Co-Dream: Collaborative data synthesis with decentralized models

Anonymous Authors'

Abstract

We present a framework for distributed optimiza-
tion that addresses the decentralized and siloed na-
ture of data in real world. Existing works in Feder-
ated Learning address it by learning a centralized
model from decentralized data. Our framework
Co-Dream instead focuses on learning representa-
tion of data itself. By starting with random data
and jointly synthesizing samples from distributed
clients, we aim to create proxies that represent
the global data distribution. Importantly, this col-
laborative synthesis is achieved using only local
models, ensuring privacy comparable to sharing
the model itself. The collaboration among clients
is facilitated through federated optimization in
the data space, leveraging shared input gradients
based on local loss. This collaborative data syn-
thesis offers various benefits over collaborative
model learning, including lower dimensionality,
parameter-independent communication, and adap-
tive optimization. We empirically validate the
effectiveness of our framework and compare its
performance with traditional federated learning
approaches through benchmarking experiments.

1. Introduction

In the current era of big data, data is distributed among
silos owned by different users or organizations, making it
difficult to collaboratively train machine learning models
on large datasets. Centralizing data is not always feasible
due to regulatory and privacy concerns in domains such
as healthcare, finance, and mobility. Federated Learning
(FL) solves this problem by centrally aggregating clients’
models instead of data. But if we could simply generate
samples that represent characteristics of the data distribution
while still maintaining privacy, then we would eliminate
the need to aggregate the client models (and potentially
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eliminate the need for FL). Sharing samples offers much
higher flexibility for training models and supports arbitrary
model architectures(unlike FL) and tasks.

We design a framework for collaboratively synthesizing
a proxy of the siloed data distributions, called dreams,
without centralizing data or client models. Just like
FedAvg (McMahan et al., 2017), Co—Dream also exhibits
two-folds of privacy: (1) clients share dreams’ updates in-
stead of raw data, (2) clients can securely aggregate their
dreams using existing cryptographic techniques without re-
vealing their individual updates to the server.

Our proposed technique, Co-Dream, collaboratively op-
timizes dreams to aggregate knowledge from the client’s
local models. Importantly, our approach allows different
model architectures to be used for each client. By sharing
dreams in the data space rather than the model parameters,
our method is model-agnostic and scalable to large models.
The key idea is, to begin with randomly initialized samples
and apply federated optimization on these samples for ex-
tracting knowledge from the client’s local models trained
on their original dataset. Our framework represents the first
solution that combines both the privacy advantages of FL
with the flexibility of model heterogeneity. Furthermore,
communication is not dependent on the model parameter
size, thereby alleviating scalability concerns.

By performing extensive experiments and analysis in Sec 3,
we establish the feasibility of Co-Dream as a way for
clients to collaboratively synthesize samples. Our results
show that collaboratively optimized dreams give a higher
performance (up to ~ 20% accuracy improvement on
CIFAR-10) and have lower sample complexity compared
to independently optimized dreams. We believe that our
proposed approach has the potential to rethink the way we
approach data decentralization.

In summary, our contributions are summarized as 1) A
framework for collaborative data synthesis by federated
optimization in the data space. 2) Formulate the learning of
a global model as a knowledge acquisition problem and de-
sign a personalized distillation procedure for adaptively ex-
tracting knowledge from the clients. 3) Empirical validation
of our framework by benchmarking with existing algorithms
and ablation studies across various design choices.
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2. Co-Dream

Co-Dream comprises of two key stages: knowledge ex-
traction and knowledge aggregation.

In the knowledge extraction stage, we aim to obtain use-
ful representations of data, called dreams, from each client
that can be used for training a model that reaches similar
performances as the client model. The clients begin with a
few warmup rounds to pre-train their local model and then
jointly optimize random noise images. To facilitate knowl-
edge aggregation, we leverage the linearity of gradients to
exploit the fact that our optimization process is gradient-
based. This results in an optimization scheme similar to
distributed SGD. However, unlike FedAvg and distributed-
SGD, our aggregation step occurs in the data space. This
makes our approach model-agnostic and compatible with
FL setups that involve heterogeneous client architectures.

2.1. Local dreaming to extract knowledge from models

While DeepDream (Mordvintsev et al., 2015) and Deep-
Inversion (Yin et al., 2020) (see Appendix B) both enable
data-free knowledge extraction, they are not directly appli-
cable to FL because the teacher models are continuously
evolving and the student learns from multiple teachers as
well as its own data. A direct consequence of this non-
stationarity is that it is unclear how the label y should be
chosen in Eq 5. In Deeplnversion, the teacher uniformly
samples y from its own label distribution because the teacher
has the full dataset. However, we cannot assume this in FL
because data is distributed across multiple clients with het-
erogeneous data distributions. Additionally, any given client
should synthesize only those dreams over which they are
highly confident.

The main issue with directly applying Eq 5 is how to keep
track of a given client’s confidence. We take a simple ap-
proach of treating the entropy of the output distribution as a
proxy for the teachers’ confidence. We adjust Eq 5 so that
the teacher synthesizes dreams without any classification
loss by instead minimizing the entropy (denoted by ) on
the output distribution. Formally, we optimize the following
objective for synthesizing dreams:

min {e(;@, 0) = H(fo(d) + R(:%)} )
The teacher starts with a batch of representations sampled
from a standard Gaussian (Z = N(0, 1)), and these dreams
are optimized using Eq 1. In contrast to Eq 5, we do not re-
strict Z to the data space but allow it to be the representation
at any layer. In Sec 3, we show that for certain experiments,
sharing representations from the penultimate layer performs
equally as well as sharing in the data space. Note that, unlike
generative models, the only goal of optimizing dreams is to
enable KD rather than maximize the likelihood of the data.

Therefore, dreams do not need to appear like real images.
We show several visual results of dreams in Supplementary.

2.2. Collaborative dreaming for knowledge aggregation
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Figure 1. Comparing aggregation framework in FL & Co-Dream.

If we had assumed that server could be trusted, then the
best way to aggregate knowledge would be to pool data
from all users at the server and train a teacher model on
this aggregated data by applying the knowledge extraction
objective described in Eq 1. This can be written as

,07) st. 0 =argmin @ E
0 Dy~p(D)

[¢ (Dx, 0)] .
2

However, we cannot obtain 6* without centralized data. Fur-
thermore, estimating 6* using FedAvg will not generally
be model-agnostic. Therefore, we collaboratively optimize
dreams by taking the expectation over every client’s own
loss with respect to the same 2:

min / (i
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Eq 3 can be optimized for distributed data even if not exactly
equivalent to optimizing Eq 2. The empirical risk (Eq 3)
can be minimized by computing the local loss at each client.
Therefore, the update rule for & can be written as

Va D,
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While no single party can compute this gradient because
models are decentralized due to the linearity of gradients,
we can write the above equation as

. . 1 .
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The clients compute gradients locally with respect to the
input and share them with the server, which aggregates the
gradients and returns the updated input to the clients. This
formulation is the same as the distributed-SGD formulation,
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but the optimization is performed in the data space instead
of the model parameter space. Our framework is compat-
ible with existing cryptographic aggregation techniques,
as the aggregation step is linear and only reveals the final
aggregated output without exposing individual client gra-
dients. Collaboratively optimizing representations, known
as dreams in our approach, is a novel concept that has not
been explored before. Our experiments (Sec 3) demonstrate
that dreams obtained through this approach capture knowl-
edge from all clients and outperform dreams synthesized by
independent clients regarding the server’s performance.

Similar to FedAvg, we perform multiple local steps before
synchronization to enhance communication efficiency as fol-
lows: At the start of every round r, each user k starts with
the same parameter Zj, , := 271 and update its local param-
eters for M steps, i.e., T} . = 2} . 1 — M Gk(Tf 0 1)-
Here, gi. () := V. ({(z,D},)) is gradient function for the
client k£ and 7 is the local learning rate for the clients.
Upon the completion of the local optimization, each client
sends its local updates Zj ,, — 2" to the server. The lo-
cal updates are commonly referred to as pseudo-gradients
and are aggregated by the server as follows: #"T! =
"+ g D p<k ﬁ Thoar — a%r). Note that the choice
of parameters such as local updates M, local learning rate
7, global rate 74, and the number of clients K typically
guide the trade-off between communication efficiency and
convergence of the optimization problem.

2.3. Analysis of Co-Dream

Communication Comparison. To understand the commu-
nication efficiency of this procedure, recall the notation:
d is the dimension of the inputs, n is the number of sam-
ples generated, and R is the number of aggregation rounds.
Since our approach is model agnostic, the total communi-
cation is d X n R. In FedAvg and its recent variants, the
communication is usually of the order || x R. For heavily
parameterized models, the communication is |0| < d X n.
We comprehensively evaluate the role of n in the perfor-
mance of our system.

Benefits of Co—Dream are inherited from the usage of KD,
along with additional advantages arising from our specific
optimization technique.

(1) Lower dimensionality. Co-Dream communicates in-
put gradients (V) instead of model gradients (Vy), which
can be advantageous for robust averaging and privacy mech-
anisms due to their dependence on the dimensionality of
samples. Moreover, the data dimensionality remains con-
stant even if the model increases in depth and width, which
makes this approach suitable for large FL. models.

(2) Optimization in the data space. First, being model ag-
nostic, Co-Dream allows for collaboration among clients
with different model architectures. Second, the shared in-

puts are semi-interpretable, enabling better analysis of the
learned knowledge. Third, clients can collaborate without
revealing their proprietary ML models, enhancing privacy.
Fourth, sharing knowledge in the data space enables adap-
tive optimization, such as synthesizing adversarially robust
samples or class-conditional samples. Finally, the linearity
of the aggregation algorithm makes our approach compati-
ble with secure averaging (Bonawitz et al., 2017).

Limitations of Co-Dream are mainly due to the additional
layer of optimization for synthesizing dreams, i.e. the clients
now need to optimize ML models locally and optimize rep-
resentations collaboratively. Therefore, the following limi-
tations arise:

(1) Additional computation on the client device: While
the number of parameters on the client device remains un-
changed, as gradients are applied in the data space, the
client device has an additional computation burden. This ad-
ditional computation can be offloaded to the server if secure
aggregation is not required.

(2) Sample inefficient - Experimentally, we find that many
samples are required to effectively transfer knowledge
among clients due to the redundancy of features in inde-
pendently generated . We believe the problem can be
circumvented by not using the same initialization, and we
show promising results in Sec 3.

3. Experiments

Setup: We evaluate the effectiveness of Co-Dream at
each of the two stages: knowledge extraction 2.1, and knowl-
edge aggregation 2.2, on three image classification datasets
(MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky et al.,
2009), and PathMNIST (Yang et al., 2023)). We also an-
alyze several aspects of Co-Dream with ablation experi-
ments. For quantitative evaluation, we train a student model
from scratch on only dreams and treat the model’s accuracy
as a proxy for the quality of the synthesized dreams.

Validating knowledge-extraction in low data settings.
We evaluate whether the knowledge-extraction approach
(Sec 2.1) allows for the effective transfer of knowledge from
teacher to student. We first train a teacher model on different
datasets, synthesize samples with our knowledge-extraction
approach, and then train a student on the extracted knowl-
edge. To validate its compatibility within an FL setting
where clients have a small local dataset, we reduce the size
of the training set of the teacher and evaluate how this affects
student performance. Results in Fig 2 show that the teacher-
student performance gap does not consistently degrade even
when the teacher’s accuracy is low. This result is interesting
because the extracted features get worse in quality as we
decrease the teacher accuracy, but the performance gap is
unaffected.
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Figure 2. Effectiveness of knowledge transfer from teacher to student. We vary the size of the training dataset (on the x-axis) of the

teacher (in green) and compare its accuracy with the student (in
though the perceptual quality of the teacher samples is poor.

Validating collaborative optimization. We evaluate how
distributing data across multiple clients affects the quality
of the extracted knowledge. We keep a fixed dataset size
(128 samples for MNIST, 24k samples for CIFAR10, and
24k samples for PathMNIST) and distribute these samples
evenly among the clients. We evaluate the effectiveness of
collaborative dreaming by varying the number of clients
K = {1,2,4,6,8,12,24} and training a student model
from scratch on the extracted knowledge. While a perfor-
mance drop is expected as the number of clients increases,
we observe in Fig 3 that the performance drop is sublinear
and quite compatible with cross-device FL settings.
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Figure 3. Comparison by varying the number of clients. The per-
formance gap widens between Co-Dream and independent opti-
mization as we increase the number of clients.
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Figure 4. Comparison between collaborative and independent opti-
mization.

Collaborative optimization versus aggregate knowledge
extraction. We compare the performance of clients indepen-
dently extracting knowledge (using Eq 1) against combining

). We find that the student can perform similarly to the teacher even

their individual datasets on the server. We plot the accuracy
of the server model optimized from scratch and find the
collaboratively optimized samples are significantly more
sample efficient for training a student model than the in-
dependently optimized samples. For instance, we train a
randomly initialized student model with 50 batches of syn-
thesized dreams and show that collaboratively optimized
dreams get ~ 20% higher test accuracy on average than
independently optimized dreams.

Improving local computation cost. As noted in Sec 2.3,
the key limitation of our technique is the additional compu-
tation cost incurred in synthesizing dreams. To address this,
we identify some assumptions that help alleviate these com-
putational costs. If the clients use the same model, we can
synthesize the dreams in the activation space instead of data,
resulting in faster optimization as only the gradients need to
be backpropagated for the last few layers. Additionally, if
we assume that a client has additional memory to support
a generative model, then dreams can be synthesized by ini-
tializing them as the output of the generative model instead
of random noise, significantly reducing the communication
cost.

4. Conclusion

We introduced Co-Dream, a collaborative data synthesis
approach where clients jointly optimize for an accuracy
model-agnostic federated learning framework that lever-
ages a knowledge extraction algorithm for gradient descent
in the input space. We view this approach as a comple-
mentary technique to FedAvg, which performs gradient
descent over model parameters. Our contributions were
validated through comprehensive evaluations and ablation
studies. Future work includes more empirical evaluation in
data heterogeneous scenarios and theoretical analysis of fed-
erated optimization in data space. New privacy mechanisms
catered for Co-Dream that have improved privacy-utility
trade-off is another promising future avenue.
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Figure 5. Landscape of FL techniques. By levels of privacy, we mean how distant the shared updates are from the raw data. Sharing
synthetic data’ and dreams® are two levels of indirection away from the raw data than sharing models'.

A. Related Work

The problem of collaborative data synthesis has been previously explored using generative modeling and federated learning
techniques. Figure 5 compares existing decentralization solutions regarding shared resources, utility, and privacy. We refer
the reader to Supplementary for a more detailed discussion of existing works.

Generative modeling techniques either pool locally generated data on the server (Song et al., 2022; Goetz & Tewari, 2020)
or use FedAvg with generative models (Rasouli et al., 2020; Xin et al., 2020). FedAvg over generative models lead to the
same problem FedAvg over predictive models. While we share the idea of generative modeling of data, we do not expose
individual clients’ updates or models directly to the server.

Knowledge Distillation in Federated Learning is an alternative to FedAvg that aims to facilitate knowledge sharing
among clients that cannot acquire this knowledge individually (Chang et al., 2019; Lin et al., 2020; Afonin & Karimireddy,
2022; Chen & Chao, 2021). However, applying KD in FL is challenging because the student and teacher models need to
access the same data, which is difficult in FL settings.

Data-free Knowledge Distillation algorithms address this challenge by employing a generative model to generate synthetic
samples as substitutes for the original data (Zhang et al., 2022a;b; Zhu et al., 2021). These data-free KD approaches are not
amenable to secure aggregation and must use the same architecture for the generative model.

However, all these existing approaches lack active client collaboration in the knowledge synthesis process. Clients share
their local models with the server without contributing to knowledge synthesis. We believe that collaborative synthesis
is crucial for secure aggregation and bridging the gap between KD and FL. Therefore, we introduce Co-Dream, which
enables clients to synthesize dreams collaboratively while remaining compatible with secure aggregation techniques.

B. Preliminaries

Federated Learning aims to minimize the expected risk ming Ep.,,(p)¢(D, #)) where 6 is the model parameters, D is a
tuple of samples (X € X,Y € ) of labeled data in supervised learning in the data space X C R% and ) C R, and / is
some risk function such as mean square error or cross-entropy (Konecny et al., 2016; McMahan et al., 2023). In the absence
of access to the true distribution, FL aims to optimize the empirical risk instead ming ) -, . ;- ‘Dl—klé (Dg, 0). Here, each Dy,
is owned by client k in the federation and D is assumed to be partitioned across K clients D = Uye g Dy, The optimization
proceeds with the server broadcasting ¢ to each user & that locally optimizes 92“ = arg mingy: ¢(Dy, 0*) for r rounds and
sends local updates either in the form of Gt,jl or Gtk“ — 0 (pseudo-gradient) to the server to aggregate local updates and
send the aggregated weights back to the clients.

! Aggregation of local updates occurs in the model parameters space
2 Aggregation of local updates occurs in the data space
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Figure 6. Comparing test-accuracy (on y-axis) for CIFAR-10 between FedAvg and Co-Dream for different samples per client ratios.
We include centralized and independent baselines for reference.

Knowledge Distillation facilitates the transfer of knowledge from a teacher model (f(f1)) to a student model (f(fs)) by
incorporating an additional regularization term into the student’s training objective (Bucilud et al., 2006; Hinton et al., 2015).
This regularization term (usually computed with Kullback-Leibler (KL) divergence KL(f (61, D)||f(6s,D))) encourages
the student’s output distribution to match the teacher’s outputs.

DeepDream for Knowledge Extraction (Mordvintsev et al., 2015) first showed that features learned DL models could be
extracted using gradient-based optimization in the feature space. Randomly initialized features are optimized to identify
patterns that maximize a given activation layer. Regularization such as TV-norm and ¢; -norm has been shown to improve
the quality of the resulting images. Starting with a randomly initialized input & ~ N'(0, I), label y, and pre-trained model
fo, the optimization objective is

min CE (fo(2), y) + R(2), 5)

where CE is cross-entropy and R is some regularization. Deeplnversion (Yin et al., 2020) showed that the knowledge
distillation could be further improved by matching batch normalization statistics:

Ron(@) = _ [lim(@) = Ep[m(@)][l, + [lo1(@) — Ep[ou(@)]]],, ©)
l

where = € X are the original samples from a dataset and j;(-) and o;(+) are mean and variance for the [’th layer’s feature
maps for a given batch. The value Ep[u; ()] can be approximated using the running mean and variance of the batch
normalization layers stored in a model.

C. Additional Experiments

Comparison with FLL We evaluate the performance on the CIFAR10 dataset when samples are IID among
clients. For baselines, we compare against FedAvg, and include Independent, and Centralized train-
ing baseline for reference. In the Centralized baseline, all the data from the clients are aggregated

in a single place. In the case of Independent, we train models only on the client’s local dataset.
We also experiment with varying the number of samples per client.

We plot the results across communication rounds in Fig C and re-  Tuble 1. Performance on IID clients for CIFAR-10

port the maximum accuracy across multiple rounds in Table 1. We #samples 1k/client 2k/client 3k/client

find that Co-Dream consistently performs closer to the centralized

baseline and outperforms centralized in two out of the three cases. Centralized 0.543 0.6627 081

We posit that the reason Co-Dream outperforms the centralized Independent 0.458 0.543 0.694
baseline is due to the self-distillation phenomenon (Allen-Zhu & Li,
2020; Zhang & Sabuncu, 2020). FedAvg 0.538 0.644  0.796

Federated averaging versus distributed optimization. Similar Co—Dream 0.571 0.689 0.775

to FedAvg, our approach reduces client communication by in-

creasing the number of local steps performed on the client device. Therefore, we quantify the tradeoff between
the number of local steps and the reduction in the quality of the co-dreams. We note that our knowledge extrac-
tion approach is sensitive to the optimizer and usually performs better with Adam (Kingma & Ba, 2014) over SGD.
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This presents a unique challenge when performing multiple steps of local
optimization locally as the server can not perform adaptive optimization
anymore. Therefore, we utilize the same approach as adaptive federated
optimization (Reddi et al., 2020) that treats the server aggregation step as
an optimization problem and replaces the simple averaging (i.e. FedAvg)
with adaptive averaging with learnable parameters on the server.

We compare three methods of optimization: 1) DistAdam where the
clients share gradients at every step and the server applies Adam op-
timizer on the aggregated gradients, 2) FedAvg where clients apply
Adam optimizer locally for m steps and the server averages the pseudo-
gradients as described in Eq 4, and 3) FedAdam where clients apply
Adam optimizer locally for m steps and the server performs adaptive

Table 2. Comparison of different optimization tech-
niques for Co—Dream. m refers to the total number
of communication rounds.

#Optimization m  MNIST CIFARIO

DistAdam 2k 0.763 0.644

FedAvg 400 0.1826 0.5919

DistAdam 400 0.7978 0.5949

FedAdam 400 0.7831 0.6439

optimization on the aggregated pseudo-gradients based on the formulation by (Reddi et al., 2020).

We show qualitative results in the Supplementary and quantitative difference in Table 2. We find that the naive FedAvg
approach reduces the student performance even with a minor increase in the number of local computation steps; however,
when we apply FedAdam (Reddi et al., 2020), we see similar performance as DistAdam with reduced global steps.



