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Abstract001

This paper introduces Unilogit, a novel self-002
distillation method for machine unlearning in003
Large Language Models. Unilogit addresses004
the challenge of selectively forgetting specific005
information while maintaining overall model006
utility, a critical task in compliance with data007
privacy regulations like GDPR. Unlike prior008
methods that rely on static hyperparameters009
or starting model outputs, Unilogit dynami-010
cally adjusts target logits to achieve a uni-011
form probability for the target token, leverag-012
ing the current model’s outputs for more ac-013
curate self-distillation targets. This approach014
not only eliminates the need for additional hy-015
perparameters but also enhances the model’s016
ability to approximate the golden targets. Ex-017
tensive experiments on public benchmarks and018
an in-house e-commerce dataset demonstrate019
Unilogit’s superior performance in balancing020
forget and retain objectives, outperforming021
state-of-the-art methods such as NPO and Un-022
DIAL. Our analysis further reveals Unilogit’s023
robustness across various scenarios, highlight-024
ing its practical applicability and effectiveness025
in achieving efficacious machine unlearning.026

1 Introduction027

Large Language Models (LLMs) have advanced028

rapidly, becoming widely applicable in various029

settings (Brown et al., 2020; OpenAI, 2023;030

Dubey et al., 2024). However, their increasing031

capabilities raise significant privacy risks, espe-032

cially for individuals whose sensitive data may033

have been included in training. This information034

can become embedded within the model, mak-035

ing it susceptible to unintended exposure through036

memorization, adversarial exploits, membership037

inference (MIA), and model inversion attacks (Yao038

et al., 2024b).039

To address these concerns, regulatory frame-040

works such as the General Data Protection Reg-041

ulation (GDPR) have been established to protect042

individual privacy and enforce the right to be for- 043

gotten. Given that LLMs are subject to such reg- 044

ulations, the machine learning research commu- 045

nity has increasingly focused on the emerging field 046

of Machine Unlearning for LLMs (Wang et al., 047

2025a; Liu et al., 2024b; Jang et al., 2023), which 048

aims to develop methods for selectively removing 049

specific knowledge from models. This includes 050

erasing sensitive information (Wang et al., 2025a; 051

Patil et al., 2023), forgetting entire entities or facts 052

(Ma et al., 2025), and removing harmful or biased 053

information (Lu et al., 2022). 054

In the machine unlearning framework, we de- 055

fine the full training dataset as a partition of two 056

subsets: the forget set, which consists of the data 057

to be unlearned, and the retain set, which contains 058

the remaining knowledge that should be preserved 059

after unlearning. An effective machine unlearning 060

method aims to produce a model that successfully 061

forgets the forget data, while maintaining the in- 062

tegrity of the retained knowledge. Specifically, the 063

resulting unlearned model should satisfy the fol- 064

lowing key requirements: 1) Minimize the reten- 065

tion of information from the forget set; 2) Main- 066

tain high performance on the retain set; 3) Require 067

less computational cost than retraining the model 068

from scratch on the retain set; 4) Maintain infer- 069

ence efficiency, i.e., ensuring unchanged latency. 070

Despite extensive research efforts (Wang et al., 071

2025a; Liu et al., 2024c), current unlearning meth- 072

ods still face significant challenges in achieving 073

all these goals simultaneously. A major chal- 074

lenge in this domain is catastrophic forgetting 075

(Zhang et al., 2024), where the model suffers se- 076

vere degradation in its ability to retain knowledge 077

from the retain set while attempting to remove 078

forget set knowledge. Additionally, unlearning 079

methods must balance forget and retain perfor- 080

mance (Wang et al., 2025b), as no existing tech- 081

nique can fully erase the forget set information, 082

while preserving the original accuracy. To ana- 083
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Figure 1: Overview of self-distillation unlearning in Unilogit: Starting with the output logits of the LLM, the target
logit is diminished, so that after softmax the target token in the modified distribution has uniform probability. Soft
labels are derived from the current model (θ) outputs. Reverse KL divergence is the distillation objective.

lyze this trade-off, researchers commonly visual-084

ize unlearning performance through Pareto fron-085

tiers that plot forgetting effectiveness against re-086

tention performance across various hyperparame-087

ter sweeps (Zhang et al., 2024; Dong et al., 2024).088

Finally, the balancing problem is related to the is-089

sues of hyper-parameter tuning and robustness,090

as each method and problem combination have091

their unique optimal set of hyperparameters (Yao092

et al., 2024a; He et al., 2024).093

In this paper, we propose Unilogit, a self-094

distillation approach for unlearning. It generates095

targets from the output of the current model by as-096

signing a uniform probability to the target token097

in forget samples and redistributing the remaining098

probability mass. Our method is inspired by Dong099

et al. (2024) and is driven by the question:100

Can we leverage existing information to refine the101

target distribution for forgetting?102

Unilogit offers a simple yet effective unlearn-103

ing strategy that outperforms existing methods,104

demonstrating superior hyperparameter robust-105

ness and applicability across diverse scenarios,106

satisfying all key aforementioned unlearning re-107

quirements. Unlike prior techniques that intro-108

duce an extra hyperparameter in their loss (Zhang109

et al., 2024; Dong et al., 2024; Wang et al.,110

2024a), Unilogit achieves consistent forgetting111

performance without the extra tuning overhead.112

To validate our approach, we conduct in-depth113

auxiliary studies: (1) demonstrating that our soft114

labels and outputs are more accurate than those115

of other methods (Section 4.4), and (2) ablation116

studies to assess the impact of key methodological117

components (Section D.1). 118

Our contributions are as follows: 119

• We propose Unilogit, a novel method for ma- 120

chine unlearning that dynamically adjusts tar- 121

get logits to a uniform probability without ad- 122

ditional hyperparameters, addressing catas- 123

trophic forgetting. 124

• We extensively evaluate Unilogit against 125

state-of-the-art methods on various public 126

benchmarks, demonstrating its robustness 127

and effectiveness. 128

• We apply Unilogit to a real-life e-commerce 129

use-case, showcasing its reliability in a prac- 130

tical scenario. 131

• We analyze Unilogit’s self-distillation tar- 132

gets, demonstrating their accuracy compared 133

to existing techniques through KL divergence 134

studies, and perform ablation studies to as- 135

sess the impact of key components, such as 136

reverse KL divergence, highlighting the ad- 137

vantages of our approach. 138

2 Background and Related Work 139

Background. Machine unlearning for LLMs fo- 140

cuses on removing specific knowledge from a 141

trained model while preserving its overall per- 142

formance. In this framework, the full training 143

dataset is divided into two subsets: the forget set 144

Df , which contains the data to be unlearned, and 145

the retain set Dr, which comprises the knowl- 146

edge to be preserved. The primary objective is 147

to approximate the performance of the golden re- 148

trained model (θr), which is trained solely on Dr. 149
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However, full retraining on the retain set is often150

prohibitively expensive. Thus, machine unlearn-151

ing seeks to provide a more efficient alternative.152

While exact unlearning methods have been pro-153

posed (Yan et al., 2022; Ding et al., 2024), which154

fully retrain on Dr on an algorithmic-level (Xu155

et al., 2024) to recover the exact behavior of the156

retrained model, these approaches require access157

to the complete retain set and are generally com-158

putationally expensive. In contrast, approximate159

methods aim to closely approximate the retrained160

model’s behavior through techniques such as fine-161

tuning (Yao et al., 2024c; Zhang et al., 2024; Neel162

et al., 2021), prompting (Liu et al., 2024a; Pawel-163

czyk et al., 2024), or model editing (Veldanda164

et al., 2024; Hase et al., 2023), offering a more165

scalable and efficient alternative.166

Parameter-tuning. Among approximate meth-167

ods, one prominent direction is parameter-tuning168

approaches, which directly modify model param-169

eters to achieve unlearning. We pursue this di-170

rection because these methods typically meet all171

unlearning requirements, preserving inference la-172

tency without demanding excessive training com-173

pute. Parameter-tuning methods frame unlearning174

as an optimization problem with two competing175

objectives: a forget objective Lf that forces the176

model to unlearn specific knowledge and a retain177

objective Lr that ensures performance on the re-178

maining data is preserved. A generalized unlearn-179

ing loss function typically follows this form:180

argmin
θ

E(xf ,yf )∈Df
[Lf (θ, xf , yf , [θo])] +181

λE(xr,yr)∈Dr
[Lr(θ, xr, yr, [θo])] ,182

where Df is the forget set, Dr is the retain set, θo183

are the starting model weights and λ is a hyperpa-184

rameter. Typically, approaches use θo in both ob-185

jectives. The variation across methods lies primar-186

ily in how the forget loss Lf is designed. The re-187

tain objective Lr serves as a regularizer to mitigate188

catastrophic forgetting. Typically, either cross-189

entropy (Yuan et al., 2024) or KL-divergence dis-190

tillation from the starting model is used as re-191

tain loss with the latter usually performing better192

(Zhang et al., 2024; Maini et al., 2024).193

Notable parameter-tuning methods include194

Gradient Ascent (GA) (Jang et al., 2023), which195

suffers from instability, and Negative Preference196

Optimization (NPO) (Zhang et al., 2024), which197

has emerged as a robust state-of-the-art method by198

introducing a controlled forgetting process. NPO199

uses a preference optimization-based loss func- 200

tion to mitigate the risk of catastrophic forgetting. 201

Another relevant approach, ME+GD (Yuan et al., 202

2024), maximizes the entropy of the model’s pre- 203

dictions on the forget set by pushing the output 204

probabilities towards a uniform distribution, pre- 205

serving performance on the retain set using cross- 206

entropy. 207

The concept of auxiliary models in unlearning 208

was introduced by Eldan and Russinovich (2023) 209

with their "Who is Harry Potter" (WHP) ap- 210

proach, which leverages a reinforced model fine- 211

tuned on the forget set to inform the unlearning 212

process. This idea has been further developed 213

in distillation-based unlearning methods, such as 214

RKLD (Wang et al., 2024a) and UnDIAL (Dong 215

et al., 2024). RKLD enhances the WHP approach 216

by refining model reinforcement and distilling 217

modified soft labels into the original model for 218

targeted unlearning, while UnDIAL uses a self- 219

distillation approach to adjust model logits for un- 220

learning. Our approach is motivated by the ideas 221

in UnDIAL, particularly in refining the process of 222

generating effective soft labels for unlearning. 223

Outside of the realm of text-based LLMs, the 224

work most closely related to our approach is pro- 225

posed by Tang et al. (2024). In their frame- 226

work, they tackle unlearning by minimizing KL 227

divergence between model outputs and a uniform 228

distribution, then applying an MSE loss on the 229

adjusted logits. While Tang et al. (2024) pro- 230

vide a general framework, particularly for weakly- 231

supervised settings—where only limited or noisy 232

supervision is available—and experiments with 233

Computer Vision tasks, our method is specifically 234

designed for LLMs. We achieve unlearning by 235

optimizing reverse KL divergence at the categor- 236

ical probability distribution level and dynamically 237

updating target distributions based on the model’s 238

latest outputs. These features enhance adaptability 239

and unlearning effectiveness, setting our approach 240

apart from existing methods. 241

For an extended discussion on related work, 242

please refer to Appendix A. 243

3 Methodology 244

In our self-distillation approach to unlearning, the 245

central challenge is designing accurate soft tar- 246

gets that effectively guide the model toward for- 247

getting. Ideally, the outputs of the retrained model 248

θr, would serve as the gold standard for distilla- 249
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tion. However, since θr is unavailable in reality,250

we must approximate these targets through a prin-251

cipled and computationally efficient method that252

refines self-distillation for unlearning.253

Unilogit. Inspired by recent advances in logit254

adjustment for unlearning (Dong et al., 2024)255

and self-distillation, we propose Unilogit: a self-256

adjusting self-distillation method for machine un-257

learning. It sets the target logit so that after the258

softmax operation, it is equal to a uniform distribu-259

tion value, while preserving the logits for all other260

vocabulary entries. For a model output vocabulary261

V , output logit function h(x; θ), parametrized by262

the current model’s parameters θ, and a one-hot la-263

bel vector t, we calculate the target logits h̃(x; θ):264

h̃(x; θ) = (1− t)h(x; θ)+265

t log

|V |∑
i ̸=k

exp(hi(x; θ))

|V | − 1
266

Then, we calculate the soft label target distri-267

bution, where the target token label is going to be268

equal to a uniform probability (= 1
|V | )269

p̃(y|x; θ) = softmax(h̃(x; θ))270

For a detailed derivation, see Appendix B.271

This design is grounded in the intuition that the272

current model θ and the retrained model θr should273

be relatively close in both parameter space and274

output distributions, given that the retain and for-275

get sets originate from the same data distribution276

and the forget set is significantly smaller. Conse-277

quently, the non-target token logits of θ serve as278

a strong prior for approximating the output distri-279

bution of θr. By explicitly setting the target token280

probability to a uniform value, we induce the de-281

sired unlearning effect while redistributing the lost282

probability mass according to this prior.283

We adopt a uniform probability ( 1
|V | ) for the284

target token as it represents a state of complete285

uncertainty, aligning with the goal of eliminating286

learned information about the forget token. This287

choice is also justified by prior work indicating288

that untrained models tend to produce nearly uni-289

form output distributions (Tang et al., 2024; Yuan290

et al., 2024), making it a natural approximation of291

an untrained state. Importantly, this approach in-292

troduces no additional bias in determining the tar-293

get token’s probability, as we have no prior infor-294

mation about its true distribution post-unlearning.295

Unilogit has two beneficial properties over Un- 296

DIAL: 1) it eliminates the need for a manually 297

tuned hyperparameter γ to scale down the target 298

logit and 2) by explicitly setting the target prob- 299

ability to uniform, it dynamically adjusts the re- 300

duction factor in a self-consistent manner, ensur- 301

ing stability and interpretability. 302

A crucial distinction between our approach and 303

previous self-distillation-based unlearning meth- 304

ods (Dong et al., 2024; Wang et al., 2024a; Tang 305

et al., 2024) is that we construct distillation targets 306

from the current model parameters θ rather than 307

the initial model parameters θo. This choice is mo- 308

tivated by the assumption that a well-designed un- 309

learning algorithm should progressively guide the 310

model closer to the retrained model θr. If this as- 311

sumption holds, then at each unlearning step, the 312

output distribution of θ should increasingly resem- 313

ble that of θr. By leveraging the latest model out- 314

puts as the basis for our self-distillation targets, we 315

iteratively refine the approximation of θr, leading 316

to more accurate guidance for the unlearning pro- 317

cess. This directly addresses the core question of 318

our work (Question 1), and we empirically vali- 319

date this hypothesis in Section 4.4. 320

Once we have our target distribution p̃, we can 321

formulate the full training objective of Unilogit: 322

LUnilogit+KL(θ) = 323

E(xf ,yf )∈Df
KL(p(yf |xf ; θ) || p̃(yf |xf ; θ))+ 324

λE(xr,yr)∈Dr
KL(p(yr|xr; θo) || p(yr|xr; θ)) 325

For the forget loss, we adopt reverse KL- 326

divergence (RKL) due to its advantageous prop- 327

erties for unlearning. Unlike forward KL (FKL), 328

which is mean-seeking, RKL is mode-seeking, 329

thus penalizing cases where the model assigns 330

high probability to an incorrect token for which the 331

target distribution has assigned a low probability. 332

This property is particularly well-suited for un- 333

learning, as it strongly discourages the model from 334

retaining high confidence in previously learned 335

outputs. In Appendix D.1, we provide an abla- 336

tion study demonstrating that RKL leads to supe- 337

rior unlearning performance compared to FKL. 338

Prior works (Wang et al., 2024a,b) have also ob- 339

served that RKL improves evaluation metrics at 340

the cost of reduced generation diversity. How- 341

ever, in the unlearning setting, this tradeoff is ac- 342

ceptable, as we prioritize strong unlearning perfor- 343

mance over minor diversity loss. Moreover, since 344

our target distributions for non-target tokens re- 345
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main largely consistent with the model’s original346

outputs, with the only major change occurring in347

the target token’s probability reduction, the over-348

all impact on generation variance is expected to be349

minimal (see column Flu in Table 2). Further sup-350

porting our approach, Wu et al. (2025) show that351

models optimized with RKL and FKL objectives352

eventually converge to similar distributions, rein-353

forcing our decision to use RKL for this task.354

4 Experiments355

Datasets and Models. We evaluate Unilogit on356

two public benchmarks. As a general unlearn-357

ing scenario we choose MUSE-News benchmark358

(BBC News articles), for which we use Llama 2359

7B (Touvron et al., 2023). For a stricter scenario360

where the retain set is not accessible during train-361

ing, we opt for the RWKU benchmark, which fo-362

cuses on famous individuals. In this case, we use363

Llama 3.1 8B instruct (Grattafiori et al., 2024).364

Finally, we evaluate the different methods on an365

in-house e-commerce benchmark, which reflects366

a real-world use case scenario. The starting point367

is a model that has been trained on large amounts368

of public listing data from an e-commerce web-369

site. The unlearning benchmark consists of three370

different unlearning targets, which are comprised371

by different sellers from the platform. Each seller372

has associated item listings, which need to be for-373

gotten. The three sellers reflect three unlearning374

scenarios in the amount of data to be unlearned:375

a small, a medium and a large amount of listings.376

Evaluation is performed by calculating ROUGE-377

recall score on text completions for forget and re-378

tain set respectively (Jin et al., 2024).1379

More details on datasets and evaluation tasks380

used can be found in Appendix C.1.381

Settings. We closely follow the experimental382

setups described in the respective papers for each383

benchmark and cited method. All training is con-384

ducted using four A100 80GB GPUs.385

For MUSE-News, we run each method for 10386

epochs with λ = 1, a batch size of 32, and learn-387

ing rates from the MUSE paper (Shi et al., 2024).388

Additional hyperparameter tuning is performed to389

generate sweep curves, with reference ranges de-390

rived from the original method papers when avail-391

able. Specifically, we use a learning rate of 5e-6392

for ME+GD and 1e-5 for RKLD+KL.393

1More details about the in-house benchmark will be avail-
able in the camera-ready version of the paper.

For RWKU, we train for 3 epochs with varying 394

learning rates (detailed in Section D.3). Learning 395

rate sweeps in the range [1e-7, 1e-5] are conducted 396

for UnDIAL and Unilogit, while for other meth- 397

ods, we follow hyperparameter choices from their 398

respective papers. 399

For our e-commerce benchmark, we train for 10 400

epochs for the smallest seller and 3 epochs for the 401

medium and largest sellers. We begin with hyper- 402

parameters from the original method papers and 403

continue tuning if necessary to achieve optimal re- 404

sults. 405

4.1 Results on general unlearning scenario 406

In Figure 2 we can see the results for the MUSE- 407

News benchmark. We observe that out of the 408

methods evaluated, Unilogit+KL, shows the most 409

optimal Pareto curve, as opposed to the state-of- 410

the-art NPO and its distillation-based competitor 411

UnDIAL. This result substantiates our claim that 412

Unilogit provides an effective and principled solu- 413

tion for unlearning, achieving superior trade-offs 414

between forgetting and retention compared to ex- 415

isting methods. 416

Furthermore, the plot shows that our method 417

is robust to hyperparameter tuning, provid- 418

ing a smooth, monotonically increasing curve 419

when continuously varying the main unlearning 420

hyperaprameter—the learning rate. In contrast, 421

NPO and UnDIAL lack this smoothness, indicat- 422

ing greater sensitivity to hyperparameter choices. 423

Specifically, for NPO, achieving optimal perfor- 424

mance requires additional fine-tuning, such as ad- 425

justing the number of training epochs. This adds 426

complexity to its deployment. Similarly, UnDIAL 427

relies on multiple hyperparameters (learning rate 428

and γ), making it challenging to tune effectively. 429

Even with extensive tuning, UnDIAL ultimately 430

results in suboptimal performance compared to 431

Unilogit. The results for Undial visible on the plot 432

are from learning rate 1e-5; however, Appendix 433

C.1.1 contains a table with the full numbers for 434

reference. The blue line, which continues off the 435

plot is an interpolation of the UnDIAL results for 436

learning rate 1e-4. 437

We further see that other baselines, such as 438

GA+KL, RKLD+KL and ME+DG result in a sig- 439

nificant gap in unlearning efficacy for a similar 440

level of utility preservation of Unilogit, underscor- 441

ing the effectiveness of our method. 442
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Figure 2: Results for the MUSE-News benchmark for
different unlearning methods using multiple different
hyperparameters. On the x-axis we have the retain per-
formance and on the y-axis the forgetting performance,
both for the QA task.

4.2 Results on stricter unlearning scenario443

For the more difficult RWKU benchmark, where444

no retain set is available during unlearning, we445

present our result in Figure 3. This setting lacks446

a golden retrain baseline for direct comparison.447

As a result, while we can still evaluate the Pareto-448

style curve optimality, we do not have a definitive449

reference point for maximum optimality (i.e., re-450

train model performance). To aid interpretation,451

we highlight in orange the plausible desired region452

of optimality, serving as a visual reference.453

In Figure 3, Unilogit once again demonstrates454

superior performance over existing methods, as455

reflected in its monotonically-increasing curve,456

which is closest to the desired region. In contrast,457

UnDIAL exhibits inconsistencies, particularly at458

the 65.5 Avg. Neighbours performance level,459

where it briefly shows higher Avg. Forget than at460

a nearby, higher-retain-performance setting. This461

suggests that UnDIAL reaches a local peak in hy-462

perparameter space, particularly around the con-463

figuration (lr = 5e-6, γ = 5), whereas Unilogit464

maintains Pareto optimality across its entire hyper-465

parameter sweep.466

NPO performs notably better on RWKU than467

UnDIAL, but still falls slightly short of Unilogit468

in terms of overall optimality. Interestingly, GA469

closely follows Unilogit, suggesting that in sce-470

narios where GA has not yet undergone excessive471

forgetting (or catastrophic degradation), it could472

serve as a viable alternative. This highlights an473

important trend: performance differences between474

Figure 3: Results for the RWKU-News benchmark for
different unlearning methods using multiple different
hyperparameters. On the x-axis is the retain perfor-
mance and on the y-axis the forgetting performance.

methods become most pronounced at higher lev- 475

els of forgetting, reinforcing the need for robust, 476

generalizable unlearning approaches. 477

4.3 Results on in-house benchmark 478

For our in-house e-commerce benchmark, we 479

evaluate models using ROUGE-recall, the primary 480

metric displayed in Figure 4. The figure plots 481

ROUGE on the forgetting completion task against 482

ROUGE on the completion task for the neighbor 483

set of items. Across all three plots, Unilogit con- 484

sistently achieves higher forgetting while main- 485

taining similar or better retention performance 486

compared to competing methods. 487

Each data point in Figure 4 is annotated with 488

an additional metric—general model utility, mea- 489

sured by MMLU accuracy (Hendrycks et al., 490

2021) (higher is better). Notably, at compara- 491

ble levels of retention, Unilogit+KL consistently 492

achieves higher MMLU accuracy than other meth- 493

ods in all seller scenarios. The only exception is in 494

the smallest-scale unlearning task (leftmost plot), 495

where NPO+KL and ME+GD reach an MMLU 496

accuracy of 60.8, slightly exceeding Unilogit’s 497

60.2. However, this discrepancy is not indicative 498

of superior performance, as both NPO+KL and 499

ME+GD remain at baseline levels of forgetting, 500

suggesting under-unlearning rather than a genuine 501

trade-off advantage. This reinforces Unilogit’s ef- 502

fectiveness in striking an optimal balance between 503

unlearning and model utility preservation. 504

In the mid-scale seller scenario (middle plot in 505

Figure 4), SimNPO+KL (Fan et al., 2024) matches 506
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Figure 4: Comparison of unlearning methods on listings from three different sellers across three forget set sizes in
our e-commerce dataset. Forget Completion and Neighbors Completion are evaluated using ROUGE-recall scores.
Marker sizes and number annotations indicate MMLU scores, reflecting general model abilities.

Unilogit’s Pareto frontier under specific conditions507

but lacks consistency. One configuration aligns508

with Unilogit’s trade-off curve, while another ex-509

hibits lower retention despite only modest forget-510

ting, a failure mode not observed in Unilogit. This511

instability highlights SimNPO+KL’s difficulty in512

maintaining an effective balance between forget-513

ting and retention, whereas Unilogit+KL provides514

a good trade-off across hyperparameter settings.515

These results underscore the practical reliability516

of Unilogit+KL, reaffirming its consistent ability517

to optimize forgetting while preserving model util-518

ity across diverse real-world scenarios. Its strong519

Pareto efficiency and hyperparameter robustness520

make it a suitable choice for unlearning tasks in521

production environments.522

4.4 Unlearning target and output523

distribution analysis524

In this section we show that our method gen-525

erates more accurate self-distillation targets than526

UnDIAL and produces output distributions after527

unlearning that more closely align with the retrain528

model than both NPO and UnDIAL on the forget529

set. To evaluate the accuracy of both the soft-label530

distributions and the final output distributions, we531

compute the KL divergence between these distri-532

butions and the retrain model’s outputs on 100533

forget-set samples from MUSE-News.534

In Figure 5 (left) is plotted the average KL di-535

vergence for the self-distillation targets p̃(x; θ) for536

UnDIAL and Unilogit between the respective un-537

learned models and the retrain model. The base-538

line on the plot is the average KL divergence be-539

tween the outputs of the starting model (θo) and 540

the retrained model. We see that as we decrease 541

the γ parameter for Undial, we approach the base- 542

line KL. That is intuitive because at γ = 0, the Un- 543

DIAL targets are just equal to the starting model 544

outputs (Equation 1). We therefore find a draw- 545

back to the UnDIAL approach: if self-distillation 546

targets rely solely on the original model, they can- 547

not get closer in distance to the golden retrain 548

model outputs. Achieving better alignment would 549

possibly require a carefully tuned static γ that 550

works consistently across all samples. In contrast, 551

Unilogit dynamically updates its targets using the 552

current model state at each step. The last two bars 553

in the plot, representing Unilogit’s final check- 554

points with different learning rates, show signif- 555

icantly lower KL divergence than both UnDIAL 556

and the baseline, demonstrating that Unilogit pro- 557

duces more accurate self-distillation targets. 558

Figure 5 (middle) further supports this, illustrat- 559

ing how Unilogit’s soft-label distributions become 560

increasingly accurate throughout training, while 561

UnDIAL’s by design remain static. As unlearning 562

progresses, Unilogit’s targets exhibit decreasing 563

KL divergence from the retrain model, reinforc- 564

ing the advantage of dynamically updating targets 565

based on the latest model state. If our assumption 566

that a well-designed unlearning algorithm should 567

bring the model closer to the retrain model at each 568

step holds, then using the current model’s param- 569

eters to generate targets yields greater accuracy. 570

Finally, Figure 5 (right) assesses the KL diver- 571

gence between the final output distributions of dif- 572

ferent unlearned models and the retrain model. 573
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Figure 5: Left: Average KL divergence between the retrained model outputs and the soft labels of UnDIAL and
Unilogit on the forget set. Center: KL divergence progression between soft targets and retrained model outputs
for both methods over unlearning epochs. Right: Average KL divergence between unlearned model outputs and
retrained model for NPO, UnDIAL, and Unilogit. Lower values indicate better performance in all cases, as well as
the baseline represents average KL between the outputs of the starting model and the retrained model.

This metric, as also seen in Dong et al. (2024),574

captures the overall distributional alignment rather575

than focusing solely on individual predictions.576

The results indicate that Unilogit achieves a sig-577

nificantly closer match to the retrain model com-578

pared to NPO and UnDIAL, demonstrating that579

our method not only improves self-distillation tar-580

gets but also better aligns the entire output distri-581

bution with the gold-standard retrain model.582

4.5 Ablations583

Our ablation experiments demonstrate that the use584

of Reverse KL divergence significantly improves585

forgetting performance while maintaining utility,586

and our method of calculating target logit values587

outperforms UnDIAL. Additionally, using the lat-588

est model weights results in a more optimal model.589

These findings confirm that the key features of our590

approach—soft label calculation, reverse KL loss,591

and current model logits—are crucial for enhanc-592

ing unlearning performance. For a detailed discus-593

sion, please refer to Appendix D.1.594

5 Conclusion595

We present Unilogit, a novel method for efficient596

and effective machine unlearning. Through exten-597

sive experimentation across multiple benchmarks,598

we demonstrate that Unilogit outperforms existing599

state-of-the-art methods, in terms of both forget-600

ting and utility preservation. Our results show that601

Unilogit achieves the most optimal Pareto curves,602

with superior performance in retaining model util-603

ity while effectively forgetting unwanted knowl-604

edge. Furthermore, Unilogit exhibits robustness to605

hyperparameter tuning, providing stable and con-606

Figure 6: Results of Unilogit ablations on MUSE-
News. Unilogit with 1) FKL loss and 2) original model
distillation targets were tuned to match Unilogit+KL
in UtilityPreserv, allowing comparison on KnowMem
performance. Unidial+KL is included for reference.

sistent performance across various settings. 607

We also provide an in-depth analysis of 608

Unilogit’s self-distillation targets and output dis- 609

tributions, highlighting its ability to generate more 610

accurate targets compared to UnDIAL and its ca- 611

pacity to maintain better output distributions post- 612

unlearning. The ablation studies reinforced the 613

importance of key design choices, such as us- 614

ing Reverse KL divergence, calculating soft la- 615

bels dynamically, and leveraging current model 616

logits during training, all of which contribute to 617

Unilogit’s superior performance. 618

Overall, Unilogit demonstrates both practical 619

robustness and theoretical advantages, making it 620

a promising method for real-world applications. 621

8



Limitations622

Although Unilogit has been tested on multiple623

datasets, further evaluation across an even broader624

range of benchmarks is essential to fully under-625

stand its capabilities and limitations. While we626

have purposefully selected a diverse set of evalua-627

tion benchmarks to capture a variety of scenarios,628

more evaluations for additional domains should be629

performed.630

Secondly, Unilogit currently does not account631

for the varying importance or relevance of each to-632

ken in the context of the information to be forgot-633

ten. The method treats all tokens equally during634

the unlearning process, which might not be opti-635

mal for situations where certain tokens play a more636

critical role in the forgetting objective, such as pro-637

duction settings with structured text. Introducing a638

mechanism to weigh tokens based on their signif-639

icance could enhance the precision of the unlearn-640

ing process. Addressing this issue would require641

introducing the appropriate intrinsic bias, present-642

ing an intriguing avenue for future research. This643

development could serve as an additional tool for644

more effective targeted unlearning, achieving a645

better balance between forgetting and retaining in-646

formation.647

Additionally, in the current study we focus only648

on the English language and on models with a size649

around 7-8 billion parameters. Future work should650

take more languages and different model sizes into651

account.652

By acknowledging these limitations, we aim to653

highlight areas where Unilogit can be refined and654

improved, paving the way for future research.655

Ethical Considerations656

In the development and deployment of Unilogit,657

we acknowledge the ethical imperative to pri-658

oritize user privacy and data protection. Our659

method aims to address the critical need for ma-660

chine unlearning, ensuring compliance with reg-661

ulations such as the GDPR’s "right to be forgot-662

ten." By effectively removing sensitive informa-663

tion from language models, Unilogit helps miti-664

gate privacy risks associated with data leakage and665

unauthorized data retention. However, it is es-666

sential to consider potential misuse, such as the667

erasure of accountability in decision-making sys-668

tems. Therefore, we advocate for responsible im-669

plementation, ensuring that unlearning is applied670

judiciously and in contexts where it enhances user671

rights and data security without compromising 672

ethical standards. 673
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A Extended Related Work963

Among parameter-tuning methods, Gradient As-964

cent (GA) (Jang et al., 2023) serves as a fun-965

damental baseline, applying gradient ascent on966

the forget set to reverse learned representations.967

However, GA is highly unstable, leading to catas-968

trophic forgetting of retain knowledge (Zhang969

et al., 2024).970

To address this, Negative Preference Opti-971

mization (NPO) (Zhang et al., 2024) introduces972

a loss function derived from preference optimiza-973

tion theory (Rafailov et al., 2024), using only the974

forget samples as negative samples. It controls the975

forgetting process using a hyperparameter, which976

prevents the model from diverging into instability.977

As a result, NPO has been recognized as a robust978

state-of-the-art method and baseline for future re-979

search (Wang et al., 2024a; Fan et al., 2024; Dong980

et al., 2024). The objective function for NPO is:981

982

LNPO,β(θ) =983

− 2

β
EDf

[
log σ

(
−β log

p(y | x; θ)
p(y | x; θo)

)]
984

Another approach, ME+GD (Yuan et al., 2024),985

maximizes the entropy of the model’s predictions986

on the forget set by pushing output probabilities987

towards a uniform distribution. This method di-988

rectly relates to our main research question (1), as989

it establishes a principled lower-bound baseline—990

using the uniform target as the least assumptive991

distribution for unlearning knowledge. Unlike992

the commonly used KL-divergence regularizer,993

ME+GD employs cross-entropy with one-hot la-994

bels to preserve performance on the retain set. The995

objective for ME+GD is:996

LME+GD(θ,Df , Dr)997

=E(x,y)∈Df
KL(p(y|x; θ) || U|V |)+998

λE(x,y)∈Dr
H(p(y|x), y)999

≡− E(x,y)∈Dr
H(p(y|x; θ))+1000

λE(x,y)∈Dr
H(p(y|x), y)1001

Eldan and Russinovich (2023) were among the 1002

first to introduce the idea of using an auxiliary 1003

model to facilitate the unlearning process. Their 1004

method, "Who is Harry Potter" (WHP), in- 1005

volves fine-tuning the original model on the forget 1006

set to create a "reinforced" model. This reinforced 1007

model is then used to extract distributional infor- 1008

mation about the tokens most associated with the 1009

knowledge being unlearned. Using this informa- 1010

tion, the authors propose an output mixing equa- 1011

tion to generate fine-tuning labels for unlearning. 1012

The concept of leveraging an auxiliary model 1013

aligns naturally with knowledge distillation (KD) 1014

(Hinton et al., 2015), making WHP a foundational 1015

approach that has inspired subsequent distillation- 1016

based unlearning methods (Wang et al., 2024a; 1017

Dong et al., 2024; Chen and Yang, 2023; Chun- 1018

dawat et al., 2023). One such method, RKLD 1019

(Wang et al., 2024a) refines the WHP approach by 1020

enhancing model reinforcement and distribution 1021

mixing, then distilling the modified soft labels into 1022

the original model to achieve targeted unlearning 1023

while preserving overall performance. To calcu- 1024

late the target logits for later distilling them onto 1025

the original model in RKLD (Wang et al., 2024a), 1026

the following equation is used: 1027

hRKLD(x; θ) = 1028

h(x; θo)− αReLU(h(x; θs)− h(x; θo)) 1029

Here, θs are the parameters of the strengthened 1030

(reinforced) model in the method. 1031

Building on the idea of leveraging modified 1032

target distributions for unlearning, a more recent 1033

method, UnDIAL (Dong et al., 2024), introduces 1034

a self-distillation approach that adjusts model log- 1035

its to achieve forgetting. Inspired by this direc- 1036

tion, our proposal refines the process of crafting 1037

effective soft labels for unlearning. UnDIAL gen- 1038

erates its self-distillation targets by applying soft- 1039

max to adjusted logits, where the original model 1040

logits h(x; θ) are modified by reducing the target 1041

logit’s value, controlled by the hyperparameter γ: 1042

h̃UnDIAL(x; θ) = h(y|x; θ)− γt , (1) 1043

where t is the one-hot encoded target vector. 1044

B Deriving the target distribution for 1045

Unilogit 1046

As outlined in Section 3, our goal with calculating 1047

the target logits is to have a uniform distribution 1048
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value of 1/|V | of the target logit after the softmax.1049

To achieve this, we can derive the exact logit value1050

that would result in the desired outcome. With h̃k1051

we denote the unknown value of the target logit1052

with index k. Starting with what we know:1053

eh̃k(x;θ)

eh̃k(x;θ) +
|V |∑
i ̸=k

ehi(x;θ)

=
1

|V |
1054

eh̃k(x;θ) =
1

|V |

eh̃k(x;θ) +

|V |∑
i ̸=k

ehi(x;θ)

1055

eh̃k(x;θ)

(
1− 1

|V |

)
=

|V |∑
i ̸=k

ehi(x;θ)

|V |
1056

eh̃k(x;θ) =

|V |∑
i ̸=k

ehi(x;θ)

|V | − 1
1057

1058

Taking the log of both sides:1059

h̃k(x; θ) = log

|V |∑
i ̸=k

ehi(x;θ)

|V | − 1
1060

This gives us the required value of the logit so that1061

after the softmax we get a uniform probability for1062

target token k. We can then vectorize the equation1063

for calculating the target logits:1064

h̃(x; θ) = (1− t)h(x; θ)+1065

t log

|V |∑
i ̸=k

exp(hi(x; θ))

|V | − 1
1066

where t is the target one-hot labels for a given in-1067

put sample x from the forget set. This way, we1068

will only update the value of the k-th logit in the1069

modified logits vector h̃(x; θ).1070

C Experiments Details1071

C.1 Datasets and Models1072

C.1.1 MUSE-News1073

The MUSE-News benchmark (Shi et al., 2024)1074

as our general unlearning scenario benchmark.1075

It consists of BBC News articles. The evalu-1076

ation tasks include question-answering type sets1077

for forget knowledge (KnowMem.) and retain1078

knowledge (UtilityPreserv.), a membership infer- 1079

ence test (PrivLeak) and a text completion task for 1080

the forget data (VerbMem). 1081

The MUSE-News dataset consists of BBC 1082

News articles published after August 2023, ensur- 1083

ing that the pre-trained Llama 2 7B model has not 1084

encountered any of the articles. The dataset is split 1085

into a Forget Set (3554 passages) and a Retain Set 1086

(3555 passages). The target model is trained on 1087

both sets, while the retrained model is trained only 1088

on the retain subset. Unlearning is performed on 1089

a subset of 889 articles from the forget set, and 1090

the model is evaluated on tasks such as Verbatim 1091

Memorization, Knowledge Memorization (QA), 1092

Privacy Leakage, and Utility Preservation (QA), 1093

as outlined by the MUSE-News benchmark (Shi 1094

et al., 2024). 1095

VerbMem is a text completion task, where 1096

ROUGE-F1 is used to measure completion per- 1097

formance. Knowledge Memorization and Util- 1098

ity Preservation are both question-answering type 1099

tasks, where ROUGE is also employed to assess 1100

answer accuracy. Finally, Privacy Leakage is a 1101

membership inference test, as measured by Min- 1102

K% Prob (Shi et al., 2023). 1103

C.1.2 RWKU Benchmark 1104

As a stricter unlearning scenario without access to 1105

retain set examples during unlearning, we adopt 1106

the RWKU benchmark (Jin et al., 2024). It is 1107

a compilation of knowledge about each of the 1108

100 most famous people, according to Wikipedia. 1109

As starting model we use Llama 3.1 8B Instruct 1110

(Grattafiori et al., 2024), whose pre-training al- 1111

ready includes information about all the people in 1112

the dataset, so we can start unlearning from that 1113

checkpoint. The evaluation tasks for the forget set 1114

include fill-in-the-blank style samples, question- 1115

answering and adversarial attack samples, ordered 1116

by difficulty. For the retain set, there are fill-in- 1117

the blank and QA-style samples. Furthermore, the 1118

benchmark includes a MIA attack evaluation and 1119

general utility evaluations: MMLU (Hendrycks 1120

et al., 2021), BIG-Bench Hard (Suzgun et al., 1121

2022), TruthfulQA (Lin et al., 2022), TriviaQA 1122

(Joshi et al., 2017), Alpaca Eval (Fluency) (Dubois 1123

et al., 2023). 1124

C.1.3 Internal e-commerce benchmark 1125

In our e-commerce experiments, we evaluate sev- 1126

eral tasks to comprehensively assess model perfor- 1127

mance: the completion task, prediction probability 1128
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(loss), and general utility, which includes MMLU1129

and an e-commerce-specific task.1130

The completion task involves measuring the1131

ROUGE-recall score for completing the second1132

half of a seller’s item description, given the first1133

half. This setup, similar to the VerbMem task in1134

MUSE (Shi et al., 2024), is designed to evaluate1135

the model’s ability to recall text accurately on a1136

word-by-word basis. We calculate this metric for1137

both the retain and forget sets.1138

The prediction probability metric assesses the1139

log-likelihood of a given sample item, providing1140

insight into the model’s confidence in its predic-1141

tions.1142

The internal e-commerce task evaluates the1143

model’s ability to answer fill-in-the-blank style1144

queries about an item, testing its understanding1145

and retention of specific item details.1146

Together, these tasks offer a comprehensive1147

evaluation of the model’s forgetting and retention1148

performance, as well as its overall utility in an e-1149

commerce context.1150

D Extra Results1151

D.1 Ablations1152

In our ablation experiments we evaluate core de-1153

sign aspects of our method. First, we ablate the1154

choice of using Reverse KL divergence as forget-1155

ting optimization objective. As explained in Sec-1156

tion 3, RKL is more suitable for the unlearning1157

problem in this setting. Despite that, we add a1158

quantitative argument to support our choice. In1159

Figure 6 we can clearly see that for the same level1160

of utility preservation, we get significantly better1161

forgetting performance for RKL.1162

We carry out a second ablation where, likewise1163

to UnDIAL, we create our self-distillation targets1164

using the starting model. In that sense, Unilogit1165

(Orig)+KL and UnDIAL differ only by their re-1166

spective processes of logit diminishment. On Fig-1167

ure 6 we see that this version of Unilogit out-1168

performs UnDIAL, which demonstrates that our1169

methodology of calculating the target logit value1170

is more effective than UnDIAL.1171

If we make the comparison between Standard1172

Unilogit+KL and Unilogit (Orig)+KL we see that1173

using the latest model weights yields a more opti-1174

mal model.1175

Ultimately, the ablation results show that the1176

three most important features of our method—the1177

soft label calculation, the reverse KL loss and us-1178

ing the current model logits are all beneficial to 1179

unlearning performance. 1180

D.2 MUSE Benchmark 1181

In Table 1, we see the full results from all our runs 1182

on MUSE-News. 1183

D.3 RWKU Benchmark 1184

In Table 2, we see the full results from all our runs 1185

on RWKU. 1186

D.4 In-House Dataset Unlearning Task 1187

In Tables 3-5 we show the full tables for the re- 1188

sults on our in-house e-commerce benchmark for 1189

unlearning. It consists of three entities with as- 1190

sociated structured passages to them. We run un- 1191

learning on each of these entities for each unlearn- 1192

ing method. 1193
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Method Hyperparameters VerbMem KnowMem PrivLeak UtilityPreserv
(completion) (QA) (QA)

Target 56.64 63.30 -99.81 54.98
Retain 20.30 33.93 0.00 52.34

NPO lr=1e-5 7.24 7.24 57.40 7.74
NPO+KL lr=1e-5, β=0.1 40.71 59.44 -93.76 50.55
NPO+KL lr=5e-6, β=0.1 47.70 58.09 -98.09 53.04
NPO+KL lr=5e-6, β=0.1 47.01 57.58 -98.09 51.20
GA+KL lr=1e-5 41.22 56.51 -99.75 51.77
RKLD+KL lr=1e-5 47.96 55.02 -99.75 50.44
ME+GD lr=5e-6 40.23 54.37 -99.75 49.95
Undial+KL lr=1e-5, γ=2 42.37 58.27 -99.75 52.62
Undial+KL lr=1e-5, γ=4 41.52 59.07 -99.75 53.01
Undial+KL lr=1e-5, γ=8 40.81 55.97 -99.75 48.60
Undial+KL lr=1e-4, γ=4 21.15 18.69 -96.94 26.47
Undial+KL lr=1e-4 γ=2 22.63 25.88 -98.11 30.78

Unilogit+KL lr=1e-5 39.35 52.44 -99.75 50.88
Unilogit+KL lr=1e-5 33.60 52.46 -99.71 48.15
Unilogit+KL lr=5e-6 51.61 59.72 -99.79 53.44
Unilogit+KL lr=8e-6 43.01 57.61 -99.77 53.08
Unilogit+KL lr 8.5e-6 41.38 57.10 -99.77 52.87
Unilogit+KL lr 8.75e-6 39.54 54.25 -99.75 51.98

Table 1: Results of various methods on MUSE-News on Llama 2 7B

Method LR
Forget Set Neighbor Set MIA Set General Benchmarks

FB QA AA All FB QA All FM RM Gen Rea Tru Fac Flu

Baseline - 65.0 69.9 70.3 68.4 76.4 78.5 77.5 2.1 2.2 66.5 43.2 36.4 62.3 7.0

GA 2e-6 37.5 33.8 46.6 39.3 73.6 74.4 74.0 2.4 2.2 66.2 43.0 36.7 62.8 6.9
RKLD 1e-5 25.6 28.0 30.9 28.1 36.6 30.1 33.4 13.8 11.3 63.1 20.5 35.6 13.9 6.3

ME 3e-6 64.4 70.0 69.8 68.1 74.5 77.5 76.0 2.1 2.2 66.2 43.2 35.5 62.4 7.0
NPO 2e-6 24.0 16.1 17.9 19.3 57.9 62.0 60.0 2.6 2.3 65.9 43.2 35.3 63.2 6.7

Undial 2e-7 57.7 59.9 64.1 60.6 74.4 78.3 76.3 2.2 2.2 66.1 43.4 35.6 62.9 7.0
Undial 6e-7 57.2 56.5 62.4 58.7 73.6 77.4 75.5 2.2 2.2 66.1 43.4 35.3 62.7 6.9
Undial 5e-6 56.3 53.5 60.8 56.9 71.9 74.5 73.2 2.2 2.2 66.0 41.9 36.1 59.8 6.9
Undial 1e-5 56.9 54.4 60.3 57.2 62.1 69.0 65.5 2.3 2.3 65.0 41.0 35.4 48.5 6.6

Unilogit 5e-7 5.7 3.7 8.1 5.8 44.8 41.7 43.2 7.0 4.4 65.2 28.1 29.1 57.0 5.8
Unilogit 2e-7 20.5 15.4 25.4 20.4 63.8 67.5 65.7 3.4 2.4 65.7 41.9 35.1 63.3 6.7

Table 2: Results of various methods for unlearning on the RWKU benchmark on Llama 3.1 8B.
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Method
Forget Set Neighbours

MMLU ↑ e-Commerce Task ↑
Rouge ↓ Loss ↓ Rouge ↑ Loss ↑

Baseline 85.6 0.72 72.0 0.52 60.8 55.2

NPO+KL 39.6 1.81 58.8 0.75 59.7 53.9
NPO+KL 50.6 1.86 67.1 0.74 60.2 53.9

ME+GD 86.4 0.72 72.5 0.52 60.8 55.2
Undial+KL 64.3 0.90 69.0 0.55 60.3 54.9
Unilogit+KL 7.7 6.16 51.6 0.90 60.8 53.6
Unilogit+KL 10.2 6.84 62.5 0.82 61.4 54.3
Unilogit+KL 52.7 1.23 71.6 0.54 60.3 55.1

Table 3: Results of internal e-commerce benchmark for seller with 66 items (small-scale seller) on Llama 3.1 8B.

Method
Forget Set Neighbours

MMLU ↑ e-Commerce Task ↑
Rouge ↓ Loss ↓ Rouge ↑ Loss ↑

Baseline 89.3 0.10 80.8 0.28 60.8 54.3

NPO 13.1 1.06 57.9 0.52 60.2 51.8
GA 11.6 5.03 66.7 0.33 59.6 53.1

GA+KL 20.4 0.47 67.5 0.33 58.7 53.4
NPO+KL 11.5 0.89 69.0 0.33 61.4 53.0
NPO+KL 13.4 0.78 75.0 0.31 60.4 53.7
RKLD+KL 29.4 0.17 66.1 0.34 59.5 53.8
SimNPO+KL 0.3 33.63 68.1 0.35 59.1 52.6
SimNPO+KL 45.2 0.26 72.7 0.31 59.6 53.5
ME+GD 89.4 0.10 80.7 0.28 60.8 54.3
UnDIAL+KL 44.3 0.17 79.0 0.28 60.2 54.2
UnDIAL+KL 15.1 0.27 75.9 0.29 58.5 54.1

Unilogit+KL 0.0 10.78 25.8 1.68 54.4 43.4
Unilogit+KL 0.2 6.64 78.2 0.29 61.4 53.8

Table 4: Results of internal e-commerce benchmark for seller with 387 items (medium-scale seller) on Llama 3.1
8B.

Method
Forget Set Neighbours

MMLU ↑ e-Commerce Task ↑
Rouge ↓ Loss ↓ Rouge ↑ Loss ↑

Baseline 48.9 0.54 58.1 0.54 60.8 53.8

GA+KL 44.0 0.41 52.5 0.62 57.3 53.3
NPO+KL 41.0 1.00 51.7 0.70 59.6 53.8

ME+GD 48.9 0.54 58.2 0.54 60.8 53.8
Undial+KL 45.6 0.66 55.8 0.59 59.6 53.8
Undial+KL 39.2 0.78 50.2 0.64 59.1 53.5
Unilogit+KL 33.8 1.06 46.8 0.69 59.6 53.4
Unilogit+KL 31.5 3.86 55.6 0.60 62.6 53.9

Table 5: Results of internal e-commerce benchmark for seller with 1065 items (large-scale seller) on Llama 3.1
8B.
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