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ABSTRACT

Humans often acquire new skills through observation and imitation. For robotic
agents, learning from the plethora of unlabeled video demonstration data avail-
able on the Internet necessitates imitating the expert without access to its action,
presenting a challenge known as Imitation Learning from Observation (ILfO). A
common approach to tackle ILfO problems is to convert them into inverse rein-
forcement learning problems, utilizing a proxy reward computed from the agent’s
and the expert’s observations. Nonetheless, we identify that tasks characterized by
a progress dependency property pose significant challenges for such approaches;
in these tasks, the agent needs to initially learn the expert’s preceding behaviors
before mastering the subsequent ones. Our investigation reveals that the main
cause is that the reward signals assigned to later steps hinder the learning of ini-
tial behaviors. To address this challenge, we present a novel ILfO framework that
enables the agent to master earlier behaviors before advancing to later ones. We
introduce an Automatic Discount Scheduling (ADS) mechanism that adaptively
alters the discount factor in reinforcement learning during the training phase, pri-
oritizing earlier rewards initially and gradually engaging later rewards only when
the earlier behaviors have been mastered. Our experiments, conducted on nine
Meta-World tasks, demonstrate that our method significantly outperforms state-
of-the-art methods across all tasks, including those that are unsolvable by them.
Our code is available at https://il-ads.github.io/.

1 INTRODUCTION

Observing and imitating others is an essential aspect of intelligence. As humans, we often learn
by watching what other people do. Similarly, robotic agents can learn new skills by watching ex-
perts and mimicking them through their observation-action pairs, a method often far more sample-
efficient than relying solely on self-guided interactions with the environment. Beyond the conven-
tional demonstrations, there is a vast repository of unlabeled video demonstration data available on
the Internet, lacking explicit information on the actions associated with each state. To utilize these
valuable resources, we direct our attention to a specific problem known as Imitation Learning from
Observation (ILfO; Torabi et al., 2019). In this setting, agents solely have access to sequences of
demonstration states without any knowledge of the actions executed by the demonstrator.

Canonical imitation algorithms, such as behavior cloning (Bain & Sammut, 1995; Ross et al., 2011;
Daftry et al., 2017), can not be directly applied to ILfO, as they rely on access to the expert’s actions
for behavior recovery. To deal with ILfO problems, one prominent category of approaches involves
getting proxy rewards based on the distribution of the agent’s and the expert’s visited states (Torabi
et al., 2018b; Yang et al., 2019; Lee et al., 2021; Kidambi et al., 2021; Jaegle et al., 2021; Liu et al.,
2022). These approaches first derive stepwise reward signals through techniques like occupancy
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Figure 1: An example of employing proxy-reward-based ILfO methods on a task with progress
dependency. For the task basketball, (a) taking only the initial part of the expert demonstration as
the imitation objective, the agent efficiently acquires the grasping skill; (b) taking the entire expert
demonstration as the imitation objective, the agent fails to grasp the ball and instead sweeps it away.

measure matching (Ho & Ermon, 2016) or trajectory matching (Haldar et al., 2023a), and then
employ reinforcement learning (RL) to optimize the expected cumulative reward. However, the
performance of these methods remains unsatisfactory, particularly in challenging manipulation tasks
with high-dimensional visual observations, where agents struggle to achieve task completion despite
extensive interactions with the environment.

To understand why traditional proxy-reward-based methods fail, we conduct experiments on the
task basketball from the Meta-World suite (Yu et al., 2020). As shown in Figure 1, a robotic agent
needs to grasp a basketball and deposit it in the basket. We first experiment with a simplified setting,
which only instructs the agent to learn the expert’s early behaviors of reaching for and grasping the
ball. The agent quickly acquires these skills (see Figure 1(a)), indicating that grasping the ball is not
inherently difficult and can be learned efficiently. However, when tasked with learning the entire ex-
pert demonstration, the same method fails to acquire the initial grasping skill and instead moves the
empty gripper directly to the basket (see Figure 1(b)). Comparing these two scenarios, we discover
that rewarding later steps in a trajectory negatively impacted the agent’s ability to learn the earlier
behaviors, which resulted in difficulties in mastering subsequent actions and the overall task. This
pattern is not unique to the basketball task. We observe a similar phenomenon in many manipula-
tion tasks. All these tasks share a property: the agents must first acquire earlier behaviors before
progressing to later ones. Our research shows that conventional ILfO approaches often struggle with
tasks characterized by progress dependencies, primarily because agents fail to mimic the expert’s
early behaviors. Instead, agents resort to optimizing rewards in later stages by moving to states
that appear similar to demonstrated states. However, these states differ from the demonstrated ones
because the agent has not yet completed the necessary preliminary steps. Therefore, these locally
optimal but incorrect solutions can hinder the agent’s exploration of earlier critical behaviors.

Based on our previous analysis, we introduce a novel ILfO framework to handle tasks with progress
dependencies. We propose encouraging the agent to master earlier parts of demonstrated behaviors
before proceeding to subsequent ones. To achieve this, we restrict the impact of later rewards until
the agent has mastered the previous behaviors. We implement this idea in a simple yet effective
way by incorporating a dynamic scheduling mechanism for a fundamental term in RL - the discount
factor γ. During the initial training phase, we employ a relatively small γ, leading to value functions
focusing on short-term future rewards. For the initial states, these short-sighted value functions
will reduce the impact of misleading proxy rewards from the later episode stages, thus helping
the imitation of early episode behaviors. As the agent advances in the task, the discount factor
increases adaptively, allowing the agent to tackle later stages only after it has effectively learned the
earlier behaviors. This mechanism, we call Automatic Discount Scheduling (ADS), is reminiscent of
Curriculum Learning (CL) introduced by Bengio et al. (2009), which structures the learning process
to increase the complexity of the training objective gradually. Experimental results demonstrate
that ADS overcomes the challenges associated with traditional proxy-reward-based methods and
surpasses the state-of-the-art in complex Meta-World tasks.
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Our contributions are summarized as follows:

• We discover that conventional ILfO algorithms struggle on tasks with progress dependency.

• We introduce a novel ILfO framework featuring an Automatic Discount Scheduling (ADS),
enabling the agent to master earlier behaviors before advancing to later ones.

• In all of the nine evaluated challenging Meta-World manipulation tasks, our innovative
approach significantly outperforms prior state-of-the-art ILfO methods.

2 BACKGROUND

In this section, we delve into the idea of imitation learning through proxy rewards, which is a widely
used framework to tackle the ILfO problem. Furthermore, we introduce Optimal Transport (OT),
which is a reward labeling technique employed by our method to compute the proxy rewards.

2.1 IMITATION THROUGH PROXY REWARDS

We consider agents acting within a finite-horizon Markov Decision Process (S,A,P,R, γ, pinit, T ),
where S is the state space, A is the action space, P is the transition function, R is the reward
function, γ is the discount factor, pinit is the initial state distribution, and T is the time horizon.
In image-based tasks, a single frame may not fully describe the environment’s underlying state.
Following common practice (Mnih et al., 2013; Yarats et al., 2021), we use the stack of 3 consecutive
RGB images (denoted by observation ot) as the approximation of the current underlying state st.
We assume that a cost function over the observation space c : O × O → R is given. This cost
function will be used in reward inferring (Section 2.2) and progress recognizing (Section 4.2).

In the context of ILfO, the environment does not provide a reward function. Instead, our goal is
to train an agent using a set of N observation-only trajectories denoted as De = {τe}Nn=1, which
are demonstrated by an expert. Each trajectory τe is composed of a sequence of observations τe =
{oet}Tt=1.

A prevalent approach to address the ILfO problem involves transforming it into a Reinforcement
Learning (RL) problem by defining proxy rewards based on the agent’s trajectory τ and the expert
demonstrations: {rt}T−1

t=1 := fr (τ,De), where fr represents a criterion for reward assignment
(Torabi et al., 2018b; Yang et al., 2019; Lee et al., 2021; Jaegle et al., 2021; Liu et al., 2022; Huang
et al., 2023). Subsequently, RL is employed to maximize the expected discounted sum of rewards:

Eπ

[
T−1∑
t=1

γt−1rt

]
. (1)

2.2 REWARD LABELING VIA OPTIMAL TRANSPORT

Optimal Transport (OT; Villani et al., 2009) is an approach for measuring the distance between prob-
ability distributions. For simplicity, we clarify its definition in the scope of ILfO. Given a predefined
cost function c(·, ·) over the observation space, we define the Wasserstein distance between an agent
trajectory τ = {o1 · · · , oT } and an expert trajectory τe = {oe1, · · · , oeT } as:

W(τ, τe) = min
µ∈RT×T

T∑
i=1

T∑
j=1

c(oi, o
e
j)µ(i, j) (2)

subjected to
T∑

i=1

µ(i, j) =
1

T

T∑
j=1

µ(i, j) =
1

T
(3)

Each µ ∈ RT×T satisfying Equation 3 is called a transport plan. When a transport plan achieves the
minimization specified in Equation 2, it is designated as the optimal transport plan µ∗

τ,τe .
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We can use OT to derive a proxy reward function for the agent’s trajectory τ . Let τe ∈ De be the
expert trajectory with minimal Wasserstein distance to τ . The rewards {rt}T−1

t=1 are assigned by:

ri = −
T∑

j=1

c(oi, o
e
j)µ

∗
τ,τe(i, j) (4)

Due to its practicality and efficacy, OT has become a widely used approach for calculating rewards
(Arjovsky et al., 2017; Papagiannis & Li, 2022; Luo et al., 2023; Haldar et al., 2023a;b).

3 CHALLENGES IN ILFO ON TASKS WITH PROGRESS DEPENDENCY

In this section, we provide more discussion on the basketball task illustrated in Section 1. We elab-
orate on why a proxy-reward-based method (see Section 2.1) fails to solve this task, and conclude
that this phenomenon reveals a unique challenge in ILfO on tasks with progress dependency.

(a)

(b)

Figure 2: (a) The agent learns a subop-
timal policy that sweeps the ball away.
(b) The agent can also collect explo-
rative trajectories that successfully pick
the ball up for a certain height, but it still
fails to acquire this skill.

As shown in Figure 2(a), when learning the basketball
task with a proxy-reward-based method, the agent usu-
ally learns a plausible policy that sweeps the ball out of
the camera’s view and then moves the empty gripper to
the basket. Though the agent has not successfully grasped
the ball, this policy still maximizes the sum of proxy re-
wards since it can advance to states that resemble the ex-
pert’s demonstrations in subsequent actions by imitating
the gripper’s moving path without the ball. While ob-
taining this sweeping policy, the agent can also explore
behaviors that successfully lift the ball, as shown in Fig-
ure 2(b). However, despite picking the ball up, the agent
usually fails to move the ball to the basket or quickly
drops the ball in these trajectories. Compared to the
sweeping policy, the trajectory in Figure 2(b) receives a
higher proxy reward in the initial steps, but a much lower
proxy reward in the later steps. These rewards cause an
RL agent to estimate a much lower value for lifting the
ball in the initial stage than for pushing it away. Thus,
when using a usual RL algorithm, the agent will rarely explore picking the ball and get stuck in
the suboptimal sweeping policy. In summary, the proxy rewards assigned to the later steps in a tra-
jectory negatively impacted the agent’s ability to learn the earlier behaviors in the basketball task,
which is in line with the observation in Figure 1(b). Similar patterns can be observed in many tasks
with progress dependency, which challenges the conventional ILfO approaches.

Remark. This challenge is highly related to the nature of imitation through proxy rewards. In usual
RL tasks with manually designed rewards, the progress dependency property will not challenge the
RL algorithm, since the manually designed rewards usually incorporate the characterization of this
property. For example, in the basketball task, a handcraft reward function only assigns positive
rewards to the states where the ball is grasped. This assignment naturally eliminates the previously
mentioned suboptimal solutions.

4 METHOD

In this paper, we aim to overcome the challenges confronted by traditional proxy-reward-based ILfO
algorithms (see Section 2.1) when tackling tasks characterized by the progress dependency property,
as discussed in Section 3. In Section 4.1, we illustrate our solution for this challenge and propose
a novel framework called ILfO with Automatic Discount Scheduling (ADS). Section 4.2 further
elaborates on the design of several challenging components in this framework.

4.1 FRAMEWORK

Recall that in a task with progress dependency property, rewarding later steps in a trajectory can
negatively impact the agent’s ability to learn the earlier behaviors. We posit a principle to avoid this
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Algorithm 1 Imitation Learning from Observation with Automatic Discount Scheduling
Require: Expert Demonstrations De

1: Initialize RL agent π
2: Initialize progress recognizer Φ with De

3: Initialize discount factor γ ← γ0
4: for episode = 1, 2, · · · do
5: Sample a trajectory τ = {o1, a1, · · · , oT } ∼ π
6: Compute proxy rewards {r1, · · · , rT−1} ← fr (τ,De)
7: Update RL agent with the rewarded trajectory {o1, a1, r1, · · · , oT }
8: Update progress recognizer Φ with τ
9: Query Φ about the current progress k ← Φ.CurrentProgress()

10: Update discount factor γ ← fγ (k)
11: end for

problem: if the agent has not mastered the early part of the demonstrated sequences, we should not
incorporate imitating the later parts in its current learning objective. We highlight that setting a lower
value for a fundamental term in RL – the discount factor γ – naturally serves as a soft instantiation
of this principle. From an RL perspective, a low discount factor prioritizes the rewards obtained
in the initial stages of an episode. Specifically, while optimizing the cumulative discounted reward
(Equation 1), the reward received at step i is weighted by γi−1. Therefore, utilizing a low discount
factor can encourage the agent to focus on optimizing the rewards obtained in early episode steps,
which corresponds to imitating the early part of the demonstrations in the context of ILfO.

However, an inappropriately low discount factor can make the agent too shortsighted and perform
unsatisfactory behaviors in the late episode steps. It is critical to increase the discount factor once
the agent masters the early part of the demonstration, ensuring that the later segments of the demon-
strations are also learned sufficiently. To achieve a discount scheduling mechanism that is adaptive
to distinct properties of various tasks, we propose a novel framework called ILfO with Automatic
Discount Scheduling (ADS).

Training pipeline. In ADS, we deploy a progress recognizer Φ to continuously monitor the
agent’s learning progress, and dynamically assign a discount factor that positively correlates with
the progress. The overall training pipeline is outlined in Algorithm 1. At the start of the training
process, the agent is assigned a low discount factor of γ = γ0, which facilitates the agent to mimic
the expert’s myopic behaviors. As the training advances, we periodically consult the progress rec-
ognizer Φ to track the extent to which the agent has assimilated the expert’s behaviors. The function
Φ.CurrentProgress() returns an integer k between 0 and T , indicating that the agent’s current
policy can follow the expert’s behavior in the first k steps. Once k is updated, the discount factor
γ is updated according to fγ(k), where fγ is a monotonically increasing function. Then, the agent
will continue its trial-and-error loop with regard to the new γ.

Designing a suitable discount scheduling method, including progress recognizer Φ and mapping
function fγ , is the major challenge of instantiating our framework. We will further explore these
components in Section 4.2.

4.2 DISCOUNT SCHEDULING

Progress recognizer Φ. The progress recognizer Φ receives the agent’s collected trajectories (line
8 in Algorithm 1) and need to output the agent’s learning progress k (line 9 in Algorithm 1). To de-
velop this progress recognizer, we initially introduce a measurement to evaluate the progress align-
ment of one trajectory τ = {o1, · · · , on} to another trajectory τ ′ = {o′1, · · · , o′n}. We intend to
evaluate how close this pair of trajectories is to forming a monotonic frame-by-frame alignment. To
be specific, we consider the sequence p = {p1, · · · , pn}, where pi = argminj c(oi, o

′
j) is the index

of the nearest neighbor of oi in τ ′. If τ and τ ′ are exactly the same, then p becomes a strictly increas-
ing sequence. On the contrary, if τ and τ ′ characterize totally different behaviors, p becomes a dis-
ordered sequence. Following this intuition, we propose to measure the progress alignment between
τ and τ ′ by the length of the longest increasing subsequence (LIS) in p, denoted by LIS(τ, τ ′).
The longest increasing subsequence problem chooses a (not necessarily contiguous) subsequence
of p, such that it is strictly increasing (w.r.t the order in p) and achieves the longest length. For
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instance, if p = {1, 2, 4, 2, 6, 5, 7}, then its longest increasing subsequences can be {1, 2, 4, 5, 7} or
{1, 2, 4, 6, 7}. The LIS measurement focuses on the consistency of these trajectories’ macroscopic
trends, which avoids overfitting the microscopic features in the observed frames.

Now, we utilize this measurement to design the progress recognizer Φ. Φ keeps tracking the agent’s
learning progress k. Each time Φ receives the agent’s recently collected trajectory τ , it considers the
first k + 1 steps of the agent’s and the demonstrated trajectories. If the progress alignment between
the agent’s and some demonstrated trajectory is comparable to the progress alignment between two
demonstrated expert trajectories, then we posit that the agent’s current policy can follow demonstra-
tions in the first k steps. Specifically, we increase k by one if the following inequality holds:

max
τ ′∈De

LIS(τ1:k+1, τ
′
1:k+1) ≥ λ× min

τ ′,τ ′′∈De and τ ′ ̸=τ ′′
LIS(τ ′1:k+1, τ

′′
1:k+1) (5)

where the subscript 1 : k + 1 means extracting the first k + 1 steps of the trajectory, and λ ∈ [0, 1]
is a hyperparameter that controls the strictness with which we monitor the agent’s progress.

Mapping function fγ . Taking the progress indicator k as input, fγ outputs a new discount factor
for the agent. One straightforward idea of setting fγ is to make the discount weight of every reward
received after step k not larger than a hyperparameter α ∈ (0, 1). Recall that in the RL objective
(Eq. 1), the reward received at step i is weighted by γi−1. Therefore, we propose fγ(k) = α1/k.
In Section 5.4, we will show that simply setting α = 0.2 makes our algorithm work well across a
variety of tasks.

5 EXPERIMENTS

We conduct a series of experiments to evaluate the performance of our approach. We show the
performance against baseline methods in Section 5.2, validate the effectiveness of ADS in Section
5.3, and do meticulous ablation studies in Section 5.4.

5.1 EXPERIMENTAL SETUP

Tasks. We experiment with 9 challenging tasks from the Meta-World (Yu et al., 2020) suite. Ap-
pendix B provides a brief introduction to these tasks.
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Figure 3: Evaluation ILfO methods on 9 Meta-world tasks (2 million environment frames). Each
curve reports the mean and standard deviation over 8 random seeds.
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ILfO settings. All the agents are not given any access to the environment’s rewards or suc-
cess/failure signals during training. Instead, the agent is equipped with 10 expert demonstration
sequences, which solely comprise observational data. These demonstrations are generated by em-
ploying hard-coded policies from Meta-World’s open-source codebase and consist of a series of
RGB frames. To construct the cost function over this observation space (see Section 2.1), we utilize
cosine distance over the features extracted by a frozen ResNet-50 network (He et al., 2016) which
is pre-trained on the ImageNet (Deng et al., 2009) dataset.

Baselines. We compare our approach against three representative ILfO methods, including two
proxy-reward-based methods OT and GAIfO, and one inverse-model-based method BCO. The de-
tailed descriptions of these methods are deferred to Appendix A.2. To ensure a fair comparison, we
equip all the proxy-reward-based methods (OT, GAIfO and our approach) with the same underlying
RL algorithm, DrQ-v2 (Yarats et al., 2021). By default, we equip the baselines with γ = 0.99.

5.2 MAIN RESULTS

Figure 3 provides a comprehensive comparison between our approach and the baseline methods. To
minimize uncertainty and obtain reliable findings, we report the mean and standard deviation over 8
random seeds. In terms of final performance, as measured by task success rate, our method yields
superior performance in 7 out of 9 tasks. Additionally, concerning sample efficiency, which refers
to the number of online interactions with the environment, our approach shows significant improve-
ments across 8 of the 9 tasks, with the exception being the door-lock task, where all methods exhibit
low final success rates. Notably, our approach achieves more substantial performance gains on more
challenging tasks, such as basketball and lever-pull, which exhibit pronounced progress dependency
properties. Finally, it is worth emphasizing that ADS serves as a general solution for overcoming the
challenges in tasks with progress dependency. Therefore, in addition to its integration with the OT
method, ADS can be readily adapted to improve the performance of other ILfO methods. Additional
results of applying ADS to the GAIfO method are available in Appendix C.1.

5.3 ADAPTIVE SCHEDULING
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Figure 4: Comparing OT+ADS against OT equipped with a fixed discount factor (1 million environ-
ment frames).

0.0 0.2 0.4 0.6 0.8 1.0
Env Frames (×106)

0

20

40

60

80

100

Su
cc

es
s %

assembly

0.0 0.2 0.4 0.6 0.8 1.0
Env Frames (×106)

0

20

40

60

80

100

Su
cc

es
s %

hammer

0.0 0.2 0.4 0.6 0.8 1.0
Env Frames (×106)

0

20

40

60

80

100

Su
cc

es
s %

basketball
OT+ADS (Ours) OT (  0.9  0.99 in 0.5M frames) OT (  0.9  0.99 in 1M frames)

Figure 5: Comparing OT+ADS against OT equipped with an exponential discount scheduling (1
million environment frames). The discount factor for the baselines exponentially increases from 0.9
to 0.99 within 0.5 or 1 million environment frames.

This section delves into the design of discount scheduling. In Figure 4, we compare the perfor-
mance of ADS with constant discount factors (γ = 0.9, 0.93, 0.96, or 0.99) and observe that ADS
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consistently outperforms all constant discount factors, underscoring the advantages of a dynamic
discount schedule. Moreover, Figure 5 contrasts ADS with two manually crafted dynamic discount
schedules. These schedules exponentially increase γ from 0.9 to 0.99 within 0.5 or 1 million en-
vironment frames. We observe that these schedules also generally fall short of ADS’s exceptional
performance due to their inherent lack of adaptability.
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Figure 6: Visualization of the discount factor scheduled by our method during the training process.

In Figure 6, we demonstrate how ADS showcases adaptability tailored to the unique characteristics
of different tasks. In the assembly and basketball tasks, we observe that as the discount factor
gradually increases, it reaches a plateau phase where it stabilizes at a constant value. This plateau
signifies the task entering a challenging phase demanding extensive exploration. Specifically, in
the assembly task, the accurate attachment of the ring to the pillar poses a challenge, while in the
basketball task, grasping and lifting the ball is the challenging step. Utilizing ADS ensures that the
discount factor remains at an appropriate level, facilitating sufficient exploration and optimization of
these challenging stages. Consequently, the agent can effectively acquire the necessary skills during
these phases and subsequently advance to learning later expert behaviors.

5.4 ABLATION STUDIES
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Figure 7: Ablation study on hyperparameter in the progress recognizer Φ (1 million environment
frames). λ is set to 0.9 defaultly in our method.
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Figure 8: Ablation study on hyperparameter in the mapping function fγ (1 million environment
frames). α is set to 0.2 defaultly in our method.

In our ADS method introduced in Section 4.2, we involve two hyperparameters: λ for the progress
recognizer Φ and α for the mapping function fγ . We perform ablations on λ and α in Figure 7 and
Figure 8, respectively, with results averaged over 8 random seeds. Figure 7 demonstrates that ADS
exhibits robustness regarding the value of λ; it achieves satisfactory performance with values of 0.8,
0.9, and 1.0. Figure 8 illustrates the impact of alpha: smaller alpha values are more beneficial for
early critical tasks, e.g., basketball, while larger alpha values significantly enhance success rates for
later challenging tasks, such as assembly. In our main results presented in Section 5.2, we employ
λ = 0.9 and α = 0.2.
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6 RELATED WORK

Imitation learning from observation. ILfO (Torabi et al., 2019) asks an agent to learn from
observation-only demonstrations. Without expert actions, ILfO presents more challenges compared
to standard imitation learning (Kidambi et al., 2021). One prevalent line of ILfO algorithms infer
proxy rewards from the agent experiences and the expert demonstrations, and deploy reinforcement
learning to optimize the cumulative rewards. The proxy rewards can be derived by matching agent’s
and expert’s state/trajectory distributions (Torabi et al., 2018b; Yang et al., 2019; Jaegle et al., 2021;
Huang et al., 2023; Al-Hafez et al., 2023) or estimating goal proximity (Lee et al., 2021; Bruce
et al., 2022). Among these series of literature, our work is most related to optimal-transport-based
algorithms (Dadashi et al., 2020; Haldar et al., 2023a). They derive proxy rewards by calculating the
Wasserstein distance between the agent’s and expert’s trajectories. Our method is built upon ILfO
through proxy rewards, and we choose OT as our basic block due to its promising performance in
complex domains.

An alternate strand of ILfO literature leverages model-based methods. Some approaches train an
inverse dynamics model by the agent’s collected data, and use this model to infer the expert’s missing
action information (Nair et al., 2017; Torabi et al., 2018a; Pathak et al., 2018; Radosavovic et al.,
2021). Recent work also integrates the inverse dynamics model with proxy-reward-based algorithms
(Liu et al., 2022; Ramos et al., 2023). Taking a different approach, Edwards et al. (2019) learns a
forward dynamics model on a latent action space. Our automatic discount scheduling framework is
orthogonal to these model-based algorithms. It is also possible to leverage model-based components
in our framework to further enhance the performance. We leave this study as future work.

Curriculum learning in RL. Curriculum Learning (CL) (Bengio et al., 2009) is a training strategy
where the learning process is structured to gradually increase the complexity of the training data or
tasks, demonstrating its efficacy across a wide range of deep learning applications (Wang et al., 2018;
Soviany et al., 2020; Wang et al., 2019; Gu et al., 2022). In RL, existing literature deploys curriculum
learning by sorting the collected experiences in replay buffer (Schaul et al., 2015; Ren et al., 2018),
or training the agent in easier tasks and transferring it to more complex scenarios (Florensa et al.,
2017; Silva & Costa, 2018; Dennis et al., 2020; Zhang et al., 2020; Dai et al., 2021; Forestier et al.,
2022). Our method requires the agent to first focus on imitating the expert’s early behavior, and
progress to later segments after mastering those behaviors. This idea can be treated as an implicit
organization of curriculum learning, which is different from formations in previous work.

Discount factor in RL. Existing literature extensively studies the role of the discount factor in RL.
It is justified that a lower discount factor can: (1) tighten the approximation error bounds when re-
wards are sparse (Petrik & Scherrer, 2008; Chen et al., 2018); (2) reduce overfitting (Jiang et al.,
2015); (3) serve as a regularizer and improve performance when data is limited or data distribution
is highly uniform (Amit et al., 2020); (4) be used to learn a series of value functions (Xu et al.,
2018; Romoff et al., 2019); (5) achieve pessimism in offline RL (Hu et al., 2022). We propose to
use a lower discount in a setting different from these works. This idea is motivated by a unique
property of imitation through proxy rewards (see Section 3), which does not exist in common RL
tasks with manually designed rewards. For discount scheduling, François-Lavet et al. (2015) sug-
gests progressively increasing the discount factor with a handcrafted scheduling during training. In
contrast, we propose an automatic discount scheduling mechanism through monitoring the agent’s
learning progress, facilitating adaptability to distinct properties of various tasks.

7 CONCLUSION

In this paper, we introduce a conceptually simple ILfO framework that is especially effective for
tasks characterized by progress dependencies. Our approach necessitates the agent to initially learn
the expert’s preceding behaviors before advancing to master subsequent ones. We operationalize this
principle by integrating a novel Automatic Discount Scheduling (ADS) mechanism. Through ex-
tensive evaluations across 9 Meta-World tasks, we observe remarkable performance improvements
when employing our framework. We hope the promising results presented in this paper will inspire
our research community to focus more on developing a more general ILfO algorithm. Such an algo-
rithm could leverage a wealth of valuable learning resources on the web, including videos of humans
performing various tasks.
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REPRODUCIBLE STATEMENT

With the code released online and the hyperparameter settings in Appendix A.1, the experiment
results are highly reproducible. We also utilize sufficient random seeds in Section 5 to ensure repro-
ducibility.
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Sébastien Forestier, Rémy Portelas, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically motivated
goal exploration processes with automatic curriculum learning. The Journal of Machine Learning
Research, 23(1):6818–6858, 2022.

Vincent François-Lavet, Raphael Fonteneau, and Damien Ernst. How to discount deep reinforce-
ment learning: Towards new dynamic strategies. arXiv preprint arXiv:1512.02011, 2015.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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A IMPLEMENTATION DETAILS

A.1 HYPERPARAMETERS

We equip all the proxy-reward-based methods (OT, GAIfO and our approach) with the same un-
derlying RL algorithm, DrQ-v2 (Yarats et al., 2021). The hyperparameters are listed in Table 1.

Table 1: Hyperparameters.
Config Value

Replay buffer capacity 150000
n-step returns 3
Mini-batch size 512
Discount γ (for baselines) 0.99
Optimizer Adam
Learning rate 10−4

Critic Q-function soft-update rate τ 0.005
Hidden dimension 1024
Exploration noise N (0, 0.4)
Policy noise clip(N (0, 0.1),−0.3, 0.3)
Delayed policy update 1

λ (for progress recognizer Φ) 0.9
α (for mapping function fγ) 0.2

A.2 BASELINES

In this section, we briefly introduce the baselines used in our experiments:

• Optimal Transport (OT, Papagiannis & Li (2022)): OT is a trajectory-matching-based
imitation learning method that computes proxy rewards by calculating the optimal trans-
port (Sinkhorn & Knopp, 1967; Cuturi, 2013) between the agent’s and expert’s visited
trajectories.

• General Adversarial Imitation Learning from Observation (GAIfO, Torabi et al.
(2018b)): GAIfO is an ILfO algorithm based on generative adversarial imitation learn-
ing (GAIL; Ho & Ermon, 2016). It trains a discriminator D(s, s′) to distinguish the agent’s
and the expert’s transition pairs. In our implementation, we replace the input of the dis-
criminator with the observation oi, as it has already stacked 3 consecutive RGB images. It
is also worth noting that vanilla GAIfO is built upon TRPO (Schulman et al., 2015), and
we replace the underlying RL algorithm with DrQ-v2 (Yarats et al., 2021) to ensure fair
comparison.

• Behavior Cloning from Observation (BCO, Torabi et al. (2018a): In BCO, the agent
infers the expert’s missing actions with an inverse model, which is trained on the state-
action pairs that the agent has gathered. This approach turns the ILfO problem into a
traditional IL problem, allowing for Behavioral Cloning (BC). We use BCO(α) introduced
in the paper as our baseline, where both the imitation policy and the inverse model are
periodically updated.

B EXPERIEMENT TASKS

In this paper, we experiment with 10 tasks from the Meta-World suite (Yu et al., 2020):

1. Assembly: to pick up a nut and place it onto a peg.
2. Hammer: to pick up a hammer and use it to hammer a screw on the wall.
3. Basketball: to pick up a basketball and dump it into a basket.
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4. Door unlock: to unlock the door by rotating the lock counter-clockwise.

5. Lever pull: to pull a lever up 90 degrees.

6. Stick push: to pick up a stick and push a kettle with the stick.

7. Door lock: to lock the door by rotating the lock clockwise.

8. Pick place wall: to pick up a puck, bypass a wall, and place the puck.

9. Door open: to open a door with a handle.

10. Button press: to press a button.

Assembly Hammer Basketball Door unlock Lever pull

Stick push Door lock Pick place wall Door open Button press

Figure 9: Meta-World tasks used in our paper.

C ADDITIONAL EXPERIMENT RESULTS

C.1 APPLY ADS TO ANOTHER PROXY-REWARD-BASED METHOD
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Figure 10: Additional results on 9 Meta-World tasks (2 million environment frames). Each curve
reports the mean and standard deviation over 8 random seeds.
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Additional results of GAIfO+ADS is shown in Figure 10. We observe that ADS significantly en-
hances the performance of GAIfO over five of the nine tasks.

C.2 COMPARISON AGAINST ALGORITHM WITH GOAL-BASED REWARDS

In this section, we compare our algorithm against RL with goal-based rewards. In this algorithm,
the stepwise reward is defined as rt = −c(ot, oeT ). As shown in Figure 11, this algorithm performs
poorly in 6 Meta-World tasks. Compared to other proxy-reward-based methods, it does not utilize
the information given by the first T − 1 frames of the demonstrations.
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Figure 11: Comparison Against RL with Goal-Based Rewards.

C.3 COMPARISON AGAINST ALGORITHM WITH LIS REWARDS

In this section, we experiment with an algorithm that uses the LIS measurement (see Section 4.2) to
derive the proxy rewards. Recall that given the agent’s trajectory τ = {o1, · · · , on} and the expert’s
trajectory τ ′ = {o′1, · · · , o′n}, this measurement compute the longest increasing subsequence of
p = {p1, · · · , pn}, where pi = argminj c(oi, o

′
j). We can assign rewards accordingly: we set ri

to 1 if pi occurs in the longest increasing subsequence and 0 otherwise. Therefore, optimizing the
cumulative rewards is equivalent to maximizing LIS(τ, τ ′).
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Figure 12: Comparison Against RL with LIS Rewards.
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As shown in Figure 12, the performance of LIS is poor compared to other proxy-reward-based
methods. The reason for this underperformance may be due to the fact that LIS ignores the fine-
grained differences between the frames observed by the agent and the expert. For example, even if
the agent’s trajectory has already formed a perfect frame-by-frame alignment with the demonstration
(i.e., for all i, the agent’s frame i is nearest to the ith frame in the demonstration), the learned policy
may be still suboptimal, but LIS cannot provide more detailed feedback to further optimize the
policy in this case. Hence, LIS is inappropriate to directly serve as the reward signal for the agent’s
policy learning.

C.4 COMPARISON AGAINST CONTINUOUS CURRICULA ON TRUNCATION LENGTH

In this section, we test the method of putting a continuous scheduler on truncating the expert trajecto-
ries instead of on the discount factor. The time horizon given to the agent also changes accordingly.
We evaluate with two schedulers:

1. A manually designed scheduler that linearly increases the truncation length in 1M environ-
ment frames.

2. An adaptive scheduler that sets the truncation length to the output of the progress recog-
nizer.

The results shown in Figure 13 indicate that both schedulers demonstrate improvements over pure
OT, which again validates the core argument presented in our paper. However, they still fall short
when compared to OT+ADS, and we provide an analysis of the reason why this happens as follows.

In the truncating method, when the scheduler assigns an underestimated truncation length, the agent
can not receive feedback for imitating later behaviors, and the policy learning will temporarily get
stuck. To achieve satisfactory performance, it is necessary to have a high-quality scheduler that will
seldom underestimate the truncation length, which requires significant efforts on hyperparameter
tuning. On the other hand, ADS is a softer instantiation of our high-level idea, as the later rewards
are not entirely excluded. Ablation studies in Section 5.4 also support that ADS is not sensitive to
the hyperparameters of the scheduler. Therefore, we prefer discount factor scheduling to truncation
length scheduling.
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Figure 13: Comparison against continuous curricula on truncation length.

C.5 COMPARISON AGAINST TIERED CURRICULA ON TRUNCATION LENGTH

In this section, we test the method of setting tiered curricula to truncate the demonstrations. The time
horizon given to the agent also changes accordingly. We set four levels of the curricula: truncate
expert trajectories to 25%, 50%, 75%, and 100% of the full length, respectively. We experimented
with two ways of scheduling the curricula:

1. A manually designed scheduler that updates the curriculum every 250k frames.
2. An adaptive scheduler that updates the curriculum once the progress recognizer estimates

learning progress larger than the current curriculum.

The results are shown in Figure 14. Both implementations demonstrate improvements over pure OT,
validating our paper’s core argument. However, they still fall short when compared to OT+ADS.
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Please refer to Section C.4 for further discussion between discount factor scheduling and truncation
length scheduling.
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Figure 14: Comparison against tiered curricula on truncation length.

C.6 COMPUTE COSTS WITH R3M REPRESENTATIONS

In this section, we conduct experiments in which we utilize a different visual encoder for cost com-
putation. Specifically, we employ a ResNet-50 pretrained by R3M (Nair et al., 2022) to compute
the costs. The results of the experiment are illustrated in Figure 15. They indicate that, while the
performance is worse than the original setting with an ImageNet pretrained ResNet-50 network, the
positive effects of ADS still hold.
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Figure 15: Results with visual encoder pretrained by another method (R3M).

C.7 COMPUTE COSTS WITH THE VISION ENCODER FINE-TUNED BY BYOL

In this section, we conduct experiments in which we utilize an in-domain fine-tuned visual encoder
for cost computation. Compared with the original settings in the paper, we further fine-tune the
ImageNet pretrained ResNet-50 network on the expert demonstrations through BYOL (Grill et al.,
2020). The results are shown in Figure 16, indicating that fine-tuning the visual encoder to the
demonstration can further improve the performance, while OT+ADS still significantly outperforms
pure OT.
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Figure 16: Results with vision encoder fine-tuned on the demonstrations through BYOL.
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