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ABSTRACT

Understanding human behavior requires measuring behavioral actions. Due to
its complexity, behavior is best mapped onto a rich, semantic structure such as
language. Emerging multimodal large language models (MLLMs) are promis-
ing candidates, but their fine-grained action understanding ability has not been
fully examined. In this work, we reformulate EPIC-KITCHENS-100, one of the
largest and most challenging egocentric action recognition datasets, into a MLLM
benchmark (EPIC-KITCHENS-100-MQA). We show that when we sample dif-
ficult answers based on specialist models as distractors, leading MLLMs strug-
gle to recognize the correct actions. How can we increase the performance of
MLLMs? We curated a supervised finetuning dataset that includes ‘hard’ action
recognition, temporal detection, captioning, and free-form question answering to
improve models’ diverse action understanding capabilities. We introduce a new
model called LLaVAction that adds an action token to boost models’ attention on
visual tokens and a two-stage pipeline to obtain structured actions. LLaVAction
greatly improves the MLLMs’ ability of action understanding, achieving strong
improvements on both MLLM benchmarks (21 points in accuracy over GPT-4o
on EPIC-KITCHENS-100-MQA) and action recognition benchmarks, suggesting
that our methods prepare MLLMs to be a promising path forward for complex ac-
tion tasks. Code, data, benchmark and models will be available upon acceptance.

1 INTRODUCTION

Understanding human behavior is a complex challenge requiring multiple skills such as visual per-
ception, knowledge about the world and reasoning capabilities. Current State-of-the-Art (SOTA)
methods in action understanding tasks (Chalk et al., 2024; Liu et al., 2025; Shi et al., 2023) typi-
cally rely on visual foundation models to imbue those kind of priors (Radford et al., 2021; Wang
et al., 2022; 2023). However, they rely heavily on dataset-specific target heads and have limited
language understanding ability, constraining their performance and especially generalizability. Re-
cently, Multi-modal Large Language Models (MLLMs) (Zhang et al., 2024c; Li et al., 2024a; et al.,
2024; Wang et al., 2024) have shown great potential for learning language priors to help understand
visual content, making them promising alternatives.

MLLMs take visual and text information as inputs and can directly output text. For training and
evaluating MLLMs on action understanding tasks, existing datasets (Kay et al., 2017; Caba Heilbron
et al., 2015) are converted into free text (either video caption or question-and-answer [QA] formats),
thus creating new datasets (Liu et al., 2024a; Li et al., 2024d) and benchmarks (Yu et al., 2019; Li
et al., 2024c). Those free-text formats offer great flexibility and generalization across datasets, but
also introduce limitations in model learning, evaluation, and application perspectives. For the model
learning, directly predicting the action name or choosing from some randomly selected candidates
(Figure 1) prevents the model from learning the full action distributions and contrasting fine-grained
actions (Xiao et al., 2021) explicitly. For the model evaluation, free text output makes MLLMs un-
able to directly compare with previous action task specialized models (Ramachandran et al., 2025).
For example, EPIC-KITCHENS-100 (Damen et al., 2022), one of the largest and most challenging
action datasets, has around four thousand actions. MLLMs may not always predict an action that
has an exact match in those action types, while we cannot put all the action types inside MLLMs’
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ground truth: pick up dish

 Options:

            A. grate ginger into bowl
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Figure 1: LLaVAction-7B. Left: Qualitative inspection of distractors. We show an example clip
with labels from random choices (which empirically is easy to solve), vs. our proposed harder
benchmark with action labels generated by a SOTA specialist (TIM (Chalk et al., 2024)). Our hard
example mining strategy can automatically explore challenges such as temporal order and similar
objects that are curated in other benchmarks. Right: While GPT-4o is strong when identifying
correct answers among few random choices due to the large number of possible actions, it suffers in
the harder benchmarking regime, and our method, LLaVAction outperforms GPT-4o.

context prompt to let MLLMs select. This further limits the applications that require structured
actions (e.g., behavior analysis with ethograms (Renner, 2018)).

To address these issues, we take inspiration from the hard example mining literature (Shrivastava
et al., 2016; Madry, 2017) to improve the learning and evaluation of MLLMs. Specifically, for eval-
uation, we reformulate EPIC-KITCHENS-100 (Damen et al., 2022) into a video multiple-choice
question & answer (MQA) task with ground truth action and four difficult incorrect actions, which
we call EPIC-KITCHENS-100-MQA. Incorrect choices are filtered by SOTA action recognition
models (Chalk et al., 2024; Zhao & Krähenbühl, 2023) instead of humans or closed-sourced LLMs
and MLLMs. This specialized model-based hard example mining reveals substantial drops in perfor-
mance for existing MLLMs, including GPT-4o (Figure 1) and thus offers an efficient and challenging
framework for evaluating MLLMs’ action recognition abilities. We note that the hard example min-
ing approach automatically picks distractors that pose challenges such as temporal order or similar
objects, which were purposefully curated in other benchmarks (Cai et al., 2024; Li et al., 2024c).

To improve MLLMs’ fine-grained action understanding, we proposed an action-related MLLM data
transformation regime and curated a training dataset that encompasses various aspects of action
understanding, such as hard action recognition, detailed captioning, free-form question answering,
temporal detection and prior action association. With the training dataset, we propose LLaVAction
models. We introduce an action token designed to improve the model’s visual information utilization
and a two-stage pipeline to output structured actions and fairly compare with other action recogni-
tion models. These model designs could be naturally extended to different foundational MLLMs
(e.g., (Liu et al., 2024a; Zhu et al., 2025)). LLaVAction obtains SOTA performance on four ac-
tion recognition datasets and shows strong generalization ability in comparison to previous SOTA
models. LLaVAction outperforms GPT-4o on EPIC-KITCHENS-100-MQA and achieves consis-
tent improvements on ten video MLLM benchmarks that require very different action understanding
abilities and are with either caption, open-ended, or multi-choice format.

2 RELATED WORKS

Multi-modal large language models. Multi-modal large language models (MLLMs) are promis-
ing generalists (Li et al., 2024b). Early multi-modal models (Tsimpoukelli et al., 2021) mostly
performed few tasks or relied on few-shot learning for task generalization. After the large success
of Large Language Models (Achiam et al., 2023), multi-modal models appeared that can supple-
ment text with other modalities (Han et al., 2024). Among them, video MLLMs (Li et al., 2024a;
Zhang et al., 2024c) promise robust and scalable solutions to understand and process video data.
Our work falls into this direction, aiming at improving MLLMs’ action understanding. Action
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Figure 2: LLaVAction pipeline. Trained with our action-related MLLM reformulated data,
LLaVAction outputs captions, action tokens and open-ended and multi-choice QAs. Our two-stage
pipeline further enables LLaVAction to output structured action.

understanding is one of the fundamental abilities in video understanding and has been explored by
several recent works with different specific focuses, such as InsTALL (Nguyen et al., 2025) mainly
focusing on procedural action planning/prediction, HAIC (Wang et al., 2025a) mainly focusing on
detailed action captions and MotionLLM (Chen et al., 2024b) mainly focusing on human motion
understanding. Instead, our work cares more about fine-grained action contrastiveness.

MLLM datasets and benchmarks. Significant efforts have been made to improve training (Liu
et al., 2024a; Li et al., 2024d) and benchmarking (Yue et al., 2024; Liu et al., 2024c) for MLLMs.
Based on the question type, they can be classified as video caption, open-ended question answering
and multi-choice question answering (MQA) types. MQA format gains more popularity, especially
for benchmarks (Xiao et al., 2021; Fu et al., 2024), since it has no need to use another LLM/M-
LLM to evaluate the model outputs and our EPIC-KITCHENS-100-MQA benchmark falls into this
direction. In comparison to the existing MQA benchmarks whose choices are either constructed by
humans (Yu et al., 2019; Fu et al., 2024) or by closed-source MLLMs (Maaz et al., 2023; Ye et al.,
2024a), our benchmark uses action recognition models to efficiently find hard distractors, which
is more efficient compared to human generation and is not be limted by closed-source MLLMs’
performance.

Action recognition. Action recognition requires models to predict the action class for a trimmed
segment (Shahroudy et al., 2016; Damen et al., 2022) and is a fundamental task in video under-
standing (Feichtenhofer et al., 2019; Tong et al., 2022). Over the years, many methods have been
proposed, yet suffer from fast camera movement, long-term temporal relations, and open vocabu-
lary ability (Damen et al., 2022; Grauman et al., 2022). We focus on MLLMs enhanced with video
instruction-tuning (Zhang et al., 2024c) to address those challenges.

3 METHODS

We introduce the EPIC-KITCHENS-100-MQA benchmark (Section 3.1) and a novel MLLM data
reformulation paradigm (Section 3.2), followed by the LLaVAction model designs (Section 3.3).

3.1 HARD EXAMPLE MINING FOR MLLM EVALUATION

Existing MLLMs have shown the ability to understand video content including actions. However,
whether MLLMs are good at contrasting fine-grained actions is not clear. Researchers have de-
veloped benchmarks to focus on certain aspects of fine-grained actions, such as temporal order (Liu
et al., 2024d), which are generated either by human effort or closed-source MLLMs. In this work, we
propose to leverage SOTA action recognition models with hard example mining to construct a new
benchmark named EPIC-KITCHENS-100-MQA, which is more efficient compared to human gen-
eration and is not limited by closed-source MLLMs’ performance. More importantly, the proposed
hard example mining paradigm can also help MLLMs to enhance fine-grained action understanding
(Section 3.2) and enable the fair comparisons with specialized models (Section 3.3).
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We use EPIC-KITCHENS-100 (Damen et al., 2022) as the data source for our benchmark for the
following reasons. Firstly, EPIC-KITCHENS-100 boasts fine-grained action at scale (90K action
segments comprising 100h, 4k action types in 100 hours). Secondly, despite numerous models
being developed for this dataset, benchmark performance on tasks such as action recognition and
segmentation remains far from saturated. Thirdly, the benchmark proves opportunities to compare
against specialized models. Importantly, our hard example mining strategy is generalizable and can
be applied to any other action understanding dataset. (Section 4.3).

We constructed EPIC-KITCHENS-100-MQA with hard example mining as follows: Let V =
{v1, v2, ..., vN} denote the set of video clips. Let N = {n1, n2, ..., nN}, A = {a1, a2, ..., aN |ai ∈
C} be their corresponding clip narrations and action labels separately, where C represents the set of
action classes. For each data sample i, we formulate the MQA task as:

f : (vi,Q,Oi) 7→ [p1, p2, . . . , pK ] ,where
K∑

k=1

pk = 1, pk ∈ [0, 1] (1)

where vi is the input sample (e.g., video clip), pi is the probability of picking the i-th option in the
MQA as the answer, Q is the space of possible questions, Oi = {ni,Di} represents the set of K
answer options, ni is the correct narration, and Di represents K − 1 sampled distractors. These can
be sampled randomly from narrations in other action classes:

Dr
i = Uniform({nj ∈ N | cj ∈ C \ {ai}}) (2)

However, random sampling Dr
i likely contains trivially wrong answers (Figure 1). We utilize action

recognition models g : V → (0, 1)|C| to find distractors. For video a specific vi, we obtain the top
K − 1 predicted classes: Ci = TopK−1(g(vi) \ {ai}). The distractor sampling becomes:

Dm
i = Uniform({nj ∈ N | cj ∈ Ci}) (3)

The complete set of answers is formed as Or
i = {ni}∪Dr

i for random sampling or Om
i = {ni}∪Dm

i
for model-based sampling. We used K = 5 for our benchmark. Moreover, we use the action
narrations N instead of action labels C to build the choices to avoid implausible texts and confusions
(more details are in Appendix F.1) We compared the two sampling strategies. We chose two leading
action recognition methods on EPIC-KITCHENS-100, namely, AVION (Zhao & Krähenbühl, 2023)
and TIM (Chalk et al., 2024). The results indicate that the TIM method consistently produced
more challenging distractors for the evaluated MLLMs (Table 1 and qualitative examples Appendix
Figure 6). Consequently, we fixed g with TIM for the EPIC-KITCHENS-100-MQA benchmark. We
found that all tested models have a huge performance drop in comparison to the easy setting, which
illustrates that MLLMs struggle with fine-grained action recognition when tested with visually or
semantically similar actions.

3.2 ACTION UNDERSTANDING FROM MULTIPLE PERSPECTIVES

Choice
Selection

Random 5
(Easy)

Avion-Top 5
(Medium)

TIM-Top 5
(Hard)

GPT-4o-mini (07-18) 72.0 44.2 37.4
GPT-4o (08-06) 87.6 56.7 52.2
LLaVA-OV-0.5B 59.3 37.1 32.0
LLaVA-OV-7B 68.8 33.6 28.9
LLaVA-Video-7B 65.0 40.0 35.7

Table 1: Comparison between different sources
of distractors. Models were evaluated on ei-
ther random, AVION or TIM-generated distrac-
tors. The values are reported as percent accuracy.

When training MLLMs on action understand-
ing datasets (Kay et al., 2017), researchers
usually re-formulate those datasets to MLLM-
compatible tasks (video caption or question
& answer (QA)), either by directly outputting
the original action annotation or reformulating
the annotations with closed-source MLLMs.
Although this reformulation provides flexibil-
ity and generalization across video data even
beyond action understanding, fine-grained ac-
tion differences are not fully explored and
hence cause a performance drop on EPIC-
KITHCENS-100-MQA. To address this, we expand the previous reformulation regime to encom-
passes various aspects of action understanding.

Adversarial distractors for fine-grained action contrasting. Thanks to the effectiveness of our
hard example mining paradigm, we can also train MLLMs with ‘adversarial’ distractors that were
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50.66 51.0 51.34 51.69 sec

A. put down onion

B. take onion

C. put down pepper piece

D. placing tomato on dish

E. place garlic

349.6 350.0 350.4 350.8 sec

A. close fridge

B. close drawer

C. turn on tap

D. close cupboards

E. open locker

367.7 368.1 368.5 368.9 sec

A.  turn off tap

B.  open cupboard

C.  turn on tap

D.  wash sink

E.  wash cloth

40.3 42.0 43.5 45.2 sec

A. put down bowls

B. move bowl

C. put down plate

D. pick up bowl

E. put bowl in cupboard

16.6 17.4 18.3 19.1 sec

A. turn off hob

B. taste liquid

C. turn off tap

D. put down spatula

E. stir pan

217.4 217.7 218.1 218.4 sec

A. take container

B. pick up saucepan

C. get bowl

D. take the vegetables

E. pick up tupperware

Figure 3: Qualitative results. LLaVAction-7B consistently outperforms GPT-4o and LLaVA-
Video-7B when tested on hard distractors. Bold option denotes ground truth, and the icons denote
the selection of the models. See also Appendix F.

generated by action recognition models. Since the EPIC-KITCHENS-100-MQA benchmark is
based on TIM’s predictions, training MLLMs to pick the right answers using distractors gener-
ated by TIM could lead to over-fitting to TIM’s error distributions, resulting in an independent and
identically distributed (IID) setting. To avoid methods from obtaining better performance by sim-
ply overfitting on TIM’s choice combinations, we used predictions from AVION to reformulate the
EPIC-KITCHENS-100 training set. This provides us with an out-of-distribution (OOD) evaluation
on EPIC-KITCHENS-100-MQA (more OOD supports in Appendix D). Moreover, we also present
the results derived from training with distractors generated by TIM, which is the IID setting and
yields the strongest results in EPIC-KITCHENS-100-MQA (Table 2).

Temporal detection for action boundary learning. Many actions (such as putting something)
have clear initiation and conclusion and cannot be explicitly learned by the previous reformulation
regime. Therefore, we instruct the model to predict the start and end timestamps of an action sample
based on its randomly padded video clip. Specifically, given a video segment vi with start timestamp
si and end timestamp ei, we introduce a fixed temporal padding δ = 3 seconds distributed between
start and end. Let α ∼ Uniform(0, 1) be the proportion of padding allocated to the start:

ŝi = si − αδ, êi = ei + (1− α)δ (4)

We therefore use the new timestamps ŝi and êi to obtain the padded video segment v̂i. During
training, our LLaVAction model takes v̂i as input and predicts the start and end times as strings
(e.g., “3.20”, “1.20”) corresponding to the true start and end times of the action in the padded video
(prompts are detailed in the Appendix C.3).

Temporal order learning with prior actions. Actions exhibit a certain natural continuity. This
temporal aspect of actions can improve predictability. Therefore, we want to leverage prior actions
and learn: θ∗ = argmaxθ

∑T
t=n+1 logPθ(at | at−1, . . . , at−n), where θ∗ is the optimal set of

model parameters we are trying to find, at is the current action at time t, at−1, . . . , at−n represents
the sequence of n previous actions. We set n = 2. We modulate this with additional visual in-
structions to provide prior action information (prompts are detailed in the Appendix C.5). During
training, 30% of the MQAs are provided with prior action information as additional input. Dur-
ing evaluation (Table 3), we can either give the model no prior actions or give the model’s own
predictions of the previous n actions to formulate as sequential action prediction (SAP).

Direct prediction. Following common practice, we also let the model to directly predict the action
descriptions for a given video. The prompt is available in the Appendix C.4.

General video understanding with closed-source MLLM-based reformulation. Although we
mainly focus on improving MLLMs’ fine-grained action understanding, we do not want to weaken
MLLMs’ general video understanding. Therefore, we follow previous practice to let the model
give a general description of the video or answer video-related questions, where the annotations are
obtained from closed-source MLLM GPT-4o. More details are in the Appendix B. As discussed
above, we argue that this reformulation alone would not help to gain better fine-grained action
understanding. Since GPT-4o itself struggles with our empirically hard distractors, using annotations
from GPT-4o alone harms the performance on EPIC-KITCHENS-100-MQA (Table 1).
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3.3 LLAVACTION MODELS FOR BETTER ACTION UNDERSTANDING

With the proposed new MLLM data reformulation paradigm, we propose LLaVAction, which is
better at fine-grained action understanding. LLaVAction is developed based on LLaVA series (Li
et al., 2024a; Zhang et al., 2024c). We further design a learnable action token to enhance the visual
information utilization and a two-stage pipeline to output structured action so that we can compare
LLaVAction fairly with other SOTA action recognition models (Figure 2).

Enhancing visual information utilization with action token. Most MLLMs rely only on the lan-
guage prediction of the next token to train the model and extract information from visual tokens (Liu
et al., 2024a). However, recent findings suggest that this training strategy decreases the importance
of vision tokens in late layers of MLLMs (Zhang et al., 2025a; Liu et al., 2024b). Therefore, we de-
signed an intermediate supervision of visual tokens. Specifically, we added a learnable action token
into the input tokens, which is analogically similar to the CLS token in the VIT model (Dosovitskiy,
2020) that has been shown the ability in grasping image content (Wang et al., 2025b) The order of
the input tokens was system text tokens, visual tokens, learnable action token and instruction text
tokens; through causal attentions of the LLM backbone this enables the action token to integrate
action information from visual tokens and then contribute to the subsequent language tasks. Let’s
denote the hidden states at the final layer of the MLLM as:〈

Hq
1 , · · · , H

q
k , H

v
1 , · · · , Hv

lv , h
a, Hq

k+1, · · · , H
q
lq

〉
(5)

Hv
i ∈ Rd are the hidden states corresponding to visual tokens, ha ∈ Rd denotes the hidden state of

the learnable action token, Hq
i ∈ Rd denotes the text tokens, d denotes the hidden dimension of the

LLM. lq and lv denote the length of text tokens and length of visual tokens respectively. We apply
three classification heads on top of the hidden state ha to predict nouns, verbs, and actions separately
and use cross-entropy loss to train the classifiers, in the belief that the classification training could
guide the action token to learn better extract action-related visual information. Note that our action
token only serves as an additional learning objective and is not used to give the final prediction.
During inference, or when training with tasks that have no clear action labels (e.g., video captioning),
we can simply compute the text generation loss.

Methods 8 f 16 f

zero-shot GPT-4o 52.2 N/A
zero-shot GPT-4o-mini 37.4 N/A
zero-shot LLaVA-Video-7B 35.7 34.8
zero-shot LLaVA-OV-7B 28.9 30.5
zero-shot LLaVA-OV-0.5B 32.0 31.6

LLaVAction: LLaVA-Video-7B 71.7 73.4
LLaVAction: LLaVA-OV-7B 71.3 72.3
LLaVAction: LLaVA-OV-0.5B 64.8 65.4

Table 2: Comparison on EPIC-
KITCHENS-100-MQA. Columns rep-
resent the number of frames used for
testing. Percent accuracy is shown.

Two-stage structured action prediction pipeline.
MLLMs directly output free texts, which may be hard to
find an exact match with the action labels in the dataset.
One could put all the possible actions in the question
prompt and let MLLMs choose, but this will become im-
possible when the number of action types increases (e.g.,
around 4k action types in EPIC-KITCHENS-100). This
limitation prevents MLLMs from fairly comparing with
action recognition models and constrains MLLM from
applying to applications that require structured actions.
To this end, LLaVAction designs a two-stage pipeline
when it needs to output structured actions. Similar to hard
example mining (Section 3.1), we use action recognition
models’ predictions to filter out easy actions. The difference is that we directly take the top K con-
fident actions without adding the Ground Truth (GT) action. The two-stage pipeline will lower the
upper-bound performance MLLM can obtain since the GT action may not be in the top K predic-
tion. However, the K value can control the trade-off between the upper-bound performance and the
number of actions the MLLM needs to contrast. Note that our two-stage pipeline is only needed for
datasets and applications that require structured actions, and is only applied at the inference stage.
For the open-vocabulary tasks, LLaVAction can directly take the video and questions and give an
open-ended answer. For training and benchmark construction, we always include the GT action into
the choices to avoid misalignment.

4 EXPERIMENTS

We conducted evaluations for the LLaVAction models on a wide range of benchmarks to show the
models’ strong action understanding ability. We used LMMs-Eval (Zhang et al., 2024a) to evaluate
LLaVAction on different MLLM benchmarks. We used eight frames for distractor experiments
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(Table 1), 8 or 16 frames for our main results on EPIC-KITCHENS-100-MQA (Table 2) and 16
frames for ablation studies (Table 11), so that we can limit the cost of calling closed-sourced models
during comparison. Meanwhile, we use 32 frames for EPIC-KITCHENS-100 (Table 4) and 64
frames for the model reported in MLLM benchmarks (Table 7).

4.1 IMPLEMENTATION AND TRAINING DETAILS

We trained LLaVAction with three open-source baseline variants, LLaVA-Video-7B, LLaVA-OV-7B
and LLaVA-OV-0.5B. With the proposed new MLLM data reformulation paradigm, we re-annotated
EPIC-KITCHENS-100’s training data, in total contributing to 530K annotated video-language pairs
to train the LLaVAction models. The 7B and 0.5B models were trained for 12 and 11 hours on 32
GH200 GPUs, respectively. Across all experiments and all baseline models, we set gradient accu-
mulation to 2, batch size to 64 and total epochs to 2. Following LLaVA-Video, the MLP connector,
LLM backbone (Qwen2-0.5B,7B (Wang et al., 2024)) and the visual encoder (SigLIP-384 (Zhai
et al., 2023)) were trained. The learning rate was 2e-6 for the vision encoder and 1e-5 for the rest
(see Zhang et al. (2024c) for additional details). Training on EPIC-KITCHENS-100 data alone
might result in over-fitting. Therefore, we use data replay (Li et al., 2024a) to aid in generalization
of the model. Thus, we mix with the training data of LLaVA-Video, namely LLaVA-Video-178K.

Distracting options

A. wipe spatula

B. take spoon

C. pick up fork

D. put spatula

E. take spatula

LLaVA-Video LLaVAction

Figure 4: Qualitative attention for one clip. Anecdotally, LLaVA-Video mainly attends to the
wooden spatula that is placed in the drawer, LLaVAction also attends to the arms and, correctly, the
plastic spatula that is being taken. We quantify visual-text token correlations in the main text.

4.2 RESULTS ON EPIC-KITCHENS-100-MQA

LLaVA-Video-7B ⇒ LLaVAction-7B

OOD Setting:
Zero-shot 34.8
+ GPT-4o-based reformulation 21.9
+ Random distractors 55.0

Adversarial distractors (AVION) 64.4
+ Temporal Detection 65.2
+ Action token 69.1
+ GPT-4o-based reformulation 71.5
+ Direct Prediction 73.6
+ Temporal order learning 73.4
+ Temporal order learning w/ SAP 74.1

IID Setting:
+ Adversarial distractors (TIM) 76.3
+ Adversarial distractors (TIM) w/ SAP 77.0

Table 3: LLaVAction additive ab-
lations on EPIC-KITCHENS-100-
MQA. Techniques are gradually added
to achieve the final model. SAP denotes
sequential action prediction during in-
ference. Percent accuracy is shown.

EPIC-KITCHENS-100-MQA contains hard distracting
choices and is excellent to evaluate MLLMs’ fine grained
action understanding. We report results for the MLLMs
comparison (Table 2), LLaVAction additive ablations
(Table 3), and leave-one-out ablations (Appendix E.2)
on EPIC-KITCHENS-100-MQA. We start with MLLM
comparisons (Table 2). LLaVAction models perform
much better than baselines and also obtain a 21-point
improvement over GPT-4o (running GPT-4o beyond 8
frames is cost-prohibitive). Next, we verified LLaVAc-
tion’s improvements do not just come from adding in-
domain data by additive ablations (Table 3). Since both
our MLLM data reformulation paradigm (Section 3.2)
and LLaVAction model design (Section 3.3) contribute
to the final performance, we ablate them together. We
can see training with adversarial distractors (AVION) re-
sults in the largest improvement (9.4 points). Addition of
the action token gives the second most improvements (3.9
points improvement). Meanwhile, we note that simply
fine-tuning LLaVA-Video-7B with the previous MLLM
data reformulation paradigm (GPT-4o-based reformulation) results in a performance degradation
(35.7 to 21.9). Based on the fact that it gives a meager 2.4 performance boost when we combine it
with MQA task using AVION distractors, we believe this is a sign of catastrophic forgetting of MQA
capability. Furthermore, directly predicting the action (direct prediction) and using contextual prior
actions (temporal order learning w/ SAP) result in 2.1 and 0.5 points improvements, respectively.
In summary, the combination of our MLLM data reformulation paradigm and model design greatly
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improves the performance of the base LLaVA-Video-7B model from 34.8 to 74.1 accuracy in the
OOD setting and to 77.0 in the IID setting.

4.3 RESULTS ON ACTION RECOGNITION BENCHMARKS

Methods Acc.

IPL (Wang et al., 2021) 41.0
LaViLa (Zhao et al., 2022) 51.0
TAdaFormer-L/14 (Huang et al., 2023) 51.8
LVMAE (Gundavarapu et al., 2024) 52.1
M&M (Xiong et al., 2022) 53.6
AVION (Zhao & Krähenbühl, 2023) 54.4
TIM (Chalk et al., 2024) 56.4

Ours, LLaVAction-7B w/ action label 58.3
Ours, LLaVAction-7B w/ action narration 63.2

Table 4: Action recognition on EPIC-
KITCHENS-100. Top-1 accuracy on
action classification. For specific verb-
noun performance see Figure 8.

With our two-stage structured action prediction pipeline
(Section 3.3), LLaVAction can be fairly compared with
other action recognition models (Table 4). To assess
the generalization of LLaVAction, we tested on three
datasets, which were carefully selected to exclude data
used in pretraining while covering different domains.

LLaVAction achieves SOTA on EPIC-KITCHENS-
100. Following common practice, we report the perfor-
mance on EPIC-KITCHENS-100’s validation set. We
report performance in two settings (’w/ action label’
and ’w/ action narration’), which differ in the candidate
choice generation. For the ’w/ action label’ setting, we
directly concatenated verb and noun action classes to ob-
tain choices, which could produce implausible text. For
example, the noun class for coffee maker represents ’maker:coffee’ in the noun definition. Mean-
while, ’pour into’ is simplified as ’pour’ in the verb definition, which could generate implausible
text such as ’pour pot’ that should be ’pour into pot’. Based on those observations, we also report
the ’w/ action narration’ setting where we used the action narration of the corresponding video clip
(more details in Appendix F.1). We empirically observe that we get better results to scale top-K
from 5 to 20. Therefore, we train and evaluate LLaVAction with TIM’s top 20 action predictions.
LLaVAction can achieve SOTA on EPIC-KITCHENS-100 under both settings.

Methods Acc. Head Acc. Tail Acc.

Zero-shot generalization of the second-stage model

AVION (Zhao & Krähenbühl, 2023) 19.3 21.2 8.6
LLaVA-Video-7B (Zhang et al., 2024c) 22.5 22.9 18.8
Ours, LLaVAction-7B 36.2 38.1 24.6

Trained model

VideoMAE (Tong et al., 2022) 37.5 41.1 16.6
Multi-modal VideoMAE (Bonnetto et al., 2025) 40.0 43.6 19.4
Ours, LLaVAction-7B 46.6 49.7 27.0

Table 5: Action recognition on EPFL-Smart-Kitchen-
30. LLaVAction outperforms prior methods in the zero-
shot and finetuned setting.

LLaVAction generalizes well to other
datasets. We tested LLaVAction on
two recent action recognition bench-
marks – one testing generalization for
a different cooking dataset (EPFL-
Smart-Kitchen-30, (Bonnetto et al.,
2025)) and another testing generaliza-
tion to a different domain (tool assem-
bly, Meccano, (Ragusa et al., 2021)).
EPFL-Smart-Kitchen-30 has 30 verbs
and 46 nouns in common with EPIC-
KITCHENS-100, which enables us to
also compare with specialized models
(such as AVION) for zero-shot gener-
alization of the second-stage models. We used the multi-modal VideoMAE’s top 5 predictions in
EPFL-Smart-Kitchen-30 to generate the MQAs for LLaVAction-7B and LLaVA-Video-7B. To fairly
compare with the specialized model AVION, we also use those top 5 predictions to filter AVION’s
predicted action logits. LLaVAction obtained better zero-shot accuracy than AVION and LLaVA-
Video (Table 5). Most importantly, the zero-shot LLaVAction even obtained similar overall perfor-
mance to the trained VideoMAE model and better tail action accuracy (Tail Acc.). When finetuning
LLaVAction obtained SOTA performance (Table 5).

Methods Jaccard Acc.

VideoMAE 53.1

LLaVA-Video-7B (Zero-shot) 30.5
LLaVA-Video-7B (Random choice) 46.7
LLaVA-Video-7B (Ours) 61.0

InternVL3-8B(Zero-shot) 28.1
InternVL3-8B(Random choice) 43.9
InternVL3-8B(Ours) 58.7

Table 6: Action recognition on Animal Kingdom.

On Meccano we used SlowFast (Feicht-
enhofer et al., 2019) to generate hard dis-
tractors and finetuned LLaVAction. Even
when trained for only one epoch, LLaVAc-
tion obtained 51.7 top-1 accuracy, beating
SlowFast’s 42.8.

In general, our action understanding-
related data reformulation and model de-
signs are not limited to any data domains

8
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Closed-source models

GPT-4V (Achiam et al., 2023) - - - - - 70.8 - - 43.5 59.9/63.3 61.3 - -
GPT-4o (et al., 2024) - - 34.2 - - - - - - 71.9/77.2 66.7 - -
Gemini-1.5-Flash (Team et al., 2023) - - 35.1 - - - - 65.7 - 70.3/75.0 61.6 - -
Gemini-1.5-Pro (Team et al., 2023) 41.7 - 39.3 - - - - 72.2 - 75.0/81.3 64.0 - -

Open-source models

LongVA-7B (Zhang et al., 2024b) 34.5 - 16.5 50.0 - - - - - 52.6/54.3 - 68.3 -
mPLUG-Owl3 (Ye et al., 2024b) 38.9 - - - - - 34.4 - 54.5 59.3/68.1 52.1 78.6 -
VideoChat2-7B (Li et al., 2024c) 36.5 - - 49.1 - 25.8 38.5 - 60.4 42.3/54.6 - 78.6 -
VideoLLaMA2-7B (Cheng et al., 2024) - - - 53.0 - 21.6 32.2 51.7 54.6 47.9/50.3 - - 51.4
LLaVA-OV-7B (Li et al., 2024a) 38.8 - - 56.6 - - - 60.1 56.7 58.2/61.5 56.5 79.4 57.1
LLaVA-Video-7B (Zhang et al., 2024c) 39.0 3.44 25.7 66.0 3.04 51.3 66.0 57.3 58.6 63.3/69.7 58.2 83.2 67.9
LLaVAction-7B (Ours) 40.2 3.34 26.1 66.9 3.01 55.6 66.1 59.0 61.1 63.9/71.4 58.6 82.8 70.2

Relative improvement of ours
over the baseline LLaVA-Video-7B +1.2 -0.1 +0.4 +0.9 -0.03 +4.3 +0.1 +1.7 +2.5 +0.6/+1.7 +0.4 -0.4 +2.3

Table 7: Performance on other MLLM benchmarks that contain human actions. Please note, we
are not claiming SOTA, we are noting that we can improve performance over our baseline open-
source model (LLaVA-Video-7B (Zhang et al., 2024c)). We also show sub-task performances in
Appendix G. We show top-performance closed-source models for reference. Top open-source mod-
els are shown in bold, and the second-best are underlined.

or base MLLMs. To further support that, we tested our method on a very different domain, animal
fine-grained behavior understanding. Specifically, we tested on the Animal Kingdom dataset (Ng
et al., 2022), which has 140 fine-grained actions and at most 12 actions can happen at the same
time (i.e., multi-classification task). We adapted both LLaVA-Video-7B and InternVL3-8B (Zhu
et al., 2025) and train with hard examples generated from VideoMAE (Tong et al., 2022) to serve
as our methods. We compare with the same models (LLaVA-Video-7B and InternVL3-8B) without
training or training with randomly generated options. The results are in Table 6, reported in Jac-
card accuracy. Our methods, either using LLaVA-Video-7B or InternVL3-8B as the base MLLMs,
can obtain much better performance (61.0/58.7) compared to the original models (30.5/28.1) and
models finetuned with random choice (46.7/43.9). And our methods can further beat the baseline
VideoMAE (53.1) for both base models.

4.4 RESULTS ON OTHER MLLM BENCHMARKS

Apart from comparing with action recognition models, we want LLaVAction to keep general
video understanding abilities and also improve fine-grained action understanding on other zero-
shot MLLM benchmarks. Therefore, we tested LLaVAction-7B on 13 MLLM benchmarks that
test various MLLM video understanding abilities. The evaluated benchmarks consist of two video
caption benchmarks, five open-ended Q&A benchmarks and six multi-choice Q&A benchmarks.
LLaVAction-7B outperforms LLaVA-Video-7B on 10 benchmarks, indicating the enhanced video
understanding ability of our model (Table 7).

4.5 ATTENTION-BASED ANALYSIS

We sought to analyze the impact of action-related training and LLaVAction model design in an inter-
pretable manner. Following the approach in (Zhang et al., 2025b), we employed token attention anal-
ysis to understand model behavior (Figure 4). We computed average text-visual token correlations
for both LLaVA-Video-7B and LLaVAction-7B using the EPIC-KITCHENS-100-MQA dataset. For
fair comparison, we fine-tuned LLaVA-Video-7B with randomly generated answer choices. Analy-
sis Methodology: We first computed the text-visual attention tensors of size N × T × V , where N

9
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is the number of data samples, T is the number of text tokens and V is the number of visual tokens.
We then calculated the maximum across the text token dimension, followed by computing mean and
90th percentile values to estimate text-visual correlations.

Text-Visual Correlation Results: LLaVA-Video-7B achieved mean and 90th percentile values
0.00476 and 0.0104, respectively, while LLaVAction-7B achieved mean and 90th percentile values
0.00769 and 0.0175, respectively. This indicates that LLaVAction attends more strongly to visual
cues compared to LLaVA-Video, likely due to our hard example mining strategy.

Action Token Analysis: We computed the text-action token attention tensors of size N × T × 1,
calculating the maximum over the text dimension followed by the mean to estimate text-action cor-
relations. LLaVAction demonstrates an average text-action token correlation of 0.143, significantly
higher than its text-visual correlation (0.00769). Notably, 99% of visual tokens exhibit lower text
correlations compared to action tokens. Since action tokens exclusively attend to visual tokens, this
suggests they effectively aggregate visual information relevant to fine-grained actions, enhancing
LLaVAction’s action understanding capabilities.

4.6 DIFFICULTY LEVELS OF FINE-GRAINED ACTION UNDERSTANDING ANALYSIS

Difficulty levels 1 2 3 4

LLaVA-Video Acc. 0.405 0.360 0.342 0.339
LLaVAction Acc. 0.735 0.744 0.738 0.726
# Samples 400 3529 2836 2903

Table 8: Model performance under different
difficulty levels. LLaVAction is more robust with
different semantic similarity between options.

While EPIC-KITCHENS-100-MQA features
distinguishing fine-grained actions, individual
samples may still vary in difficulty. To un-
derstand how baseline models and LLaVAc-
tion perform across different difficulty lev-
els, we adopted the concept of psychometric
curves (Boring, 1917). We utilized GPT-4o
to rate the difficulty of distinguishing between
the options (detailed prompt in Appendix C.6)
from 1 (very easy) to 4 (hard) and then reported the performances of LLaVA-Video and LLaVAction
under different levels on EPIC-KITCHENS-100-MQA (Table 8). LLaVAction not only achieves
higher overall accuracy but also maintains more robust performance as difficulty increases, showing
less performance degradation compared to baseline models.

5 CONCLUSION

Recent advances in MLLMs prompted our investigation into their fine-grained action understanding
abilities. Through our proposed EPIC-KITCHENS-100-MQA benchmark, which uses similar ac-
tions as distractors, we reveal that state-of-the-art MLLMs face significant challenges in action dis-
crimination tasks. We address these limitations by introducing specialized data reformulation strate-
gies and action-aware architectural components that substantially enhance MLLM action recogni-
tion capabilities. The resulting LLaVAction model achieves robust performance and demonstrates
strong generalization across our benchmark, three additional action recognition datasets, and ten
comprehensive MLLM video understanding benchmarks.

6 ETHICS STATEMENT

This work utilizes established human activity benchmarks and trains the resulting LLaVAction
model exclusively on data containing common daily activities. Given the benign nature of the train-
ing data and the focus on routine human behaviors, we anticipate minimal ethical concerns. All
human activity data used comes from publicly available datasets that have been previously vetted by
the research community.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide an anonymized codebase as supplementary material contain-
ing the core components of this work, including the LLaVAction model architecture and benchmark
construction methodology. Complete code, trained models, and detailed experimental configurations
will be made publicly available upon paper acceptance.
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A METHODS: LICENSING INFORMATION

Code/Dataset License
LLaVA-NeXT Apache-2.0
AVION MIT
TIM CC-NC-SA-4.0
EPIC-KITCHENS-100
Dataset 55 and extended NC-Government
EPIC-KITCHENS-100
Annotations CC-NC-SA-4.0
lmms-eval MIT and Apache-2.0

Table 9: List of codes and datasets with their corresponding licenses.

B METHODS: GPT-4O DISTILLATION.

Due to the cost, we sample 4 frames per annotated video clip to go over the training set of EPIC-
KITCHENS-100.

We first get the caption corresponding to all video clips in the training set, and then we use the
captions obtained to create open-ended question-answers. We show the corresponding prompts for
the generations of captions and open-ended question-answers as follows.

B.1 GPT-4O AND GPT-4O-MINI ANNOTATION PROMPT FOR THE CAPTION TASK.

You are viewing video frames from an egocentric perspective and
you are the person. Describe the video frames in detail and
reason about the actions you are performing. You will be provided
with the human-annotated ground-truth for the action, but you
should independently come to your own conclusion.

If you disagree with the human annotation, indicate "true" in
the "disagree with human annotation" field of your response,
and provide your reasoning without mentioning the ground-truth
answer. This will keep your reasoning clean. If you
agree with the human annotation, indicate "false" in the
"disagree with human annotation" field and provide your reasoning
without referencing the ground-truth to maintain a clean
description. The true ground-truth action is {gt answer}. Your
reasoning steps should include supporting evidence for the action,
such as the duration of the video, the sequence of actions the
person performs, the objects they interact with, and the overall
context of the video.

As a general guideline, for videos longer than 3 seconds,
provide detailed reasoning steps, and for videos shorter than 3
seconds, generate less detailed reasoning. The video duration
is {end second - start second:.3f} seconds. Make sure you use the
first-person perspective in your reasoning.

B.2 GPT-4O AND GPT-4O-MINI ANNOTATION PROMPT FOR OPEN-ENDED QUESTION
ANSWERING

Your job is to create 3 question-answer pairs based on the text
below. The text contains a first-person narrative of video
frames from an egocentric perspective of a person interacting with
objects in a kitchen. caption text You can ask questions such

1

https://github.com/LLaVA-VL/LLaVA-NeXT/tree/79ef45a6d8b89b92d7a8525f077c3a3a9894a87d
https://www.apache.org/licenses/LICENSE-2.0
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as: What object am I interacting with? What objects are visible
in the video? What is the sequence of the atomic actions I am
performing? Make sure your questions can be answered based on
the information provided in the text. Do not ask questions that
require additional context or information beyond what is given.

C METHODS: LLAVACTION TASK PROMPTS

C.1 LLAVACTION CAPTION PROMPT

Describe in details what you see from the video frames. Try to
focus on what you are doing.

C.2 LLAVACTION PERSPECTIVE PROMPT

Egocentric. For the EgoSchema benchmark, given that our LLaVAction-7B is trained with egocen-
tric perspective prompt on EPIC-KITCHENS-100, we use the same egocentric perspective prompt
when we evaluate our model on EgoSchema benchmark.

You are seeing this video from egocentric view and you are the
person. Your hands are sometimes interacting with objects. What
action are you doing?

Allocentric.

The video is taken from egocentric view. The person’s hands are
sometimes interacting with objects. What action is the person
doing?

C.3 LLAVACTION TEMPORAL DETECTION PROMPT

The provided video contains an action {ACTION NAME} that lasts
2.96 seconds. What is the relative start and end time of the
action in seconds? Format it as ’start timestamp: end timestamp’
and round to 2 decimal places.

C.4 LLAVACTION DIRECT PREDICTION PROMPT

What action are you performing? Give a short sentence such as
’move knife’.

C.5 LLAVACTION PRIOR ACTION LEARNING PROMPT

{prev2 offset} seconds ago, you started an action
{prev2 narration}. {prev1 offset} seconds ago, you started
an action {prev1 narration}. What action are you currently
performing? Here are the options of actions you can select:

C.6 DIFFICULTY LEVEL ASSESSMENT PROMPT

You are analyzing a multiple-choice question for fine-grained
action recognition. Your task is to rate the difficulty of
distinguishing between the options based on how similar they are
to each other and the ground truth answer.

Ground Truth Answer: gt answer

Options: options text

Please analyze the semantic similarity between the options and
rate the difficulty on a scale of 1-4:
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- 1 (Very Easy): Options are very different from each other and
the correct answer is obvious

- 2 (Easy): Options have clear differences, correct answer is
fairly obvious

- 3 (Medium): Options have moderate similarity, requires some
careful consideration

- 4 (Hard): Options are quite similar, subtle differences make it
challenging

Consider factors like:

- Semantic similarity between action descriptions

- Specificity vs generality of actions

- Whether options describe similar but distinct actions

- How confusable the distractors are with the ground truth

Respond with only a single number (1-4) representing the
difficulty score.

D AVION AS OOD DISTRACTORS

We utilized TIM’s (Chalk et al., 2024) predictions to build our EPIC-KITCHENS-100-MQA bench-
mark. When we use similar ideas to build the hard distractor training set, it results in IID setting if
we still use TIM’s (Chalk et al., 2024) predictions. Methods could directly overfit on TIM’s choice
combination to obtain better performances instead of contrasting fine-grained actions. Therefore, we
used AVION’s (Zhao & Krähenbühl, 2023) predictions during training to serve as an OOD setting.

Here, we provide three experiments to support using AVION can be an OOD setting. First, we cal-
culated the top-1 agreement percentage (65%) and top-5 overlap percentage (45%) between AVION
and TIM in EPIC-KITCHENS-100’s validation set, suggesting a considerable difference in distri-
bution, especially when K is larger.

Additionally, we computed the Jensen–Shannon Divergence (JSD) between the softmax outputs of
Avion and Tim across the validation set (9668 samples). The mean JSD was 0.674 ± 0.089, with a
95% confidence interval of [0.672, 0.765]. We obtained a p-value < 0.001 and a Cohen’s d of 7.57,
indicating a large and statistically significant difference between Avion and Tim. As a consequence,
their generated distractors should be seen as coming from two different distributions.

An important signature of the IID vs. OOD argument is that OOD is less vulnerable to overfitting
when giving the model more chances to explore the training data. Following our OOD setting that
uses Avion distractors for training and TIM distractors for testing, we performed experiments that
vary K in both training and testing, for K = 5, 10, 20, we got 74.3, 69.5, 64.1, respectively. Since
test-time distractors are generated by TIM and training-time distractors are generated by AVION,
we believe increasing K in training introduces overfitting, and thus it does not generalize well to
TIM’s distractors, which further supports our rationale for the OOD setting.

E ADDITIONAL ABLATIONS

E.1 ACTION TOKEN DESIGN ABLATION

Our action token design (Section 3.3) effectively sees and encodes action-related video information,
and hence benefits the question-answering task. To further support our action token design, we
implement several other token-aggregation methods. Specifically, our action token is one learnable
token added between the visual tokens and text tokens and is supervised in the last layer with the
action classification loss. We hence implement three variants: 1) adding three action tokens and
supervising them with verb, noun, and action separately in the last layer; 2) adding one action token
and supervising it in the first layer of the MLLM; adding one action token and supervising it across

3
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all MLLM layers. The results are in Table 10 on our benchmark. We can see our action design
performs the best while keeping simplicity.

Token designs Acc.

3 tokens, last layer 68.8
1 token, first layer 66.2
1 token, all layers 31.7
1 token, last layer (Ours) 69.1

Table 10: Action token design ablation study. The top 1 percent accuracy is shown.

E.2 LEAVE-ONE-OUT ABLATION

Remarkably, the 10-point gain over our baseline model cannot be attributed to only a single factor.
We took our full model, i.e., the base plus all added methods, which we call LLaVAction-7B, and
performed a leave-on-out ablation (Table 11). Given our additions adds negligible overhead in the
inference time (only one special vision token added to the baseline model), we then suggest using
our full LLaVAction-7B and techniques in downstream tasks.

LLaVA-Video-7B Acc.

Full (LLaVAction-7B) 74.1
Full w/o adversarial distractors (AVION) 69.7
Full w/o action token 73.6
Full w/o temporal detection 72.2
Full w/o GPT-4o-based reformulation 73.2
Full w/o direct prediction 73.2
Full w/o temporal order learning 72.3

Table 11: Leave-one-out ablation study. Full denotes having all the proposed methods. In each
row we drop one method from the full method and report the resulting performance. 16 frames were
used for both training and testing, and the percent accuracy is shown.

E.3 STRUCTURED ACTION PREDICTION ABLATION

Our proposed two-stage pipeline enables MLLMs to fairly compare and outperform other SOTA
action recognition methods. MLLMs directly output free texts, which makes it hard to find an exact
match with the action labels in the dataset, especially when the action space is huge and fine-grained.
With an external model applied in the first stage to filter out easy, irrelevant actions, MLLMs can
mainly focus on differentiating between the hard distracting actions. To support that, we evalu-
ated LLaVA-Video-7B with the same external model on the EPIC-KITCHEN action recognition
benchmark (Table 12). We can see that the performance of LLaVA-Video-7B is much worse, even
with an external model, showing that it struggles to solve the hard distractors. Meanwhile, we
further implement another way (denoted as ‘Multi-round appending’) to achieve structured action
output. Specifically, we first prefill and store the KV Cache for video+prompt+question to avoid
repeated computation. After that, we append each action class to compute the text cross-entropy
loss. The action class with the lowest loss is selected as the final action prediction. We test for
both the zero-shot LLaVA-Video-7B and our LLaVAction models on the EPIC-KITCHEN action
recognition benchmark (Table 12). The results show our two-stage action prediction pipeline can
obtain much better performance under both fine-tuned and zero-shot settings. Most importantly,
the multi-round appending is extremely time-consuming. Although KV Cache storage avoids com-
puting video+prompt+question repeatedly, the model still needs to infer 4K times to obtain the
correct answer. Evaluating the model on EPIC-KITCHENS-100’s validation set (9668 samples)
takes around 820 GPU hours when using the multi-round appending approach. In comparison, our
two-stage approach only takes 4.3 GPU hours, making our two-stage method 190 times faster.
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Methods Acc.

LLaVA-Video-7B

Multi-round appending 10.3
Two-stage (Ours) 26.5

LLaVAction-7B

Multi-round appending 40.0
Two-stage (Ours) 58.3

Table 12: Structured action prediction ablation study. The top 1 percent accuracy is shown.

Methods Action label Action narration

zero-shot LLaVA-Video-7B 26.5 35.7
zero-shot LLaVA-OV-7B 19.6 28.9
zero-shot LLaVA-OV-0.5B 24.8 32.0

Table 13: Quantitative results for action label vs. action narration. Models are inferred with
eight frames as inputs.

F QUALITATIVE EXAMPLES

F.1 COMPARING ACTION NARRATION AND ACTION LABEL IN EPIC-KITCHENS-100

The action labels in EPIC-KITCHENS-100 originate from the raw action narrations that are curated
and compressed by a combination of word clustering and iterative manual refinement (Damen et al.,
2022). However, this compression might change the semantic meaning of both nouns, verbs and
the way they are combined. As a result, large language models that are sensitive to the meaning
of words can be misled (see comparisons in Appendix Figure 5 and Table 13). While we show
SOTA results using the action label, we note that we can achieve better performance if we use the
uncompressed, original narrations. We hope that our work could inspire future work to study the
best text representation of actions to train and evaluate MLLMs in action recognition.

Qualitatively: we illustrate some examples of choices represented in the action label manner (Ap-
pendix Figure 5). We show the ground truth option in blue and the prediction of LLaVAction-7B in
pink. We can see LLaVAction-7B’s predictions also make sense in those examples and hence cause
ambiguity across choices. Instead, the corresponding action narration fits better to the language’s
nature and can better describe the video content with less ambiguity.

Quantitatively: furthermore, we also quantify MLLMs’ zero-shot performance (LLaVA-OV-0.5B,
LLaVA-OV-7B, LLaVA-Video-7B) when using action labels or action narrations as inputs (Table
13). The inferior zero-shot performance of all 3 evaluated models when tested on the action labels
as action representation supports our qualitative observations that action labels are less ideal than
narrations for MLLMs.

F.2 DIFFERENT CHOICES COMPARISON

Here, we show examples of choices generated by random sampling, AVION top-5 predictions, and
TIM top-5 predictions (Appendix Figure 6). We can see that the randomly selected choices have
many trivial choices that can be easily distinguished with the correct answer. In comparison, choices
generated based on AVION and TIM top-5 predictions become much more similar to the correct
answer and exhibit features such as similar object/scene, temporal orders or object relationships that
are emphasized by other benchmarks.

F.3 LLAVACTION CAPTION

Here, we show one video caption example of different models including GPT-4o, LLaVA-Video-
7B and our LLaVAction-7B (Appendix Figure 7). We can see the interacting object (pizza piece) is
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pretty small in the video and there are also many other distracting objects. Both GPT-4o and LLaVA-
Video-7B cause ’hallucinations’ in their descriptions. For example, GPT-4o thinks the person holds
the slice with both hands. Instead, LLaVAction-7B still retains the video caption ability and can
generate plausible descriptions of the video.

G SUB-CATEGORY PERFORMANCE COMPARISONS ON THE ADDITIONAL
BENCHMARKS

Snice MVBench and LongVideoBench also have sub-category measurements with many of them re-
lated to action understanding, we also show the sub-category performances on these two benchmarks
in this section.

G.1 PERFORMANCE COMPARISON ON SUB-CATEGORIES OF MVBENCH

Here we show the performance comparison between LLaVA-Video-7B and our LLaVAction-7B on
sub-categories of MVBench. We can see LLaVAction-7B boost the performance on many action-
related categories such as action count, action sequence and fine-grained action, etc.

Tasks LLaVA-Video-7B LLaVAction-7B (Ours) Difference

Action antonym 76.0 75.0 -1.0
Action count 57.0 65.0 8.0
Action localization 61.0 63.5 2.5
Action prediction 62.0 59.0 -3.0
Action sequence 70.5 72.5 2.0
Character order 74.5 79.0 4.5
Counterfactual inference 50.0 52.0 2.0
Egocentric navigation 30.5 28.0 -2.5
Episodic reasoning 53.5 54.0 0.5
Fine-grained action 48.0 49.0 1.0
Fine-grained pose 54.5 61.5 7.0
Moving attribute 71.0 72.5 1.5
Moving count 44.0 43.0 -1.0
Moving direction 35.5 31.0 -4.5
Object existence 60.0 59.0 -1.0
Object interaction 84.5 83.5 -1.0
Object shuffle 41.5 44.0 2.5
Scene transition 93.5 90.5 -3.0
State change 54.0 61.5 7.5
Unexpected action 81.5 79.0 -2.5

Table 14: Sub-category comparison with LLaVA-Video-7B on MVBench.

G.2 PERFORMANCE COMPARISON ON SUB-CATEGORIES OF LONGVIDEOBENCH

Here we show the performance comparison between LLaVA-Video-7B and our LLaVAction-7B on
sub-categories of LongVideoBench. We can see LLaVAction-7B also boosts the performance on
many action-related categories such as event before/after, text-referred object attribute, and object-
before/after object.

G.3 PERFORMANCE COMPARISON ON SUB-CATEGORIES OF VIDEOMME

Here we show the performance comparison between LLaVA-Video-7B and our LLaVAction-7B on
sub-categories of VideoMME. Our model did not improve the action recognition performance on
VideoMME possibly due to the domain gap between VideoMME and EPIC-KITCHENS-100.
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Tasks LLaVA-Video-7B LLaVAction-7B (Ours) Difference

Event-Referred object 72.31 69.23 -3.08
Event-Before/after event 67.02 67.02 0.0
Object-Referred event 67.82 64.37 -3.45
Object-Before/after object 57.58 59.09 1.52
Scene-Referred object attribute 71.59 70.46 -1.14
Scene-Referred event 72.04 66.67 -5.38
Scene-Referred object 63.89 63.89 0.0
Scene-Referred object attribute change 55.56 52.78 -2.78
Scene-Referred object tracking 65.43 66.67 1.23
Sequence of scenes 41.24 41.24 0.0
Text-Referred object attribute 59.49 62.02 2.53
Text-Referred event 56.92 56.92 0.0
Text-Referred object 59.21 59.21 0.0
Event before/after text 50.68 58.90 8.22
Object before/after text 58.11 52.70 -5.41
Text-Referred object attribute change 47.56 50.00 2.44
Text-Referred object tracking 32.88 32.88 0.0

Table 15: Sub-category comparison with LLaVA-Video-7B on LongVideoBench.

H EXTENDED DISCUSSION

Egocentric vs. Allocentric perspective. MLLM can be assigned with different roles before seeing
the video. Since the videos are taken from the first-person perspective, we believed the egocentric
perspective aligns better with the LLM pretraining data. Therefore, we switch from the third-person
(allocentric) perspective to the first-person (egocentric) perspective to better guide the model. We
present the prompts in the Appendix C.2. When we fix the distractors from random sampling, using
the egocentric prompt gives a 0.5 point improvement over using the allocentric prompt on EPIC-
KITCHENS-100-MQA.

Alternative approaches we tested. We also tested a few alternative approaches to improve MLLMs
in our benchmark. We tried self-consistency predictions, which do not yield improvements, perhaps
due to the task being vision-centric. Additionally, we explored multi-modal chain-of-thought (COT)
reasoning by prompting the model to generate a caption prior to addressing the multi-question an-
swering task. However, we found that the model exhibited reluctance to perform this action, despite
being capable of generating captions or answering multi-choice questions independently. A variant
of it is to inference the model twice, so we have the caption first and feed that into the instruction of
answering multi-choice question task, similar to (Zhang et al., 2024d). While a minor improvement
was observed, we think it is not worth the 2X compute. We believe that video action recognition is
a good way to explore video reasoning for MLLMs. However, we leave COT improvements on this
task for future work.
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Tasks LLaVA-Video-7B LLaVAction-7B (Ours) Difference

Categories: Artistic Performance 68.9 69.4 0.5
Categories: Film & Television 71.7 72.8 1.1
Categories: Knowledge 76.0 75.4 -0.6
Categories: Life Record 71.7 71.7 0.0
Categories: Multilingual 67.8 61.1 -6.7
Categories: Sports Competition 65.6 66.4 0.8
Task Categories: Action Reasoning 69.5 69.1 -0.4
Task Categories: Action Recognition 69.0 68.4 -0.6
Task Categories: Attribute Perception 83.8 83.3 -0.5
Task Categories: Counting Problem 48.1 46.3 -1.8
Task Categories: Information Synopsis 87.0 86.7 -0.3
Task Categories: OCR Problems 73.4 74.1 0.7
Task Categories: Object Reasoning 73.6 73.3 -0.3
Task Categories: Object Recognition 75.7 77.1 1.4
Task Categories: Spatial Perception 68.5 72.2 3.7
Task Categories: Spatial Reasoning 82.1 82.1 0.0
Task Categories: Temporal Perception 76.4 78.2 1.8
Task Categories: Temporal Reasoning 51.4 52.0 0.6
Video Sub Categories: Acrobatics 65.6 64.4 -1.2
Video Sub Categories: Animation 58.9 60.0 1.1
Video Sub Categories: Astronomy 77.8 77.8 0.0
Video Sub Categories: Athletics 66.7 73.3 6.6
Video Sub Categories: Basketball 54.4 51.1 -3.3
Video Sub Categories: Biology & Medicine 78.9 78.9 0.0
Video Sub Categories: Daily Life 78.9 75.6 -3.3
Video Sub Categories: Documentary 74.4 76.7 2.3
Video Sub Categories: Esports 62.2 60.0 -2.2
Video Sub Categories: Exercise 58.9 67.8 8.9
Video Sub Categories: Fashion 68.9 70.0 1.1
Video Sub Categories: Finance & Commerce 80.0 80.0 0.0
Video Sub Categories: Football 72.2 75.6 3.4
Video Sub Categories: Geography 76.7 75.6 -1.1
Video Sub Categories: Handicraft 77.8 76.7 -1.1
Video Sub Categories: Humanity & History 66.7 67.8 1.1
Video Sub Categories: Law 82.2 80.0 -2.2
Video Sub Categories: Life Tip 70.0 67.8 -2.2
Video Sub Categories: Literature & Art 80.0 73.3 -6.7
Video Sub Categories: Magic Show 62.2 65.6 3.4
Video Sub Categories: Movie & TV Show 68.9 70.0 1.1
Video Sub Categories: Multilingual 67.8 61.1 -6.7
Video Sub Categories: News Report 84.4 84.4 0.0
Video Sub Categories: Other Sports 72.2 72.2 0.0
Video Sub Categories: Pet & Animal 78.9 78.9 0.0
Video Sub Categories: Stage Play 82.2 80.0 -2.2
Video Sub Categories: Technology 72.2 77.8 5.6
Video Sub Categories: Travel 75.6 77.8 2.2
Video Sub Categories: Variety Show 65.6 67.8 2.2

Table 16: Sub-category comparison with LLaVA-Video-7B on VideoMME.
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Action label options:

A. mix pot

B. mix mushroom

C. put fish

D. mix chopstick

E. mix food

Narration: put cafetiere 

strainer into cafetiere

Narration: stir the food in 

the pot with chopsticks

Action label options:

A. insert knife

B. put spatula


E. wash knife

C. put spoon

D. put knife


Narration: put down 

spoon and knife

Action label options:


B. insert jug


D. put jug

E. take jug

A. insert coffee maker


C. put coffee maker


Figure 5: Action labels vs. narrations. Blue option denotes ground truth and the pink option
denotes LLaVAction-7B’s prediction. Action labels usually reduce multiple nouns into one noun,
resulting in ambiguity that could mislead a MLLM. Note that the narration also contains crucial
particles with the phrasal verbs to clarify the meaning such as “put down”, “put into”.

Random Avion TIM

A. get garlic paste

B. breaking the paper towel

C. put chicken into bowl

D. put green beans

E. take paper

A. pick up onion peeling

B. open tap

C. squeeze ball of dough

D. close tap

E. take paper

A. hand cloth

B. squeeze ball of dough

C. take paper

D. squeeze plastic bag

E. pick up dough

A. take parsley

B. wash cloth

C. rinse peach

D. reconstruct lemon squeezer

E. scrub fork

A. wash cloth

B. wipe sink

C. clean counter

D. squeeze out sponge

E. close tap

A. close tap

B. wash sink

C. squeeze sponge

D. rinse sponge

E. wash cloth

A. open bin

B. unwrap kitchen towel

C. take bin out

D. pour out bottle

E. open sweetcorn

A. turn off tap

B. turn on water

C. open trash

D. throw something into the bin

E. open bin

A. throw the small thing into the dustbin

B. open bin

C. put down plate

D. open door

E. put down bin

Figure 6: TIM’s choices are harder than AVION and random by introducing more visually
similar objects and actions. Bold option denotes ground truth.

I'm picking up a slice of pizza from a baking tray lined 
with parchment paper. The pizza has a unique blue 
color with toppings like olives and mushrooms. I'm 
holding the slice with both hands, examining it closely.

I am holding a piece of pizza with my right hand, and I am folding it in half. 
The pizza has toppings such as cheese, mushrooms, and possibly some 
vegetables. I am doing this over a baking tray lined with parchment paper. In 
the background, there is another plate with more slices of pizza on it.

In the video, I am interacting with a piece of pizza that is placed on a baking tray. The 
sequence of actions involves me using my hands to adjust and turn the pizza slice. This is 
evident as I manipulate the pizza, ensuring it is positioned correctly on the tray. The context 
of the kitchen setting and the presence of other pizza slices nearby supports the action of 
turning the pizza slice, likely to ensure even cooking or to reposition it for serving.

GPT-4o

LLaVA-Video-7B

LL
a
VA

ct
io

n-
7B


O
ur

s

Figure 7: The captioning capability can provide insights into models. A comparison among
LLaVAction-7B, GPT-4o and LLaVA-Video-7B.
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Figure 8: Breakdown of the performance of LLaVAction-7B on Verbs and Nouns. We analyzed
the accuracy per verb and noun in EPIC-KITCHENS-100 for that our LLaVAction-7B (32f), eval-
uated on the validation set with action labels (i.e., the model reported in Table 4 that achieved 58.3
accuracy). There are more nouns than verbs, thus nouns are shown across four subplots for visual-
ization but otherwise are not separated in an intentional way. The number above each bar is the total
per class.
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