
Under review as a conference paper at ICLR 2022

EXPLORING COMPLICATED SEARCH SPACES WITH
INTERLEAVING-FREE SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

The existing neural architecture search algorithms are mostly working on search
spaces with short-distance connections. We argue that such designs, though safe
and stable, obstacles the search algorithms from exploring more complicated sce-
narios. In this paper, we build the search algorithm upon a complicated search
space with long-distance connections, and show that existing weight-sharing
search algorithms mostly fail due to the existence of interleaved connections.
Based on the observation, we present a simple yet effective algorithm named
IF-NAS, where we perform a periodic sampling strategy to construct different
sub-networks during the search procedure, avoiding the interleaved connections
to emerge in any of them. In the proposed search space, IF-NAS outperform both
random sampling and previous weight-sharing search algorithms by a significant
margin. IF-NAS also generalizes to the micro cell-based spaces which are much
easier. Our research emphasizes the importance of macro structure and we look
forward to further efforts along this direction.

1 INTRODUCTION
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Figure 1: Illustration of how interleaved connec-
tions contaminate the choice of neural network
connections. The red, purple, and green links de-
note three candidate connections, among which
the red one is the best choice (according to the in-
dividual evaluation). However, when interleaved
connections (the dashed links) are added for the
search sampling, the judgment of the candidates
gradually becomes ridiculous. The bottom figures
indicate the weight change of the three candidates
throughout the search process (warm-up for 20
epochs), while (a) is under the interleaving-free
setting and 1–3 interleaved connections are added
for (b)–(d). Specifically, the interleaved connec-
tion (3,7) is added for (b), the connections (1,4),
(3,7) added for (c), and (1,4), (2,6), (3,7) added
for (d).

Neural architecture search (NAS) is a research
field that aims to automatically design deep
neural networks (Zoph & Le, 2017; Real et al.,
2019; Baker et al., 2017). There are two im-
portant factors that define a NAS algorithm,
namely, the search space that determines what
kinds of architectures can appear, and the
search strategy that explores the search space
efficiently. Despite the rapid development of
search algorithms which have become faster
and more effective, the search space design is
still in a preliminary status. In particular, for
the most popular search spaces used in the com-
munity, either MobileNet-v3 (Howard et al.,
2019) or DARTS (Liu et al., 2019b), the macro
structure (i.e., how the network blocks are con-
nected) is not allowed to change. Such a con-
servative strategy is good for search stability
(e.g., one can guarantee to achieve good per-
formance even with methods that are slightly
above random search), but it reduces the flex-
ibility of NAS, impeding the exploration of
more complicated (and possibly more effective)
neural architectures.

The goal of this paper is to break through the
limitation of existing search spaces. For this
purpose, we first note that the MobileNet-v3
and DARTS allow a cell to be connected to 1
and 2 precursors, respectively, resulting in rel-
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atively simple macro structures. In opposite, we propose a variant that each cell is connected to L
precursors (L is 4, 6, or 8), and each connection can be either present or absent. We evaluate three
differentiable NAS algorithms, namely DARTS (Liu et al., 2019b), PC-DARTS (Xu et al., 2020),
and GOLD-NAS (Bi et al., 2020) in the designed L-chain search space, and all of them run into
degraded results. We perform diagnosis in the failure cases and the devil turns out to be the so-
called interleaved connections, which refers to a pair of connections (a, b) and (c, d) that satisfies
a < c < b < d. Figure 1 shows an example that how interleaved connections affects the search
results. With the increasing extent of interleaving, the search results gradually deteriorate, reflecting
in the reduced accuracy and the weak operator gaining heavier weights. More examples are provided
in the appendix.

The above observation motivates us to maximally eliminate the emerge of interleaved connections
during the search procedure. This is easily done by performing interleaving-free sampling, where
we group all candidate connections into L groups and there exist no interleaved connections in
every single group, based on which we periodically choose one group and perform regular NAS
algorithms. This schedule can optimize the weight of every connection without suffering the issue
of interleaved connections. Discretization and pruning are performed afterwards to derive the final
architecture. The entire algorithm is named interleaving-free NAS, or IF-NAS for short.

We conduct experiments on ImageNet, a popular benchmark of NAS. In the newly proposed L-chain
space, IF-NAS significantly outperforms three differentiable search baselines, DARTS, PC-DARTS
and GOLD-NAS, and the advantage becomes more evident as the number of possible input blocks
grows larger, i.e., heavier interleaving presents. Moreover, we evaluate IF-NAS in the existing search
spaces of DARTS and GOLD-NAS, and show that it generalizes well to these easier search spaces.

In summary, the contributions of this paper are two-fold. First, we advocate for investigating the
macro structure and put forward a novel search space for this purpose. The existing NAS methods
cannot guarantee satisfying performance in this space. Second, we show that the major difficulty lies
in dealing with the interleaved connections and hence propose an effective solution named IF-NAS.
We hope that our efforts can inspire the NAS community to study the challenging new problem.

2 RELATED WORK

Search Strategy Early NAS methods generally rely on individually evaluating the sampled sub-
architectures under heuristic strategies, including reinforcement learning (Zoph & Le, 2017) and the
evolutionary algorithm (Real et al., 2019), which are computationally expensive. To accelerate the
search, one-shot methods (Bender et al., 2018; Brock et al., 2018; Guo et al., 2020b) propose to
represent the search space with a super-network, where the weights of all the candidate architectures
are shared. Individual architecture training from scratch is avoided and the search cost is reduced by
large magnitudes. Recently differentiable NAS (DNAS) has aroused great popularity in this field,
which maps the discrete search space into a parameterized super network so that the search pro-
cess can be executed by gradient descent. DARTS (Liu et al., 2019b), as a pioneer differentiable
framework, relaxes the search space by introducing updatable architecture parameters. The bi-level
optimization is performed to update super-network weights and architectural parameters alternately.
The target architecture is derived according to the distribution of architectural parameters. Due to
its high efficiency, many works extend DNAS to more applications, including semantic segmenta-
tion (Liu et al., 2019a; Zhang et al., 2019), object detection (Fang et al., 2020b; Guo et al., 2020a),
etc. Some DNAS works (Cai et al., 2019; Wu et al., 2019; Fang et al., 2020a) propose to integrate
co-optimization with both accuracy and hardware properties into the search phase. In this paper, we
target at promoting DNAS in terms of both flexibility and robustness. With the two factors improved,
the final performance of DNAS can reach a higher level.

Eliminating Collapse in DNAS Though DNAS has achieved great success due to its high ef-
ficiency, many inherent problems exist with it and may cause collapse during search. A series of
methods propose to improve DNAS from various perspectives. P-DARTS (Chen et al., 2019) bridges
the gap between the super and searched network by gradually increasing the depths the networks.
FairDARTS (Chu et al., 2020) improves the sampling strategy and breaks the two indispensable fac-
tors of unfair advantages and exclusive competition. (Tian et al., 2021; Bi et al., 2020) alleviate the
discretization error by pushing the weights to sharp distributions. (Liang et al., 2019; Li et al., 2019;
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Zela et al., 2020) robustify the search process by introducing regularization techniques, including
early stopping and observing eigenvalues of the validation loss Hessian, etc. We reveal the degra-
dation phenomenon in complicated search spaces when using the conventional DNAS method, and
propose to suppress the interleaved connections during search. The proposed IF-NAS eliminates
collapse most DNAS methods may encounter and shows superior performance.

Search Space Most existing NAS methods only explore in the micro search space, while the lim-
ited flexibility hinders further development of NAS. The cell-based space is firstly proposed in NAS-
Net (Zoph & Le, 2017), which is widely adopted by the following works (Pham et al., 2018; Real
et al., 2019; Zhou et al., 2019; Liu et al., 2019b). This type of search space takes several nodes into
one cell structure, which though eases the search procedure, suppresses many possible architectures
with stronger feature extraction ability. (Liu et al., 2018) proposes to search architectures under a
hierarchical space which introduces flexible topology structures. Auto-DeepLab (Liu et al., 2019a)
searches in a space with multiple paths and allows feature extraction in diverse resolutions. Dense-
NAS (Fang et al., 2020a) introduces densely connections in the search space and improves search
freedom in terms of operators, depths and widths. GOLD-NAS (Bi et al., 2020) liberates the restric-
tion of the cell-based design and performs search in a global range. We further extends the search
space complexity to explore architectures with more possibilities and potential. Though intractable
is the search in such a complicated space, our proposed IF-NAS still shows evident effectiveness
and advantages over other compared DNAS methods.

3 OUR APPROACH

3.1 PRELIMINARIES: NAS IN A SUPER-NETWORK

In neural architecture search (NAS), a deep neural network can be formulated into a mathematical
function that receives an image x as the input and produces the desired information (e.g., a class
label y) as the output. We denote the function to be y = f(x;α,ω) where the form of f(·) is
determined by a set of architectural parameters,α, and the learnable weights (e.g., the convolutional
weights) are denoted by ω. The goal of NAS is to find the optimal architecture, α?, that leads to the
best performance, i.e.,

α? = argminα E(x,y?)∈Dval
|y? − f(x)| (1)

s.t. ω?(α) = argminω E(x,y?)∈Dtrain
|y? − f(x)|,

where y? denotes the ground truth label. Most often, α takes discrete values, implying that solv-
ing Eqn equation 1 requires enumerating a large number of sampled architectures and performing
individual evaluation. To accelerate, researchers propose to slack α into a continuous form so that
solving Eqn equation 1 involves optimizing a super-network, after which α? is discretized into the
optimal architecture for other applications.

In particular, this paper is built upon the differentiable search algorithms, in which the super-network
is solved by computing the gradient with respect to α. We will introduce the details of optimization
in the experimental part.

3.2 EXPLORING A COMPLICATED SEARCH SPACE

stage 2stage 1 stage 3

input outputstem
N1 nodes N2 nodes N3 nodes

Figure 2: The studied search space in this paper. Each layer (also
called node) can be connected to L precursors. 3 stages are to be
searched with N1, N2 and N3 nodes respectively. For better visual-
ization, we show the example of L = 4, yet we also study L = 6 and
L = 8 which are even more complicated.

We design a search space
shown in Figure 2. We de-
fine a fixed integer, L, in-
dicating that each layer can
be connected to L precur-
sors. For convenience, we
name this space L-chain
space. When L = 1,
it degrades to the chain-
styled network (the back-
bone of MobileNet-v3). On
the contrary, we study the cases of L = 4, L = 6, and even L = 8, making the topology of the space
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Figure 3: The flowchart of IF-NAS. The key is to avoid interleaved connections in any time. For
this purpose, we repeat a loop with a length of L, and each time part of the connections remain
active and all others are removed. The layers of the same color are always activated and inactivated
together. This figure is best viewed in color.

much more complicated. We follow R-DARTS (Zela et al., 2020) to allow two candidate operations,
i.e. the 3 × 3 separable convolution and skip-connection. Throughout the remaining part of this
paper, we use S(L) to indicate the proposed space with L precursor connections. For convenience,
the connection between the n-th and (n − l)-th layers (nodes) is named the pre-l connection of the
n-th layer.

Before entering the algorithm part, we emphasize that we do not use additional rules to assist the
architecture search, e.g., forcing all nodes to survive by preserving at least one connection. This
raises new challenges to the search algorithm, because the depth of the searched architecture be-
comes quite indeterminate. Although some prior work has explored the option of optimizing the
macro and micro architectures jointly (Liu et al., 2019a) or adding mid-range connections to the
backbone (Fang et al., 2020a), they still rely on the cell/block unit to perform partial search. Instead,
we break the limitations of the unit, and allow search in a wider and macro space.

Table 1: Comparisons of the search space complexity.

DARTS GOLD-NAS 4-chain 6-chain 8-chain

1.1× 1018 3.1× 10117 1.8× 10116 7.5× 10163 1.6× 10204

In each edge, there are two candidate
operators in our L-chain space. Each
node receives at most 2L input fea-
ture maps. For the purpose of va-
lidity, each node has at least one in-
put to be preserved. However, not
every node may be used as an input node, and these nodes will be deleted, which means that
the architectures are allowed to be very shallow. For a node xk(k > L), there are 22L − 1
input possibilities because each of the 2L operators can be on or off. As a result, there are
(22 − 1) × (24 − 1) × · · · × (22(L−1) − 1) × (22L − 1)N−L combinations if there are N nodes
in one stage. There are 3 stages to be searched in our space, Fig. 2, with the node number of 18,
20 and 18 respectively. Therefore, if L is 4, 6 and 8, there are about 1.8 × 10116, 7.5 × 10163 and
1.6 × 10204 possible architectures respectively. The complexity comparison of popular spaces are
shown in Tab. 1.

3.3 FAILURE CASES AND INTERLEAVED CONNECTIONS

We first evaluate DARTS (Liu et al., 2019b) and GOLD-NAS (Bi et al., 2020) in the search space
of S(4). On the ImageNet-1k dataset, trained for 250 epochs for each network, DARTS and GOLD-
NAS report top-1 accuracy of 74.7% and 75.3%, respectively, and the FLOPs of both networks are
close to 600M (i.e., the mobile setting), Tab. 2. In comparison, the simple chain-styled architecture
(each node is only connected to its direct precursor) achieves 74.9% with merely 520M FLOPs.
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More interestingly, if we only preserve one input for each node, DARTS and GOLD-NAS report
completely failed results of 70.2% and 71.2% (trained for 100 epochs), which are even much worse
than preserve one input randomly, Tab. 3.

We investigate the searched architectures, and find that both DARTS and GOLD-NAS tend to find
long-distance connections. This decreases the depth of the searched architectures, however, empir-
ically, deeper networks often lead to better performance. This drives us to rethink the reason that
the algorithm gets confused. For this purpose, we randomly choose an intermediate layer from the
super-network and the algorithm needs to determine the preference among its precursors.

We start from the simplest situation that all network connections are frozen (the architectural weights
are fixed) besides the candidate connections. We show the trend of three (pre-1, pre-3, pre-6) con-
nections in Figure 1. One can observe that the pre-1 connection overwhelms other two connections,
aligning with our expectation that a deeper network performs better. However, when we insert one
connection that lies between these candidates, we observe that the advantage of the pre-1 connection
largely shrinks, and a long training procedure is required for it to take the lead. The situation contin-
ues deteriorating if we insert more connections into this region. When two or more connections are
added, the algorithm cannot guarantee to promote the pre-1 connection and, sometimes, the ranking
of the three connections is totally reversed.

The above results inspire us that two connections are easily interfered by each other if the covering
regions (i.e., the interval between both ends) overlap. Hereafter, we name such pair of connections
interleaved connections. Mathematically, denote a connection that links the a-th and b-th nodes as
(a, b), where b−a ≥ 2. Overlook the candidate connections of the activated nodes, two connections,
(a, b) and (a′, b′), interleave if and only if there exists at least one integer d that satisfies a <
d + 1/2 < b and a′ < d + 1/2 < b′. Intuitively, for a real number x, if {x|a < x < b} ∩ {x|a′ <
x < b′} 6= ∅ is satisfied, the interleaved connection occurs.

As a side comment, the DARTS space is also impacted by the interleaved connections, which partly
cause the degradation problem observed in prior work (Liang et al., 2019; Chen et al., 2019; Shu
et al., 2020). However, since the search space is cell-based, the degradation does not cause dramatic
accuracy drop. In the experiments, we show that our solution, elaborated in the next part, generalizes
well to the DARTS space.

3.4 INTERLEAVING-FREE SAMPLING

Following the above analysis, the key to design the search algorithm is to avoid interleaved con-
nections, meanwhile ensuring that all connections can be considered. For this purpose, we propose
IF-NAS, a sampling-based approach that each time optimizes a interleaving-free sub-super-network
from the super-network.

This is implemented by partitioning the layers into L groups, G1,G2, . . . ,GL, according to their
indices modulo L. In other words, the distance between any consecutive layers that belong to the
same group is exactly L. When any group Gλ is chosen, we obtain an interleaving-free sub-super-
network by preserving (i) the main backbone (all pre-1 connections) and (ii) all connections that end
at any layer in Gλ. We denote the sub-super-network by S(L)λ for λ = 1, 2, . . . , L. Correspondingly,
the optimization goal can be written as:

min
α,ω

E(x,y?)∈D

∣∣∣y? − f(x | S(L)λ

)∣∣∣ . (2)

A straightforward search procedure repeats the loop of L sub-super-networks, as shown in Figure 3.
Training each sub-super-network is an approximation of optimizing the entire super-network, S(L),
but, since the sub-super-network are fixed, the co-occurring connections may gain unexpected ad-
vantages over other ones. To avoid it, we add a warm-up step to the beginning of each loop, in which
the entire super-network is trained (all connections are activated, but the architectural parameters are
not updated). Throughout the remainder of the loop, we train the L sub-super-networks orderly. We
set the length of each step to be 100 iterations (i.e., mini-batches). Note that this number shall not
be too large, otherwise the gap between the sampled and non-sampled connections will increase and
harm the search performance.
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3.5 DISCRETIZATION AND PRUNING

The last step is to determine the final architecture. In a complicated search space, this is not simple
as it seems, because many connections may have moderate weights (i.e., not close to 0 or 1). For
such a connection, either pruning it or promoting it can bring significant perturbation on the super-
network. Therefore, we follow the idea of prior works (Chu et al., 2020; Bi et al., 2020; Tian et al.,
2021) to first perform a discretization procedure to push the weights towards either 0 or 1, after
which pruning is much safer. We introduce two kinds of architectural parameters, the connectivity
of edges are determined by β and operators are determined by α.

The key of discretization is to add a regularization term to Eqn. (2). The term penalizes the moderate
weights of edges and operators, represented by β and α respectively. Once these weights are less
than 0.01, the corresponding edges or operators will be pruned off. The regularization term is
computed by:

R(α, β) = µ1 ·
∑
j≤N

∑
0≤j−L≤i<j

ln(1 + g(βi,j)/g(βi,j))

+ µ2 ·
∑
j≤N

∑
0≤j−L≤i<j

∑
o∈O

ln(1 + g(αo
i,j |βi,j)/g(αo

i,j |βi,j)),
(3)

where N is the number of layers, and g(·) is the activate function sigmoid. g(α|β) means to
only include operators on β that have not been pruned off. g(·) is the average of g(·). R(α, β) is
multiplied by a factor of µ and added to the cross-entropy loss, so that optimizing the overall loss
will not only improve the recognition accuracy of the super-network, but also push the weights of
all connections towards 0 or 1.

When the weight of a connection is sufficiently small, we prune it permanently from the super-
network. This merely impacts the super-network itself, but the computation of g(·) changes and will
push the next weak operator to 0. This process iterates until the complexity (e.g., FLOPs) of the
super-network achieves the lower-bound.

4 EXPERIMENTS

In this section, we first introduce experimental details and implementation details. Next, we intro-
duce the results and analysis of IF-NAS and other advanced methods in our L-chain space under
different settings. Finally, we compare L-chain spaces with 2 cell-based micro spaces using IF-NAS
and other 2 search strategies.

4.1 IMPLEMENTATION DETAILS

The Dataset. We use the large-scale ImageNet dataset (ILSVRC2012) to evaluate the models. Ima-
geNet contains 1,000 object categories, which consists of 1.3M training images and 50K validation
images. The images are almost equally distributed over all classes. Unless specified, we apply the
mobile setting, in which the input image is set to 224× 224 and the number of multiply-add opera-
tions (MAdds) does not exceed 600M. We randomly sample 100 classes from the original ImageNet
dataset to perform studying and analysis experiments, ImageNet-100 for short.

The Search Settings. Before searching, IF-NAS warm-ups the super-network for 20 epochs, with
only the super-network weights updated and the architectural parameters frozen. Then we start to
update β firstly, and after 10 epochs, start to update α. Super-network weights and architectural
parameters are both optimized by the SGD optimizer. We gradually prune off weak edges and
operators with threshold of 0.01 until the MAdds of the retained architecture meets the mobile
setting, i.e., 600M.

The Training Settings. We evaluate the searched architectures following the setting of PC-
DARTS (Xu et al., 2020). Each searched architecture is trained from scratch with a batch size
of 1024 on 8 Tesla V100 GPUs. A SGD optimizer is used with an initial learning rate of 0.5,
weight decay ratio of 3× 10−5, and a momentum of 0.9. Other common techniques including label
smoothing, auxiliary loss, and learning rate warm-up for the first 5 epochs are also applied.
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4.2 RESULTS ON L-CHAIN SEARCH SPACE

Table 2: Results of popular methods on our enlarged com-
plicated space: comparison of classification test error (%)
trained on ImageNet-1k for 250 epochs under the mobile
setting.

Setting Method Test Err. (%) Params ×+
top-1 top-5 (M) (M)

L = 4

DARTS (Liu et al., 2019b) 25.3 8.1 5.1 589
PC-DARTS (Xu et al., 2020) 24.7 7.5 5.3 593
GOLD-NAS (Bi et al., 2020) 24.7 7.5 5.5 591

IF-NAS 24.3 7.4 5.3 592

L = 6

DARTS (Liu et al., 2019b) 25.7 8.1 5.1 587
PC-DARTS (Xu et al., 2020) 24.9 7.7 5.2 586
GOLD-NAS (Bi et al., 2020) 25.0 7.8 5.4 596

IF-NAS 24.4 7.4 5.2 598

L = 8

DARTS (Liu et al., 2019b) 25.9 8.2 5.2 591
PC-DARTS (Xu et al., 2020) 25.1 7.9 5.2 582
GOLD-NAS (Bi et al., 2020) 25.1 7.9 5.3 592

IF-NAS 24.3 7.3 5.4 594

We study our method IF-NAS on
the proposed macro L-chain search
space, and compare it with three other
popular DNAS frameworks, includ-
ing DARTS (Liu et al., 2019b), PC-
DARTS (Xu et al., 2020) and GOLD-
NAS (Bi et al., 2020). For a fair com-
parison, the hyper-parameters are
kept the same for all the studied
methods. Without pruning gradu-
ally, DARTS and PC-DARTS de-
rive the final architectures by remov-
ing weak edges and operators after
searching until they meet the require-
ments of mobile setting. All the
searched architectures are re-trained
from scratch on ImageNet-1k for 250
epochs.

We perform three sets of experiments by setting L, which indicates the precursors number of each
layer can be connected, to 4, 6 and 8 respectively, and show the results in Tab. 2. When L is 4,
DARTS gets the worst performance as expected. Compared with DARTS, PC-DARTS and GOLD-
NAS get better results of 24.7% and 24.7% with similar MAdds. Our IF-NAS gets the best result
of 24.3% with equivalent Params and MAdds. This proves that IF-NAS can work better in such a
enlarged complicated space compared to the methods.

When L is 6, DARTS achieves the result of 25.7%. PC-DARTS and GOLD-NAS get results of
24.9% and 25.0% respectively. And our IF-NAS gets the best result of 24.4% with similar Params
and MAdds. Note that the results of the compared 3 frameworks get worse when L increases to
6 compared to L as 4. However, IF-NAS nearly maintains the performance. When L increases,
more interleaved connections occur, and bring more interference to the search process. The com-
pared 3 methods, which do not suppress interleaved connections during search, are more severely
effected and achieve worse results. However, IF-NAS samples interleaving-free sub-networks and
updates the architectural parameters more accurately. This further confirms that our IF-NAS has
great potential to handle complicated spaces.

When set L to 8, IF-NAS still achieves a promising result of 24.3%, which is comparable to
the former two settings. The compared ones get similar or weaker results. Due to the increase
in complexity, the performances of PC-DARTS and GOLD-NAS continue to decrease. But the
MAdds of these architectures are close to 600M, which prevents performance from declining.

Table 3: Results of reserving one input for each
node. all architectures are trained on ImageNet-
1k for 100 epochs.

Setting random DARTS GOLD-NAS IF-NAS
L = 4 27.6± 0.3 29.8 28.8 26.7
L = 6 28.0± 0.3 30.2 29.0 26.9
L = 8 28.9± 0.4 31.6 30.8 27.3

If we do not derive architectures with MAdds
and preserve one input for each node, the results
are shown in Tab. 3. Interestingly, without the
protection of keeping so many MAdds, DARTS
and GOLD-NAS show completely failed re-
sults. When L=4, the results of DARTS and
GOLD-NAS are 29.8% and 28.8%, which are
even much worse than the randomly generated
architectures. When L increases to 8, the per-
formances of DARTS and GOLD-NAS further degrade. The architectures searched without sup-
pressing interleaved connections only preserve very few nodes, which damages the final perfor-
mance dramatically. On the contrary, IF-NAS still achieves comparable results even without any
MAdss restriction.

The above experiments imply interleaving connections cause non-negligible impacts to DNAS meth-
ods when the search space grows larger and more complicated. IF-NAS is able to handle this chal-
lenge by the proposed interleaving-free sampling.
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Figure 4: Architectures searched with (left) and without (right) IF. (a): results on 4-chain space. (b):
results on 6-chain space. (c): results on 8-chain space. The reserved connections with IF are mainly
serial pattern, which guarantees the depths of architectures. The reserved connections without IF
are mainly parallel pattern, resulting in a short longest-path at each stage, that is, the depths of
architectures are shallow.

4.3 IF SAMPLING EFFECTIVENESS ON L-CHAIN SPACE

Table 4: Results of exploring the effectiveness of IF
sampling on theL-chain space. All the architectures
are trained on ImageNet-1k for 100 epochs.

Setting Depth Params (M) Err. (%)
w/o IF 22.5± 2.0 5.2± 0.2 26.7± 0.3
w/ IF 43± 3 5.3± 0.1 26.0± 0.3

In this part, we design a comparative exper-
iment to verify the effectiveness of IF sam-
pling. We search for 4 times independently
for each setting, and the results are shown in
Tab. 4. The Depth in Tab. 4 refers to the
depth summation of 3 stages, which repre-
sents the longest path length of the network.
And all architectures are train on ImageNet-
1k for 100 epochs.

(a)

(b)
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0.0
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0 50 0 50 0 500 50 0 50

0 50 0 50 0 500 50 0 50

Figure 5: (a): The weight changing curve of candidate in-
puts with IF. (b): The weight changing curve of candidate
inputs without IF. The darker the color, the closer the corre-
sponding candidate inputs are to the activated node.

We find the accuracy of the archi-
tectures searched without IF (“w/o
IF”) sampling is much worse than
that with IF (“w/ IF”) sampling by a
margin of 0.7% with similar Params.
It is worth noting that the depth of
w/o IF is much smaller than w/ IF,
because the interleaved connections
produce serious interference to the
search process. This verifies that our
IF-NAS can effectively handle inter-
leaved connections and guarantee the
search performance.

The visualizations of searched architectures are shown in Fig. 4. We can find that w/ IF preserves
many serial pattern connections and w/o IF mainly preserves parallel connections, as a result, the
architectures of w/ IF is much deeper than w/o IF. Fig. 5 shows some weight change curves of w/ IF
and w/o IF. One can see that w/ IF can select more closer inputs, which derives deeper architectures.
w/o IF prefers farther nodes, which usually leads to parallel connections and discards more nodes.

8
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4.4 EFFECTS OF INTERLEAVED CONNECTIONS

Table 5: Results of retaining architectures searched
with different number of interleaved connections
(IC) involved.

IC Number Depth Params (M) Err. (%)
0 41.5± 2.5 5.0± 0.1 19.1± 0.2
1 26.0± 3.0 4.9± 0.3 19.7± 0.3
2 24.5± 2.5 5.0± 0.3 19.9± 0.4
3 24.0± 3.0 5.0± 0.2 20.0± 0.3

We allow various numbers (1/2/3) of in-
terleaved connections to be sampled during
search to understand the effects they may
bring. The searched architectures are trained
on ImageNet-100 for 100 epochs and the re-
sults are shown in Tab. 5. We find with
more interleaved connections added, the per-
formance degrades more. This shows more
interleaved connections cause greater impact
on the search. It implies that Interleaving-
Free is necessary in such a flexible space. Interestingly, the performance drops greatly even through
one interleaved connection is sampled during searching, which demonstrates that as long as the
interleaved connection is involved, interference is generated.

4.5 COMPARISON WITH CELL-BASED MICRO SPACES
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Figure 6: Results on different spaces using 3 search strate-
gies. DNAS indicates the differential-based search without
IF. The random indicates random search.

In this section, we test IF-NAS in two
micro search spaces, DARTS space
referred to as spaceD and GOLD-
NAS space referred to as spaceG.
The two spaces adopt the same 3 ×
3 separable convolution and skip-
connection operators as ours, thus
that the comparison is fair. The re-
sults are shown in Fig. 6. The hor-
izontal axis denotes the space com-
plexity (the exponential base of 10)
and the vertical axis denotes the ac-
curacy trained on ImageNet-1k for
100 epochs. The bubble sizes im-
ply the complexity of spaces. The
results on spaceD and spaceG are
close among 3 strategies (even with
random search), which implies the 2
spaces are inflexible and have a pro-
tection mechanism (the cell design)
to help the search methods. The L-chain spaces are more flexible and difficult so that the gaps
between IF-NAS and others in L-chain spaces are much larger. Moreover, the larger the spaces,
the worse the performances of DNAS and random search. However, our IF-NAS provides all best
results in the 5 spaces, which shows that IF-NAS are robust and generalize well to micro spaces.

5 CONCLUSIONS

This work investigates neural architecture search and extends the design of search space towards
higher flexibility. This is done by adding a large number of long-range connections to the super-
network. The long-range connections raise new challenges to the search algorithm, and we locate
the problem to be the interference introduced by interleaved connections during search. We propose
a simple yet effective solution named interleaving-free sampling based on this observation, which
makes a schedule to sample sub-networks and thus guarantees that interleaved connections do not
occur. Experiments in the complicated search space show the effectiveness of our approach, IF-NAS.

Searching in a more complicated space has been of critical importance for the development of NAS.
Our research delivers the message that new properties/challenges of NAS emerge when the search
space is augmented. We advocate for more efforts in this direction to improve the ability of the
search algorithms.

9
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ETHICS STATEMENT

The proposed methods in this paper is used to design neural architectures automatically. This helps
to explore superior macro architectures in the very complicated search spaces, which could brings
more potential architectures but also brings bigger difficulties for NAS and activates researchers to
explore the challenging problem.

To the best of our knowledge, our research does not raise any concerns in ethics.

REPRODUCIBILITY STATEMENT

The reproducibility of this paper is guaranteed by two factors. Firstly, we will release the code.
Secondly, the proposed method is effective but simple. IF-NAS samples sub-networks iteratively
and each sub-network is interleaving-free, which guarantee the interference is reduced. The searched
architectures are deeper, which are generally considered better.
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A APPENDIX

A.1 MORE EXAMPLES OF INTERLEAVED CONNECTIONS

In Section 3.3, we show failure cases from the simplest situation. In this part we perform more
experiments to show the influence of interleaved connections and the weight change curves are
shown in Figure 7. In Fig. 7 (a), we run 4 times independently under interleaving-free setting and
the nearest candidate inputs have a dominant weight at this time. In Fig. 7 (b)-(d), We run 4 times
independently and each time we add 1-3 different interference connections. One can see that the
more interleaved connections are added, the harder it it the nearest candidate input is picked.

A.2 DEGRADATION IN MICRO SPACE

We run DARTS, a representative DNAS framework, 40 times independently under different settings.
The normal cell depth of the searched architectures are organized in Fig. 9. Most architectures in
Fig. 9 bias for shallow depth, which has been observed by some former works. Especially, the ratio
of depth 1 and depth 2 exceeds 60%.
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Figure 7: More examples of adding different
numbers of interleaved connections to im-
pact the NAS algorithm. (a) is under the
interleaving-free setting and 1-3 interleaved
connections are added for (b)-(d).

In Fig. 8, we sample 8 operators randomly for 10
times, and each time 4 normal cells with different
depths and same parameters can be constructed by
only changing the topology. In addition, a reduction
cell is randomly sampled for all normal cells. So that
40 architectures are generated. We train these ar-
chitectures in CIFAR100 and ImageNet-small from
scratch for 100 epochs. ImageNet-small dataset is
generated by sampling 100 images each class ran-
domly from ImageNet-1k. The results, shown in
Fig. 8, show that shallow architectures are nothing
to do with their performance. On the contrary, the
shallow architectures are not better than the deeper
ones, especially for datasets with more categories.
This also shows that degradation is detrimental to
performance even in micro space.

Degradation is a common problem in DNAS meth-
ods, which has been observed by some previous
works. However, due to the design limitation of
micro space, this problem has little impact and has
not been further studied. But in the newly proposed
space with more flexibility and potential, the impact of interleaved connections becomes large.
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Figure 8: Results of randomly sampled architec-
tures on CIFAR100 and ImageNet-small. The
horizontal axis is the depth of the normal cell,
and the vertical axis is the accuracy (%).
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Figure 9: Normal cell depth ratio of DARTS.

A.3 ANALYSIS ON THE SEARCH SPACE

In our L-chain search space, 3 stages are to be searched. There are 18, 20 and 18 nodes for these
3 stages respectively and 56 nodes in total, which is the same with DARTS and GOLD-NAS space.
If needed, we can also easily increase the number of nodes in each stage, which also means greater
flexibility and difficulty. There is no output node in our L-chain like the micro space, which inte-
grates the concat features of the 4 intermediate nodes through 1× 1 convolution, so the parameters
and MAdds can be keep indistinguishable although with a larger channel number.

In Section 3.2.2, we compare our L-chain space with two popular spaces. Since there is no cell
design, L-chain space contains much more possibilities. The size of our 4-chain space is comparable
to GOLD-NAS, and 6-chain and 8-chainspace contain much more possibilities. Even though 4-chain
contains comparable even less architectures than GOLD-NAS, 4-chain space is much more difficult
than GOLD-NAS because it is more flexible and allows extremely degraded architectures.

A.4 VISUALIZATION OF ARCHITECTURES BY RESERVING ONE INPUT

We show some architectures derived by only reserving one input, Fig. 10 and Fig. 11. In Fig. 10,
the searched architectures reserve many near candidate inputs, so architectures are still deep. On the
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Table 6: Cell depths and results of IF-NAS in spaceD and spaceG. All architectures are trained on
ImageNet-100 for 100 epochs.

Space methods Depth Params (M) Err. (%)

spaceD
PC-DARTS 2/2/3/3 4.8± 0.5 19.5± 0.6

IF-NAS 3/3/3/4 4.8± 0.4 19.3± 0.5

spaceG
GOLD-NAS 2.5/2.7/2.5/2.6 5.3± 0.6 19.2± 0.4

IF-NAS 3.1/3.3/2.8/3.1 5.2± 0.8 19.0± 0.4

contrary, in Fig. 11 without IF, only a few nodes are kept, resulting in extreme degradation of the
architectures.
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Figure 10: Architectures searched with IF by
only reserving one input.
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Figure 11: Architectures searched without IF by
only reserving one input.

A.5 SEARCHED CELL DEPTHS IN MICRO SPACES

In this section, we test our IF-NAS in terms of the searched architecture depths in two micro search
spaces from DARTS as spaceD and GOLD-NAS as spaceG. The results are shown in Tab. 6. In
spaceD, we run PC-DARTS and IF-NAS 4 times independently. The depths of the searched normal
cells by PC-DARTS are 2/2/3/3 respectively. By training the model for 100 epochs on ImageNet-
100, PC-DARTS achieves a test error of 19.5% ± 0.6 with 4.8 ± 0.5M Params. The depth of the
searched normal cells by IF-NAS are 3/3/3/4 respectively, deeper than PC-DARTS. A better test
error of 19.3% ± 0.5 is achieved with similar Params. Similarly in spaceG, we run GOLD-NAS
and IF-NAS 4 times respectively, and count the average depth of all cells of each architecture. The
average depth of GOLD-NAS are 2.5/2.7/2.5/2.6 respectively, which are shallower than IF-NAS
with average depths of 3.1/3.3/2.8/3.1. Moreover, better results are obtained by IF-NAS with even
fewer Params, compared with GOLD-NAS. The above experiments verify that our IF-NAS can still
perform well in micro spaces, and the architecture depths are larger with interleaved connections
suppressed.
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