
Dom, cars don’t fly!—Or do they?
In-Air Vehicle Maneuver for High-Speed Off-Road Navigation

Anuj Pokhrel, Aniket Datar, and Xuesu Xiao

Abstract— When pushing the speed limit for aggressive off-
road navigation on uneven terrain, it is inevitable that vehicles
may become airborne from time to time. During time-sensitive
tasks, being able to fly over challenging terrain can also save
time, instead of cautiously circumventing or slowly negotiating
through. However, most off-road autonomy systems operate
under the assumption that the vehicles are always on the
ground and therefore limit operational speed. In this paper, we
present a novel approach for in-air vehicle maneuver during
high-speed off-road navigation. Based on a hybrid forward
kinodynamic model using both physics principles and machine
learning, our fixed-horizon, sampling-based motion planner
ensures accurate vehicle landing poses and their derivatives
within a short airborne time window using vehicle throttle
and steering commands. We test our approach in extensive in-
air experiments both indoors and outdoors, compare it against
an error-driven control method, and demonstrate that precise
and timely in-air vehicle maneuver is possible through existing
ground vehicle controls.

I. INTRODUCTION

Off-road navigation presents various challenges that
sharply contrast those encountered in on-road or indoor
scenarios. In unstructured off-road environments, robots must
detect and avoid obstacles, evaluate the traversability of
varied terrain, and continuously adapt to complex vehicle-
terrain interactions. Tackling all these challenges is essential
to prevent terminal states that can jeopardize the mission and
damage the robot, such as vehicle rollover and getting stuck.

One particular challenge of off-road navigation is address-
ing terrain unevenness. Current state-of-the-art approaches
typically rely on perception based traversability estimation
to avoid uneven terrain or enforce slow speed to prevent
catastrophic failures. By circumventing or slowing down on
uneven terrain, these approaches have yet to push the limits
of off-road vehicles’ capabilities to quickly traverse through
challenging off-road environments.

During time-sensitive off-road missions where achieving
the physically feasible maximum speed is necessary, inter-
acting with uneven terrain will cause robots to become air-
borne from time to time. Additionally, leveraging appropriate
terrain structure to take off the vehicle can also efficiently
circumvent difficult terrain (in the z direction instead of on
the x-y plane) without compromising path length or traversal
time. However, after air time, deviations from an appropriate
landing pose, depending on the receiving terrain geometry

All authors are with the Department of Computer Science, George Mason
University {apokhre, adatar, xiao}@gmu.edu

An extended version of this manuscript is currently under review for
publication.

Fig. 1: In-air vehicle maneuvers are critical in ensuring safe
vehicle landing during high-speed off-road navigation. Top:
Precise and timely maneuvers prepare the robot to land
with minimal impact. Bottom: Improper maneuvers cause
the robot to land on its back, terminating mission execution
and risking vehicle damage.

(e.g., nose- or tail-down pitch and sideways roll on a flat
terrain, or vice versa), can significantly impact landing safety
(see examples in Fig. 1). A critical yet often overlooked
aspect of high-speed off-road navigation is the maneuver of
a robot during these aerial phases. Despite limited work on
planning before losing ground contact, to the best of our
knowledge, no prior work has investigated ground vehicle
in-air maneuver to facilitate safe landing.

To this end, we ask the question how can we control the in-
air attitude of a ground robot in a short amount of airborne
time only with existing vehicle controls? To address this
question, we present a novel in-air vehicle attitude planning
and control approach by re-purposing existing throttle and
steering actions. Our novel forward kinodynamic model uses
the inertial and gyroscopic effects of the spinning wheels to
derive the robot’s angular accelerations. These accelerations
are used in a Newtonian physics model to calculate the
robot’s future states. Leveraging our model, we also develop
a fixed-horizon, sampling-based motion planner specifically
designed for quick in-air goal convergence to prepare the
vehicle orientation for proper landing. Our experiment results
on a gimbal platform demonstrate the ability of our method
to perform precise and timely in-air maneuvers, showing
a significant improvement compared to a traditional error-

driven approach. Furthermore, our outdoor demonstration
shows our method’s ability to generalize under real-world
disturbances like air resistance and uneven weight distribu-
tion. Our contributions can be summarized as:

• A hybrid dynamics model combining physics principles
and data-driven learning for in-air vehicle maneuver
driven only by the vehicle throttle and steering actions;

• A fixed-horizon, sampling-based motion planner that
converges to an appropriate goal state for safe landing;

• A set of real-world robot experiments on a gimbal plat-
form and outdoors to demonstrate the effectiveness of
our kinodynamic model along with our motion planner.

II. APPROACH

In this section, we first define the in-air vehicle maneuver
problem with airborne kinodynamic modeling. Then, we
discuss the physics principles of why and how in-air vehicle
maneuver is possible through existing vehicle controls, i.e.,
throttle and steering, based on the inertial and gyroscopic
effects of the spinning wheels. Motivated by the difficulty
in accurately and analytically modeling changing quantities
purely based on physics, we present PHysics and Learning
based model for In-air vehicle maneuver (PHLI, pronounced
as “fly”), a precise and efficient hybrid modeling approach.
Finally, we introduce our Dom Planner (named after Dominic
Toretto, who makes cars fly. So does our planner.) for vehicle
trajectory planning to reorient the robot from its current
configuration to the goal precisely at when a limited airborne
time window expires.

A. Problem Formulation

We first formulate a discrete-time forward kinodynamic
modeling problem based on a bicycle model, where the
subsequent state, st+1 ∈ S, is derived from the current state,
st ∈ S, and current action, at ∈ A, with S and A as the state
and action spaces respectively. Considering that during aerial
phases a conventional ground vehicle does not have control
over the three translational components in SE(3) (which is
determined solely by gravity), we include in the vehicle state
st a tuple of the three angles in SO(3), i.e., roll, pitch, and
yaw, together with their corresponding angular velocities. We
also include rotation per minute of the wheels, rpm, and the
front steering angle, ψ, in the state space, i.e., S ⊂ R8. The
state at time t is denoted as

st = (rollt, ˙rollt, pitcht, ˙pitcht, yawt, ˙yawt, rpmt, ψt) ∈ S.

The vehicle action, at, comprises the rate of change in
wheel rpm (throttle) and in steering angle ψ, which are
common controls available for ground robots. The action
in the action space, A ⊂ R2, is thus defined as a two-
dimensional tuple:

at = (˙rpmt, ψ̇t) ∈ A.

A forward kinodynamics model is defined as a function,
fθ : S ×A → S, parametrized by θ, such that:

st+1 = fθ(st,at). (1)

Fig. 2: Simplified Bicycle Model with Torques Acting on the
Wheels and Chassis due to Wheel Acceleration and Steering.

After an aerial phase, the vehicle should land on the
ground with an appropriate configuration. Unlike traditional
navigation planning problems, in which the goal is to achieve
a desired state with certain notion of minimal cost (shortest
path, lowest energy, etc.), for our in-air maneuver problem
the goal is to achieve a goal configuration precisely when a
small airborne time window expires, i.e., the landing time,
T . Therefore, the goal is to achieve:

sgT = (rollgT , ˙roll
g

T , pitchgT , ˙pitch
g

T , yawgT , ˙yawgT , rpmg
T , ψ

g
T).
(2)

Notice that sgT must be achieved precisely at T , not later. If it
is achieved at t < T , the vehicle needs to assure it maintains
the same state at the landing time T . For example, when
the landing region is horizontal, rollgT and pitchgT become
zero, while ˙roll

g

T and ˙pitch
g

T should be as close to zero as
possible to minimize impact. yawgT and ˙yawgT are often less
crucial since they do not cause significant impact during
landing. rpmg

T mostly needs be positive to avoid flipping over
the vehicle upon ground contact with forward momentum,
and ψgT depends on what the immediate ground maneuver
necessary for the vehicle to execute right after landing is,
e.g., to quickly swerve to avoid an upcoming obstacle.

Therefore, the in-air vehicle maneuver problem for safe
landing can be formulated as

a∗0, ...,a
∗
T−1 = argmin

a0,...,aT−1

T∑
t=0

c(st, s
g
T),

s. t. st+1 = fθ(st,at), s0 is given, and sT = sgT .
(3)

c is a state-wise cost function to be minimized, subject to the
constraints by the forward kinodynamics, given initial state,
and achieving the goal state at the end of the aerial phase T .
Notice the difference of Problem (3) to traditional receding-
horizon planning problems, where T is a receding horizon
which gradually moves towards the goal. Here T is the end
of the entire horizon of the problem, i.e., the landing point.

B. Physics Principles

In-air vehicle maneuvers are controlled using wheel ac-
celeration (˙rpm), steering angle (ψ), and steering rate (ψ̇).
Two key effects enable in-air maneuvers, the inertial and

gyroscopic effects of the wheels, which are leveraged to
adjust the vehicle’s roll and pitch orientations.

Inertial Effect: While a vehicle is in the air, accelerating
the wheels applies reaction torques to the chassis due to
the conservation of the angular momentum. For a simplified
bicycle model, these torques cause roll and pitch rotations.
Roll acceleration (¨roll) depends on ˙rpm and sin(ψ), while
pitch acceleration (¨pitch) depends on ˙rpm and cos(ψ).

Gyroscopic Effect: Steering the spinning front wheels in-
duces precession, generating torques which contributes to ¨roll
(proportional to rpm, ψ̇, and cos(ψ)) and ¨pitch (proportional
to rpm, ψ̇, and sin(ψ)). Together, these effects allow control
over roll and pitch. However, yaw control is limited, though
initial conditions and external factors (e.g., air resistance)
can influence yaw behavior.

C. PHLI

Calculating ¨roll and ¨pitch requires accurate moment of
inertia measurements for the vehicle chassis and for the
wheels. These measurements are difficult to analytically
derive or precisely measure due to changes in the center of
gravity and weight distribution by steering and as a result of
suspension movement. Furthermore, expansion of the tires
at high speeds due to centrifugal forces changes the moment
of inertia of the wheels as well. Hence, we decompose the
forward kinodynamics model st+1 = fθ(st,at) into two
parts, gϕ and hξ, i.e., st+1 = hξ(gϕ(st,at), st,at), and then
employ a data-driven and a physics-based approach to derive
gϕ and hξ respectively.
gϕ takes the state and action as input and derives the

resultant acceleration of roll, pitch, and yaw

¨rollt, ¨pitcht, ¨yawt = gϕ(st,at), (4)

where model parameters ϕ are learned in a data-driven
manner by minimizing a supervised loss. The ground truth
acceleration values are derived from the recorded Inertial
Measurement Unit (IMU) data via differentiation over time.

Once gϕ is trained, its output angular accelerations are fed
into hξ, along with the state st and action at. For st+1 =
hξ((¨rollt, ¨pitcht, ¨yawt), st,at), we have

˙rollt+1 = ˙rollt + ¨rollt · dt,

rollt+1 = rollt + ˙rollt · dt+
1

2
¨rollt · dt2,

rpmt+1 = rpmt + ˙rpmt · dt,
ψt+1 = ψt + ψ̇t · dt,

with analogous update equations for pitch and yaw. The only
parameter for hξ is the integration interval dt. This completes
PHLI’s transition to next state st+1 given current state st and
action at through gϕ and hξ.

D. Dom Planner

Given the short airtime, we adopt a fixed-horizon, instead
of receding-horizon, planning approach, where the horizon is
determined by the discretized time remaining until landing.
The planner samples action sequences over this fixed horizon
and uses the learned PHLI to rollout the corresponding

state trajectories. Each trajectory is then evaluated using a
cost function. The planner selects the trajectory with the
minimal cost, executes its first action, and replans with the
updated (and reduced) remaining time. The next planning
cycle samples around the best action from the last cycle.

One critical consideration of Dom Planner is that, in addi-
tion to general physical actuation limits (e.g., limited motor
current and torque causing that the actions can never exceed
certain thresholds), the under-actuated vehicle controls of
˙rpm and ψ̇ are further constrained due to state-dependent

actuation limits:

rpmmin − rpmt ≤ ˙rpmfeasible
t ≤ rpmmax − rpmt,

ψmin − ψt ≤ ψ̇feasible
t ≤ ψmax − ψt,

which means if rpmt (ψt) is at the minimal value, ˙rpmfeasible
t

(ψ̇feasible
t) cannot be negative, and if ˙rpmt (ψt) is at the

maximal value, ˙rpmfeasible
t (ψ̇feasible

t) cannot be positive. This
limited range of feasible ˙rpm and ψ̇ reduces possible in-air
maneuver options and makes simple error-driven controllers,
like PID controllers, inappropriate to enable complex in-air
vehicle maneuvers.

To enable goal convergence within a short aerial phase, the
state-wise cost function defined in the fixed-horizon, instead
of receding-horizon, problem in Eqn. (3) is formulated as:

c(st, s
g
T) =

K∑
i=1

wi(t) · ci(st, sgT), (5)

which is a combination of the costs of K state dimensions (in
our case, K = 8). A key difference from conventional state-
wise cost function is that each state dimension is dynamically
weighed by a weight term wi(t) as a function of time t.
For example, for initial time steps, it is more important to
quickly align the vehicle angles to prepare for a safe landing
pose, while the focus will gradually shift to the angular
velocities, wheel rpm, and steering components later on to
ensure landing with minimal impact on the vehicle.

Additionally, based on the sampled trajectory with the
lowest cost, Dom Planner checks its feasibility of reaching
the goal state within the time remaining till landing by
computing the difference between the final state sT and goal
state sgT . This feasibility check allows the system to either
choose a viable trajectory or, if necessary, select an alternate
goal to mitigate landing impact.

III. IMPLEMENTATIONS

We present the implementation details of our PHLI and
Dom Planner onboard a 1/5th-scale vehicle.

A. PHLI Implementations

The learnable function of PHLI, gϕ, is a 4-layer multi-layer
perceptron that produces a three-dimensional output of pre-
dicted angular accelerations, (¨rollt+1, ¨pitcht+1, ¨yawt+1). gϕ
is trained to minimize the difference between the predicted
angular accelerations and the derived ground truth from IMU.
The outputs of gϕ is fed into hξ to calculate the next state
of the vehicle st+1.

Algorithm 1 Dom Planner

1: Parameters: integration interval dt (0.2), sample count
N (4000), actuation limits λ, sampling range σ ˙rpm (2000)
and σψ̇(0.2), and PHLI fθ

2: Input: Time till landing T , initial state s0, goal state sgT ,
and last best action (˙rpmbest, ψ̇best)

3: Compute fixed landing horizon: H = T
dt

4: ˙rpml, ˙rpmh = ˙rpmbest ± σ ˙rpm ▷ sampling range for ˙rpm
5: ψ̇l, ψ̇h = ˙ψbest ± σψ̇ ▷ sampling range for ψ̇
6: for (˙rpmi, ψ̇i), i ∈ [1, N], sampled from range [˙rpml,

˙rpmh] and [ψ̇l, ψ̇h] do
7: Ti = {s0}
8: Ui = (˙rpmi, ψ̇i)
9: for t ∈ [0, H − 1] do

10: st = CLAMP STATE(st, λ)
11: at = CLAMP ACTION(˙rpmi, ψ̇i, st, λ)
12: st+1 = fθ(st,at)
13: Ti.add(st+1)
14: end for
15: Ci = CALCULATE COST(Ti, s

g
T)

16: end for
17: Tbest = Targmini(Ci) ▷ minimal-cost trajectory
18: Ubest = Uargmini(Ci) ▷ best action of this cycle
19: Return Tbest, Ubest

B. Dom Planner Implementation

Dom Planner’s implementation is shown in Algorithm 1.
Line 1 first defines Dom Planner’s parameters, including
integration interval, sample count, actuation limits, sampling
range, and PHLI. Actuation limits include rpm rate limit
˙rpmmin and ˙rpmmax (±5000), rpm limit rpmmin (0) and rpmmax

(1980), steering rate limit ψ̇min and ψ̇max (±6.5 rad/s), and
steering limit ψmin and ψmax (±0.65 rad). Line 2 specifies the
algorithm input. Given gravity, time till landing is determined
by the initial take-off velocity and terrain geometry. Initial
state is the robot state at take-off. Goal state can be defined
by the geometry of the receiving terrain. Last best action is
the action executed in the last planning cycle. The planning
cycle is initiated as soon as the vehicle becomes airborne.
The planner calculates the fixed landing horizon H = T

dt
by discretizing the time till landing with the interval dt in
line 3. For each planning cycle, the algorithm uniformly
samples 4000 candidate input pairs (˙rpmi, ψ̇i) within the
ranges determined by σ ˙rpm and σψ̇ centered around the
last best action (˙rpmbest, ψ̇best) in lines 4 and 5. For each
sample (line 6), the planner rolls out a trajectory over the
horizon H (line 9) using our PHLI fθ to compute the
state transition dynamics (line 12). At every time step, the
functions CLAMP STATE and CLAMP ACTION enforce the
state and action limits (lines 10-11). After rolling out the full
trajectory, CALCULATE COST evaluates each trajectory’s
cost according to Eqn. (5) (line 15). For wi(t) in Eqn. (5),
we simply use higher and lower weights for the angular
position and velocity components respectively in the first
half of the rollouts, and vice versa in the second half. We

select the best trajectory corresponding to the minimum cost
(line 17) and execute the corresponding action (line 18), The
best trajectory and action is returned to initialize the last best
action (˙rpmbest, ψ̇best) for the next planning cycle. We re-plan
at 50 Hz and update the time horizon at every cycle based
on the remaining time.

C. Robot, Gimbal, and Dataset
We implement PHLI and Dom Planner on a 1/5-scale

Losi DBXL E2, 4WD Desert Buggy platform, with a top
speed of 80+ km/h. The vehicle is equipped with a 9-
DoF IMU, Intel RealSense D435i, NVIDIA Jetson Orin NX
for perception and planning, two wheel encoders for front
and rear wheels respectively, and an Arduino Mega micro-
controller for all low-level actuators and the wheel encoders.
For simplicity, we only allow the wheels to rotate forward,
i.e., rpm ∈ [0, rpmmax].

To collect a dataset while ensuring the safety of the robot,
we construct a 2-axis 1.3 m×1 m×0.65 m aluminum gimbal
platform capable of rotating in the roll and pitch axis. The
purpose of the gimbal is to simulate weightlessness and in-
air dynamics. When mounting the robot on the gimbal with
robot’s center of gravity aligned to the roll and pitch axis
of the gimbal, the robot can freely rotate around the roll
and pitch axis. Because existing vehicle controls do not have
a direct effect on vehicle yaw acceleration and the gimbal
introduces significant extra moment of inertial along the yaw
axis, we do not include the yaw angle on the gimbal.

While the robot is mounted on the gimbal, the robot is
commanded with a diverse range of ˙rpm and ψ̇ to capture
all possible ways to change the roll and pitch of the vehicle,
including behaviors at the extremes of rpm and steering
ψ. The robot configurations during the execution of these
commands are recorded and processed to create our tuple of
current state, current action, and next state ground truth of
the angular accelerations to train gϕ. Our dataset includes one
hour of gimbal data, split 85/15 for training and validation.

IV. EXPERIMENTS

For practical reasons, the majority of our experiments are
performed indoors on the custom-built gimbal, with addi-
tional real-world validation provided by outdoor experiments.
Please see our video https://www.youtube.com/
watch?v=jW-c0OP8pQQ for the experimental results and
extended version of our paper https://arxiv.org/
abs/2503.19140 for more information.

V. CONCLUSIONS

In this paper, we present the Dom Planner and PHLI to
enable in-air vehicle maneuver for high-speed off-road nav-
igation. Based on the precise in-air forward kinodynamics
enabled by the hybrid PHLI model using physics-based and
data-driven approaches, Dom Planner is able to accurately
and timely maneuver the vehicle roll, pitch, yaw, and their
velocities to desired states. Extensive experiments showcase
that our method allows existing ground vehicle controls, i.e.,
throttle and steering, to prepare the vehicle in-air for safe
landing during a short airborne period. So, cars do fly.

https://www.youtube.com/watch?v=jW-c0OP8pQQ
https://www.youtube.com/watch?v=jW-c0OP8pQQ
https://arxiv.org/abs/2503.19140
https://arxiv.org/abs/2503.19140

	Introduction
	Approach
	Problem Formulation
	Physics Principles
	phli
	Dom Planner

	Implementations
	phli Implementations
	Dom Planner Implementation
	Robot, Gimbal, and Dataset

	Experiments
	Conclusions

