

000
001 **LLAVACTION: EVALUATING AND TRAINING**
002 **MULTI-MODAL LARGE LANGUAGE MODELS FOR AC-**
003 **TION UNDERSTANDING**
004
005
006
007 **Anonymous authors**
008 Paper under double-blind review
009
010
011 **ABSTRACT**
012

013 Understanding human behavior requires measuring behavioral actions. Due to
014 its complexity, behavior is best mapped onto a rich, semantic structure such as
015 language. Emerging multimodal large language models (MLLMs) are promis-
016 ing candidates, but their fine-grained action understanding ability has not been
017 fully examined. In this work, we reformulate EPIC-KITCHENS-100, one of the
018 largest and most challenging egocentric action recognition datasets, into a MLLM
019 benchmark (EPIC-KITCHENS-100-MQA). We show that when we sample dif-
020 ficult answers based on specialist models as distractors, leading MLLMs strug-
021 gle to recognize the correct actions. How can we increase the performance of
022 MLLMs? We curated a supervised finetuning dataset that includes ‘hard’ action
023 recognition, temporal detection, captioning, and free-form question answering to
024 improve models’ diverse action understanding capabilities. We introduce a new
025 model called LLaVAction that adds an action token to boost models’ attention on
026 visual tokens and a two-stage pipeline to obtain structured actions. LLaVAction
027 greatly improves the MLLMs’ ability of action understanding, achieving strong
028 improvements on both MLLM benchmarks (21 points in accuracy over GPT-4o
029 on EPIC-KITCHENS-100-MQA) and action recognition benchmarks, suggesting
030 that our methods prepare MLLMs to be a promising path forward for complex ac-
031 tion tasks. [Code](#), [data](#), [benchmark](#) and [models](#) will be available upon acceptance.
032

033 **1 INTRODUCTION**
034

035 Understanding human behavior is a complex challenge requiring multiple skills such as visual per-
036 ception, knowledge about the world and reasoning capabilities. Current State-of-the-Art (SOTA)
037 methods in action understanding tasks (Chalk et al., 2024; Liu et al., 2025; Shi et al., 2023) typi-
038 cally rely on visual foundation models to imbue those kind of priors (Radford et al., 2021; Wang
039 et al., 2022; 2023). However, they rely heavily on dataset-specific target heads and have limited
040 language understanding ability, constraining their performance and especially generalizability. Re-
041 cently, Multi-modal Large Language Models (MLLMs) (Zhang et al., 2024c; Li et al., 2024a; et al.,
042 2024; Wang et al., 2024) have shown great potential for learning language priors to help understand
043 visual content, making them promising alternatives.
044

045 MLLMs take visual and text information as inputs and can directly output text. For training and
046 evaluating MLLMs on action understanding tasks, existing datasets (Kay et al., 2017; Caba Heilbron
047 et al., 2015) are converted into free text (either video caption or question-and-answer [QA] formats),
048 thus creating new datasets (Liu et al., 2024a; Li et al., 2024d) and benchmarks (Yu et al., 2019; Li
049 et al., 2024c). Those free-text formats offer great flexibility and generalization across datasets, but
050 also introduce limitations in model learning, evaluation, and application perspectives. For the model
051 learning, directly predicting the action name or choosing from some randomly selected candidates
052 (Figure 1) prevents the model from learning the full action distributions and contrasting fine-grained
053 actions (Xiao et al., 2021) explicitly. For the model evaluation, free text output makes MLLMs un-
054 able to directly compare with previous action task specialized models (Ramachandran et al., 2025).
055 For example, EPIC-KITCHENS-100 (Damen et al., 2022), one of the largest and most challenging
056 action datasets, has around four thousand actions. MLLMs may not always predict an action that
057 has an exact match in those action types, while we cannot put all the action types inside MLLMs’
058

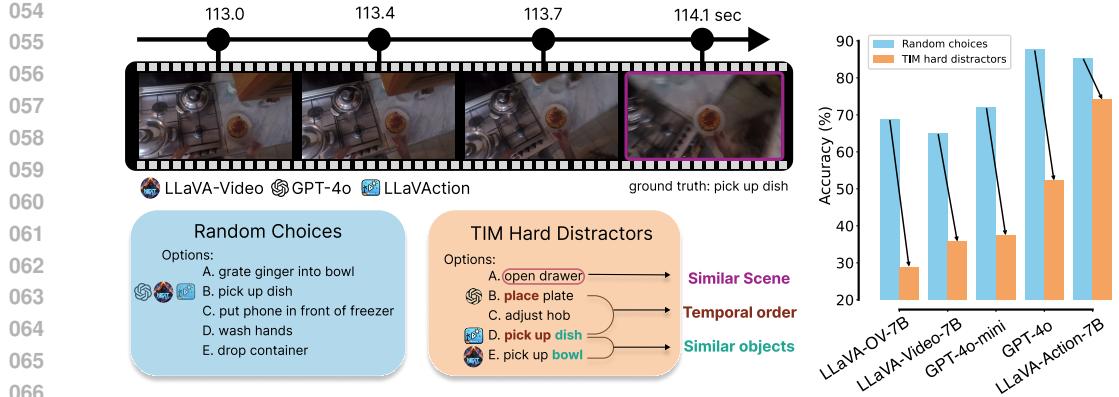


Figure 1: **LLaVAction-7B.** Left: Qualitative inspection of distractors. We show an example clip with labels from random choices (which empirically is easy to solve), vs. our proposed harder benchmark with action labels generated by a SOTA specialist (TIM (Chalk et al., 2024)). Our hard example mining strategy can automatically explore challenges such as temporal order and similar objects that are curated in other benchmarks. Right: While GPT-4o is strong when identifying correct answers among few random choices due to the large number of possible actions, it suffers in the harder benchmarking regime, and our method, LLaVAction outperforms GPT-4o.

context prompt to let MLLMs select. This further limits the applications that require structured actions (e.g., behavior analysis with ethograms (Renner, 2018)).

To address these issues, we take inspiration from the hard example mining literature (Shrivastava et al., 2016; Madry, 2017) to improve the learning and evaluation of MLLMs. Specifically, for evaluation, we reformulate EPIC-KITCHENS-100 (Damen et al., 2022) into a video multiple-choice question & answer (MQA) task with ground truth action and four difficult incorrect actions, which we call EPIC-KITCHENS-100-MQA. Incorrect choices are filtered by SOTA action recognition models (Chalk et al., 2024; Zhao & Krähenbühl, 2023) instead of humans or closed-sourced LLMs and MLLMs. This specialized model-based hard example mining reveals substantial drops in performance for existing MLLMs, including GPT-4o (Figure 1) and thus offers an efficient and challenging framework for evaluating MLLMs’ action recognition abilities. We note that the hard example mining approach automatically picks distractors that pose challenges such as temporal order or similar objects, which were purposefully curated in other benchmarks (Cai et al., 2024; Li et al., 2024c).

To improve MLLMs’ fine-grained action understanding, we proposed an action-related MLLM data transformation regime and curated a training dataset that encompasses various aspects of action understanding, such as hard action recognition, detailed captioning, free-form question answering, temporal detection and prior action association. With the training dataset, we propose LLaVAction models. We introduce an action token designed to improve the model’s visual information utilization and a two-stage pipeline to output structured actions and fairly compare with other action recognition models. *These model designs could be naturally extended to different foundational MLLMs (e.g., (Liu et al., 2024a; Zhu et al., 2025)).* LLaVAction obtains SOTA performance on four action recognition datasets and shows strong generalization ability in comparison to previous SOTA models. LLaVAction outperforms GPT-4o on EPIC-KITCHENS-100-MQA and achieves consistent improvements on ten video MLLM benchmarks *that require very different action understanding abilities and are with either caption, open-ended, or multi-choice format.*

2 RELATED WORKS

Multi-modal large language models. Multi-modal large language models (MLLMs) are promising generalists (Li et al., 2024b). Early multi-modal models (Tsimpoukelli et al., 2021) mostly performed few tasks or relied on few-shot learning for task generalization. After the large success of Large Language Models (Achiam et al., 2023), multi-modal models appeared that can supplement text with other modalities (Han et al., 2024). Among them, video MLLMs (Li et al., 2024a; Zhang et al., 2024c) promise robust and scalable solutions to understand and process video data. Our work falls into this direction, aiming at improving MLLMs’ action understanding. *Action*

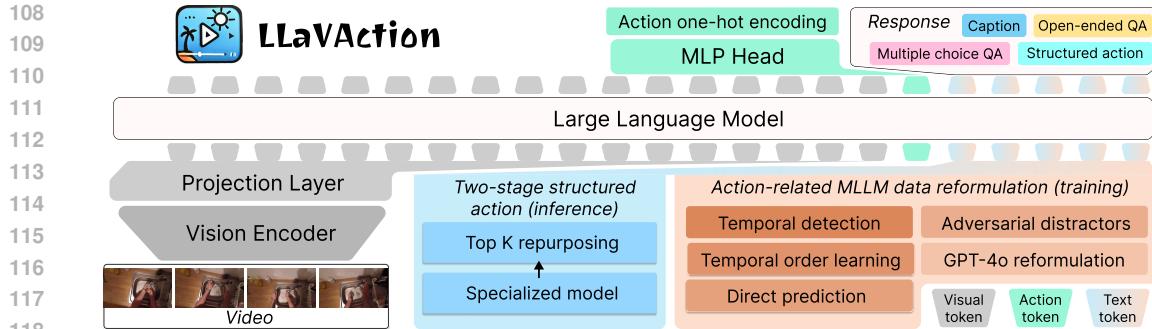


Figure 2: **LLaVAction pipeline.** Trained with our action-related MLLM reformulated data, LLaVAction outputs captions, action tokens and open-ended and multi-choice QAs. Our two-stage pipeline further enables LLaVAction to output structured action.

understanding is one of the fundamental abilities in video understanding and has been explored by several recent works with different specific focuses, such as InsTALL (Nguyen et al., 2025) mainly focusing on procedural action planning/prediction, HAIC (Wang et al., 2025a) mainly focusing on detailed action captions and MotionLLM (Chen et al., 2024b) mainly focusing on human motion understanding. Instead, our work cares more about fine-grained action contrastiveness.

MLLM datasets and benchmarks. Significant efforts have been made to improve training (Liu et al., 2024a; Li et al., 2024d) and benchmarking (Yue et al., 2024; Liu et al., 2024c) for MLLMs. Based on the question type, they can be classified as video caption, open-ended question answering and multi-choice question answering (MQA) types. MQA format gains more popularity, especially for benchmarks (Xiao et al., 2021; Fu et al., 2024), since it has no need to use another LLM/M-LLM to evaluate the model outputs and our EPIC-KITCHENS-100-MQA benchmark falls into this direction. In comparison to the existing MQA benchmarks whose choices are either constructed by humans (Yu et al., 2019; Fu et al., 2024) or by closed-source MLLMs (Maaz et al., 2023; Ye et al., 2024a), our benchmark uses action recognition models to efficiently find hard distractors, which is more efficient compared to human generation and is not be limited by closed-source MLLMs' performance.

Action recognition. Action recognition requires models to predict the action class for a trimmed segment (Shahroudy et al., 2016; Damen et al., 2022) and is a fundamental task in video understanding (Feichtenhofer et al., 2019; Tong et al., 2022). Over the years, many methods have been proposed, yet suffer from fast camera movement, long-term temporal relations, and open vocabulary ability (Damen et al., 2022; Grauman et al., 2022). We focus on MLLMs enhanced with video instruction-tuning (Zhang et al., 2024c) to address those challenges.

3 METHODS

We introduce the EPIC-KITCHENS-100-MQA benchmark (Section 3.1) and a novel MLLM data reformulation paradigm (Section 3.2), followed by the LLaVAction model designs (Section 3.3).

3.1 HARD EXAMPLE MINING FOR MLLM EVALUATION

Existing MLLMs have shown the ability to understand video content including actions. However, whether MLLMs are good at contrasting fine-grained actions is not clear. Researchers have developed benchmarks to focus on certain aspects of fine-grained actions, such as temporal order (Liu et al., 2024d), which are generated either by human effort or closed-source MLLMs. In this work, we propose to leverage SOTA action recognition models with hard example mining to construct a new benchmark named EPIC-KITCHENS-100-MQA, which is more efficient compared to human generation and is not limited by closed-source MLLMs' performance. More importantly, the proposed hard example mining paradigm can also help MLLMs to enhance fine-grained action understanding (Section 3.2) and enable the fair comparisons with specialized models (Section 3.3).

We use EPIC-KITCHENS-100 (Damen et al., 2022) as the data source for our benchmark for the following reasons. Firstly, EPIC-KITCHENS-100 boasts fine-grained action at scale (90K action segments comprising 100h, 4k action types in 100 hours). Secondly, despite numerous models being developed for this dataset, benchmark performance on tasks such as action recognition and segmentation remains far from saturated. Thirdly, the benchmark proves opportunities to compare against specialized models. Importantly, our hard example mining strategy is generalizable and can be applied to any other action understanding dataset. (Section 4.3).

We constructed EPIC-KITCHENS-100-MQA with hard example mining as follows: Let $\mathcal{V} = \{v_1, v_2, \dots, v_N\}$ denote the set of video clips. Let $\mathcal{N} = \{n_1, n_2, \dots, n_N\}$, $\mathcal{A} = \{a_1, a_2, \dots, a_N | a_i \in \mathcal{C}\}$ be their corresponding clip narrations and action labels separately, where \mathcal{C} represents the set of action classes. For each data sample i , we formulate the MQA task as:

$$f : (v_i, \mathcal{Q}, \mathcal{O}_i) \mapsto [p_1, p_2, \dots, p_K], \text{ where } \sum_{k=1}^K p_k = 1, \quad p_k \in [0, 1] \quad (1)$$

where v_i is the input sample (e.g., video clip), p_i is the probability of picking the i -th option in the MQA as the answer, \mathcal{Q} is the space of possible questions, $\mathcal{O}_i = \{n_i, \mathcal{D}_i\}$ represents the set of K answer options, n_i is the correct narration, and \mathcal{D}_i represents $K - 1$ sampled distractors. These can be sampled randomly from narrations in other action classes:

$$\mathcal{D}_i^r = \text{Uniform}(\{n_j \in \mathcal{N} | c_j \in \mathcal{C} \setminus \{a_i\}\}) \quad (2)$$

However, random sampling \mathcal{D}_i^r likely contains trivially wrong answers (Figure 1). We utilize action recognition models $g : \mathcal{V} \rightarrow (0, 1)^{|\mathcal{C}|}$ to find distractors. For video a specific v_i , we obtain the top $K - 1$ predicted classes: $\mathcal{C}_i = \text{Top}_{K-1}(g(v_i) \setminus \{a_i\})$. The distractor sampling becomes:

$$\mathcal{D}_i^m = \text{Uniform}(\{n_j \in \mathcal{N} | c_j \in \mathcal{C}_i\}) \quad (3)$$

The complete set of answers is formed as $\mathcal{O}_i^r = \{n_i\} \cup \mathcal{D}_i^r$ for random sampling or $\mathcal{O}_i^m = \{n_i\} \cup \mathcal{D}_i^m$ for model-based sampling. We used $K = 5$ for our benchmark. Moreover, we use the action narrations \mathcal{N} instead of action labels \mathcal{C} to build the choices to avoid implausible texts and confusions (more details are in Appendix F.1) We compared the two sampling strategies. We chose two leading action recognition methods on EPIC-KITCHENS-100, namely, AVION (Zhao & Krähenbühl, 2023) and TIM (Chalk et al., 2024). The results indicate that the TIM method consistently produced more challenging distractors for the evaluated MLLMs (Table 1 and qualitative examples Appendix Figure 6). Consequently, we fixed g with TIM for the EPIC-KITCHENS-100-MQA benchmark. We found that all tested models have a huge performance drop in comparison to the easy setting, which illustrates that MLLMs struggle with fine-grained action recognition when tested with visually or semantically similar actions.

3.2 ACTION UNDERSTANDING FROM MULTIPLE PERSPECTIVES

When training MLLMs on action understanding datasets (Kay et al., 2017), researchers usually re-formulate those datasets to MLLM-compatible tasks (video caption or question & answer (QA)), either by directly outputting the original action annotation or reformulating the annotations with closed-source MLLMs. Although this reformulation provides flexibility and generalization across video data even beyond action understanding, fine-grained action differences are not fully explored and hence cause a performance drop on EPIC-KITHCENS-100-MQA. To address this, we expand the previous reformulation regime to encompasses various aspects of action understanding.

Adversarial distractors for fine-grained action contrasting. Thanks to the effectiveness of our hard example mining paradigm, we can also train MLLMs with ‘adversarial’ distractors that were

Choice Selection	Random 5 (Easy)	Avion-Top 5 (Medium)	TIM-Top 5 (Hard)
GPT-4o-mini (07-18)	72.0	44.2	37.4
GPT-4o (08-06)	87.6	56.7	52.2
LLaVA-OV-0.5B	59.3	37.1	32.0
LLaVA-OV-7B	68.8	33.6	28.9
LLaVA-Video-7B	65.0	40.0	35.7

Table 1: Comparison between different sources of distractors. Models were evaluated on either random, AVION or TIM-generated distractors. The values are reported as percent accuracy.

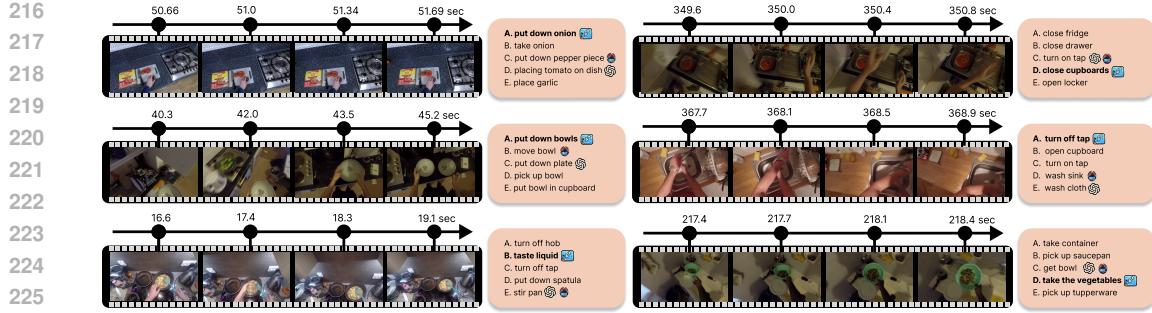


Figure 3: **Qualitative results.** LLaVAction-7B consistently outperforms GPT-4o and LLaVA-Video-7B when tested on hard distractors. Bold option denotes ground truth, and the icons denote the selection of the models. See also Appendix F.

generated by action recognition models. Since the EPIC-KITCHENS-100-MQA benchmark is based on TIM’s predictions, training MLLMs to pick the right answers using distractors generated by TIM could lead to over-fitting to TIM’s error distributions, resulting in an independent and identically distributed (IID) setting. **To avoid methods from obtaining better performance by simply overfitting on TIM’s choice combinations**, we used predictions from AVION to reformulate the EPIC-KITCHENS-100 training set. This provides us with an out-of-distribution (OOD) evaluation on EPIC-KITCHENS-100-MQA (more OOD supports in Appendix D). Moreover, we also present the results derived from training with distractors generated by TIM, which is the IID setting and yields the strongest results in EPIC-KITCHENS-100-MQA (Table 2).

Temporal detection for action boundary learning. Many actions (such as putting something) have clear initiation and conclusion and cannot be explicitly learned by the previous reformulation regime. Therefore, we instruct the model to predict the start and end timestamps of an action sample based on its randomly padded video clip. Specifically, given a video segment v_i with start timestamp s_i and end timestamp e_i , we introduce a fixed temporal padding $\delta = 3$ seconds distributed between start and end. Let $\alpha \sim \text{Uniform}(0, 1)$ be the proportion of padding allocated to the start:

$$\hat{s}_i = s_i - \alpha\delta, \hat{e}_i = e_i + (1 - \alpha)\delta \quad (4)$$

We therefore use the new timestamps \hat{s}_i and \hat{e}_i to obtain the padded video segment \hat{v}_i . During training, our LLaVAction model takes \hat{v}_i as input and predicts the start and end times as strings (e.g., “3.20”, “1.20”) corresponding to the true start and end times of the action in the padded video (prompts are detailed in the Appendix C.3).

Temporal order learning with prior actions. Actions exhibit a certain natural continuity. This temporal aspect of actions can improve predictability. Therefore, we want to leverage prior actions and learn: $\theta^* = \arg \max_{\theta} \sum_{t=n+1}^T \log P_{\theta}(a_t \mid a_{t-1}, \dots, a_{t-n})$, where θ^* is the optimal set of model parameters we are trying to find, a_t is the current action at time t , a_{t-1}, \dots, a_{t-n} represents the sequence of n previous actions. We set $n = 2$. We modulate this with additional visual instructions to provide prior action information (prompts are detailed in the Appendix C.5). During training, 30% of the MQAs are provided with prior action information as additional input. During evaluation (Table 3), we can either give the model no prior actions or give the model’s own predictions of the previous n actions to formulate as sequential action prediction (SAP).

Direct prediction. Following common practice, we also let the model to directly predict the action descriptions for a given video. The prompt is available in the Appendix C.4.

General video understanding with closed-source MLLM-based reformulation. Although we mainly focus on improving MLLMs’ fine-grained action understanding, we do not want to weaken MLLMs’ general video understanding. Therefore, we follow previous practice to let the model give a general description of the video or answer video-related questions, where the annotations are obtained from closed-source MLLM GPT-4o. More details are in the Appendix B. As discussed above, we argue that this reformulation alone would not help to gain better fine-grained action understanding. Since GPT-4o itself struggles with our empirically hard distractors, using annotations from GPT-4o alone harms the performance on EPIC-KITCHENS-100-MQA (Table 1).

270 3.3 LLaVAction MODELS FOR BETTER ACTION UNDERSTANDING
271272 With the proposed new MLLM data reformulation paradigm, we propose LLaVAction, which is
273 better at fine-grained action understanding. LLaVAction is developed based on LLaVA series (Li
274 et al., 2024a; Zhang et al., 2024c). We further design a learnable action token to enhance the visual
275 information utilization and a two-stage pipeline to output structured action so that we can compare
276 LLaVAction fairly with other SOTA action recognition models (Figure 2).277 **Enhancing visual information utilization with action token.** Most MLLMs rely only on the lan-
278 guage prediction of the next token to train the model and extract information from visual tokens (Liu
279 et al., 2024a). However, recent findings suggest that this training strategy decreases the importance
280 of vision tokens in late layers of MLLMs (Zhang et al., 2025a; Liu et al., 2024b). Therefore, we de-
281 signed an intermediate supervision of visual tokens. Specifically, we added a learnable action token
282 into the input tokens, which is analogically similar to the CLS token in the VIT model (Dosovitskiy,
283 2020) that has been shown the ability in grasping image content (Wang et al., 2025b) The order of
284 the input tokens was system text tokens, visual tokens, learnable action token and instruction text
285 tokens; through causal attentions of the LLM backbone this enables the action token to integrate
286 action information from visual tokens and then contribute to the subsequent language tasks. Let’s
287 denote the hidden states at the final layer of the MLLM as:
288

289
$$\langle H_1^q, \dots, H_k^q, H_1^v, \dots, H_{l_v}^v, h^a, H_{k+1}^q, \dots, H_{l_q}^q \rangle \quad (5)$$

290 $H_i^v \in \mathbb{R}^d$ are the hidden states corresponding to visual tokens, $h^a \in \mathbb{R}^d$ denotes the hidden state of
291 the learnable action token, $H_i^q \in \mathbb{R}^d$ denotes the text tokens, d denotes the hidden dimension of the
292 LLM. l_q and l_v denote the length of text tokens and length of visual tokens respectively. We apply
293 three classification heads on top of the hidden state h^a to predict nouns, verbs, and actions separately
294 and use cross-entropy loss to train the classifiers, in the belief that the classification training could
295 guide the action token to learn better extract action-related visual information. Note that our action
296 token only serves as an additional learning objective and is not used to give the final prediction.
297 During inference, or when training with tasks that have no clear action labels (e.g., video captioning),
298 we can simply compute the text generation loss.299 **Two-stage structured action prediction pipeline.** MLLMs directly output free texts, which may be hard to
300 find an exact match with the action labels in the dataset.
301 One could put all the possible actions in the question
302 prompt and let MLLMs choose, but this will become im-
303 possible when the number of action types increases (e.g.,
304 around 4k action types in EPIC-KITCHENS-100). This
305 limitation prevents MLLMs from fairly comparing with
306 action recognition models and constrains MLLM from
307 applying to applications that require structured actions.
308 To this end, LLaVAction designs a two-stage pipeline
309 when it needs to output structured actions. Similar to hard
310 example mining (Section 3.1), we use action recognition
311 models’ predictions to filter out easy actions. The difference
312 is that we directly take the top K confident actions without
313 adding the Ground Truth (GT) action. The two-stage pipeline will lower the
314 upper-bound performance MLLM can obtain since the GT action may not be in the top K prediction.
315 However, the K value can control the trade-off between the upper-bound performance and the
316 number of actions the MLLM needs to contrast. Note that our two-stage pipeline is only needed for
317 datasets and applications that require structured actions, and is only applied at the inference stage.
318 For the open-vocabulary tasks, LLaVAction can directly take the video and questions and give an
319 open-ended answer. For training and benchmark construction, we always include the GT action into
320 the choices to avoid misalignment.

321 4 EXPERIMENTS

322 We conducted evaluations for the LLaVAction models on a wide range of benchmarks to show the
323 models’ strong action understanding ability. We used LMMs-Eval (Zhang et al., 2024a) to evaluate
LLaVAction on different MLLM benchmarks. We used eight frames for distractor experiments

Methods	8 f	16 f
zero-shot GPT-4o	52.2	N/A
zero-shot GPT-4o-mini	37.4	N/A
zero-shot LLaVA-Video-7B	35.7	34.8
zero-shot LLaVA-OV-7B	28.9	30.5
zero-shot LLaVA-OV-0.5B	32.0	31.6
LLaVAction: LLaVA-Video-7B	71.7	73.4
LLaVAction: LLaVA-OV-7B	71.3	72.3
LLaVAction: LLaVA-OV-0.5B	64.8	65.4

324 Table 2: **Comparison on EPIC-
325 KITCHENS-100-MQA.** Columns re-
326 present the number of frames used for
327 testing. Percent accuracy is shown.

(Table 1), 8 or 16 frames for our main results on EPIC-KITCHENS-100-MQA (Table 2) and 16 frames for ablation studies (Table 11), so that we can limit the cost of calling closed-sourced models during comparison. Meanwhile, we use 32 frames for EPIC-KITCHENS-100 (Table 4) and 64 frames for the model reported in MLLM benchmarks (Table 7).

4.1 IMPLEMENTATION AND TRAINING DETAILS

We trained LLaVAction with three open-source baseline variants, LLaVA-Video-7B, LLaVA-OV-7B and LLaVA-OV-0.5B. With the proposed new MLLM data reformulation paradigm, we re-annotated EPIC-KITCHENS-100’s training data, in total contributing to 530K annotated video-language pairs to train the LLaVAction models. The 7B and 0.5B models were trained for 12 and 11 hours on 32 GH200 GPUs, respectively. Across all experiments and all baseline models, we set gradient accumulation to 2, batch size to 64 and total epochs to 2. Following LLaVA-Video, the MLP connector, LLM backbone (Qwen2-0.5B,7B (Wang et al., 2024)) and the visual encoder (SigLIP-384 (Zhai et al., 2023)) were trained. The learning rate was 2e-6 for the vision encoder and 1e-5 for the rest (see Zhang et al. (2024c) for additional details). Training on EPIC-KITCHENS-100 data alone might result in over-fitting. Therefore, we use data replay (Li et al., 2024a) to aid in generalization of the model. Thus, we mix with the training data of LLaVA-Video, namely LLaVA-Video-178K.



Figure 4: **Qualitative attention for one clip.** Anecdotally, LLaVA-Video mainly attends to the wooden spatula that is placed in the drawer, LLaVAction also attends to the arms and, correctly, the plastic spatula that is being taken. We quantify visual-text token correlations in the main text.

4.2 RESULTS ON EPIC-KITCHENS-100-MQA

EPIC-KITCHENS-100-MQA contains hard distracting choices and is excellent to evaluate MLLMs’ fine grained action understanding. We report results for the MLLMs comparison (Table 2), LLaVAction additive ablations (Table 3), and leave-one-out ablations (Appendix E.2) on EPIC-KITCHENS-100-MQA. We start with MLLM comparisons (Table 2). LLaVAction models perform much better than baselines and also obtain a 21-point improvement over GPT-4o (running GPT-4o beyond 8 frames is cost-prohibitive). Next, we verified LLaVAction’s improvements do not just come from adding in-domain data by additive ablations (Table 3). Since both our MLLM data reformulation paradigm (Section 3.2) and LLaVAction model design (Section 3.3) contribute to the final performance, we ablate them together. We can see training with adversarial distractors (AVION) results in the largest improvement (9.4 points). Addition of the action token gives the second most improvements (3.9 points improvement). Meanwhile, we note that simply fine-tuning LLaVA-Video-7B with the previous MLLM data reformulation paradigm (GPT-4o-based reformulation) results in a performance degradation (35.7 to 21.9). Based on the fact that it gives a meager 2.4 performance boost when we combine it with MQA task using AVION distractors, we believe this is a sign of catastrophic forgetting of MQA capability. Furthermore, directly predicting the action (direct prediction) and using contextual prior actions (temporal order learning w/ SAP) result in 2.1 and 0.5 points improvements, respectively. In summary, the combination of our MLLM data reformulation paradigm and model design greatly

LLaVA-Video-7B \Rightarrow LLaVAction-7B	
OOD Setting:	
Zero-shot	34.8
+ GPT-4o-based reformulation	21.9
+ Random distractors	55.0
Adversarial distractors (AVION)	64.4
+ Temporal Detection	65.2
+ Action token	69.1
+ GPT-4o-based reformulation	71.5
+ Direct Prediction	73.6
+ Temporal order learning	73.4
+ Temporal order learning w/ SAP	74.1
IID Setting:	
+ Adversarial distractors (TIM)	76.3
+ Adversarial distractors (TIM) w/ SAP	77.0

Table 3: **LLaVAction additive ablations on EPIC-KITCHENS-100-MQA.** Techniques are gradually added to achieve the final model. SAP denotes sequential action prediction during inference. Percent accuracy is shown.

378 improves the performance of the base LLaVA-Video-7B model from 34.8 to 74.1 accuracy in the
 379 OOD setting and to 77.0 in the IID setting.
 380

382 4.3 RESULTS ON ACTION RECOGNITION BENCHMARKS

384 With our two-stage structured action prediction pipeline
 385 (Section 3.3), LLaVAction can be fairly compared with
 386 other action recognition models (Table 4). To assess
 387 the generalization of LLaVAction, we tested on three
 388 datasets, which were carefully selected to exclude data
 389 used in pretraining while covering different domains.

390 **LLaVAction achieves SOTA on EPIC-KITCHENS-100.** Following common practice, we report the performance
 391 on EPIC-KITCHENS-100’s validation set. We report performance in two settings (‘w/ action label’
 392 and ‘w/ action narration’), which differ in the candidate
 393 choice generation. For the ‘w/ action label’ setting, we
 394 directly concatenated verb and noun action classes to obtain
 395 choices, which could produce implausible text. For
 396 example, the noun class for coffee maker represents ‘maker:coffee’ in the noun definition. Mean-
 397 while, ‘pour into’ is simplified as ‘pour’ in the verb definition, which could generate implausible
 398 text such as ‘pour pot’ that should be ‘pour into pot’. Based on those observations, we also report
 399 the ‘w/ action narration’ setting where we used the action narration of the corresponding video clip
 400 (more details in Appendix F.1). We empirically observe that we get better results to scale top-K
 401 from 5 to 20. Therefore, we train and evaluate LLaVAction with TIM’s top 20 action predictions.
 402 LLaVAction can achieve SOTA on EPIC-KITCHENS-100 under both settings.
 403

404 **LLaVAction generalizes well to other**

405 **datasets.** We tested LLaVAction on
 406 two recent action recognition benchmarks – one testing generalization for
 407 a different cooking dataset (EPFL-
 408 Smart-Kitchen-30, (Bonnetto et al.,
 409 2025)) and another testing generaliza-
 410 tion to a different domain (tool assem-
 411 bly, Meccano, (Ragusa et al., 2021)).
 412 EPFL-Smart-Kitchen-30 has 30 verbs
 413 and 46 nouns in common with EPIC-
 414 KITCHENS-100, which enables us to
 415 also compare with specialized models
 416 (such as AVION) for zero-shot gen-
 417 eralization of the second-stage models.
 418 We used the multi-modal VideoMAE’s top 5 predictions in
 419 EPFL-Smart-Kitchen-30 to generate the MQAs for LLaVAction-7B and LLaVA-Video-7B. To fairly
 420 compare with the specialized model AVION, we also use those top 5 predictions to filter AVION’s
 421 predicted action logits. LLaVAction obtained better zero-shot accuracy than AVION and LLaVA-
 422 Video (Table 5). Most importantly, the zero-shot LLaVAction even obtained similar overall per-
 423 formance to the trained VideoMAE model and better tail action accuracy (Tail Acc.). When finetuning
 424 LLaVAction obtained SOTA performance (Table 5).

425 On Meccano we used SlowFast (Feicht-
 426 enhofer et al., 2019) to generate hard dis-
 427 tractors and finetuned LLaVAction. Even
 428 when trained for only one epoch, LLaVAc-
 429 tion obtained 51.7 top-1 accuracy, beating
 430 SlowFast’s 42.8.

431 In general, our action understanding-
 432 related data reformulation and model de-
 433 signs are not limited to any data domains

Methods	Acc.
IPL (Wang et al., 2021)	41.0
LaViLa (Zhao et al., 2022)	51.0
TAdaFormer-L/14 (Huang et al., 2023)	51.8
LVMAE (Gundavarapu et al., 2024)	52.1
M&M (Xiong et al., 2022)	53.6
AVION (Zhao & Krähenbühl, 2023)	54.4
TIM (Chalk et al., 2024)	56.4
Ours, LLaVAction-7B w/ action label	58.3
Ours, LLaVAction-7B w/ action narration	63.2

Table 4: **Action recognition on EPIC-KITCHENS-100.** Top-1 accuracy on action classification. For specific verb-noun performance see Figure 8.

Methods	Acc.	Head Acc.	Tail Acc.
<i>Zero-shot generalization of the second-stage model</i>			
AVION (Zhao & Krähenbühl, 2023)	19.3	21.2	8.6
LLaVA-Video-7B (Zhang et al., 2024c)	22.5	22.9	18.8
Ours, LLaVAction-7B	36.2	38.1	24.6
<i>Trained model</i>			
VideoMAE (Tong et al., 2022)	37.5	41.1	16.6
Multi-modal VideoMAE (Bonnetto et al., 2025)	40.0	43.6	19.4
Ours, LLaVAction-7B	46.6	49.7	27.0

Table 5: **Action recognition on EPFL-Smart-Kitchen-30.** LLaVAction outperforms prior methods in the zero-shot and finetuned setting.

We used the multi-modal VideoMAE’s top 5 predictions in EPFL-Smart-Kitchen-30 to generate the MQAs for LLaVAction-7B and LLaVA-Video-7B. To fairly compare with the specialized model AVION, we also use those top 5 predictions to filter AVION’s predicted action logits. LLaVAction obtained better zero-shot accuracy than AVION and LLaVA-Video (Table 5). Most importantly, the zero-shot LLaVAction even obtained similar overall performance to the trained VideoMAE model and better tail action accuracy (Tail Acc.). When finetuning LLaVAction obtained SOTA performance (Table 5).

Methods	Jaccard Acc.
VideoMAE	53.1
LLaVA-Video-7B (Zero-shot)	30.5
LLaVA-Video-7B (Random choice)	46.7
LLaVA-Video-7B (Ours)	61.0
InternVL3-8B(Zero-shot)	28.1
InternVL3-8B(Random choice)	43.9
InternVL3-8B(Ours)	58.7

Table 6: **Action recognition on Animal Kingdom.**

	<i>Caption</i>		<i>Open-ended Q&A</i>						<i>Multi-choice Q&A</i>					
	VDC (Chai et al., 2024)	VideoDC (Chen et al., 2024a)	VideoEval-Pro (Ma et al., 2025)	ActNet-QA (Yu et al., 2019)	VideoChatGPT (Maaz et al., 2023)	CVRR (Khattak et al., 2025)	TempCompass (Liu et al., 2024d)	EgoSchema (Mangalam et al., 2023)	MV Bench (Li et al., 2024c)	VideoMME wow-subs (Fu et al., 2025)	LongVideoBench (Wu et al., 2024)	NextQA (Xiao et al., 2021)	PerceptionTest (Patraucean et al., 2023)	
Closed-source models														
GPT-4V (Achiam et al., 2023)	-	-	-	-	-	70.8	-	-	43.5	59.9/63.3	61.3	-	-	-
GPT-4o (et al., 2024)	-	-	34.2	-	-	-	-	-	-	71.9/77.2	66.7	-	-	-
Gemini-1.5-Flash (Team et al., 2023)	-	-	35.1	-	-	-	-	65.7	-	70.3/75.0	61.6	-	-	-
Gemini-1.5-Pro (Team et al., 2023)	41.7	-	39.3	-	-	-	-	72.2	-	75.0/81.3	64.0	-	-	-
Open-source models														
LongVA-7B (Zhang et al., 2024b)	34.5	-	16.5	50.0	-	-	-	-	-	52.6/54.3	-	68.3	-	-
mPLUG-Owl3 (Ye et al., 2024b)	38.9	-	-	-	-	-	34.4	-	54.5	59.3/68.1	52.1	78.6	-	-
VideoChat2-7B (Li et al., 2024c)	36.5	-	-	49.1	-	25.8	38.5	-	60.4	42.3/54.6	-	78.6	-	-
VideoLLaMA2-7B (Cheng et al., 2024)	-	-	-	53.0	-	21.6	32.2	51.7	54.6	47.9/50.3	-	-	51.4	-
LLaVA-OV-7B (Li et al., 2024a)	38.8	-	-	56.6	-	-	-	60.1	56.7	58.2/61.5	56.5	79.4	57.1	-
LLaVA-Video-7B (Zhang et al., 2024c)	<u>39.0</u>	<u>3.44</u>	<u>25.7</u>	<u>66.0</u>	<u>3.04</u>	<u>51.3</u>	<u>66.0</u>	57.3	58.6	<u>63.3/69.7</u>	<u>58.2</u>	83.2	<u>67.9</u>	-
LLaVAction-7B (Ours)	40.2	<u>3.34</u>	26.1	66.9	<u>3.01</u>	55.6	66.1	<u>59.0</u>	61.1	63.9/71.4	58.6	<u>82.8</u>	70.2	-
Relative improvement of ours over the baseline LLaVA-Video-7B	+1.2	-0.1	+0.4	+0.9	-0.03	+4.3	+0.1	+1.7	+2.5	+0.6/+1.7	+0.4	-0.4	+2.3	-

Table 7: **Performance on other MLLM benchmarks** that contain human actions. Please note, we are not claiming SOTA, we are noting that we can improve performance over our baseline open-source model (LLaVA-Video-7B (Zhang et al., 2024c)). We also show sub-task performances in Appendix G. We show top-performance closed-source models for reference. Top open-source models are shown in bold, and the second-best are underlined.

or base MLLMs. To further support that, we tested our method on a very different domain, animal fine-grained behavior understanding. Specifically, we tested on the Animal Kingdom dataset (Ng et al., 2022), which has 140 fine-grained actions and at most 12 actions can happen at the same time (i.e., multi-classification task). We adapted both LLaVA-Video-7B and InternVL3-8B (Zhu et al., 2025) and train with hard examples generated from VideoMAE (Tong et al., 2022) to serve as our methods. We compare with the same models (LLaVA-Video-7B and InternVL3-8B) without training or training with randomly generated options. The results are in Table 6, reported in Jaccard accuracy. Our methods, either using LLaVA-Video-7B or InternVL3-8B as the base MLLMs, can obtain much better performance (61.0/58.7) compared to the original models (30.5/28.1) and models finetuned with random choice (46.7/43.9). And our methods can further beat the baseline VideoMAE (53.1) for both base models.

4.4 RESULTS ON OTHER MLLM BENCHMARKS

Apart from comparing with action recognition models, we want LLaVAction to keep general video understanding abilities and also improve fine-grained action understanding on other zero-shot MLLM benchmarks. Therefore, we tested LLaVAction-7B on 13 MLLM benchmarks that test various MLLM video understanding abilities. The evaluated benchmarks consist of two video caption benchmarks, five open-ended Q&A benchmarks and six multi-choice Q&A benchmarks. LLaVAction-7B outperforms LLaVA-Video-7B on 10 benchmarks, indicating the enhanced video understanding ability of our model (Table 7).

4.5 ATTENTION-BASED ANALYSIS

We sought to analyze the impact of action-related training and LLaVAction model design in an interpretable manner. Following the approach in (Zhang et al., 2025b), we employed token attention analysis to understand model behavior (Figure 4). We computed average text-visual token correlations for both LLaVA-Video-7B and LLaVAction-7B using the EPIC-KITCHENS-100-MQA dataset. For fair comparison, we fine-tuned LLaVA-Video-7B with randomly generated answer choices. Analysis Methodology: We first computed the text-visual attention tensors of size $N \times T \times V$, where N

486 is the number of data samples, T is the number of text tokens and V is the number of visual tokens.
 487 We then calculated the maximum across the text token dimension, followed by computing mean and
 488 90th percentile values to estimate text-visual correlations.
 489

490 Text-Visual Correlation Results: LLaVA-Video-7B achieved mean and 90th percentile values
 491 0.00476 and 0.0104, respectively, while LLaVAction-7B achieved mean and 90th percentile values
 492 0.00769 and 0.0175, respectively. This indicates that LLaVAction attends more strongly to visual
 493 cues compared to LLaVA-Video, likely due to our hard example mining strategy.
 494

495 Action Token Analysis: We computed the text-action token attention tensors of size $N \times T \times 1$,
 496 calculating the maximum over the text dimension followed by the mean to estimate text-action cor-
 497 relations. LLaVAction demonstrates an average text-action token correlation of 0.143, significantly
 498 higher than its text-visual correlation (0.00769). Notably, 99% of visual tokens exhibit lower text
 499 correlations compared to action tokens. Since action tokens exclusively attend to visual tokens, this
 500 suggests they effectively aggregate visual information relevant to fine-grained actions, enhancing
 501 LLaVAction’s action understanding capabilities.
 502

501 4.6 DIFFICULTY LEVELS OF FINE-GRAINED ACTION UNDERSTANDING ANALYSIS

503 While EPIC-KITCHENS-100-MQA features
 504 distinguishing fine-grained actions, individual
 505 samples may still vary in difficulty. To un-
 506 derstand how baseline models and LLaVAc-
 507 tion perform across different difficulty lev-
 508 els, we adopted the concept of psychometric
 509 curves (Boring, 1917). We utilized GPT-4o
 510 to rate the difficulty of distinguishing between
 511 the options (detailed prompt in Appendix C.6)
 512 from 1 (very easy) to 4 (hard) and then reported the performances of LLaVA-Video and LLaVAction
 513 under different levels on EPIC-KITCHENS-100-MQA (Table 8). LLaVAction not only achieves
 514 higher overall accuracy but also maintains more robust performance as difficulty increases, showing
 515 less performance degradation compared to baseline models.
 516

Difficulty levels	1	2	3	4
LLaVA-Video Acc.	0.405	0.360	0.342	0.339
LLaVAction Acc.	0.735	0.744	0.738	0.726
# Samples	400	3529	2836	2903

517 **Table 8: Model performance under different**
difficulty levels. LLaVAction is more robust with
 518 different semantic similarity between options.

519 5 CONCLUSION

520 Recent advances in MLLMs prompted our investigation into their fine-grained action understand-
 521 ing abilities. Through our proposed EPIC-KITCHENS-100-MQA benchmark, which uses similar ac-
 522 tions as distractors, we reveal that state-of-the-art MLLMs face significant challenges in action dis-
 523 crimination tasks. We address these limitations by introducing specialized data reformulation strate-
 524 gies and action-aware architectural components that substantially enhance MLLM action recogni-
 525 tion capabilities. The resulting LLaVAction model achieves robust performance and demonstrates
 526 strong generalization across our benchmark, three additional action recognition datasets, and ten
 527 comprehensive MLLM video understanding benchmarks.
 528

529 6 ETHICS STATEMENT

530 This work utilizes established human activity benchmarks and trains the resulting LLaVAction
 531 model exclusively on data containing common daily activities. Given the benign nature of the train-
 532 ing data and the focus on routine human behaviors, we anticipate minimal ethical concerns. All
 533 human activity data used comes from publicly available datasets that have been previously vetted by
 534 the research community.
 535

536 7 REPRODUCIBILITY STATEMENT

537 To ensure reproducibility, we provide an anonymized codebase as supplementary material contain-
 538 ing the core components of this work, including the LLaVAction model architecture and benchmark
 539 construction methodology. Complete code, trained models, and detailed experimental configura-
 540 tions will be made publicly available upon paper acceptance.
 541

540 REFERENCES

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 543 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 544 report. *arXiv preprint arXiv:2303.08774*, 2023.

545 Andy Bonnetto, Haozhe Qi, Franklin Leong, Matea Tashkovska, Mahdi Rad, Solaiman Shokur,
 546 Friedhelm Hummel, Silvestro Micera, Marc Pollefeyns, and Alexander Mathis. Epfl-smart-
 547 kitchen-30: Densely annotated cooking dataset with 3d kinematics to challenge video and lan-
 548 guage models. *arXiv preprint arXiv:2506.01608*, 2025.

549 Edwin G Boring. A chart of the psychometric function. *The American journal of psychology*, 28(4):
 550 465–470, 1917.

551 Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet:
 552 A large-scale video benchmark for human activity understanding. In *Proceedings of the ieee*
 553 *conference on computer vision and pattern recognition*, pp. 961–970, 2015.

554 Mu Cai, Reuben Tan, Jianrui Zhang, Bocheng Zou, Kai Zhang, Feng Yao, Fangrui Zhu, Jing Gu,
 555 Yiwu Zhong, Yuzhang Shang, et al. Temporalbench: Benchmarking fine-grained temporal under-
 556 standing for multimodal video models. *arXiv preprint arXiv:2410.10818*, 2024.

557 Wenhao Chai, Enxin Song, Yilun Du, Chenlin Meng, Vashisht Madhavan, Omer Bar-Tal, Jenq-
 558 Neng Hwang, Saining Xie, and Christopher D Manning. Auroracap: Efficient, performant video
 559 detailed captioning and a new benchmark. *arXiv preprint arXiv:2410.03051*, 2024.

560 Jacob Chalk, Jaesung Huh, Evangelos Kazakos, Andrew Zisserman, and Dima Damen. Tim: A time
 561 interval machine for audio-visual action recognition. In *Proceedings of the IEEE/CVF Conference*
 562 *on Computer Vision and Pattern Recognition*, pp. 18153–18163, 2024.

563 Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong
 564 Duan, Zhenyu Tang, Li Yuan, et al. Sharegpt4video: Improving video understanding and genera-
 565 tion with better captions. *Advances in Neural Information Processing Systems*, 37:19472–19495,
 566 2024a.

567 Ling-Hao Chen, Shunlin Lu, Ailing Zeng, Hao Zhang, Benyou Wang, Ruimao Zhang, and Lei
 568 Zhang. Motionllm: Understanding human behaviors from human motions and videos. *arXiv*
 569 *preprint arXiv:2405.20340*, 2024b.

570 Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
 571 Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and
 572 audio understanding in video-llms. *arXiv preprint arXiv:2406.07476*, 2024.

573 Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos,
 574 Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Rescaling egocen-
 575 tric vision: Collection, pipeline and challenges for epic-kitchens-100. *International Journal of*
 576 *Computer Vision*, pp. 1–23, 2022.

577 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
 578 *arXiv preprint arXiv:2010.11929*, 2020.

579 OpenAI et al. Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

580 Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
 581 recognition. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 582 6202–6211, 2019.

583 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 584 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
 585 tion benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024.

586 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 587 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
 588 tion benchmark of multi-modal llms in video analysis. In *Proceedings of the Computer Vision*
 589 *and Pattern Recognition Conference*, pp. 24108–24118, 2025.

594 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
 595 har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
 596 3,000 hours of egocentric video. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 597 and *Pattern Recognition*, pp. 18995–19012, 2022.

598 Nitesh Bharadwaj Gundavarapu, Luke Friedman, Raghav Goyal, Chaitra Hegde, Eirikur Agustsson,
 599 Sagar M. Waghmare, Mikhail Sirotenko, Ming-Hsuan Yang, Tobias Weyand, Boqing Gong, and
 600 Leonid Sigal. Extending video masked autoencoders to 128 frames, 2024. URL <https://arxiv.org/abs/2411.13683>.

601 Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua Lin, Yu Qiao,
 602 Peng Gao, and Xiangyu Yue. Onellm: One framework to align all modalities with language.
 603 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 604 26584–26595, 2024.

605 Ziyuan Huang, Shiwei Zhang, Liang Pan, Zhiwu Qing, Yingya Zhang, Ziwei Liu, and Marcelo
 606 H. Ang Jr. Temporally-adaptive models for efficient video understanding, 2023. URL <https://arxiv.org/abs/2308.05787>.

607 Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
 608 narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
 609 video dataset. *arXiv preprint arXiv:1705.06950*, 2017.

610 Muhammad Uzair Khattak, Muhammad Ferjad Naeem, Jameel Hassan, Muzammal Naseer, Fed-
 611 erico Tombari, Fahad Shahbaz Khan, and Salman Khan. How good is my video-lmm? complex
 612 video reasoning and robustness evaluation suite for video-lmms. In *Proceedings of the Computer*
 613 *Vision and Pattern Recognition Conference*, pp. 3642–3651, 2025.

614 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
 615 Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 616 *arXiv:2408.03326*, 2024a.

617 Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, Jianfeng Gao, et al.
 618 Multimodal foundation models: From specialists to general-purpose assistants. *Foundations and*
 619 *Trends® in Computer Graphics and Vision*, 16(1-2):1–214, 2024b.

620 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 621 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
 622 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 623 22195–22206, 2024c.

624 Xinhao Li, Yi Wang, Jiashuo Yu, Xiangyu Zeng, Yuhang Zhu, Haian Huang, Jianfei Gao, Kunchang
 625 Li, Yinan He, Chenting Wang, et al. Videochat-flash: Hierarchical compression for long-context
 626 video modeling. *arXiv preprint arXiv:2501.00574*, 2024d.

627 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 628 *in neural information processing systems*, 36, 2024a.

629 Shuming Liu, Chen Zhao, Fatimah Zohra, Mattia Soldan, Alejandro Pardo, Mengmeng Xu, Lama
 630 Alssum, Merey Ramazanova, Juan León Alcázar, Anthony Cioppa, et al. Opentad: A unified
 631 framework and comprehensive study of temporal action detection. In *Proceedings of the Com-*
 632 *puter Vision and Pattern Recognition Conference*, pp. 2625–2635, 2025.

633 Ting Liu, Liangtao Shi, Richang Hong, Yue Hu, Quanjun Yin, and Linfeng Zhang. Multi-stage
 634 vision token dropping: Towards efficient multimodal large language model, 2024b. URL <https://arxiv.org/abs/2411.10803>.

635 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 636 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 637 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024c.

638 Yuanxin Liu, Shicheng Li, Yi Liu, Yuxiang Wang, Shuhuai Ren, Lei Li, Sishuo Chen, Xu Sun,
 639 and Lu Hou. Tempcompass: Do video llms really understand videos? *arXiv preprint*
 640 *arXiv:2403.00476*, 2024d.

648 Wentao Ma, Weiming Ren, Yiming Jia, Zhuofeng Li, Ping Nie, Ge Zhang, and Wenhui Chen.
 649 Videoeval-pro: Robust and realistic long video understanding evaluation. *arXiv preprint*
 650 *arXiv:2505.14640*, 2025.

651 Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
 652 Towards detailed video understanding via large vision and language models. *arXiv preprint*
 653 *arXiv:2306.05424*, 2023.

654 Aleksander Madry. Towards deep learning models resistant to adversarial attacks. *arXiv preprint*
 655 *arXiv:1706.06083*, 2017.

656 Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic bench-
 657 mark for very long-form video language understanding. *Advances in Neural Information Process-
 658 ing Systems*, 36:46212–46244, 2023.

659 Xun Long Ng, Kian Eng Ong, Qichen Zheng, Yun Ni, Si Yong Yeo, and Jun Liu. Animal kingdom:
 660 A large and diverse dataset for animal behavior understanding. In *Proceedings of the IEEE/CVF
 661 conference on computer vision and pattern recognition*, pp. 19023–19034, 2022.

662 Pha Nguyen, Sailik Sengupta, Girik Malik, Arshit Gupta, and Bonan Min. Install: Context-
 663 aware instructional task assistance with multi-modal large language models. *arXiv preprint*
 664 *arXiv:2501.12231*, 2025.

665 Viorica Patraucean, Lucas Smaira, Ankush Gupta, Adria Recasens, Larisa Markeeva, Dylan Ba-
 666 narse, Skanda Koppula, Mateusz Malinowski, Yi Yang, Carl Doersch, et al. Perception test: A
 667 diagnostic benchmark for multimodal video models. *Advances in Neural Information Processing
 668 Systems*, 36:42748–42761, 2023.

669 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 670 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 671 models from natural language supervision. In *International conference on machine learning*, pp.
 672 8748–8763. PMLR, 2021.

673 Francesco Ragusa, Antonino Furnari, Salvatore Livatino, and Giovanni Maria Farinella. The me-
 674 cano dataset: Understanding human-object interactions from egocentric videos in an industrial-
 675 like domain. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
 676 Vision*, pp. 1569–1578, 2021.

677 Rahul Ramachandran, Ali Garjani, Roman Bachmann, Andrei Atanov, Oğuzhan Fatih Kar, and
 678 Amir Zamir. How well does gpt-4o understand vision? evaluating multimodal foundation models
 679 on standard computer vision tasks. *arXiv preprint arXiv:2507.01955*, 2025.

680 Michael J Renner. Ethogram. In *Encyclopedia of Animal Cognition and Behavior*, pp. 1–4. Springer,
 681 2018.

682 Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d: A large scale dataset for 3d
 683 human activity analysis. In *Proceedings of the IEEE conference on computer vision and pattern
 684 recognition*, pp. 1010–1019, 2016.

685 Dingfeng Shi, Qiong Cao, Yujie Zhong, Shan An, Jian Cheng, Haogang Zhu, and Dacheng
 686 Tao. Temporal action localization with enhanced instant discriminability. *arXiv preprint*
 687 *arXiv:2309.05590*, 2023.

688 Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
 689 with online hard example mining. In *Proceedings of the IEEE conference on computer vision and
 690 pattern recognition*, pp. 761–769, 2016.

691 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 692 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 693 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

694 Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
 695 efficient learners for self-supervised video pre-training. *Advances in neural information process-
 696 ing systems*, 35:10078–10093, 2022.

702 Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill. Multi-
 703 modal few-shot learning with frozen language models. *Advances in Neural Information Pro-
 704 cessing Systems*, 34:200–212, 2021.

705

706 Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and
 707 Yu Qiao. Videomae v2: Scaling video masked autoencoders with dual masking. In *Pro-
 708 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14549–14560,
 709 2023.

710 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 711 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 712 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

713

714 Xiao Wang, Jingyun Hua, Weihong Lin, Yuanxing Zhang, Fuzheng Zhang, Jianlong Wu, Di Zhang,
 715 and Liqiang Nie. Haic: Improving human action understanding and generation with better cap-
 716 tions for multi-modal large language models. *arXiv preprint arXiv:2502.20811*, 2025a.

717

718 Xiaohan Wang, Linchao Zhu, Heng Wang, and Yi Yang. Interactive prototype learning for egocen-
 719 tric action recognition. In *Proceedings of the IEEE/CVF International Conference on Computer
 Vision*, pp. 8168–8177, 2021.

720

721 Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
 722 Xu, Yi Liu, Zun Wang, et al. Internvideo: General video foundation models via generative and
 723 discriminative learning. *arXiv preprint arXiv:2212.03191*, 2022.

724

725 Yuxuan Wang, Yiqi Song, Cihang Xie, Yang Liu, and Zilong Zheng. Videollamb: Long streaming
 726 video understanding with recurrent memory bridges. In *Proceedings of the IEEE/CVF Interna-
 tional Conference on Computer Vision*, pp. 24170–24181, 2025b.

727

728 Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
 729 interleaved video-language understanding. *Advances in Neural Information Processing Systems*,
 37:28828–28857, 2024.

730

731 Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
 732 answering to explaining temporal actions. In *Proceedings of the IEEE/CVF conference on com-
 733 puter vision and pattern recognition*, pp. 9777–9786, 2021.

734

735 Xuehan Xiong, Anurag Arnab, Arsha Nagrani, and Cordelia Schmid. M&m mix: A multimodal
 736 multiview transformer ensemble, 2022. URL <https://arxiv.org/abs/2206.09852>.

737

738 Hanrong Ye, Haotian Zhang, Erik Daxberger, Lin Chen, Zongyu Lin, Yanghao Li, Bowen Zhang,
 739 Haoxuan You, Dan Xu, Zhe Gan, et al. Mm-ego: Towards building egocentric multimodal llms.
 740 *arXiv preprint arXiv:2410.07177*, 2024a.

741

742 Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming Yan, Qi Qian, Ji Zhang, Fei Huang, and
 743 Jingren Zhou. mplug-owl3: Towards long image-sequence understanding in multi-modal large
 744 language models. *arXiv preprint arXiv:2408.04840*, 2024b.

745

746 Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueting Zhuang, and Dacheng Tao. Activitynet-
 747 qa: A dataset for understanding complex web videos via question answering. *arXiv*, 2019. URL
 748 <https://arxiv.org/abs/1906.02467>.

749

750 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 751 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 752 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF
 Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

753

754 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 755 image pre-training, 2023. URL <https://arxiv.org/abs/2303.15343>.

756

757 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
 758 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, et al. Lmms-eval: Reality check on the evaluation
 759 of large multimodal models. *arXiv preprint arXiv:2407.12772*, 2024a.

756 Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
757 Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision.
758 *arXiv preprint arXiv:2406.16852*, 2024b.

759 Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang Feng. Llava-mini: Efficient image and video
760 large multimodal models with one vision token, 2025a. URL <https://arxiv.org/abs/2501.03895>.

761 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
762 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024c.

763 Yunzhu Zhang, Yu Lu, Tianyi Wang, Fengyun Rao, Yi Yang, and Linchao Zhu. Flexselect: Flexible
764 token selection for efficient long video understanding. *arXiv preprint arXiv:2506.00993*, 2025b.

765 Zhiusheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
766 chain-of-thought reasoning in language models, 2024d. URL <https://arxiv.org/abs/2302.00923>.

767 Yue Zhao and Philipp Krähenbühl. Training a large video model on a single machine in a day. *arXiv
768 preprint arXiv:2309.16669*, 2023.

769 Yue Zhao, Ishan Misra, Philipp Krähenbühl, and Rohit Girdhar. Learning video representations
770 from large language models, 2022. URL <https://arxiv.org/abs/2212.04501>.

771 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
772 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
773 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A METHODS: LICENSING INFORMATION
811

813	Code/Dataset	License
814	LLaVA-NeXT	Apache-2.0
815	AVION	MIT
816	TIM	CC-NC-SA-4.0
817	EPIC-KITCHENS-100	
818	Dataset 55 and extended	NC-Government
819	EPIC-KITCHENS-100	
820	Annotations	CC-NC-SA-4.0
821	Imms-eval	MIT and Apache-2.0

822 Table 9: List of codes and datasets with their corresponding licenses.
823824 825 B METHODS: GPT-4O DISTILLATION.
826827 Due to the cost, we sample 4 frames per annotated video clip to go over the training set of EPIC-
828 KITCHENS-100.829 We first get the caption corresponding to all video clips in the training set, and then we use the
830 captions obtained to create open-ended question-answers. We show the corresponding prompts for
831 the generations of captions and open-ended question-answers as follows.
832833 834 B.1 GPT-4O AND GPT-4O-MINI ANNOTATION PROMPT FOR THE CAPTION TASK.
835836 You are viewing video frames from an egocentric perspective and
837 you are the person. Describe the video frames in detail and
838 reason about the actions you are performing. You will be provided
839 with the human-annotated ground-truth for the action, but you
840 should independently come to your own conclusion.841 If you disagree with the human annotation, indicate "true" in
842 the "disagree_with_human_annotation" field of your response,
843 and provide your reasoning without mentioning the ground-truth
844 answer. This will keep your reasoning clean. If you
845 agree with the human annotation, indicate "false" in the
846 "disagree_with_human_annotation" field and provide your reasoning
847 without referencing the ground-truth to maintain a clean
848 description. The true ground-truth action is {gt_answer}. Your
849 reasoning steps should include supporting evidence for the action,
850 such as the duration of the video, the sequence of actions the
851 person performs, the objects they interact with, and the overall
852 context of the video.853 As a general guideline, for videos longer than 3 seconds,
854 provide detailed reasoning steps, and for videos shorter than 3
855 seconds, generate less detailed reasoning. The video duration
856 is {end_second - start_second:.3f} seconds. Make sure you use the
857 first-person perspective in your reasoning.858 B.2 GPT-4O AND GPT-4O-MINI ANNOTATION PROMPT FOR OPEN-ENDED QUESTION
859 ANSWERING860 Your job is to create 3 question-answer pairs based on the text
861 below. The text contains a first-person narrative of video
862 frames from an egocentric perspective of a person interacting with
863 objects in a kitchen. You can ask questions such

864 as: What object am I interacting with? What objects are visible
 865 in the video? What is the sequence of the atomic actions I am
 866 performing? Make sure your questions can be answered based on
 867 the information provided in the text. Do not ask questions that
 868 require additional context or information beyond what is given.
 869

870 C METHODS: LLAVACTION TASK PROMPTS

872 C.1 LLAVACTION CAPTION PROMPT

874 Describe in details what you see from the video frames. Try to
 875 focus on what you are doing.

877 C.2 LLAVACTION PERSPECTIVE PROMPT

879 **Egocentric.** For the EgoSchema benchmark, given that our LLaVAction-7B is trained with egocen-
 880 tric perspective prompt on EPIC-KITCHENS-100, we use the same egocentric perspective prompt
 881 when we evaluate our model on EgoSchema benchmark.

882 You are seeing this video from egocentric view and you are the
 883 person. Your hands are sometimes interacting with objects. What
 884 action are you doing?

885 **Allocentric.**

886 The video is taken from egocentric view. The person's hands are
 887 sometimes interacting with objects. What action is the person
 888 doing?

890 C.3 LLAVACTION TEMPORAL DETECTION PROMPT

892 The provided video contains an action {ACTION NAME} that lasts
 893 2.96 seconds. What is the relative start and end time of the
 894 action in seconds? Format it as 'start_timestamp: end_timestamp'
 895 and round to 2 decimal places.

897 C.4 LLAVACTION DIRECT PREDICTION PROMPT

899 What action are you performing? Give a short sentence such as
 900 'move knife'.

901 C.5 LLAVACTION PRIOR ACTION LEARNING PROMPT

903 {prev2_offset} seconds ago, you started an action
 904 {prev2_narration}. {prev1_offset} seconds ago, you started
 905 an action {prev1_narration}. What action are you currently
 906 performing? Here are the options of actions you can select:
 907

908 C.6 DIFFICULTY LEVEL ASSESSMENT PROMPT

910 You are analyzing a multiple-choice question for fine-grained
 911 action recognition. Your task is to rate the difficulty of
 912 distinguishing between the options based on how similar they are
 913 to each other and the ground truth answer.

914 Ground Truth Answer: gt_answer

915 Options: options.text

917 Please analyze the semantic similarity between the options and
 rate the difficulty on a scale of 1-4:

918 - 1 (Very Easy): Options are very different from each other and
 919 the correct answer is obvious
 920
 921 - 2 (Easy): Options have clear differences, correct answer is
 922 fairly obvious
 923
 924 - 3 (Medium): Options have moderate similarity, requires some
 925 careful consideration
 926
 927 - 4 (Hard): Options are quite similar, subtle differences make it
 928 challenging
 929 Consider factors like:
 930
 931 - Semantic similarity between action descriptions
 932 - Specificity vs generality of actions
 933 - Whether options describe similar but distinct actions
 934 - How confusable the distractors are with the ground truth
 935 Respond with only a single number (1-4) representing the
 936 difficulty score.

937 D AVION AS OOD DISTRACTORS

940 We utilized TIM’s (Chalk et al., 2024) predictions to build our EPIC-KITCHENS-100-MQA bench-
 941 mark. When we use similar ideas to build the hard distractor training set, it results in IID setting if
 942 we still use TIM’s (Chalk et al., 2024) predictions. Methods could directly overfit on TIM’s choice
 943 combination to obtain better performances instead of contrasting fine-grained actions. Therefore, we
 944 used AVION’s (Zhao & Krähenbühl, 2023) predictions during training to serve as an OOD setting.

945 Here, we provide three experiments to support using AVION can be an OOD setting. First, we cal-
 946 culated the top-1 agreement percentage (65%) and top-5 overlap percentage (45%) between AVION
 947 and TIM in EPIC-KITCHENS-100’s validation set, suggesting a considerable difference in distri-
 948 bution, especially when K is larger.

949 Additionally, we computed the Jensen–Shannon Divergence (JSD) between the softmax outputs of
 950 Avion and Tim across the validation set (9668 samples). The mean JSD was 0.674 ± 0.089 , with a
 951 95% confidence interval of [0.672, 0.765]. We obtained a p-value < 0.001 and a Cohen’s d of 7.57,
 952 indicating a large and statistically significant difference between Avion and Tim. As a consequence,
 953 their generated distractors should be seen as coming from two different distributions.

954 An important signature of the IID vs. OOD argument is that OOD is less vulnerable to overfitting
 955 when giving the model more chances to explore the training data. Following our OOD setting that
 956 uses Avion distractors for training and TIM distractors for testing, we performed experiments that
 957 vary K in both training and testing, for K = 5, 10, 20, we got 74.3, 69.5, 64.1, respectively. Since
 958 test-time distractors are generated by TIM and training-time distractors are generated by AVION,
 959 we believe increasing K in training introduces overfitting, and thus it does not generalize well to
 960 TIM’s distractors, which further supports our rationale for the OOD setting.

961 E ADDITIONAL ABLATIONS

962 E.1 ACTION TOKEN DESIGN ABLATION

966 Our action token design (Section 3.3) effectively sees and encodes action-related video information,
 967 and hence benefits the question-answering task. To further support our action token design, we
 968 implement several other token-aggregation methods. Specifically, our action token is one learnable
 969 token added between the visual tokens and text tokens and is supervised in the last layer with the
 970 action classification loss. We hence implement three variants: 1) adding three action tokens and
 971 supervising them with verb, noun, and action separately in the last layer; 2) adding one action token
 and supervising it in the first layer of the MLLM; adding one action token and supervising it across

972 all MLLM layers. The results are in Table 10 on our benchmark. We can see our action design
 973 performs the best while keeping simplicity.
 974

975	Token designs	Acc.
976	3 tokens, last layer	68.8
977	1 token, first layer	66.2
978	1 token, all layers	31.7
979	1 token, last layer (Ours)	69.1
980		

981 Table 10: **Action token design ablation study.** The top 1 percent accuracy is shown.
 982

983 E.2 LEAVE-ONE-OUT ABLATION

984 Remarkably, the 10-point gain over our baseline model cannot be attributed to only a single factor.
 985 We took our full model, i.e., the base plus all added methods, which we call **LLaVAction-7B**, and
 986 performed a leave-on-out ablation (Table 11). Given our additions adds negligible overhead in the
 987 inference time (only one special vision token added to the baseline model), we then suggest using
 988 our full LLaVAction-7B and techniques in downstream tasks.
 989

990	LLaVA-Video-7B	Acc.
991	Full (LLaVAction-7B)	74.1
992	Full w/o adversarial distractors (AVION)	69.7
993	Full w/o action token	73.6
994	Full w/o temporal detection	72.2
995	Full w/o GPT-4o-based reformulation	73.2
996	Full w/o direct prediction	73.2
997	Full w/o temporal order learning	72.3
998		
999		
1000		

1001 Table 11: **Leave-one-out ablation study.** Full denotes having all the proposed methods. In each
 1002 row we drop one method from the full method and report the resulting performance. 16 frames were
 1003 used for both training and testing, and the percent accuracy is shown.
 1004

1005 E.3 STRUCTURED ACTION PREDICTION ABLATION

1006 Our proposed two-stage pipeline enables MLLMs to fairly compare and outperform other SOTA
 1007 action recognition methods. MLLMs directly output free texts, which makes it hard to find an exact
 1008 match with the action labels in the dataset, especially when the action space is huge and fine-grained.
 1009 With an external model applied in the first stage to filter out easy, irrelevant actions, MLLMs can
 1010 mainly focus on differentiating between the hard distracting actions. To support that, we evaluated
 1011 LLaVA-Video-7B with the same external model on the EPIC-KITCHEN action recognition
 1012 benchmark (Table 12). We can see that the performance of LLaVA-Video-7B is much worse, even
 1013 with an external model, showing that it struggles to solve the hard distractors. Meanwhile, we
 1014 further implement another way (denoted as ‘Multi-round appending’) to achieve structured action
 1015 output. Specifically, we first prefill and store the KV Cache for video+prompt+question to avoid
 1016 repeated computation. After that, we append each action class to compute the text cross-entropy
 1017 loss. The action class with the lowest loss is selected as the final action prediction. We test for
 1018 both the zero-shot LLaVA-Video-7B and our LLaVAction models on the EPIC-KITCHEN action
 1019 recognition benchmark (Table 12). The results show our two-stage action prediction pipeline can
 1020 obtain much better performance under both fine-tuned and zero-shot settings. Most importantly,
 1021 the multi-round appending is extremely time-consuming. Although KV Cache storage avoids
 1022 computing video+prompt+question repeatedly, the model still needs to infer 4K times to obtain the
 1023 correct answer. Evaluating the model on EPIC-KITCHENS-100’s validation set (9668 samples)
 1024 takes around 820 GPU hours when using the multi-round appending approach. In comparison, our
 1025 two-stage approach only takes 4.3 GPU hours, making our two-stage method 190 times faster.

Methods	Acc.
<i>LLaVA-Video-7B</i>	
Multi-round appending	10.3
Two-stage (Ours)	26.5
<i>LLaVAction-7B</i>	
Multi-round appending	40.0
Two-stage (Ours)	58.3

Table 12: **Structured action prediction ablation study.** The top 1 percent accuracy is shown.

Methods	Action label	Action narration
zero-shot LLaVA-Video-7B	26.5	35.7
zero-shot LLaVA-OV-7B	19.6	28.9
zero-shot LLaVA-OV-0.5B	24.8	32.0

Table 13: **Quantitative results for action label vs. action narration.** Models are inferred with eight frames as inputs.

F QUALITATIVE EXAMPLES

F.1 COMPARING ACTION NARRATION AND ACTION LABEL IN EPIC-KITCHENS-100

The action labels in EPIC-KITCHENS-100 originate from the raw action narrations that are curated and compressed by a combination of word clustering and iterative manual refinement (Damen et al., 2022). However, this compression might change the semantic meaning of both nouns, verbs and the way they are combined. As a result, large language models that are sensitive to the meaning of words can be misled (see comparisons in Appendix Figure 5 and Table 13). While we show SOTA results using the action label, we note that we can achieve better performance if we use the uncompressed, original narrations. We hope that our work could inspire future work to study the best text representation of actions to train and evaluate MLLMs in action recognition.

Qualitatively: we illustrate some examples of choices represented in the action label manner (Appendix Figure 5). We show the ground truth option in blue and the prediction of LLaVAction-7B in pink. We can see LLaVAction-7B’s predictions also make sense in those examples and hence cause ambiguity across choices. Instead, the corresponding action narration fits better to the language’s nature and can better describe the video content with less ambiguity.

Quantitatively: furthermore, we also quantify MLLMs’ zero-shot performance (LLaVA-OV-0.5B, LLaVA-OV-7B, LLaVA-Video-7B) when using action labels or action narrations as inputs (Table 13). The inferior zero-shot performance of all 3 evaluated models when tested on the action labels as action representation supports our qualitative observations that action labels are less ideal than narrations for MLLMs.

F.2 DIFFERENT CHOICES COMPARISON

Here, we show examples of choices generated by random sampling, AVION top-5 predictions, and TIM top-5 predictions (Appendix Figure 6). We can see that the randomly selected choices have many trivial choices that can be easily distinguished with the correct answer. In comparison, choices generated based on AVION and TIM top-5 predictions become much more similar to the correct answer and exhibit features such as similar object/scene, temporal orders or object relationships that are emphasized by other benchmarks.

F.3 LLAVACTION CAPTION

Here, we show one video caption example of different models including GPT-4o, LLaVA-Video-7B and our LLaVAction-7B (Appendix Figure 7). We can see the interacting object (pizza piece) is

1080 pretty small in the video and there are also many other distracting objects. Both GPT-4o and LLaVA-
 1081 Video-7B cause 'hallucinations' in their descriptions. For example, GPT-4o thinks the person holds
 1082 the slice with both hands. Instead, LLaVAction-7B still retains the video caption ability and can
 1083 generate plausible descriptions of the video.

1084

1085 G SUB-CATEGORY PERFORMANCE COMPARISONS ON THE ADDITIONAL 1086 BENCHMARKS

1087

1088 Since MVBench and LongVideoBench also have sub-category measurements with many of them re-
 1089 lated to action understanding, we also show the sub-category performances on these two benchmarks
 1090 in this section.

1091

1092 G.1 PERFORMANCE COMPARISON ON SUB-CATEGORIES OF MVBENCH

1093

1094 Here we show the performance comparison between LLaVA-Video-7B and our LLaVAction-7B on
 1095 sub-categories of MVBench. We can see LLaVAction-7B boost the performance on many action-
 1096 related categories such as action count, action sequence and fine-grained action, etc.

1097

Tasks	LLaVA-Video-7B	LLaVAction-7B (Ours)	Difference
Action antonym	76.0	75.0	-1.0
Action count	57.0	65.0	8.0
Action localization	61.0	63.5	2.5
Action prediction	62.0	59.0	-3.0
Action sequence	70.5	72.5	2.0
Character order	74.5	79.0	4.5
Counterfactual inference	50.0	52.0	2.0
Egocentric navigation	30.5	28.0	-2.5
Episodic reasoning	53.5	54.0	0.5
Fine-grained action	48.0	49.0	1.0
Fine-grained pose	54.5	61.5	7.0
Moving attribute	71.0	72.5	1.5
Moving count	44.0	43.0	-1.0
Moving direction	35.5	31.0	-4.5
Object existence	60.0	59.0	-1.0
Object interaction	84.5	83.5	-1.0
Object shuffle	41.5	44.0	2.5
Scene transition	93.5	90.5	-3.0
State change	54.0	61.5	7.5
Unexpected action	81.5	79.0	-2.5

1119
 1120 Table 14: **Sub-category comparison with LLaVA-Video-7B on MVBench.**
 1121
 1122

1123

1124 G.2 PERFORMANCE COMPARISON ON SUB-CATEGORIES OF LONGVIDEOBENCH

1125

1126 Here we show the performance comparison between LLaVA-Video-7B and our LLaVAction-7B on
 1127 sub-categories of LongVideoBench. We can see LLaVAction-7B also boosts the performance on
 1128 many action-related categories such as event before/after, text-referred object attribute, and object-
 1129 before/after object.

1130

1131 G.3 PERFORMANCE COMPARISON ON SUB-CATEGORIES OF VIDEOOMME

1132

1133 Here we show the performance comparison between LLaVA-Video-7B and our LLaVAction-7B on
 1134 sub-categories of VideoMME. Our model did not improve the action recognition performance on
 1135 VideoMME possibly due to the domain gap between VideoMME and EPIC-KITCHENS-100.

1134	1135	Tasks	LLaVA-Video-7B	LLaVAction-7B (Ours)	Difference
1136	Event-Referred object	72.31	69.23	-3.08	
1137	Event-Before/after event	67.02	67.02	0.0	
1138	Object-Referred event	67.82	64.37	-3.45	
1139	Object-Before/after object	57.58	59.09	1.52	
1140	Scene-Referred object attribute	71.59	70.46	-1.14	
1141	Scene-Referred event	72.04	66.67	-5.38	
1142	Scene-Referred object	63.89	63.89	0.0	
1143	Scene-Referred object attribute change	55.56	52.78	-2.78	
1144	Scene-Referred object tracking	65.43	66.67	1.23	
1145	Sequence of scenes	41.24	41.24	0.0	
1146	Text-Referred object attribute	59.49	62.02	2.53	
1147	Text-Referred event	56.92	56.92	0.0	
1148	Text-Referred object	59.21	59.21	0.0	
1149	Event before/after text	50.68	58.90	8.22	
1150	Object before/after text	58.11	52.70	-5.41	
1151	Text-Referred object attribute change	47.56	50.00	2.44	
1152	Text-Referred object tracking	32.88	32.88	0.0	

Table 15: Sub-category comparison with LLaVA-Video-7B on LongVideoBench.

H EXTENDED DISCUSSION

Egocentric vs. Allocentric perspective. MLLM can be assigned with different roles before seeing the video. Since the videos are taken from the first-person perspective, we believed the egocentric perspective aligns better with the LLM pretraining data. Therefore, we switch from the third-person (allocentric) perspective to the first-person (egocentric) perspective to better guide the model. We present the prompts in the Appendix C.2. When we fix the distractors from random sampling, using the egocentric prompt gives a 0.5 point improvement over using the allocentric prompt on EPIC-KITCHENS-100-MQA.

Alternative approaches we tested. We also tested a few alternative approaches to improve MLLMs in our benchmark. We tried self-consistency predictions, which do not yield improvements, perhaps due to the task being vision-centric. Additionally, we explored multi-modal chain-of-thought (COT) reasoning by prompting the model to generate a caption prior to addressing the multi-question answering task. However, we found that the model exhibited reluctance to perform this action, despite being capable of generating captions or answering multi-choice questions independently. A variant of it is to inference the model twice, so we have the caption first and feed that into the instruction of answering multi-choice question task, similar to (Zhang et al., 2024d). While a minor improvement was observed, we think it is not worth the 2X compute. We believe that video action recognition is a good way to explore video reasoning for MLLMs. However, we leave COT improvements on this task for future work.

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
 1189
 1190
 1191
 1192
 1193

1194	Tasks	LLaVA-Video-7B	LLaVAction-7B (Ours)	Difference
1195	Categories: Artistic Performance	68.9	69.4	0.5
1196	Categories: Film & Television	71.7	72.8	1.1
1197	Categories: Knowledge	76.0	75.4	-0.6
1198	Categories: Life Record	71.7	71.7	0.0
1199	Categories: Multilingual	67.8	61.1	-6.7
1200	Categories: Sports Competition	65.6	66.4	0.8
1201	Task Categories: Action Reasoning	69.5	69.1	-0.4
1202	Task Categories: Action Recognition	69.0	68.4	-0.6
1203	Task Categories: Attribute Perception	83.8	83.3	-0.5
1204	Task Categories: Counting Problem	48.1	46.3	-1.8
1205	Task Categories: Information Synopsis	87.0	86.7	-0.3
1206	Task Categories: OCR Problems	73.4	74.1	0.7
1207	Task Categories: Object Reasoning	73.6	73.3	-0.3
1208	Task Categories: Object Recognition	75.7	77.1	1.4
1209	Task Categories: Spatial Perception	68.5	72.2	3.7
1210	Task Categories: Spatial Reasoning	82.1	82.1	0.0
1211	Task Categories: Temporal Perception	76.4	78.2	1.8
1212	Task Categories: Temporal Reasoning	51.4	52.0	0.6
1213	Video Sub Categories: Acrobatics	65.6	64.4	-1.2
1214	Video Sub Categories: Animation	58.9	60.0	1.1
1215	Video Sub Categories: Astronomy	77.8	77.8	0.0
1216	Video Sub Categories: Athletics	66.7	73.3	6.6
1217	Video Sub Categories: Basketball	54.4	51.1	-3.3
1218	Video Sub Categories: Biology & Medicine	78.9	78.9	0.0
1219	Video Sub Categories: Daily Life	78.9	75.6	-3.3
1220	Video Sub Categories: Documentary	74.4	76.7	2.3
1221	Video Sub Categories: Esports	62.2	60.0	-2.2
1222	Video Sub Categories: Exercise	58.9	67.8	8.9
1223	Video Sub Categories: Fashion	68.9	70.0	1.1
1224	Video Sub Categories: Finance & Commerce	80.0	80.0	0.0
1225	Video Sub Categories: Football	72.2	75.6	3.4
1226	Video Sub Categories: Geography	76.7	75.6	-1.1
1227	Video Sub Categories: Handicraft	77.8	76.7	-1.1
1228	Video Sub Categories: Humanity & History	66.7	67.8	1.1
1229	Video Sub Categories: Law	82.2	80.0	-2.2
1230	Video Sub Categories: Life Tip	70.0	67.8	-2.2
1231	Video Sub Categories: Literature & Art	80.0	73.3	-6.7
1232	Video Sub Categories: Magic Show	62.2	65.6	3.4
1233	Video Sub Categories: Movie & TV Show	68.9	70.0	1.1
1234	Video Sub Categories: Multilingual	67.8	61.1	-6.7
1235	Video Sub Categories: News Report	84.4	84.4	0.0
1236	Video Sub Categories: Other Sports	72.2	72.2	0.0
1237	Video Sub Categories: Pet & Animal	78.9	78.9	0.0
1238	Video Sub Categories: Stage Play	82.2	80.0	-2.2
1239	Video Sub Categories: Technology	72.2	77.8	5.6
1240	Video Sub Categories: Travel	75.6	77.8	2.2
1241	Video Sub Categories: Variety Show	65.6	67.8	2.2

Table 16: **Sub-category comparison with LLaVA-Video-7B on VideoMME.**

Figure 5: **Action labels vs. narrations.** Blue option denotes ground truth and the pink option denotes LLaVAction-7B’s prediction. Action labels usually reduce multiple nouns into one noun, resulting in ambiguity that could mislead a MLLM. Note that the narration also contains crucial particles with the phrasal verbs to clarify the meaning such as “put down”, “put into”.

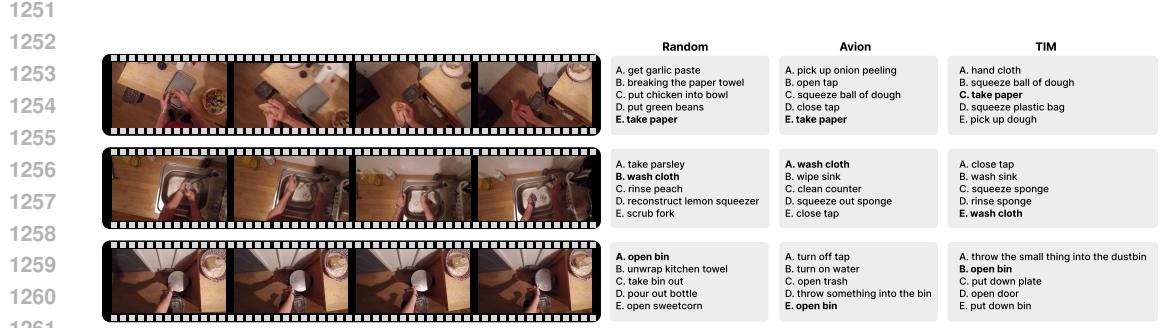


Figure 6: **TIM’s choices are harder than AVION and random** by introducing more visually similar objects and actions. Bold option denotes ground truth.

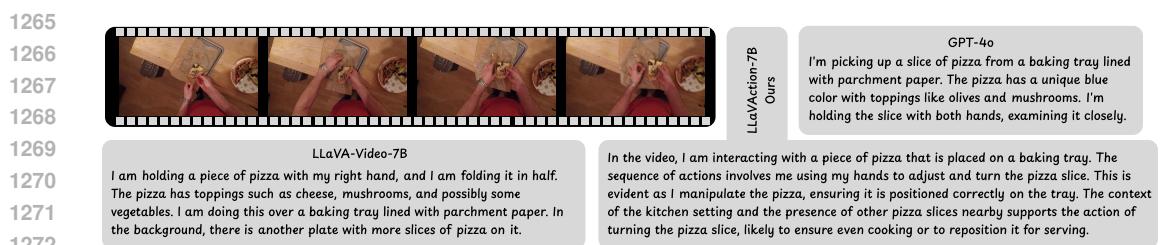


Figure 7: **The captioning capability can provide insights into models.** A comparison among LLaVAction-7B, GPT-4o and LLaVA-Video-7B.

1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 8: Breakdown of the performance of LLaVAction-7B on Verbs and Nouns. We analyzed the accuracy per verb and noun in EPIC-KITCHENS-100 for that our LLaVAction-7B (32f), evaluated on the validation set with action labels (i.e., the model reported in Table 4 that achieved 58.3 accuracy). There are more nouns than verbs, thus nouns are shown across four subplots for visualization but otherwise are not separated in an intentional way. The number above each bar is the total per class.