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Abstract

This paper introduces Unilogit, a novel self-
distillation method for machine unlearning in
Large Language Models. Unilogit addresses
the challenge of selectively forgetting specific
information while maintaining overall model
utility, a critical task in compliance with data
privacy regulations like GDPR. Unlike prior
methods that rely on static hyperparameters
or starting model outputs, Unilogit dynami-
cally adjusts target logits to achieve a uni-
form probability for the target token, leverag-
ing the current model’s outputs for more ac-
curate self-distillation targets. This approach
not only eliminates the need for additional hy-
perparameters but also enhances the model’s
ability to approximate the golden targets. Ex-
tensive experiments on public benchmarks and
an in-house e-commerce dataset demonstrate
Unilogit’s superior performance in balancing
forget and retain objectives, outperforming
state-of-the-art methods such as NPO and Un-
DIAL. Our analysis further reveals Unilogit’s
robustness across various scenarios, highlight-
ing its practical applicability and effectiveness
in achieving efficacious machine unlearning.

1 Introduction

Large Language Models (LLMs) have advanced
rapidly, becoming widely applicable in various
settings (Brown et al., 2020; OpenAl, 2023;
Dubey et al., 2024). However, their increasing
capabilities raise significant privacy risks, espe-
cially for individuals whose sensitive data may
have been included in training. This information
can become embedded within the model, mak-
ing it susceptible to unintended exposure through
memorization, adversarial exploits, membership
inference (MIA), and model inversion attacks (Yao
et al., 2024b).

To address these concerns, regulatory frame-
works such as the General Data Protection Reg-
ulation (GDPR) have been established to protect

individual privacy and enforce the right to be for-
gotten. Given that LLMs are subject to such reg-
ulations, the machine learning research commu-
nity has increasingly focused on the emerging field
of Machine Unlearning for LLMs (Wang et al.,
2025a; Liu et al., 2024b; Jang et al., 2023), which
aims to develop methods for selectively removing
specific knowledge from models. This includes
erasing sensitive information (Wang et al., 2025a;
Patil et al., 2023), forgetting entire entities or facts
(Ma et al., 2025), and removing harmful or biased
information (Lu et al., 2022).

In the machine unlearning framework, we de-
fine the full training dataset as a partition of two
subsets: the forget set, which consists of the data
to be unlearned, and the retain set, which contains
the remaining knowledge that should be preserved
after unlearning. An effective machine unlearning
method aims to produce a model that successfully
forgets the forget data, while maintaining the in-
tegrity of the retained knowledge. Specifically, the
resulting unlearned model should satisfy the fol-
lowing key requirements: 1) Minimize the reten-
tion of information from the forget set; 2) Main-
tain high performance on the retain set; 3) Require
less computational cost than retraining the model
from scratch on the retain set; 4) Maintain infer-
ence efficiency, i.e., ensuring unchanged latency.

Despite extensive research efforts (Wang et al.,
2025a; Liu et al., 2024¢), current unlearning meth-
ods still face significant challenges in achieving
all these goals simultaneously. A major chal-
lenge in this domain is catastrophic forgetting
(Zhang et al., 2024), where the model suffers se-
vere degradation in its ability to retain knowledge
from the retain set while attempting to remove
forget set knowledge. Additionally, unlearning
methods must balance forget and retain perfor-
mance (Wang et al., 2025b), as no existing tech-
nique can fully erase the forget set information,
while preserving the original accuracy. To ana-
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Figure 1: Overview of self-distillation unlearning in Unilogit: Starting with the output logits of the LLM, the target
logit is diminished, so that after softmax the target token in the modified distribution has uniform probability. Soft
labels are derived from the current model (#) outputs. Reverse KL divergence is the distillation objective.

lyze this trade-off, researchers commonly visual-
ize unlearning performance through Pareto fron-
tiers that plot forgetting effectiveness against re-
tention performance across various hyperparame-
ter sweeps (Zhang et al., 2024; Dong et al., 2024).
Finally, the balancing problem is related to the is-
sues of hyper-parameter tuning and robustness,
as each method and problem combination have
their unique optimal set of hyperparameters (Yao
et al., 2024a; He et al., 2024).

In this paper, we propose Unilogit, a self-
distillation approach for unlearning. It generates
targets from the output of the current model by as-
signing a uniform probability to the target token
in forget samples and redistributing the remaining
probability mass. Our method is inspired by Dong
et al. (2024) and is driven by the question:

Can we leverage existing information to refine the
target distribution for forgetting?

Unilogit offers a simple yet effective unlearn-
ing strategy that outperforms existing methods,
demonstrating superior hyperparameter robust-
ness and applicability across diverse scenarios,
satisfying all key aforementioned unlearning re-
quirements. Unlike prior techniques that intro-
duce an extra hyperparameter in their loss (Zhang
et al., 2024; Dong et al., 2024; Wang et al.,
2024a), Unilogit achieves consistent forgetting
performance without the extra tuning overhead.
To validate our approach, we conduct in-depth
auxiliary studies: (1) demonstrating that our soft
labels and outputs are more accurate than those
of other methods (Section 4.4), and (2) ablation
studies to assess the impact of key methodological

components (Section D.1).
Our contributions are as follows:

* We propose Unilogit, a novel method for ma-
chine unlearning that dynamically adjusts tar-
get logits to a uniform probability without ad-
ditional hyperparameters, addressing catas-
trophic forgetting.

* We extensively evaluate Unilogit against
state-of-the-art methods on various public
benchmarks, demonstrating its robustness
and effectiveness.

* We apply Unilogit to a real-life e-commerce
use-case, showcasing its reliability in a prac-
tical scenario.

* We analyze Unilogit’s self-distillation tar-
gets, demonstrating their accuracy compared
to existing techniques through KL divergence
studies, and perform ablation studies to as-
sess the impact of key components, such as
reverse KL divergence, highlighting the ad-
vantages of our approach.

2 Background and Related Work

Background. Machine unlearning for LLMs fo-
cuses on removing specific knowledge from a
trained model while preserving its overall per-
formance. In this framework, the full training
dataset is divided into two subsets: the forget set
Dy, which contains the data to be unlearned, and
the retain set D,, which comprises the knowl-
edge to be preserved. The primary objective is
to approximate the performance of the golden re-
trained model (6,), which is trained solely on D,..



However, full retraining on the retain set is often
prohibitively expensive. Thus, machine unlearn-
ing seeks to provide a more efficient alternative.
While exact unlearning methods have been pro-
posed (Yan et al., 2022; Ding et al., 2024), which
fully retrain on D, on an algorithmic-level (Xu
et al., 2024) to recover the exact behavior of the
retrained model, these approaches require access
to the complete retain set and are generally com-
putationally expensive. In contrast, approximate
methods aim to closely approximate the retrained
model’s behavior through techniques such as fine-
tuning (Yao et al., 2024c; Zhang et al., 2024; Neel
et al., 2021), prompting (Liu et al., 2024a; Pawel-
czyk et al., 2024), or model editing (Veldanda
et al., 2024; Hase et al., 2023), offering a more
scalable and efficient alternative.

Parameter-tuning. Among approximate meth-
ods, one prominent direction is parameter-tuning
approaches, which directly modify model param-
eters to achieve unlearning. We pursue this di-
rection because these methods typically meet all
unlearning requirements, preserving inference la-
tency without demanding excessive training com-
pute. Parameter-tuning methods frame unlearning
as an optimization problem with two competing
objectives: a forget objective Ly that forces the
model to unlearn specific knowledge and a retain
objective L, that ensures performance on the re-
maining data is preserved. A generalized unlearn-
ing loss function typically follows this form:
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where Dy is the forget set, D, is the retain set, 0,
are the starting model weights and ) is a hyperpa-
rameter. Typically, approaches use 6, in both ob-
jectives. The variation across methods lies primar-
ily in how the forget loss L is designed. The re-
tain objective L, serves as a regularizer to mitigate
catastrophic forgetting. Typically, either cross-
entropy (Yuan et al., 2024) or KL-divergence dis-
tillation from the starting model is used as re-
tain loss with the latter usually performing better
(Zhang et al., 2024; Maini et al., 2024).

Notable parameter-tuning methods include
Gradient Ascent (GA) (Jang et al., 2023), which
suffers from instability, and Negative Preference
Optimization (NPO) (Zhang et al., 2024), which
has emerged as a robust state-of-the-art method by
introducing a controlled forgetting process. NPO

uses a preference optimization-based loss func-
tion to mitigate the risk of catastrophic forgetting.
Another relevant approach, ME+GD (Yuan et al.,
2024), maximizes the entropy of the model’s pre-
dictions on the forget set by pushing the output
probabilities towards a uniform distribution, pre-
serving performance on the retain set using cross-
entropy.

The concept of auxiliary models in unlearning
was introduced by Eldan and Russinovich (2023)
with their ""Who is Harry Potter'" (WHP) ap-
proach, which leverages a reinforced model fine-
tuned on the forget set to inform the unlearning
process. This idea has been further developed
in distillation-based unlearning methods, such as
RKLD (Wang et al., 2024a) and UnDIAL (Dong
et al., 2024). RKLD enhances the WHP approach
by refining model reinforcement and distilling
modified soft labels into the original model for
targeted unlearning, while UnDIAL uses a self-
distillation approach to adjust model logits for un-
learning. Our approach is motivated by the ideas
in UnDIAL, particularly in refining the process of
generating effective soft labels for unlearning.

Outside of the realm of text-based LLMs, the
work most closely related to our approach is pro-
posed by Tang et al. (2024). In their frame-
work, they tackle unlearning by minimizing KL
divergence between model outputs and a uniform
distribution, then applying an MSE loss on the
adjusted logits. While Tang et al. (2024) pro-
vide a general framework, particularly for weakly-
supervised settings—where only limited or noisy
supervision is available—and experiments with
Computer Vision tasks, our method is specifically
designed for LLMs. We achieve unlearning by
optimizing reverse KL divergence at the categor-
ical probability distribution level and dynamically
updating target distributions based on the model’s
latest outputs. These features enhance adaptability
and unlearning effectiveness, setting our approach
apart from existing methods.

For an extended discussion on related work,
please refer to Appendix A.

3 Methodology

In our self-distillation approach to unlearning, the
central challenge is designing accurate soft tar-
gets that effectively guide the model toward for-
getting. Ideally, the outputs of the retrained model
0,-, would serve as the gold standard for distilla-



tion. However, since 6, is unavailable in reality,
we must approximate these targets through a prin-
cipled and computationally efficient method that
refines self-distillation for unlearning.

Unilogit. Inspired by recent advances in logit
adjustment for unlearning (Dong et al., 2024)
and self-distillation, we propose Unilogit: a self-
adjusting self-distillation method for machine un-
learning. It sets the target logit so that after the
softmax operation, it is equal to a uniform distribu-
tion value, while preserving the logits for all other
vocabulary entries. For a model output vocabulary
V, output logit function h(x; 6), parametrized by
the current model’s parameters 6, and a one-hot la-

bel vector ¢, we calculate the target logits h(z; 6):

h(z;0) =(1 —t)h(z;0) +
Vi
exp(h;(x;0))
tl —_—
) -1
i#k
Then, we calculate the soft label target distri-
bution, where the target token label is going to be
equal to a uniform probability (= ﬁ)

p(y|x; 0) = softmax(h(x;0))

For a detailed derivation, see Appendix B.

This design is grounded in the intuition that the
current model 6 and the retrained model 6, should
be relatively close in both parameter space and
output distributions, given that the retain and for-
get sets originate from the same data distribution
and the forget set is significantly smaller. Conse-
quently, the non-target token logits of 6 serve as
a strong prior for approximating the output distri-
bution of 8,.. By explicitly setting the target token
probability to a uniform value, we induce the de-
sired unlearning effect while redistributing the lost
probability mass according to this prior.

We adopt a uniform probability (|—‘1/|) for the
target token as it represents a state of complete
uncertainty, aligning with the goal of eliminating
learned information about the forget token. This
choice is also justified by prior work indicating
that untrained models tend to produce nearly uni-
form output distributions (Tang et al., 2024; Yuan
et al., 2024), making it a natural approximation of
an untrained state. Importantly, this approach in-
troduces no additional bias in determining the tar-
get token’s probability, as we have no prior infor-
mation about its true distribution post-unlearning.

Unilogit has two beneficial properties over Un-
DIAL: 1) it eliminates the need for a manually
tuned hyperparameter ~y to scale down the target
logit and 2) by explicitly setting the target prob-
ability to uniform, it dynamically adjusts the re-
duction factor in a self-consistent manner, ensur-
ing stability and interpretability.

A crucial distinction between our approach and
previous self-distillation-based unlearning meth-
ods (Dong et al., 2024; Wang et al., 2024a; Tang
et al., 2024) is that we construct distillation targets
from the current model parameters 6 rather than
the initial model parameters 6,. This choice is mo-
tivated by the assumption that a well-designed un-
learning algorithm should progressively guide the
model closer to the retrained model 6,.. If this as-
sumption holds, then at each unlearning step, the
output distribution of 8 should increasingly resem-
ble that of ,.. By leveraging the latest model out-
puts as the basis for our self-distillation targets, we
iteratively refine the approximation of 6,., leading
to more accurate guidance for the unlearning pro-
cess. This directly addresses the core question of
our work (Question 1), and we empirically vali-
date this hypothesis in Section 4.4.

Once we have our target distribution p, we can
formulate the full training objective of Unilogit:

Lunilogit+KL(0) =
E(e;ypen, KL(p(yslzs 0) (| D(yslzs; 0)) +
A E(Ir,yr)eDrKL(p(yT|x7‘; 00) H p(yr|$r; 9))

For the forget loss, we adopt reverse KL-
divergence (RKL) due to its advantageous prop-
erties for unlearning. Unlike forward KL (FKL),
which is mean-seeking, RKL is mode-seeking,
thus penalizing cases where the model assigns
high probability to an incorrect token for which the
target distribution has assigned a low probability.
This property is particularly well-suited for un-
learning, as it strongly discourages the model from
retaining high confidence in previously learned
outputs. In Appendix D.1, we provide an abla-
tion study demonstrating that RKL leads to supe-
rior unlearning performance compared to FKL.

Prior works (Wang et al., 2024a,b) have also ob-
served that RKL improves evaluation metrics at
the cost of reduced generation diversity. How-
ever, in the unlearning setting, this tradeoff is ac-
ceptable, as we prioritize strong unlearning perfor-
mance over minor diversity loss. Moreover, since
our target distributions for non-target tokens re-



main largely consistent with the model’s original
outputs, with the only major change occurring in
the target token’s probability reduction, the over-
all impact on generation variance is expected to be
minimal (see column Flu in Table 2). Further sup-
porting our approach, Wu et al. (2025) show that
models optimized with RKL and FKL objectives
eventually converge to similar distributions, rein-
forcing our decision to use RKL for this task.

4 Experiments

Datasets and Models. We evaluate Unilogit on
two public benchmarks. As a general unlearn-
ing scenario we choose MUSE-News benchmark
(BBC News articles), for which we use Llama 2
7B (Touvron et al., 2023). For a stricter scenario
where the retain set is not accessible during train-
ing, we opt for the RWKU benchmark, which fo-
cuses on famous individuals. In this case, we use
Llama 3.1 8B instruct (Grattafiori et al., 2024).

Finally, we evaluate the different methods on an
in-house e-commerce benchmark, which reflects
a real-world use case scenario. The starting point
is a model that has been trained on large amounts
of public listing data from an e-commerce web-
site. The unlearning benchmark consists of three
different unlearning targets, which are comprised
by different sellers from the platform. Each seller
has associated item listings, which need to be for-
gotten. The three sellers reflect three unlearning
scenarios in the amount of data to be unlearned:
a small, a medium and a large amount of listings.
Evaluation is performed by calculating ROUGE-
recall score on text completions for forget and re-
tain set respectively (Jin et al., 2024).!

More details on datasets and evaluation tasks
used can be found in Appendix C.1.

Settings. We closely follow the experimental
setups described in the respective papers for each
benchmark and cited method. All training is con-
ducted using four A100 80GB GPUs.

For MUSE-News, we run each method for 10
epochs with A = 1, a batch size of 32, and learn-
ing rates from the MUSE paper (Shi et al., 2024).
Additional hyperparameter tuning is performed to
generate sweep curves, with reference ranges de-
rived from the original method papers when avail-
able. Specifically, we use a learning rate of Se-6
for ME+GD and 1e-5 for RKLD+KL.

"More details about the in-house benchmark will be avail-
able in the camera-ready version of the paper.

For RWKU, we train for 3 epochs with varying
learning rates (detailed in Section D.3). Learning
rate sweeps in the range [1e-7, 1e-5] are conducted
for UnDIAL and Unilogit, while for other meth-
ods, we follow hyperparameter choices from their
respective papers.

For our e-commerce benchmark, we train for 10
epochs for the smallest seller and 3 epochs for the
medium and largest sellers. We begin with hyper-
parameters from the original method papers and
continue tuning if necessary to achieve optimal re-
sults.

4.1 Results on general unlearning scenario

In Figure 2 we can see the results for the MUSE-
News benchmark. We observe that out of the
methods evaluated, Unilogit+KL, shows the most
optimal Pareto curve, as opposed to the state-of-
the-art NPO and its distillation-based competitor
UnDIAL. This result substantiates our claim that
Unilogit provides an effective and principled solu-
tion for unlearning, achieving superior trade-offs
between forgetting and retention compared to ex-
isting methods.

Furthermore, the plot shows that our method
is robust to hyperparameter tuning, provid-
ing a smooth, monotonically increasing curve
when continuously varying the main unlearning
hyperaprameter—the learning rate. In contrast,
NPO and UnDIAL lack this smoothness, indicat-
ing greater sensitivity to hyperparameter choices.
Specifically, for NPO, achieving optimal perfor-
mance requires additional fine-tuning, such as ad-
justing the number of training epochs. This adds
complexity to its deployment. Similarly, UnDIAL
relies on multiple hyperparameters (learning rate
and ), making it challenging to tune effectively.
Even with extensive tuning, UnDIAL ultimately
results in suboptimal performance compared to
Unilogit. The results for Undial visible on the plot
are from learning rate le-5; however, Appendix
C.1.1 contains a table with the full numbers for
reference. The blue line, which continues off the
plot is an interpolation of the UnDIAL results for
learning rate le-4.

We further see that other baselines, such as
GA+KL, RKLD+KL and ME+DG result in a sig-
nificant gap in unlearning efficacy for a similar
level of utility preservation of Unilogit, underscor-
ing the effectiveness of our method.
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Figure 2: Results for the MUSE-News benchmark for
different unlearning methods using multiple different
hyperparameters. On the x-axis we have the retain per-

formance and on the y-axis the forgetting performance,
both for the QA task.

4.2 Results on stricter unlearning scenario

For the more difficult RWKU benchmark, where
no retain set is available during unlearning, we
present our result in Figure 3. This setting lacks
a golden retrain baseline for direct comparison.
As a result, while we can still evaluate the Pareto-
style curve optimality, we do not have a definitive
reference point for maximum optimality (i.e., re-
train model performance). To aid interpretation,
we highlight in orange the plausible desired region
of optimality, serving as a visual reference.

In Figure 3, Unilogit once again demonstrates
superior performance over existing methods, as
reflected in its monotonically-increasing curve,
which is closest to the desired region. In contrast,
UnDIAL exhibits inconsistencies, particularly at
the 65.5 Avg. Neighbours performance level,
where it briefly shows higher Avg. Forget than at
a nearby, higher-retain-performance setting. This
suggests that UnDIAL reaches a local peak in hy-
perparameter space, particularly around the con-
figuration (Ir = 5e-6, v = 5), whereas Unilogit
maintains Pareto optimality across its entire hyper-
parameter sweep.

NPO performs notably better on RWKU than
UnDIAL, but still falls slightly short of Unilogit
in terms of overall optimality. Interestingly, GA
closely follows Unilogit, suggesting that in sce-
narios where GA has not yet undergone excessive
forgetting (or catastrophic degradation), it could
serve as a viable alternative. This highlights an
important trend: performance differences between

70 4
v Baseline v
60 GA
ME ——
* NPO
501 A RKLD
o B Undial
Y401 @ Unilogit
o Desired
[V
o 304,
<
20 A *
10 A
0 : . ; :
40 50 60 70 80

Avg. Neighbours 1

Figure 3: Results for the RWKU-News benchmark for
different unlearning methods using multiple different
hyperparameters. On the x-axis is the retain perfor-
mance and on the y-axis the forgetting performance.

methods become most pronounced at higher lev-
els of forgetting, reinforcing the need for robust,
generalizable unlearning approaches.

4.3 Results on in-house benchmark

For our in-house e-commerce benchmark, we
evaluate models using ROUGE-recall, the primary
metric displayed in Figure 4. The figure plots
ROUGE on the forgetting completion task against
ROUGE on the completion task for the neighbor
set of items. Across all three plots, Unilogit con-
sistently achieves higher forgetting while main-
taining similar or better retention performance
compared to competing methods.

Each data point in Figure 4 is annotated with
an additional metric—general model utility, mea-
sured by MMLU accuracy (Hendrycks et al.,
2021) (higher is better). Notably, at compara-
ble levels of retention, Unilogit+KL consistently
achieves higher MMLU accuracy than other meth-
ods in all seller scenarios. The only exception is in
the smallest-scale unlearning task (leftmost plot),
where NPO+KL and ME+GD reach an MMLU
accuracy of 60.8, slightly exceeding Unilogit’s
60.2. However, this discrepancy is not indicative
of superior performance, as both NPO+KL and
ME+GD remain at baseline levels of forgetting,
suggesting under-unlearning rather than a genuine
trade-off advantage. This reinforces Unilogit’s ef-
fectiveness in striking an optimal balance between
unlearning and model utility preservation.

In the mid-scale seller scenario (middle plot in
Figure 4), SimNPO+KL (Fan et al., 2024) matches
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Figure 4: Comparison of unlearning methods on listings from three different sellers across three forget set sizes in
our e-commerce dataset. Forget Completion and Neighbors Completion are evaluated using ROUGE-recall scores.
Marker sizes and number annotations indicate MMLU scores, reflecting general model abilities.

Unilogit’s Pareto frontier under specific conditions
but lacks consistency. One configuration aligns
with Unilogit’s trade-off curve, while another ex-
hibits lower retention despite only modest forget-
ting, a failure mode not observed in Unilogit. This
instability highlights SImNPO+KL’s difficulty in
maintaining an effective balance between forget-
ting and retention, whereas Unilogit+KL provides
a good trade-off across hyperparameter settings.

These results underscore the practical reliability
of Unilogit+KL, reaffirming its consistent ability
to optimize forgetting while preserving model util-
ity across diverse real-world scenarios. Its strong
Pareto efficiency and hyperparameter robustness
make it a suitable choice for unlearning tasks in
production environments.

4.4 Unlearning target and output
distribution analysis

In this section we show that our method gen-
erates more accurate self-distillation targets than
UnDIAL and produces output distributions after
unlearning that more closely align with the retrain
model than both NPO and UnDIAL on the forget
set. To evaluate the accuracy of both the soft-label
distributions and the final output distributions, we
compute the KL divergence between these distri-
butions and the retrain model’s outputs on 100
forget-set samples from MUSE-News.

In Figure 5 (left) is plotted the average KL di-
vergence for the self-distillation targets p(x; 6) for
UnDIAL and Unilogit between the respective un-
learned models and the retrain model. The base-
line on the plot is the average KL divergence be-

tween the outputs of the starting model (6,) and
the retrained model. We see that as we decrease
the v parameter for Undial, we approach the base-
line KL. That is intuitive because at v = 0, the Un-
DIAL targets are just equal to the starting model
outputs (Equation 1). We therefore find a draw-
back to the UnDIAL approach: if self-distillation
targets rely solely on the original model, they can-
not get closer in distance to the golden retrain
model outputs. Achieving better alignment would
possibly require a carefully tuned static + that
works consistently across all samples. In contrast,
Unilogit dynamically updates its targets using the
current model state at each step. The last two bars
in the plot, representing Unilogit’s final check-
points with different learning rates, show signif-
icantly lower KL divergence than both UnDIAL
and the baseline, demonstrating that Unilogit pro-
duces more accurate self-distillation targets.
Figure 5 (middle) further supports this, illustrat-
ing how Unilogit’s soft-label distributions become
increasingly accurate throughout training, while
UnDIAL’s by design remain static. As unlearning
progresses, Unilogit’s targets exhibit decreasing
KL divergence from the retrain model, reinforc-
ing the advantage of dynamically updating targets
based on the latest model state. If our assumption
that a well-designed unlearning algorithm should
bring the model closer to the retrain model at each
step holds, then using the current model’s param-
eters to generate targets yields greater accuracy.
Finally, Figure 5 (right) assesses the KL diver-
gence between the final output distributions of dif-
ferent unlearned models and the retrain model.
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Figure 5: Left: Average KL divergence between the retrained model outputs and the soft labels of UnDIAL and
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retrained model for NPO, UnDIAL, and Unilogit. Lower values indicate better performance in all cases, as well as
the baseline represents average KL between the outputs of the starting model and the retrained model.

This metric, as also seen in Dong et al. (2024),
captures the overall distributional alignment rather
than focusing solely on individual predictions.
The results indicate that Unilogit achieves a sig-
nificantly closer match to the retrain model com-
pared to NPO and UnDIAL, demonstrating that
our method not only improves self-distillation tar-
gets but also better aligns the entire output distri-
bution with the gold-standard retrain model.

4.5 Ablations

Our ablation experiments demonstrate that the use
of Reverse KL divergence significantly improves
forgetting performance while maintaining utility,
and our method of calculating target logit values
outperforms UnDIAL. Additionally, using the lat-
est model weights results in a more optimal model.
These findings confirm that the key features of our
approach—soft label calculation, reverse KL loss,
and current model logits—are crucial for enhanc-
ing unlearning performance. For a detailed discus-
sion, please refer to Appendix D.1.

5 Conclusion

We present Unilogit, a novel method for efficient
and effective machine unlearning. Through exten-
sive experimentation across multiple benchmarks,
we demonstrate that Unilogit outperforms existing
state-of-the-art methods, in terms of both forget-
ting and utility preservation. Our results show that
Unilogit achieves the most optimal Pareto curves,
with superior performance in retaining model util-
ity while effectively forgetting unwanted knowl-
edge. Furthermore, Unilogit exhibits robustness to
hyperparameter tuning, providing stable and con-
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Figure 6: Results of Unilogit ablations on MUSE-
News. Unilogit with 1) FKL loss and 2) original model
distillation targets were tuned to match Unilogit+KL
in UtilityPreserv, allowing comparison on KnowMem
performance. Unidial+KL is included for reference.

sistent performance across various settings.

We also provide an in-depth analysis of
Unilogit’s self-distillation targets and output dis-
tributions, highlighting its ability to generate more
accurate targets compared to UnDIAL and its ca-
pacity to maintain better output distributions post-
unlearning. The ablation studies reinforced the
importance of key design choices, such as us-
ing Reverse KL divergence, calculating soft la-
bels dynamically, and leveraging current model
logits during training, all of which contribute to
Unilogit’s superior performance.

Overall, Unilogit demonstrates both practical
robustness and theoretical advantages, making it
a promising method for real-world applications.



Limitations

Although Unilogit has been tested on multiple
datasets, further evaluation across an even broader
range of benchmarks is essential to fully under-
stand its capabilities and limitations. While we
have purposefully selected a diverse set of evalua-
tion benchmarks to capture a variety of scenarios,
more evaluations for additional domains should be
performed.

Secondly, Unilogit currently does not account
for the varying importance or relevance of each to-
ken in the context of the information to be forgot-
ten. The method treats all tokens equally during
the unlearning process, which might not be opti-
mal for situations where certain tokens play a more
critical role in the forgetting objective, such as pro-
duction settings with structured text. Introducing a
mechanism to weigh tokens based on their signif-
icance could enhance the precision of the unlearn-
ing process. Addressing this issue would require
introducing the appropriate intrinsic bias, present-
ing an intriguing avenue for future research. This
development could serve as an additional tool for
more effective targeted unlearning, achieving a
better balance between forgetting and retaining in-
formation.

Additionally, in the current study we focus only
on the English language and on models with a size
around 7-8 billion parameters. Future work should
take more languages and different model sizes into
account.

By acknowledging these limitations, we aim to
highlight areas where Unilogit can be refined and
improved, paving the way for future research.

Ethical Considerations

In the development and deployment of Unilogit,
we acknowledge the ethical imperative to pri-
oritize user privacy and data protection. Our
method aims to address the critical need for ma-
chine unlearning, ensuring compliance with reg-
ulations such as the GDPR’s "right to be forgot-
ten." By effectively removing sensitive informa-
tion from language models, Unilogit helps miti-
gate privacy risks associated with data leakage and
unauthorized data retention. However, it is es-
sential to consider potential misuse, such as the
erasure of accountability in decision-making sys-
tems. Therefore, we advocate for responsible im-
plementation, ensuring that unlearning is applied
judiciously and in contexts where it enhances user

rights and data security without compromising
ethical standards.
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A Extended Related Work

Among parameter-tuning methods, Gradient As-
cent (GA) (Jang et al., 2023) serves as a fun-
damental baseline, applying gradient ascent on
the forget set to reverse learned representations.
However, GA is highly unstable, leading to catas-
trophic forgetting of retain knowledge (Zhang
et al., 2024).

To address this, Negative Preference Opti-
mization (NPO) (Zhang et al., 2024) introduces
a loss function derived from preference optimiza-
tion theory (Rafailov et al., 2024), using only the
forget samples as negative samples. It controls the
forgetting process using a hyperparameter, which
prevents the model from diverging into instability.
As a result, NPO has been recognized as a robust
state-of-the-art method and baseline for future re-
search (Wang et al., 2024a; Fan et al., 2024; Dong
et al., 2024). The objective function for NPO is:

Lnpo,p(0) =
2 p(y | x;0)
T [log" (‘5 o8y T o %))]

Another approach, ME+GD (Yuan et al., 2024),
maximizes the entropy of the model’s predictions
on the forget set by pushing output probabilities
towards a uniform distribution. This method di-
rectly relates to our main research question (1), as
it establishes a principled lower-bound baseline—
using the uniform target as the least assumptive
distribution for unlearning knowledge. Unlike
the commonly used KL-divergence regularizer,
ME+GD employs cross-entropy with one-hot la-
bels to preserve performance on the retain set. The
objective for ME+GD is:

Lyvie+ep(0, Dy, D,)
=E (s y)en, KL(p(ylz: 0) || Upy|) +
AE( yyep, H(p(y|z), y)
—E@yen, Hp(ylz; 0)) +
AE( yyen, H(p(y|2), y)
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Eldan and Russinovich (2023) were among the
first to introduce the idea of using an auxiliary
model to facilitate the unlearning process. Their
method, "Who is Harry Potter'" (WHP), in-
volves fine-tuning the original model on the forget
set to create a "reinforced” model. This reinforced
model is then used to extract distributional infor-
mation about the tokens most associated with the
knowledge being unlearned. Using this informa-
tion, the authors propose an output mixing equa-
tion to generate fine-tuning labels for unlearning.

The concept of leveraging an auxiliary model
aligns naturally with knowledge distillation (KD)
(Hinton et al., 2015), making WHP a foundational
approach that has inspired subsequent distillation-
based unlearning methods (Wang et al., 2024a;
Dong et al., 2024; Chen and Yang, 2023; Chun-
dawat et al., 2023). One such method, RKLD
(Wang et al., 2024a) refines the WHP approach by
enhancing model reinforcement and distribution
mixing, then distilling the modified soft labels into
the original model to achieve targeted unlearning
while preserving overall performance. To calcu-
late the target logits for later distilling them onto
the original model in RKLD (Wang et al., 2024a),
the following equation is used:

hrkip(z;0) =
h(z;0,) — aReLU(h(x;05) — h(x;6,))

Here, 0, are the parameters of the strengthened
(reinforced) model in the method.

Building on the idea of leveraging modified
target distributions for unlearning, a more recent
method, UnDIAL (Dong et al., 2024), introduces
a self-distillation approach that adjusts model log-
its to achieve forgetting. Inspired by this direc-
tion, our proposal refines the process of crafting
effective soft labels for unlearning. UnDIAL gen-
erates its self-distillation targets by applying soft-
max to adjusted logits, where the original model
logits h(x; @) are modified by reducing the target
logit’s value, controlled by the hyperparameter y:

hunpiaL (3 0) = h(y|z; 0) — 7t (D

where t is the one-hot encoded target vector.

B Deriving the target distribution for
Unilogit

As outlined in Section 3, our goal with calculating
the target logits is to have a uniform distribution


https://api.semanticscholar.org/CorpusID:273233618
https://api.semanticscholar.org/CorpusID:273233618
https://api.semanticscholar.org/CorpusID:273233618

value of 1/|V'| of the target logit after the softmax.
To achieve this, we can derive the exact logit value
that would result in the desired outcome. With ilk
we denote the unknown value of the target logit
with index k. Starting with what we know:

ehn(:0) 1
- V] ~
ehi(z:0) 1 Z ehi(z;0)
. 1 ~ Vi
ehk(xﬂ) — 7 ehk(mﬁ) + Z ehz(fnﬂ)
4
e (2:0) (1 _ 1) _ 7k
V] V]
14
z ehi(x,e)
hy(z:0) _ Fk
Vi-1

Taking the log of both sides:

14

Z ehi(z;0)
= i#k
hi(z;0) = log Vo1

This gives us the required value of the logit so that
after the softmax we get a uniform probability for
target token k. We can then vectorize the equation
for calculating the target logits:

h(z;0) =(1 —t)h(z;0) +

14
exp(hi(z;0))
O
ik

where ¢ is the target one-hot labels for a given in-
put sample z from the forget set. This way, we
will only update the value of the k-th logit in the
modified logits vector h(z;6).

C Experiments Details

C.1 Datasets and Models

C.1.1 MUSE-News

The MUSE-News benchmark (Shi et al., 2024)
as our general unlearning scenario benchmark.
It consists of BBC News articles. The evalu-
ation tasks include question-answering type sets
for forget knowledge (KnowMem.) and retain
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knowledge (UtilityPreserv.), a membership infer-
ence test (PrivLeak) and a text completion task for
the forget data (VerbMem).

The MUSE-News dataset consists of BBC
News articles published after August 2023, ensur-
ing that the pre-trained Llama 2 7B model has not
encountered any of the articles. The dataset is split
into a Forget Set (3554 passages) and a Retain Set
(3555 passages). The target model is trained on
both sets, while the retrained model is trained only
on the retain subset. Unlearning is performed on
a subset of 889 articles from the forget set, and
the model is evaluated on tasks such as Verbatim
Memorization, Knowledge Memorization (QA),
Privacy Leakage, and Utility Preservation (QA),
as outlined by the MUSE-News benchmark (Shi
et al., 2024).

VerbMem is a text completion task, where
ROUGE-F1 is used to measure completion per-
formance. Knowledge Memorization and Util-
ity Preservation are both question-answering type
tasks, where ROUGE is also employed to assess
answer accuracy. Finally, Privacy Leakage is a
membership inference test, as measured by Min-
K% Prob (Shi et al., 2023).

C.1.2 RWKU Benchmark

As a stricter unlearning scenario without access to
retain set examples during unlearning, we adopt
the RWKU benchmark (Jin et al., 2024). It is
a compilation of knowledge about each of the
100 most famous people, according to Wikipedia.
As starting model we use Llama 3.1 8B Instruct
(Grattafiori et al., 2024), whose pre-training al-
ready includes information about all the people in
the dataset, so we can start unlearning from that
checkpoint. The evaluation tasks for the forget set
include fill-in-the-blank style samples, question-
answering and adversarial attack samples, ordered
by difficulty. For the retain set, there are fill-in-
the blank and QA-style samples. Furthermore, the
benchmark includes a MIA attack evaluation and
general utility evaluations: MMLU (Hendrycks
et al.,, 2021), BIG-Bench Hard (Suzgun et al.,
2022), Truthful QA (Lin et al., 2022), TriviaQA
(Joshi et al., 2017), Alpaca Eval (Fluency) (Dubois
et al., 2023).

C.1.3 Internal e-commerce benchmark

In our e-commerce experiments, we evaluate sev-
eral tasks to comprehensively assess model perfor-
mance: the completion task, prediction probability



(loss), and general utility, which includes MMLU
and an e-commerce-specific task.

The completion task involves measuring the
ROUGE-recall score for completing the second
half of a seller’s item description, given the first
half. This setup, similar to the VerbMem task in
MUSE (Shi et al., 2024), is designed to evaluate
the model’s ability to recall text accurately on a
word-by-word basis. We calculate this metric for
both the retain and forget sets.

The prediction probability metric assesses the
log-likelihood of a given sample item, providing
insight into the model’s confidence in its predic-
tions.

The internal e-commerce task evaluates the
model’s ability to answer fill-in-the-blank style
queries about an item, testing its understanding
and retention of specific item details.

Together, these tasks offer a comprehensive
evaluation of the model’s forgetting and retention
performance, as well as its overall utility in an e-
commerce context.

D Extra Results
D.1 Ablations

In our ablation experiments we evaluate core de-
sign aspects of our method. First, we ablate the
choice of using Reverse KL divergence as forget-
ting optimization objective. As explained in Sec-
tion 3, RKL is more suitable for the unlearning
problem in this setting. Despite that, we add a
quantitative argument to support our choice. In
Figure 6 we can clearly see that for the same level
of utility preservation, we get significantly better
forgetting performance for RKL.

We carry out a second ablation where, likewise
to UnDIAL, we create our self-distillation targets
using the starting model. In that sense, Unilogit
(Orig)+KL and UnDIAL differ only by their re-
spective processes of logit diminishment. On Fig-
ure 6 we see that this version of Unilogit out-
performs UnDIAL, which demonstrates that our
methodology of calculating the target logit value
is more effective than UnDIAL.

If we make the comparison between Standard
Unilogit+KL and Unilogit (Orig)+KL we see that
using the latest model weights yields a more opti-
mal model.

Ultimately, the ablation results show that the
three most important features of our method—the
soft label calculation, the reverse KL loss and us-
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ing the current model logits are all beneficial to
unlearning performance.

D.2 MUSE Benchmark

In Table 1, we see the full results from all our runs
on MUSE-News.

D.3 RWKU Benchmark

In Table 2, we see the full results from all our runs
on RWKU.

D.4 In-House Dataset Unlearning Task

In Tables 3-5 we show the full tables for the re-
sults on our in-house e-commerce benchmark for
unlearning. It consists of three entities with as-
sociated structured passages to them. We run un-
learning on each of these entities for each unlearn-
ing method.



Method Hyperparameters = VerbMem  KnowMem PrivLeak UtilityPreserv
(completion) QA) (QA)
Target 56.64 63.30 -99.81 54.98
Retain 20.30 33.93 0.00 52.34
NPO Ir=1e-5 7.24 7.24 57.40 7.74
NPO+KL Ir=1e-5, 5=0.1 40.71 59.44 -93.76 50.55
NPO+KL Ir=5e-6, 5=0.1 47.70 58.09 -98.09 53.04
NPO+KL Ir=5e-6, 5=0.1 47.01 57.58 -98.09 51.20
GA+KL Ir=1e-5 41.22 56.51 -99.75 51.77
RKLD+KL Ir=1e-5 47.96 55.02 -99.75 50.44
ME+GD Ir=5e-6 40.23 54.37 -99.75 49.95
Undial+KL Ir=1e-5, y=2 42.37 58.27 -99.75 52.62
Undial+KL Ir=1e-5, v=4 41.52 59.07 -99.75 53.01
Undial+KL Ir=1e-5, v=8 40.81 55.97 -99.75 48.60
Undial+KL Ir=1e-4, v=4 21.15 18.69 -96.94 26.47
Undial+KL Ir=1e-4 =2 22.63 25.88 -98.11 30.78
Unilogit+KL  Ir=1e-5 39.35 52.44 -99.75 50.88
Unilogit+KL  Ir=1e-5 33.60 52.46 -99.71 48.15
Unilogit+KL  1r=5e-6 51.61 59.72 -99.79 53.44
Unilogit+KL  1r=8e-6 43.01 57.61 -99.77 53.08
Unilogit+KL Ir 8.5e-6 41.38 57.10 -99.77 52.87
Unilogit+KL Ir 8.75e-6 39.54 54.25 -99.75 51.98
Table 1: Results of various methods on MUSE-News on Llama 2 7B
| | Forget Set |  Neighbor Set | MIA Set | General Benchmarks
Method LR
| | FBE QA AA All | FB QA All | FM RM | Gen Rea Tru Fac Flu
Baseline | - | 650 699 703 684|764 785 77.5| 21 22 | 665 432 364 623 70
GA 2e-6 | 37.5 338 46.6 393 | 73.6 744 740 | 24 22 | 662 43.0 36.7 628 69
RKLD le-5 | 25,6 28.0 309 28.1 | 36.6 30.1 334|138 113 |63.1 205 356 139 6.3
ME 3e-6 | 644 700 698 68.1 | 745 775 76.0 | 2.1 22 | 662 432 355 624 70
NPO 2e-6 | 240 16.1 179 193 | 579 620 60.0 | 2.6 23 | 659 432 353 632 6.7
Undial | 2e-7 | 57.7 599 64.1 60.6 | 744 783 763 | 2.2 22 | 66.1 434 356 629 7.0
Undial | 6e-7 | 57.2 56,5 624 587 | 73.6 774 755 | 2.2 22 | 66.1 434 353 6277 69
Undial | 5e-6 | 563 535 608 569 | 719 745 732 | 2.2 22 | 660 419 36.1 598 69
Undial le-5 | 569 544 603 572|621 690 655 | 2.3 23 | 650 41.0 354 485 6.6
Unilogit | Se-7 | 5.7 3.7 8.1 5.8 | 448 41.7 432 | 7.0 44 1652 281 291 570 5.8
Unilogit | 2e-7 | 20.5 154 254 204 | 63.8 675 657 | 34 24 | 657 419 351 633 6.7

Table 2: Results of various methods for unlearning on the RWKU benchmark on Llama 3.1 8B.
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Forget Set Neighbours
Method Rouge | Loss | | Rouge  Loss 1 MMLU 1 e-Commerce Task 1
Baseline 85.6 0.72 72.0 0.52 60.8 55.2
NPO+KL 39.6 1.81 58.8 0.75 59.7 539
NPO+KL 50.6 1.86 67.1 0.74 60.2 53.9
ME+GD 86.4 0.72 72.5 0.52 60.8 55.2
Undial+KL 64.3 0.90 69.0 0.55 60.3 54.9
Unilogit+KL 7.7 6.16 51.6 0.90 60.8 53.6
Unilogit+KL 10.2 6.84 62.5 0.82 61.4 54.3
Unilogit+KL 52.7 1.23 71.6 0.54 60.3 55.1

Table 3: Results of internal e-commerce benchmark for seller with 66 items (small-scale seller) on Llama 3.1 8B.

Forget Set Neighbours
Method Rouge | Loss| | Rouge t Losst MMLU 1 e-Commerce Task 1
Baseline 89.3 0.10 80.8 0.28 60.8 54.3
NPO 13.1 1.06 57.9 0.52 60.2 51.8
GA 11.6 5.03 66.7 0.33 59.6 53.1
GA+KL 20.4 0.47 67.5 0.33 58.7 534
NPO+KL 11.5 0.89 69.0 0.33 61.4 53.0
NPO+KL 134 0.78 75.0 0.31 60.4 53.7
RKLD+KL 294 0.17 66.1 0.34 59.5 53.8
SimNPO+KL 0.3 33.63 68.1 0.35 59.1 52.6
SimNPO+KL 45.2 0.26 72.7 0.31 59.6 53.5
ME+GD 89.4 0.10 80.7 0.28 60.8 54.3
UnDIAL+KL 44.3 0.17 79.0 0.28 60.2 54.2
UnDIAL+KL 15.1 0.27 75.9 0.29 58.5 54.1
Unilogit+KL 0.0 10.78 25.8 1.68 54.4 43.4
Unilogit+KL 0.2 6.64 78.2 0.29 61.4 53.8
Table 4: Results of internal e-commerce benchmark for seller with 387 items (medium-scale seller) on Llama 3.1
8B.
Forget Set Neighbours
Method Rouge | Loss | | Rouge ! Loss 1 MMLU 1 e-Commerce Task 1
Baseline 48.9 0.54 58.1 0.54 60.8 53.8
GA+KL 44.0 0.41 52.5 0.62 57.3 53.3
NPO+KL 41.0 1.00 51.7 0.70 59.6 53.8
ME+GD 48.9 0.54 58.2 0.54 60.8 53.8
Undial+KL 45.6 0.66 55.8 0.59 59.6 53.8
Undial+KL 39.2 0.78 50.2 0.64 59.1 53.5
Unilogit+KL 33.8 1.06 46.8 0.69 59.6 53.4
Unilogit+KL 31.5 3.86 55.6 0.60 62.6 53.9

Table 5: Results of internal e-commerce benchmark for seller with 1065 items (large-scale seller) on Llama 3.1

8B.
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