK
597598 **Theorem 5.** *Symmetric fusion for maxout network.* Given a maxout network defined by K hyper-
599 plane (neurons). If the predictions associated with this configuration of K hyperplanes are known,
600 then the predictions for the configuration obtained by reversing the direction of all normal vectors
601 can be obtained directly from the original hyperplanes, without explicitly recomputing the predic-
602 tions for the reversed hyperplanes.603 *Proof.* Consider a maxout network defined by K hyperplanes $\mathcal{H} = \{h_k \mid k \in \mathcal{K} = \{1, 2, \dots, K\}\}$,
604 where each hyperplane h_k is defined by a normal vector $\mathbf{w}_k : \mathbb{R}^D$. Together these hyperplanes
605 define a decision function $f_{\mathbf{W}_1, \mathbf{W}_2}(\mathbf{x})$. Equation (10) implies that a data item \mathbf{x} is predicted to
606 negative class by $f_{\mathbf{W}_1, \mathbf{W}_2}(\mathbf{x})$ if and only it lies in the negative sides of all hyperplanes in \mathcal{H} , because
607 $f_{\mathbf{W}_1, \mathbf{W}_2}(\mathbf{x})$ will return positive as long as there exists a k such that $\mathbf{w}_k \mathbf{x} \geq 0$. Therefore, the
608 prediction labels of the two-layer NN $\mathbf{y}_{\text{maxout}}$ consists of the union of positive prediction labels for
609 each hyperplane h_k , and the remaining data item, which lies in the negative side with respect to all
610 K hyperplanes will be assigned to negative class. In other words, if we denote \mathbf{y}^+ and \mathbf{y}^- as
611 the positive and negative prediction indexes of \mathbf{y} respectively, then we have

612
$$\begin{aligned} \mathbf{y}_{\text{maxout}}^+ &= \bigcup_{k \in \mathcal{K}} \mathbf{y}_k^+ \\ \mathbf{y}_{\text{maxout}}^- &= \mathcal{D} \setminus \mathbf{y}_{\text{maxout}}^+ \end{aligned} \tag{19}$$

613 where \setminus is defined as the set difference and $\bigcup_{k \in \mathcal{K}} \mathbf{y}_k^+$ denote the union of \mathbf{y}_k^+ , $k \in \mathcal{K}$. For instance, if
614 $\mathbf{y}_1 = (1, 1, -1, -1)$ and $\mathbf{y}_2 = (-1, 1, 1, -1)$, then $\mathbf{y}_1^+ = \{1, 2\}$ and $\mathbf{y}_2^+ = \{2, 3\}$, thus $\mathbf{y}_1^+ \cup \mathbf{y}_2^+ =$
615 $\{1, 2, 3\}$ 616 For a two-layer maxout NN, the data points can be classified into three categories based on their
617 relationship to the K hyperplanes defined by the K hidden neurons:618 1. Data points that lie in the region where all K hyperplanes are on the positive side.
619 2. Data points that lie in the region where all K hyperplanes are on the negative side.
620 3. Data points that lie in the region where some hyperplanes are on the positive side and others are
621 on the negative side.622 If we reverse the orientation of all K hyperplanes in \mathcal{H} , i.e., $\mathbf{w}_k = -\mathbf{w}_k$. Only data points that
623 fall into the class of the first two cases will be reversed, because the prediction labels of these data
624 be reversed if the orientation for all hyperplanes is reversed, the classification of data points in the
625 third category will remain unchanged. This is because (8) implies that, the prediction labels of
626 the two-layer NN, $\mathbf{y}_{\text{maxout}}$, consist of the union of positive prediction labels for each hyperplane
627 h_k . Therefore, reversing the direction of all hyperplanes will affect only data points \mathbf{x}_n that lie in
628 the positive class for all hyperplanes, ($n \in \mathbf{y}_k^+$, $\forall k \in \mathcal{K}$) or the negative class for all hyperplanes
629 ($n \in \mathbf{y}_k^-$, $\forall k \in \mathcal{K}$) will be change the label. For any other data points, there always exists at least
630 one hyperplane that classifies them as negative. After reversing the direction of all hyperplanes, this
631 same hyperplane will classify these points as positive, leaving their prediction labels unchanged. \square 632 A.2 PROOF OF NESTED COMBINATION GENERATOR
633634 Given *nestedCombsAlg* (D, K) defined as
635

636
$$\begin{aligned} &\left\langle \text{setEmpty}(D) \circ K\text{combsAlg}(K) \circ \text{Ffst}, \right. \\ &\left. K\text{combsAlg}(K) \circ \left\langle K\text{combs}(K) \circ !!(D) \circ K\text{combsAlg}(D) \circ \text{Ffst}, K\text{combsAlg}(K) \circ \text{Fsnd} \right\rangle \right\rangle, \end{aligned} \tag{20}$$

637 We need to verify the following fusion condition
638

648

$$f \circ KcombsAlg(D) = nestedCombsAlg(D, K) \circ f \times f, \quad (21)$$

649 where $f = \langle setEmpty(D), Kcombs(K) \circ !!(D) \rangle$. In other words, we need to prove that the following diagram commutes

650

651

652

653

654

655

656

657

658

659

660

661

$$\begin{array}{ccc}
 & \xleftarrow{kcombsAlg(D)} & (Css, Css) \\
 \xleftarrow{f} & & \downarrow f \times f \\
 (Css, NCss) & \xleftarrow{nestedCombsAlg(D, K)} & ((Css, NCss), (Css, NCss))
 \end{array}$$

However, proving that the above diagram commutes is challenging. Instead, we expand the diagram by presenting all intermediate stage explicitly

662

663

$$\begin{array}{ccc}
 & \xleftarrow{KCsA(D)} & (Css, Css) \\
 \downarrow \langle SE(D), !!(D) \rangle & & \downarrow \langle SE(D), !!(D) \rangle \times \langle SE(D), !!(D) \rangle \\
 (Css, Cs) & \xleftarrow{SE(D) \times \cup} & ((Css, Cs), (Css, Cs)) \\
 \downarrow id \times KCs(K) & & \downarrow (id \times KCs(K)) \times (id \times KCs(K)) \\
 (Css, NCss) & \xleftarrow{SE(D) \times KCsA(K) \circ \cup} & ((Css, NCss), (Css, NCss))
 \end{array}$$

where $\cup(a, b) = a \cup b$, and SE , KCs and $KCsA$ are short for $setEmpty$, $Kcombs$ and $KcombsAlg$.

To prove the fusion condition, we first need to verify the two paths between (Css, Css) and (Css, Cs) . In other words, we need to prove

$$\begin{aligned}
 & \langle SE(D), !!(D) \rangle \circ KCsA(D) = \\
 & \quad SE(D) \times (\cup \circ \langle KCsA(D) \circ Ffst, !!(D) \circ KCsA(D) \circ Ffst, \cup \circ Fsnd \rangle) \circ (\langle SE(D), !!(D) \rangle \times \langle SE(D), !!(D) \rangle) \\
 & \quad (22)
 \end{aligned}$$

This can be proved by following equational reasoning

681

682

683

$$SE(D) \times \cup \circ \langle KCsA(D) \circ Ffst, !!(D) \circ KCsA(D) \circ Ffst, \cup \circ Fsnd \rangle \circ (\langle SE(D), !!(D) \rangle \times \langle SE(D), !!(D) \rangle)$$

$\equiv \times$ absorption law

$$\langle SE(D) \circ KCsA(D) \circ Ffst, \cup \circ !!(D) \circ KCsA(D) \circ Ffst, \cup \circ Fsnd \rangle \circ (\langle SE(D), !!(D) \rangle \times \langle SE(D), !!(D) \rangle)$$

\equiv Product fusion

$$\begin{aligned}
 & \langle SE(D) \circ KCsA(D) \circ Ffst \circ (\langle SE(D), !!(D) \rangle \times \langle SE(D), !!(D) \rangle), \\
 & \quad \cup \circ !!(D) \circ KCsA(D) \circ Ffst, \cup \circ Fsnd \rangle \circ (\langle SE(D), !!(D) \rangle \times \langle SE(D), !!(D) \rangle)
 \end{aligned}$$

\equiv Definition of $SE(D)$ and product fusion

$$\langle SE(D) \circ KCsA(D), \cup \circ !!(D) \circ KCsA(D) \circ Fse(D), \cup \circ F!!(D) \rangle$$

\equiv Definition of Combination

$$\langle SE(D), !!(D) \rangle \circ KCsA(D)$$

where $Fse(D, a, b) = (SE(D, a), SE(D, b))$, $F!!(D, a, b) = (!!D, a), (!!D, b)$.

Note that, the equality between the third equation and the last equation is a assertion of fact, rather than a results can be proved (verified). This equivalence comes from the fact that size K -combinations can be constructed by joining all possible combinations of size i and size $K - i$ combinations, where $0 \leq i \leq K$.

Next, we prove the two paths between $((Css, Cs), (Css, Cs))$ and $(Css, NCss)$ are equivalent.

702
 703
 704 $\langle SE(D) \circ KCsA(D) \circ Ffst, KCsA(K) \circ \cup \circ \langle KCs(K) \circ !!(D) \circ KCsA(D) \circ Ffst, KCsA(K) \circ Fsnd \rangle \circ$
 705 $(id \times KCs(K)) \times (id \times KCs(K))$
 706 \equiv Product fusion, $f \times g = \langle f \circ Ffst, f \circ Fsnd \rangle, FKCsnd(D, (a, b), (c, d)) = (KC(D, b), KC(D, d))$
 707 $\langle SE(D) \circ KCsA(D) \circ Ffst, KCsA(K) \circ \cup \circ \langle KCs(K) \circ !!(D) \circ KCsA(D) \circ Ffst, KCsA(K) \circ FKCs(D) \rangle \rangle$
 708 \equiv Definition of $Kcombs$
 709 $\langle SE(D) \circ KCsA(D) \circ Ffst, KCsA(K) \circ \cup \circ \langle KCs(K) \circ !!(D) \circ KCsA(D) \circ Ffst, KCs(K) \circ \cup \circ Fsnd \rangle \rangle$
 710 \equiv Definition of product
 711 $\langle SE(D) \circ KCsA(D) \circ Ffst, KCsA(K) \circ \cup \circ KCs(K) \circ (!!D) \circ KCsA(D) \circ Ffst, \cup \circ Fsnd \rangle \rangle$
 712 \equiv Definition of KCs
 713 $\langle SE(D) \circ KCsA(D) \circ Ffst, KCs(K) \circ \cup \circ (!!D) \circ KCsA(D) \circ Ffst, \cup \circ Fsnd \rangle \rangle$
 714

717 A.3 PROOF OF FUSION CONDITION
 718

719 **Lemma 2.** *DeepICEAlg* satisfies the following fusion condition
 720

722 $DeepICE(D, K) = f \circ nestedCombsAlg(D, K) = DeepICEAlg(D, K) \circ f \times f \quad (23)$
 723

724 where $f = min_{0-1}(D) \circ eval'(K - 1)$, which defines the Deep ICE algorithm 17.
 725

726
 727 *Proof.* For optimization problem, proving equality is often too strict that it rarely holds in practice.
 728 Instead, whenever a “selector” is used, we can relax the fusion condition by replacing the equality
 729 as a set membership relation (Bird & Gibbons, 2020).
 730

731 $f \circ nestedCombsAlg(D, K) \subseteq DeepICEAlg(D, K) \circ f \times f \quad (24)$
 732

733 In point-wise style, this is equivalent to
 734

736 $f \circ nestedCombsAlg(D, K, h(xs), h(ys)) \subseteq DeepICEAlg(D, K, f(h(xs)), f(h(ys))) \quad (25)$
 737

738 where $h(as) = nestedCombs(D, K, as)$.
 739

740 On the left side of the set membership relation, we first update the nested combinations by merging
 741 $nestedCombs(D, K, ys)$ and $nestedCombs(D, K, ys)$ using $nestedCombsAlg$ and then select the
 742 optimal nc with respect to E_{0-1} by using $min_{0-1}(D) \circ eval'(K - 1)$.
 743

744 On the right-hand side, recall that $nestedCombs(D, K, as) : [\mathbb{R}^D] \rightarrow ([C], [NC])$ returns all
 745 possible nested combinations (K -combination of hyperplanes) $ncss$, all possible combination of
 746 data items css (D th inner list is empty) and $ncss$, and $f \circ h = DeepICE(D, K)$ is the specifi-
 747 cation of the Deep-ICE algorithm. Functions $f(h(xs))$ and $f(h(ys))$ select the optimal nested-
 748 combination with respect to E_{0-1} from all possible nested combinations with respect to xs and ys ,
 749 call them $optcnfg_1$, and $optcnfg_2$ with respectively. Then the nested combinations are merged to-
 750 gether and selected the new optimal configuration $optcnfg'$ by using $DeepICEAlg$. By definition,
 751 $optcnfg'$ is obtained by selection the optimal configurations from the newly generated combinations
 752 and compared with $optcnfg_1$, and $optcnfg_2$, thus the solutions on the left side of the set membership
 753 relation must include in the right-hand side of the nested combination. \square
 754

755 A.4 ALGORITHMS

Algorithm 4 present the recursive definition of the Deep-ICE algorithm.

756 **Algorithm 1** $DeepICE_{rec}$: DeepICE recursive definition

757 **Input:** ds : input data list; D : number of features; K : number of hyperplanes;

758

759 **Output:** $cfg : (NC, \{1, -1\}^K)$ —Optimal nested combination with respect to ds ;
 760 $ncss : NCss$ —All possible nested combinations of size less than K ; $css : Css$ —All possi-
 761 ble combinations of size less than D .

762

763 $DeepICE(D, K, []) = nestedCombsAlg_1([])$

764 $DeepICE(D, K, [a]) = nestedCombsAlg_2([a])$

765 $DeepICE(D, K, xs \cup ys) = min_{0-1}(K) \circ eval'(K - 1) \circ$

766 $nestedCombsAlg_3(DeepICE(D, K, xs), DeepICE(D, K, ys))$,

767 where $nestedCombsAlg$ is defined as

768

769

770 $nestedCombsAlg_1(d, k, []) = ([[[]]], [[[]]])$

771 $nestedCombsAlg_2(d, k, [x_n]) = ([[[]], [[x_n]]], [[[]]])$

772 $nestedCombsAlg_3(d, k, (css_1, ncss_1), (css_1, ncss_1)) = (setEmpty(D, css), ncss)$.

773 where $css = kcombsAlg(D, css_1, css_2)$, and $ncss$ is defined as

774

775 $ncss = \begin{cases} [[[]]] & css!!(D) = [] \\ kcombsAlg(K, kcombsAlg(K, ncss_1, ncss_2), kcombs(K, css!!D)) & \text{otherwise.} \end{cases}$

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

We also provide both the pseudocode for the sequential version 2 and D&C versions 3 of the Deep-ICE algorithms.

810 **Algorithm 2** $DeepICE_{seq}$: Deep-ICE sequential definition

811 **Input:** ds : input data list; D : number of features; K : number of hyperplanes;

812 **Output:** $cfg_{opt} : (NC, \{1, -1\}^K)$ —Optimal nested combination with respect to ds ; l_{opt} : optimal 0-1 loss, $hyperAsgn$: All possible predictions of hyperplanes with respect to input list; css : all possible nested combinations of size smaller than D $ncss$: all possible nested combinations of size smaller than K ;

813 1. $css = [[[], \emptyset^k]] // initialize combinations$

814 2. $ncss = [[[], \emptyset^k]] // initialize nested-combinations$

815 3. $hyperAsgn = empty \left(\binom{N}{D}, N \right) / initialize prediction of hyperplanes as a empty$

816 $\binom{N}{D} \times N$ matrix

817 4. $l_{opt} = N // initialize optimal 0-1 loss$

818 5. **for** $n \leftarrow range(0, N)$ **do**: // $range(0, N) = [0, 1, \dots, N - 1]$

819 6. **for** $j \leftarrow reverse(range(D, n + 1))$ **do**:

820 7. $updates = reverse(map(\cup ds[n], css[j - 1])) // the reverse function is used to$

821 organize configurations in revolving door ordering

822 8. $css[j] = css[j] \cup updates // update css to generate combinations in revolving door$

823 ordering,

824 9. $hyperAsgn = genModels(css[D], hyperAsgn) // generate positive/negative predic-$

825 tions for each hyperplane in $css[D]$

826 10. $css[D] = [] // empty D-combinations after generation$

827 11. $C_1 = \binom{n}{D - 1}, C_2 = \binom{n}{D}$

828 12. $ncss' = kcombs(k, C_2 - C_1)$

829 13. $ncss = kcombsAlg(K, ncss, ncss')$

830 14. $cfg', l' = eval(ncss[K], hyperAsgn) // evaluate to the number of misclassification$

831 for each size K nested combination in $ncss[K]$

832 15. $ncss[K] = [] // empty size K nested-combinations after evaluation$

833 16. **if** $l' \leq l_{opt}$:

834 17. $l_{opt} = l'$

835 18. $cfg_{opt} = cfg'$

836 19. **return** $cfg_{opt}, l_{opt}, hyperAsgn, ncss, css$

864 **Algorithm 3** $DeepICE_{D\&C}$: Deep-ICE divide-and-conquer definition

865 **Input:** ds : input data list; D : number of features; K : number of hyperplanes;

866

867 **Output:** $cfg_{opt} : \binom{NC, \{1, -1\}^K}{N}$ —Optimal nested combination with respect to ds ; l_{opt} : optimal
868 0-1 loss

869

870 1. $hyperAsgn = empty \left(\binom{N}{D}, N \right)$ // initialize prediction of hyperplanes as a empty
871 $\binom{N}{D} \times N$ matrix

872

873

874 2. $l_{opt} = N$ //initialize optimal 0-1 loss

875

876 3. $ds_i, ds_j = splitToTwo(ds)$ // split the data set into two half

877 4. parallel:

878 5. $res_i = DeepICE_{seq}(D, K, ds_i)$ // Process first data list

879

880 6. $res_j = DeepICE_{seq}(D, K, ds_j)$ // Process second data list

881

882 7. sync // Wait for both tasks to complete

883 8. // Retrieve results: configuration, loss, hyperplane assignments, combinations

884 9. $cfg_i, l_i, hyperAsgn_i, css_i, ncss_i = res_i$

885

886 10. $cfg_j, l_j, hyperAsgn_j, css_j, ncss_j = res_j$

887

888 11. $css, ncss = nestedCombsAlg_3(D, K, (css_i, ncss_i), (css_j, ncss_j))$ // Merge: Combine
889 nested combinations from both subsets

890

891 12. $hyperAsgn = mergeAsgn(hyperAsgn_i, hyperAsgn_j)$ // Merge hyperplane assignments

892

893 13. $cfg', l' = eval(ncss[K], hyperAsgn)$ // Evaluate merged nested combinations for size
894 K

895

896 14. $cfgs = [(cfg_i, l_i), (cfg_j, l_j), (cfg', l')]$ // Collect all configurations and their losses

897

898 15. $(cfg_{opt}, l_{opt}) = min_{0-1}([cfgs])$ // Select configuration with minimum 0-1 loss

899

900 16. **return** cfg_{opt}, l_{opt}

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Algorithm 4 shows the structure of the coreset selection method.

918 **Algorithm 4** Deep-ICE with Coreset Filtering

```

919 1. Input:  $ds$ : input data list;  $M$ : Block size;  $R$ : number of shuffle time in each filtering
920    process;  $L$ : Max-heap size;  $B_{\max}$ : Maximum input size for the Deep-ICE algorithm;  $c \in$ 
921     $(0, 1]$ : Shrinking factor for heap size
922 2. Output: Max-heap containing top  $L$  configurations and associated data blocks
923
924 3. Initialize coresset  $\mathcal{C} \leftarrow ds$ 
925 4. while  $\mathcal{C} \leq B_{\max}$  do:
926    5. Reshuffle the data, divide  $\mathcal{C}$  into  $\lceil \frac{|\mathcal{C}|}{M} \rceil$  blocks  $\mathcal{C}_B = \{C_1, C_2, \dots, C_{\lceil \frac{|\mathcal{C}|}{M} \rceil}\}$ 
927    6. Initialize a size  $L$  max-heap  $\mathcal{H}_L$ 
928    7. for  $r \leftarrow 1$  to  $R$  do:
929      8.  $r = r + 1$ 
930      9. for  $C \in \mathcal{C}_B$  do:
931        10.  $cfg \leftarrow DeepICE(D, K, C)$ 
932        11.  $\mathcal{H}_L.push(cfg, C)$ 
933        12.  $\mathcal{C} \leftarrow unique(\mathcal{H}_L)$  // Merge blocks and remove duplicates
934        13.  $L \leftarrow L \times c$  // Shrink heap size:
935        14.  $cfg \leftarrow DeepICE(D, K, \mathcal{C})$  // Final refinement
936        15.  $\mathcal{H}_L.push(cfg, \mathcal{C})$ 
937    16. return  $\mathcal{H}_L$ 

```

943
944 **A.5 COMPLEXITY ANALYSIS**

Theorem 6. The DeepICE algorithm has a time complexity of

$O\left(K \times N \times 2^{K-1} \times \left(\binom{N}{D} \binom{N}{K} + N \times D^3 \times \binom{N}{D} \right)\right)$

which is strictly smaller than

$O(N^{DK+1})$

, and a space complexity of

$O\left(\left(\binom{N}{D} \binom{N}{K-1} \times K + \binom{N}{D-1} \times N\right)\right)$

, which is

strictly smaller than

$O(N^{D(K-1)})$

945
946
947 *Proof.* We analyze the complexity using the sequential version of the DeepICE algorithm 2.
948 At stage n , the computation of lines 5–8 has complexity $O(n^{D-1})$, since there are at most
949 $\binom{n}{D-1}$ new D -combinations in each recursive step. The computation at line 9 requires
950 $O(n^{D-1} \times D^3 \times N)$ time. Similarly, the new nested combinations at lines 12–14 has a size
951 $O\left(\sum_{k=1}^K \left(\binom{n}{D-1} \binom{n}{k}\right)\right)$, which requires computations of a complexity
952 $2^{K-1} \times N \times K$ per nested combination, as each combination must evaluate 2^{K-1} possible hyper-
953 plane orientations.

954
955
956
957 By Vandermonde's identity, we have

958
959
960
961
962
963
964
965
966
967

$\sum_{k=1}^K \left(\binom{n}{D-1} \binom{n}{k} \right) \times \left(\binom{n}{D} \binom{n}{k} \right) = \left(\binom{n}{D-1} + \binom{n}{D} \binom{n}{k} \right) = \left(\binom{n+1}{D-1} \binom{n}{k} \right) \leq (n+1)^{Dk}$

972 Summing over $n = 0$ to $n = N - 1$, the total time complexity becomes
 973

$$\begin{aligned}
 974 \quad & O \left(\sum_{n=0}^{N-1} \left(D^3 \times N \times \binom{n}{D-1} + K \times N \times 2^{K-1} \times \binom{n+1}{D-1} \right) \right) \\
 975 \quad & = O \left(N \times D^3 \times \binom{N}{D} + K \times N \times 2^{K-1} \times \binom{N}{K} \right) \\
 976 \quad & \leq O(N \times D^3 \times N^D + K \times N \times 2^{K-1} \times N^{DK}) \\
 977 \quad & = O(N^{DK+1})
 \end{aligned}$$

984 For memory, at lines 10 and 15, we clear the size D combinations and size K nested combinations,
 985 so we only need to store smaller configurations in memory. The resulting space complexity is
 986

$$987 \quad O \left(\left(\binom{N}{D} \right) \times K + \left(\binom{N}{D} \right) \times N \right) = O(N^{D(K-1)}). \quad (26)$$

□

992 A.5.1 ORDERED GENERATION OF COMBINATIONS

993 To generate D -combinations of data points efficiently, we employ a technique that organizes combinations in a specific order, assigning each a unique “rank.” To achieve this, a critical but small
 994 function *reverse* used at line 6 of the DeepICE algorithm 2 makes it possible. This allows D -
 995 combinations to be organized in “revolving door ordering” and thus combinations are represented
 996 by their rank rather than storing the combinations explicitly. This approach offers two key ben-
 997 efits: First, storing ranks significantly reduces memory usage, from $M \times D \times 64$ bits to $M \times$
 998 $\log(M)$ bits ($\log(M)$ is often representable using 32 bits in coresets selection method), where $M =$
 999 $\sum_{k=0}^{K-1} \binom{N}{k}$. A workspace in memory is preallocated before training to store predictions as-
 1000 sociated with these hyperplanes, thereby avoiding memory allocation overhead during runtime. Sec-
 1001 ond, it enables the organization of hyperplane predictions into a $\binom{N}{D} \times N$ matrix, where each
 1002 row corresponds to a unique rank. As a result, the algorithm requires only $O(N \times D^3 \times \binom{N}{D})$
 1003 time. Moreover, storing hyperplanes in a single large matrix allows exploitation of high-throughput
 1004 hardware such as Nvidia GPU Tensor Cores. Without this method, predictions would need to be re-
 1005 computed for each hyperplane, requiring at least $O(N \times D^3 \times \binom{N}{K})$ time. This strat-
 1006 egy reduces memory usage and accelerates execution without drawbacks, and it can be extended to
 1007 other problems involving nested combinatorial structures.
 1008

1015 A.5.2 MEMORY-FREE METHOD BY USING UNRANKING FUNCTION

1016 Building on the first technique, the second method leverages the ordered structure of D -
 1017 combinations to eliminate the need to store K -combinations. An unranking function takes the rank
 1018 of a combination as input and reconstructs the corresponding K -combination on demand. This
 1019 supports the dynamic generation of combinations for a given range of rank values, thereby circum-
 1020 venting memory constraints that would otherwise limit the algorithm due to insufficient storage.
 1021 However, it incurs an additional computational cost of $\Theta(K)$ arithmetic operations per combina-
 1022 tion due to the unranking function. Despite this, the method often improves overall efficiency by
 1023 simplifying memory management, leading to more effective implementations in practice.
 1024

1025 However, this method has a limitation: it precludes the use of bounding techniques because K -
 1026 combinations are reconstructed on demand via unranking functions rather than stored

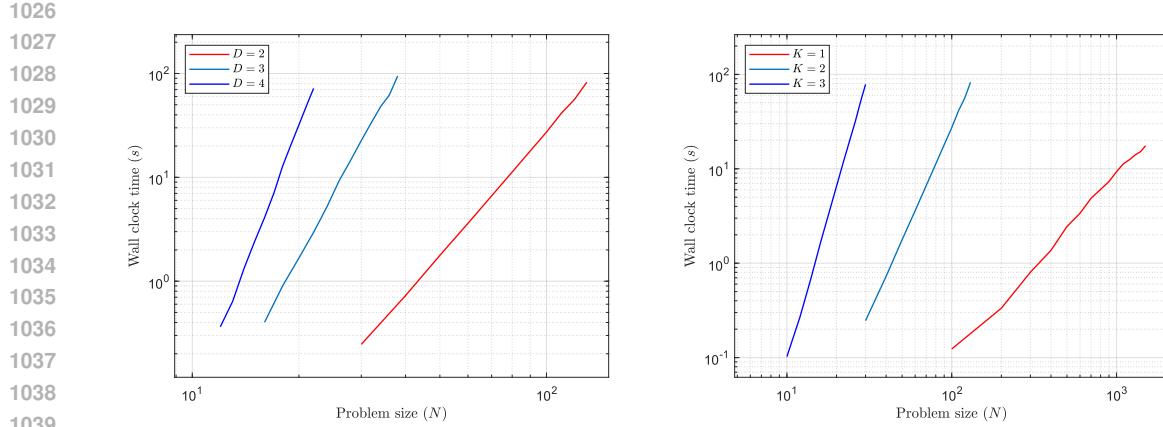


Figure 2: Empirical analysis shows that the wall-clock runtime of the DeepICE algorithm is strictly smaller than the predicted worst-case complexity $O(N^{DK+1})$. The log-log wall-clock runtime (seconds) of DeepICE on synthetic datasets is plotted against dataset size N . On this log-log scale polynomial run time appears as a linear function of problem size N , and the slope of the line corresponds to the polynomial degree. In the left panel, the runtime curves (from left to right) correspond to $K = 2$ with $D = 2, 3, 4$, and have slopes 3.96, 6.28, and 8.88—smaller than the predicted worst-case exponents $O(N^4)$, $O(N^7)$, $O(N^9)$. In the right panel, the curves (from left to right) correspond to $D = 2$ with $K = 1, 2, 3$ respectively), and have slopes 1.91, 3.95, and 6.11—smaller than the predicted worst-case exponents $O(N^3)$, $O(N^5)$, $O(N^7)$, respectively.,

in memory. If future research requires such techniques, this approach is unsuitable, as it is challenging to identify which configurations (represented by ranks) are eliminated during algorithm execution.

A.5.3 EMPIRICAL ANALYSIS

Figure 2 shows that the empirical running time of the DeepICE algorithm aligns with the expected worst-case complexity.

A.6 ADDITIONAL EXPERIMENTS

A.6.1 COMPARISON WITH EXPECTED ACCURACY OPTIMIZATION (EXACT) FRAMEWORK

This Subsection we compared with the expected accuracy optimization (EXACT) method proposed by Karpukhin et al. (2024) the results is shown in table Karpukhin et al. (2024).

A.6.2 WALL-CLOCK RUN TIME COMPARISON

Table 3 report the run-time comparison of between DeepICE, SVM, MLP and EXACT.

A.7 EXPERIMENTS OF EXHAUSTIVELY EXPLORING ALL SOLUTIONS

For $K = 1$ case, i.e., linear case, the Deep-ICE algorithm fully explores the solution space for datasets such as Voicepath, Caesarian, Sepsis, HB, and BT. We output all solutions whose training accuracy is lower than that of the SVM. The regularization parameter for the SVM is fixed at 1 across all datasets. We deliberately avoid tuning this parameter to achieve the lowest test error, as a solution with lower test accuracy may increase training error, thereby generating more candidate solutions due to the higher training error. Adjusting the regularization parameter introduces a trade-off between training and test errors, complicating the analysis. To keep our discussion focused and consistent, we fix the regularization parameter. We summarize the empirical results in Table A.7. Using the generated solutions, we construct hyperplanes and select two representative types from each equivalence class: (1) hyperplanes passing through exactly D points (direct hyperplanes), and

1080

1081

1082 Table 2: Five-fold cross-validation results on the UCI dataset. We compare the performance of
 1083 our Deep-ICE algorithm, with K (number of hyperplanes) ranging from 1 to 3, trained either with
 1084 the coresnet selection method or directly (marked by *)—against Karpukhin et al. (2024)’s expected
 1085 accuracy optimization (EXACT) framework. Results are reported as mean accuracy loss over train-
 1086 ing and test sets in the format: Training Error / Test Error (Standard Deviation: Train / Test). The
 1087 best-performing algorithm in each row is highlighted in bold.

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118 Table 3: Running time (seconds) of each algorithm, with “0.01<” denotes a time smaller than 0.01
 1119 seconds. In principle, allocating more computational resources to DeepICE yields better solutions.
 1120 For comparison, we record the wall-clock time at which DeepICE first obtains a solution with lower
 0–1 loss than the other methods. The reported times are the medians over three runs.

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1126 Table 3: Running time (seconds) of each algorithm, with “0.01<” denotes a time smaller than 0.01
 1127 seconds. In principle, allocating more computational resources to DeepICE yields better solutions.
 1128 For comparison, we record the wall-clock time at which DeepICE first obtains a solution with lower
 1129 0–1 loss than the other methods. The reported times are the medians over three runs.

Dataset	N	D	Deep- ICE (s) ($K =$ 1)	Deep- ICE (s) ($K =$ 2)	Deep- ICE (s) ($K =$ 3)	SVM (s)	MLP ($K =$ 1)	MLP ($K =$ 2)	MLP ($K =$ 3)	EXACT (%) ($K =$ 1)	EXACT (%) ($K =$ 2)	EXACT (%) ($K =$ 3)
Ai4i	10000	6	450.5	622.42	505.42	0.05	18.43	18.74	16.52	22.56	21.91	26.47
Caesr	72	5	0.26	0.26	7.10	0.01<	12.27	12.96	10.11	23.78	22.92	29.80
VP	704	2	0.83	0.45	0.85	0.01<	11.19	11.53	10.76	24.36	23.49	25.22
Spesis	975	3	8.00	0.21	0.41	0.01<	9.56	10.60	11.68	25.24	23.01	29.93
HB	283	3	0.20	0.21	0.38	0.01<	12.54	14.43	17.68	22.65	23.01	25.30
BT	502	4	0.26	0.36	0.43	0.01<	13.45	12.34	15.24	25.46	24.36	27.99
AV	2342	7	132.51	294.81	356.51	0.01<	14.53	14.12	13.21	22.86	23.02	28.19
SO	1941	27	762.50	850.42	543.54	0.04	12.43	13.23	14.53	24.12	25.61	29.36
DB	1146	9	50.43	20.39	16.77	0.01	14.78	16.20	17.43	26.45	22.57	27.35
RC	3810	7	423.5	217.26	611.37	0.02	15.02	17.02	14.53	24.68	22.77	27.21
SS	51433	3	1.13	3.26	4.21	9.63	43.19	73.19	77.43	25.94	21.86	26.00

1134 (2) arbitrary hyperplanes computed via linear programming (LP hyperplanes). In the table, we
 1135 compare the out-of-sample performance of these solutions against that of the SVM. We found no strong
 1136 evidence that the maximal-margin hyperplane (SVM) consistently outperforms other hyperplanes
 1137 with lower training errors. For example, in the HB dataset, an average of 8,922.2 solutions outper-
 1138 form the SVM in training dataset. Of these, direct hyperplanes have an average of 5,448.2 solutions,
 1139 and LP hyperplanes have an average of 6,165.6 solutions, outperforming the SVM in out-of-sample
 1140 test.

1141 Table 4: Comparing the average out-of-sample accuracy in a 5-fold cross-validation. All solutions
 1142 with training accuracy lower than that of the SVM are generated, and their total number is reported
 1143 (Total number of solutions). Two representative hyperplanes from the equivalence classes are in-
 1144 cluded: the *direct hyperplane*, which passes through exactly D points, and the *LP hyperplane*,
 1145 computed via linear programming. For each type, the average number of hyperplanes with out-of-
 1146 sample accuracy lower than that of the SVM is also reported.

1147

1148	Datasets	Total number of solutions	Direct hyperplanes	LP hyperplanes
1149	Caesarian	4430.2	2379.4	2913.8
1150	Voicepath	124.2	55.2	54.8
1151	Spesis	5.8	1	4.6
1152	HB	8922.2	5448.2	6165.6
1153	BT	5150.4	3189.8	3580

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187