
Exploring with Sticky Mittens:
Reinforcement Learning with Expert Interventions

via Option Templates

Souradeep Dutta1, Kaustubh Sridhar1, Osbert Bastani1, Edgar Dobriban1, James Weimer2,

Insup Lee1, Julia Parish-Morris3

1University of Pennsylvania, 2Vanderbilt University, 3Children’s Hospital of Philadelphia

Abstract: Long horizon robot learning tasks with sparse rewards pose a signif-
icant challenge for current reinforcement learning algorithms. A key feature en-
abling humans to learn challenging control tasks is that they often receive ex-
pert intervention that enables them to understand the high-level structure of the
task before mastering low-level control actions. We propose a framework for
leveraging expert intervention to solve long-horizon reinforcement learning tasks.
We consider option templates, which are specifications encoding a potential op-
tion that can be trained using reinforcement learning. We formulate expert in-
tervention as allowing the agent to execute option templates before learning an
implementation. This enables them to use an option, before committing costly
resources to learning it. We evaluate our approach on three challenging reinforce-
ment learning problems, showing that it outperforms state-of-the-art approaches
by two orders of magnitude. Videos of trained agents and our code can be found
at: https://sites.google.com/view/stickymittens

Keywords: Sample-Efficient Reinforcement Learning, Expert Intervention, Op-
tions, Planning with Primitives

1 Introduction

Reinforcement learning is an effective tool to solve difficult tasks such as robot planning and loco-
motion [1] but exploration is still a challenge. Options are an RL tool to circumvent this problem [2].
Designed to achieve intermediate subgoals. For instance, in robot grasping tasks, an option might
enable the robot to grasp a block, which is a subgoal needed to build a tower out of blocks. The goal
is to learn a policy mapping each state to an option, instead of a concrete action to take.

When learning to perform complex visual-motor skills, humans often rely on expert interventions to
help them escape these challenging reward plateaus. For instance, the sticky-mittens experiment [3]
considers infants who have not yet learned to grasp objects. They give a subset of these infants
mittens covered with Velcro hooks and allow them to play with toys fitted with Velcro loops, making
it significantly easier for them to grasp these toys. Even if the Velcro is taken away, these babies
learn how to grasp objects significantly faster than infants not exposed to this experience. In other
words, enabling infants to explore unreachable parts of the state space helps guide them towards
skills that are worth learning. This is a well known phenomenon in developmental psychology,
which extends beyond fine motor skills.

In this paper, we design an RL algorithm based on the idea from the sticky-mittens experiment.
The agent has access to an alternative Markov Decision Process (MDP) where the agent can leap
multiple states without first learning a policy to do so in the original MDP. We term such a jumping
mechanism an option template. Option templates are described using a set of initial states and a set
of final states. The idea of providing external help in the learning phase is referred to as primitives
or skills in literature. It offers a practical way to speed-up learning in a realistic setting. For instance,

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://sites.google.com/view/stickymittens

using parameterized action spaces for RoboCup in [4], stitching independent behaviors in [5, 6] and
providing action primitives in [7, 8, 9] to mention a few.

In the more typical RL framework the agent first uses reinforcement learning to train an option to
implement the specification of each option template. The issue with this strategy is that, in RL
environments with large state spaces the options learnt need to be of a fairly generic nature, in order
to be useful. Which is hard without a knowledge of the state distribution, where the options will be
invoked. Using option templates we decouple the implementation of an option from its utility.

In more detail, our algorithm performs an alternating search over policies: at each iteration, it first
optimizes the high-level policy over the current option templates, and then learns options to imple-
ment the option templates. In our experiments, we demonstrate that by leveraging option templates,
our algorithm can achieve orders of magnitude reduction in sample complexity compared to the
typical strategy of learning the options upfront and then planning with these learned options.

Contributions: Our contributions are: (1) an RL algorithm that leverages option-templates, and
(2) an empirical comparison with state-of-the-art RL techniques on three challenging environments,
demonstrating order-of-magnitudes reduction in sample complexity.

2 Background
We consider the RL setting where an agent interacts with an environment modeled as an MDP [10].
Definition 2.1 (MDP). A Markov Decision Process (MDP) is a tuple E = (S,A,P,R, �, I), where
S ✓ Rn is the set of states, A ✓ Rm is the set of actions, P(s0|s, a) is the probability of transitioning
from state s to s

0 upon taking action a, R(s, a) is the reward accrued in state s upon taking action
a, � 2 [0, 1) is the discount factor, and I is the initial state distribution.

Figure 1: Option vs Option
Template.

The value of a state for policy ⇡ is the expected return R⇡(s0)
starting from state s0, while executing the policy ⇡ at every step,
at = ⇡(st). The optimal policy ⇡

⇤ maximizes the reward start-
ing from the initial state distribution–i.e., ⇡⇤ = argmaxV I(⇡),
where V I(⇡) = Es02I [R⇡(s0)]. Semi-MDPs (SMDPs) extend this
framework by allowing temporally extended actions—i.e., policies
executed over multiple steps—called options [2].
Definition 2.2 (Option). An option o is a tuple o := (I, T,⇡),
where I ✓ S are initial states, T : S ! [0, 1] the termination
condition, and ⇡ : S ! A is a policy.

For now, assume that we have a set O of options available for an MDP. Intuitively, options constrain
the search space over policies, thereby guiding exploration performed by the agent towards more
promising action sequences. We now consider policies ⇧ : S ! O that map a state s 2 I (i.e.,
s is a valid initial state for o) to an option o = ⇧(s). The agent uses option policy ⇡ until the
termination condition holds. More precisely, after taking action a = ⇡(s) and transitioning to state
s
0
⇠ P(·|s, a), it stops using ⇡ with probability T (st+1) and chooses another option o

0 = ⇧(s0);
otherwise, it continues using ⇡.

Suppose that an option o is invoked at time t in state st, and the system follows a k step trajectory
Tro(st, k) = (st, at, rt, st+1, . . . , st+k). We consider policies such that for t  i < t + k, the
action ai depends on the entire history Tro(st, i) from t until t + i. This renders the behavior non-
Markovian. Denoting the set of all such state-action trajectories as H , we can allow option policies
⇡ : H ! A, and termination conditions T : H ! [0, 1] to be semi-Markovian. Now, we recall the
definition of Semi-MDPs as an extension of MDPs:
Definition 2.3 (Semi-MDP, Sutton et al. [2]). A semi-MDP is a tuple (S,O,P,R, �, I), where S

is a set of states, O is a set of semi-Markovian options, P is the transition probability between states,
R is the reward function, � 2 [0, 1) is the discount factor, and I is the initial state distribution.

The state-prediction part of the model for taking an option o, in state s 2 I and transitioning to s
0,

is given by Sutton et al. [2]: P (s0|s, o) =
P

1

k=1 �
k
p(s0, s, k), where p(s0, s, k) is the probability

that the option terminates in s
0 after k steps from the time the option is invoked. The option-

value form of standard value iteration is, for s 2 S and o 2 O, [2, eq. 12], [11] Q
⇤

O
(s, o) =

R(s, o) +
P

s02S
P (s0|s, o)maxo02O Q

⇤

O
(s0, o0), where s

0 is the state the system reaches after exe-
cuting option o starting from state s. SMDP value learning updates the Q-values at the end of each

2

option termination as [2, p. 195]: Qi+1(s, o) Q
i(s, o)+↵[rc+�

k maxo02O Q
i(s0, o0)�Qi(s, o)],

for similar definitions of k, s, s0, with rc being the cumulative discounted reward over the time hori-
zon, and ↵ 2 (0, 1) the learning rate. Choosing a function approximator parameterized by ✓ to
represent Q(s, o; ✓), with a loss given by : L(✓i) = [r + �

k maxo02O Q
i(s0, o0; ✓i)�Q

i(s, o; ✓i)]2,
allows one to use standard Q-learning [12] methods to train with options.

3 Learning with Option Templates

3.1 Option Templates

Motivated by the sticky-mittens experiment, we consider an environment where in certain states, the
agent can call a “help switch”, called an option template, that immediately transitions it from a state
st to a different state st+k; this transition captures the desired result of executing an (unimplemented)
option. We denote a trajectory of this MDP starting from state st under policy ⇡ by Tr⇡(st).

Definition 3.1 (Option template). Option template ao is a tuple (I, T, P), where I ✓ S is the
initial states, T : S ! [0, 1] is the termination condition, and P is a distribution over states s such
that T (s) = 1.

An option template similar to an option, shifts control to the expert until the termination condition is
reached; this termination condition T is intended to capture the satisfaction of some sub-goal along
with a timeout mechanism. Assume the termination condition at time t + k of an option template
taken in state st is of the form T (st, k) = Fo(st+k)_(k > k

⇤), where the function Fo : S ! {0, 1}
captures visitation of some key states, and k

⇤ is an upper limit on the number of steps.

We denote the set (or subset) of option templates by AO. By the end of training, the agent must learn
a policy to implement each option template that it uses (i.e., the final policy cannot depend on option
templates). To ensure feasiblity, we assume there is an a priori unknown policy ⇡o such that Tr⇡o(st)
satisfies T (denoted as Tr⇡o(st) |= T) with probability at least 1� �, for some hyperparameter � 2
[0, 1). Formally, the probability of success of a given policy ⇡o can be expressed as P((⇡o, I, E) |=
T) � (1 � �)—i.e., the trajectory starting from a state in I under the control of ⇡o in environment
E satisfies T with probability at least 1� �. This success probability can be estimated by empirical
rollouts of ⇡o.

We organize option-templates in a hierarchical fashion depending on degrees of help. Option tem-
plates that traverse longer sequences of transitions allow faster learning due to fewer decisions. Thus,
we consider a sequence of environments E0

, E
1
, . . . , E

n�1 = E , equipped with option templates of
varying capabilities organized in a hierarchical fashion.

Definition 3.2 (Environment Level E l). An environment E l at learning level l is the original envi-
ronment E with the primitive actions A replaced by option templates Al

O
.

The goal of the levels is to gradually increase difficulty of the learning task while guiding the agent
at each level in a way that is similar to curriculum learning [13]. In particular, learning longer
timescale option templates typically precedes learning shorter ones.

Assumption 3.3 (Realizability). For any option template ao 2 A
l

O
at level l, given by (I, T, P),

there is a policy ⇡
ao : S ! A

l+1
O

at the following level l+ 1 such that for any s0 2 I , Tro(s0) |= T

with probability at least 1� �.

That is, any option template in the current level is realizable by a policy in the following level.

3.2 Learning with Option Templates

Our algorithm for RL with option templates is presented in Algorithm 1.

3

Algorithm 1 Learning with Option Templates
Input: Environments [E0

, E
1
, . . . , E

n�1]
Output: A set of options D = {o

q
| q 2

Q} that provides an implementation of each
option template a

q
o
, where q 2 Q indexes the

option templates.
1: Initialize D = {}

2: for level l 2 {1, . . . , n} do
3: Let Al�1

o
be the set of option templates

on level l � 1
4: Build reward functions {Rq | a

q
o
2

A
l�1
o

}

5: for a
q
o
2 A

l�1
o

do
6: ⇡

q
o
=LearnOptionPolicy(E l

,Rq, a
q
o
,D)

7: o
q := (aq

o
,⇡

q
o
)

8: D = D [{o
q
}

9: end for
10: end for
output D

Figure 2: Visualization of learning with op-
tion templates.

Algorithm 2 Learn Option Policy
Input: Environment E , Reward Function R,
Option template ao = (I, T, P), Set D of op-
tions
Parameter: Threshold �, Max Episodes L
Output: Policy ⇡o as an implementation of
ao

1: Initialize policy ⇡o

2: for episode = 1, . . . , L do
3: ExecutionStack = []
4: o Top-level option from D (or ao if

D = ?)
5: Push o onto ExecutionStack
6: Sample initial state s ⇠ I

7: while not done do
8: o Pull option from Execution-

Stack
9: o

0
 ⇡o(s)

10: if IsOption(o0, ao) then
11: (⇡o, s)

StepAndTrain(E ,R,⇡o, s)
12: else if ¬HasImplementation(o0,D)

then
13: s Teleport(o0, s)
14: else
15: Push o

0 to ExecutionStack
16: end if
17: end while
18: Exit loop if AvgReward � 1� �

19: end for
output ⇡o

Intuitively, at each iteration, it “flattens” the option templates used on the previous level l� 1 based
on the ones available at the current level l. At each level l, we first design reward functions Rq

for each option template a
q
o
2 A

l�1
o

(Line 4); this reward function is later used to learn a policy
⇡
q
o

implementing a
q
o
. For the base case l = 1, we take the reward function Rq to be the reward

function for the original environment E ; thus, learning the policy for the option-template at this
level amounts to accomplishing the goals of E using the (unique) option template a

q
o
2 A

0
o
. For

subsequent iterations l > 1, Rq encodes the goal of achieving the termination condition of aq
o
, based

on its termination condition (Line 4).

Given Rq , our algorithm learns a policy that maximizes Rq using the options available at the cur-
rent level l (Line 6). For l = 1, we assume there is a single option template A

0
o
= {a

q
o
}; the

corresponding policy ⇡
q
o

aims to achieve the goal in the original environment E , so we refer to the
resulting option o

q = (aq
o
,⇡

q
o
) as the top-level option. For l > 1, ⇡q

o
implements an option template

a
q
o
2 A

l�1
o

at level l � 1 using the option templates available at the current level l. Importantly, this
process leverages policies learned so far to generate initial states from which to learn ⇡

q
o
. Once we

have learned ⇡
q
o
, we add the resulting option o

q = (aq
o
,⇡

q
o
) to D.

Recall that the termination condition for an option starting at state s0 is T (s0, k⇤) = Fo(sk)_ (k >

k
⇤). The goal of training ⇡

q
o

is to satisfy this condition with high probability. Hence, when training
policy ⇡

q
o

for option a
q
o
, we choose the reward function Rq to be Fo, and additionally restrict the

length of each episode to k
⇤ time-steps.

Learning option policies. Next, we describe LearnOptionPolicy, which Algorithm 2 uses to learn
a policy for option template a

q
o
. For simplicity, we denote the current environment by E , the current

reward function by R, the option template by ao, and the target policy by ⇡o. The goal of ⇡o is to
achieve the termination condition T for ao = (I, T, P) from initial states s 2 I .

4

(a) Visualization of craft envi-
ronment for the get gem task:
The agent (red square) uses the
axe in its inventory to break the
stone and retrieve the gem.

(b) Visualization of fetch and
stack environment: Each block
has to be placed at the location
represented by the color-coded
sphere.

(c) Visualization of the Google football
environment: The agents learn to use 11
players of the left team and score goals.

Figure 3: Craft, Fetch and GFootball environments.

One challenge is sampling an initial state s 2 I from which to train ⇡o. To do so, this subroutine
leverages access to the previously learned options D; it uses options in D until it arrives at a state
s 2 I where ao is called. In more detail, it samples s by executing the top-level option in D until
it reaches a state where ao is called. In general, executing an option o either relies on executing its
policy ⇡o in D if it exists, or by executing its “teleport” functionality. Our algorithm keeps track
of the execution of options for which ⇡o exists using a stack, which is initialized with the top-level
option (Line 3-5). The structure is visualized in Figure 2. Then, while executing the current option
o, it obtains the next option o

0 to execute, which is processed in one of three ways:
• If o0 is the option for ao (i.e., it has a matching initial state, termination condition, and a

current policy ⇡̃o, checked by IsOption on Line 10), then it takes steps to train ⇡o (Line
11); as described below.

• If o0 does not have an implementation (checked by HasImplementation on Line 12), then it
teleports—i.e., we sample s ⇠ P (Line 13).

• Otherwise, o0 has an implementation, so it pushes o0 onto the stack (Line 15).
Finally, once we are at a state s where ao is called, the subroutine StepAndTrain takes control and
trains ⇡o using a standard reinforcement learning algorithm—i.e., by collecting rewards from s and
taking a policy gradient step once it reaches a terminal state or hits the timeout of k⇤ steps. Then,
the current episode continues from the state reached.Once the current episode reaches a final state,
then the algorithm continues to the next episode. This process continues until the average reward of
⇡o exceeds a threshold 1� �, or until a maximum number of episodes L is reached.

4 Experiments

4.1 Experiments on Planning tasks in the Craft Environment
Description of environment: The craft environment [14, 15] is a 2D world based on the Minecraft
game, where an agent has to complete various hierarchical tasks with sparse rewards. The envi-
ronment is represented by a 12⇥ 12 grid with cells containing raw resources (e.g., WOOD, IRON),
crafting areas (e.g., WORKBENCH), obstacles (e.g., STONE, WATER) and valuable items (GOLD or
GEM). There are four move actions (up, down, left, right) and a special USE action. To grab an item,
the agent moves to a neighboring cell and applies the USE action. Table 1 shows the hierarchical
arrangement of the get gem task; the details for get gold are in the Appendix.

Option template at each environment: Our option templates (in Table 1) capture the hierarchy
of task-dependencies in the environment. For example, it is easier to get GEM when the agent has
access to AXE (see Table 1). Thus, at the topmost level the agent can “ask” for an AXE, and via
primitive actions, use it to break stone and get GEM to realize the importance of an AXE.

Implementation: In each task of each learning level, we use a vanilla actor-critic algorithm [16]
with a network with one hidden layer of 100 neurons for both the actor and critic. The input to the
network is a feature vector consisting of one-hot encodings of the items in each cell in a 5⇥ 5 grid

5

Task Policy Sketch
get wood -
get iron -

make stick get wood ! use anvil
make axe make stick ! get iron

! use workbench
get gem make axe ! break stone

Task Learning option templates
level

get gem 1 {give axe, primitive actions}
make axe 2 {give stick, give iron, primitive actions}

make stick 3 {give wood, primitive actions}
get iron 3 {primitive actions only}

get wood 4 {primitive actions only}
Table 1: Get gem hierarchical task: [LEFT] policy sketches [14] & [RIGHT] option templates for
each task in the hierarchy. The order of the rows represent the learning order in the two alternatives.

Figure 4: Average reward vs episodes for solving each hierarchical sub-task. We compare option
templates (ours) and option-value iteration (baseline) for the task get gem in craft environment.

around the agent along with a one-hot encoding of its inventory. At the topmost level, the agent is
given a reward of 1 if and only if GOLD or GEM are obtained. After training, we obtain a actor
network for individual tasks at different learning levels.

Comparison with option-value iteration: We implement option value iteration [2] as a compari-
son with standard hierarchical learning. In option value iteration, we learn options bottom-up, using
options learnt at a lower level to accomplish sub-tasks of options at the level above. That is the
agent learns to implement lower level sub-tasks first before it learns how to use them. We plot av-
erage reward as a function of episodes for each sub-task of get gem in Figure 4; for get gold the
Figure is in Appendix A.2. Figure 4 shows that option templates obtain higher average rewards than
option-value iteration at all levels (detailed discussion in Appendix A.2).

Task Episodes
Curriculum learning Option templates

[14]
get gem > 3⇥ 106 12826.0 ± 2613.0

make axe > 2.7⇥ 106 11283.0 ± 2255.0
make stick > 1.3⇥ 106 5026.0 ± 2231.0

Table 2: Comparison of total episodes (and stan-
dard deviations over ten random seeds) to train an
agent to solve the get gem task via option tem-
plates and curriculum learning [14].

Comparison with curriculum learning [14]:
Additionally, we compare our method with the
curriculum learning algorithm employed in An-
dreas et al. [14] and observe a 100 fold de-
crease in the number of episodes required to
train an agent for the get gem and get gold tasks
(see Table 2 for get gem and Appendix for get
gold). For the proposed method, we report the
total episodes it requires for average reward to
stay consistently above 0.8. Averaged over ten
runs for different random seeds. The calcula-
tion of the total episodes for each task, includes
all the sub-tasks in its hierarchy. For instance,
the episodes for get gem completion via option templates include episodes required for complet-
ing make axe, make stick, get wood and get iron. The latter two tasks are straightforward, and not
included in the table.

4.2 Experiments on Manipulation Tasks in the Fetch and Stack Environment
Description of environment: This continuous action space environment, introduced in Lanier [17],
consists of a robotic arm and a platform with blocks placed on it in random positions; see Figure 3b.
The goal is for the arm to move, lift, and release the colored blocks in the location and stacking order
specified by the corresponding color-coded spheres. The action consists of torques for 3 degrees-of-
freedom actuation, and an on-off control input opens and closes the gripper. The environment offers
a sparse reward for each block placed at the goal location.

6

Task(s) level Option templates
Fetch & Stack
N blocks

1 {Place block i at its goal
location}i=1,...,N

Place block i at
its goal location

2 {Reach block i, Pick
block i & reach goal,
Release block i & lift,
Do nothing}i=1,...,N

Table 3: Option templates for fetch & stack.

Task(s) level Option templates
Win game 1 {Attack and score

goals, Defend}
Attack and
score goals

2 {Maintain ball pos-
session, Charge to
the opponent’s goal,
and Shoot}

Table 4: Option templates for gfootball.

(a) Average reward vs timesteps
for option templates and the
baseline.

(b) Average reward vs timesteps
for option templates and the
baseline.

(c) Comparison of time steps and corre-
sponding average goal difference.

Figure 5: Results on the Fetch & Stack and GFootball environments.

Learning levels and option templates: We introduce two learning levels with tasks and option
templates described in Table 3. In this environment, the primitive actions are not continuous-space
actions. Instead, at the lowest level (level 2), we expose the agent to options which are implemented
with proportional feedback controllers [18]. Such simple primitives have the ability to improve ex-
ploration and can be easily transferred among different learning scenarios. Further, the hierarchical
structure improves the agent’s learning speed as compared to a case where the agent has to learn to
use the options at the bottom level (2) directly (see Appendix A.3 for more details).

Implementation: We use a standard DQN [12] for each level with four hidden layers of 300
neurons each. The inputs to the agent are the 3D coordinates of the different blocks, their goals, and
the states of the gripper arm. The agent has 150 and 200 steps for stacking three and four blocks,
respectively, in the correct order. We also supply demonstrations to speed up learning.

Baseline: We consider a baseline that directly exposes the agent to all option templates, at level 2
of the hierarchy. Figure 3b shows the average rewards as a function of episodes. As can be seen,
the baseline only recieves one-third reward since it only succeeds in pushing the bottom block to its
location. It does not learn to stack even after twice the number of learning steps as our method. This
demonstrates the challenge in learning longer duration tasks without a higher level guiding policy.

Comparison with Learning with Demonstrations [1]: In learning with demonstrations [1], the
authors use demonstration traces, by combining behavioral cloning along with a Q-filter mechanism
to speed-up the learning. This allows them to evade an expensive exploration phase in the early
stages of the learning. This method takes upwards of 3.5⇥ 108 and 8⇥ 108 timesteps to learn
stacking of three and four blocks respectively which is three orders of magnitude larger than our
average learning time of 4.5⇥ 105 and 6⇥ 105 timesteps respectively (from 5 random seeds).

4.3 Experiments on Multi-Robot Tasks in the GFootball Environment

Description of environment: The Google football (gfootball) environment [19] is an 11 vs. 11
game of soccer. The opponents are controlled by an inbuilt game engine with game-play at three
levels of difficulty (easy, medium, and hard). An RL agent can control up to 11 players on the left
team. The agent provides each player with one of 19 actions such as a direction to move (e.g. top,
top-right, bottom-left, etc.), type of pass (short, long or high), shoot, or toggles for dribbling and
sprinting. We provide more details in Appendix A.4.

Learning levels and option templates: We create two learning levels with option templates as
given in Table 4. The primitive actions in this environment are defend, maintain ball possession,
charge to the opponent’s goal and shoot which are options implemented with simple planers and
open-loop controllers. Similarly, we implement option templates at level 1 (see Appendix A.4).

7

Implementation: We train a standard DQN [12] for each level. The input to every network is a
139 element vector consisting of left and right team states, ball state, score, and one-hot encodings
of ball ownership and game mode. For level 1, for all levels of difficulty, we use a network with 2
hidden layers of 500 neurons each. For level 2, we use a network with 5, 6, and 7 hidden layers for
easy, medium and hard respectively where each hidden layer has 500 neurons.

Baseline: We consider a baseline where the agent is directly exposed to all the primitive options.
From Figure 5c, we find that the baseline is unable to compete with option template learning even
after twice the number of steps of our method (numerical values of Figure 5c are in Appendix A.4).
The error bars represent standard deviation over 5 random seeds.

Comparison with IMPALA and DQN from Kurach et al. [19]: We compare our agent with the
agents in Kurach et al. [19]. As can be seen in Figure 5c, option template learning can achieve
similar (in easy) or better (in medium and hard) performance than the IMAPALA and DQN agents
in two orders of magnitude fewer steps.

5 Related Work

We present a detailed discussion on related work in Appendix A.1 and summarize closely relevant
literature here.

On expert help via primitives or skills: Various recent works utilize expert help in the form of
primitives or skills [4, 5, 6, 7, 8, 9, 20]. This takes place via parameterized action spaces [4],
stitching together independent task schemas (or skills) [5, 6, 9, 20] or learning parameters of action
primitves [7, 9, 8]. In all of these cases, learning takes place within the traditional hierarchical
framework, i.e., bottom-up (see Figure 2), where a sub-task is learnt before the policy that uses it.
Our method proposes a framework to learn top-down instead with large-improvements in sample-
efficiency over traditional bottom-up learning. With minimal changes in the implementation of their
primitives and skills, the above diverse strategies can also benefit with shorter learning times by
utilizing our framework to learn top-down.

On expert help with humans-in-the-loop: Other approaches to expert intervention include explicit
help with humans-in-the-loop required throughout training [21, 22]. In contrast, in our method,
human effort is only required at the beginning to create the option template hierarchies.

On exploration in high-dimensional tasks: An alternative approach to counter the need for ex-
ploration in high dimensional tasks is through the use of demonstrations [1] for long horizon plan-
ning. The intuition is that introducing a degree of behavioral cloning of expert demonstrations helps
reduce the amount of exploration the agent has to perform. A different approach known as Hind-
sight Experience Replay (HER) [23] incorporates the goal information into the state, using a failed
terminal state as an alternative goal to reward the transitions leading to it. These methods are or-
thogonal to our approach. By themselves, they are unable to achieve the large degree of reduction
in sample-complexity seen with our framework. Yet, alongside expert help, they further improve
sample-efficiency as seen in our experiments.

6 Limitations and Conclusion

We have proposed an approach that incorporates option templates into reinforcement learning. Our
experiments show that this strategy can drastically reduce sample complexity by implementing tele-
portation. This can be a potential limitation. In simulation, implementing teleportation is typically
straightforward. Policies may be trained in simulation before being deployed on a real robot. For
real-world environments, there are several strategies for implementing teleportation. First, for chal-
lenging skills such as grasping an object, teleportation can be implemented via a temporary crutch
that simplifies the skill. For example, in the “sticky-mittens” experiments (a key motivation for our
work); the analog for a grasping robot would be to attach velcro to its grippers and to the objects
to make them easy to pick up. Second, teleportation can be implemented via a handcrafted policy
that eventually achieves the goal but possibly in a suboptimal way. For instance, teleportation in the
Fetch and GFootball environments are implemented using handcrafted policies. While these policies
are used to train the RL policy, the RL policy eventually significantly outperforms them.

8

Acknowledgements

This work was supported in part by ARO W911NF-20-1-0080 and AFRL and DARPA FA8750-
18-C-0090. Any opinions, findings, conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the Air Force Research Labora-
tory (AFRL), the Army Research Office (ARO), the Defense Advanced Research Projects Agency
(DARPA), the Department of Defense, or the United States Government.

References
[1] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration

in reinforcement learning with demonstrations. CoRR, abs/1709.10089, 2017. URL http:
//arxiv.org/abs/1709.10089.

[2] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.
ISSN 0004-3702. doi:https://doi.org/10.1016/S0004-3702(99)00052-1. URL https://www.
sciencedirect.com/science/article/pii/S0004370299000521.

[3] L. van den Berg and G. Gredebäck. The sticky mittens paradigm: A critical appraisal of current
results and explanations. Developmental Science, 24(5):e13036, September 2021. doi:https:
//doi.org/10.1111/desc.13036. URL https://onlinelibrary.wiley.com/doi/abs/10.
1111/desc.13036.

[4] M. Hausknecht and P. Stone. Deep reinforcement learning in parameterized action space. In
Proceedings of the International Conference on Learning Representations (ICLR), May 2016.

[5] P. MacAlpine, M. Depinet, J. Liang, and P. Stone. UT austin villa: Robocup 2014 3d simula-
tion league competition and technical challenge champions. In R. A. C. Bianchi, H. L. Akin,
S. Ramamoorthy, and K. Sugiura, editors, RoboCup 2014: Robot World Cup XVIII [papers
from the 18th Annual RoboCup International Symposium, João Pessoa, Brazil, July 15, vol-
ume 8992 of Lecture Notes in Computer Science, pages 33–46. Springer, 2014. doi:10.1007/
978-3-319-18615-3 3. URL https://doi.org/10.1007/978-3-319-18615-3_3.

[6] A. Barreto, D. Borsa, S. Hou, G. Comanici, E. Aygün, P. Hamel, D. Toyama, S. Mourad,
D. Silver, D. Precup, et al. The option keyboard: Combining skills in reinforcement learning.
Advances in Neural Information Processing Systems, 32, 2019.

[7] M. Dalal, D. Pathak, and R. Salakhutdinov. Accelerating robotic reinforcement learning via
parameterized action primitives. CoRR, abs/2110.15360, 2021. URL https://arxiv.org/
abs/2110.15360.

[8] S. Nasiriany, H. Liu, and Y. Zhu. Augmenting reinforcement learning with behavior primitives
for diverse manipulation tasks. arXiv preprint arXiv:2110.03655, 2021.

[9] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta. Efficient bimanual manipulation using learned
task schemas. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 1149–1155. IEEE, 2020.

[10] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[11] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Dis-
crete Event Dynamic Systems Volume 13, 13:2003, 2003.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning, 2013.

[13] G. Hacohen and D. Weinshall. On the power of curriculum learning in training deep networks.
CoRR, abs/1904.03626, 2019. URL http://arxiv.org/abs/1904.03626.

[14] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy
sketches. In International Conference on Machine Learning, pages 166–175. PMLR, 2017.

9

http://arxiv.org/abs/1709.10089
http://arxiv.org/abs/1709.10089
http://dx.doi.org/https://doi.org/10.1016/S0004-3702(99)00052-1
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
http://dx.doi.org/https://doi.org/10.1111/desc.13036
http://dx.doi.org/https://doi.org/10.1111/desc.13036
https://onlinelibrary.wiley.com/doi/abs/10.1111/desc.13036
https://onlinelibrary.wiley.com/doi/abs/10.1111/desc.13036
http://dx.doi.org/10.1007/978-3-319-18615-3_3
http://dx.doi.org/10.1007/978-3-319-18615-3_3
https://doi.org/10.1007/978-3-319-18615-3_3
https://arxiv.org/abs/2110.15360
https://arxiv.org/abs/2110.15360
http://arxiv.org/abs/1904.03626

[15] F. Behbahani. Craft environment. https://github.com/Feryal/craft-env, 2018.

[16] V. Konda and J. Tsitsiklis. Actor-critic algorithms. Society for Industrial and Applied Mathe-
matics, 42, 04 2001.

[17] J. B. Lanier. Curiosity-driven multi-criteria hindsight experience replay. University of Cali-
fornia, Irvine, 2019.

[18] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction for Scientists and Engi-
neers. Princeton University Press, USA, 2008. ISBN 0691135762.

[19] K. Kurach, A. Raichuk, P. Stańczyk, M. Zajac, O. Bachem, L. Espeholt, C. Riquelme, D. Vin-
cent, M. Michalski, O. Bousquet, et al. Google research football: A novel reinforcement
learning environment. arXiv preprint arXiv:1907.11180, 2019.

[20] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In Conference on robot learning, pages 1113–1132. PMLR, 2020.

[21] Q. Li, Z. Peng, and B. Zhou. Efficient learning of safe driving policy via human-ai copilot
optimization. arXiv preprint arXiv:2202.10341, 2022.

[22] J. Spencer, S. Choudhury, M. Barnes, M. Schmittle, M. Chiang, P. Ramadge, and S. Srinivasa.
Expert intervention learning. Autonomous Robots, 46(1):99–113, 2022.

[23] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight experience replay. CoRR, abs/1707.01495, 2017. URL
http://arxiv.org/abs/1707.01495.

[24] C. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning, 8:279–292, 05 1992.
doi:10.1007/BF00992698.

[25] A. Akhmetzyanov, R. Yagfarov, S. Gafurov, M. Ostanin, and A. Klimchik. Continuous control
in deep reinforcement learning with direct policy derivation from q network. In T. Ahram,
R. Taiar, V. Gremeaux-Bader, and K. Aminian, editors, Human Interaction, Emerging Tech-
nologies and Future Applications II, pages 168–174, Cham, 2020. Springer International Pub-
lishing.

[26] F.-H. Hsu. Behind Deep Blue: Building the Computer That Defeated the World Chess Cham-
pion. Princeton University Press, USA, 2002. ISBN 0691090653.

[27] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of go with deep neural networks and tree search. Nature, 529:484–489,
01 2016. doi:10.1038/nature16961.

[28] A. Levy, R. P. Jr., and K. Saenko. Hierarchical actor-critic. CoRR, abs/1712.00948, 2017. URL
http://arxiv.org/abs/1712.00948.

[29] C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li. Multi-expert learning of adaptive legged locomo-
tion. CoRR, abs/2012.05810, 2020. URL https://arxiv.org/abs/2012.05810.

[30] L. Marzari, A. Pore, D. Dall’Alba, G. Aragon-Camarasa, A. Farinelli, and P. Fiorini. Towards
hierarchical task decomposition using deep reinforcement learning for pick and place subtasks.
CoRR, abs/2102.04022, 2021. URL https://arxiv.org/abs/2102.04022.

[31] J. Winder, S. Milani, M. Landen, E. Oh, S. Parr, S. Squire, M. desJardins, and C. Matuszek.
Planning with abstract learned models while learning transferable subtasks. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(06):9992–10000, Apr. 2020. doi:10.1609/aaai.
v34i06.6555. URL https://ojs.aaai.org/index.php/AAAI/article/view/6555.

[32] K. Jothimurugan, O. Bastani, and R. Alur. Abstract value iteration for hierarchical reinforce-
ment learning. CoRR, abs/2010.15638, 2020. URL https://arxiv.org/abs/2010.15638.

10

https://github.com/Feryal/craft-env
http://arxiv.org/abs/1707.01495
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1038/nature16961
http://arxiv.org/abs/1712.00948
https://arxiv.org/abs/2012.05810
https://arxiv.org/abs/2102.04022
http://dx.doi.org/10.1609/aaai.v34i06.6555
http://dx.doi.org/10.1609/aaai.v34i06.6555
https://ojs.aaai.org/index.php/AAAI/article/view/6555
https://arxiv.org/abs/2010.15638

[33] D. Abel, N. Umbanhowar, K. Khetarpal, D. Arumugam, D. Precup, and M. Littman. Value
preserving state-action abstractions. In S. Chiappa and R. Calandra, editors, Proceedings of
the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108
of Proceedings of Machine Learning Research, pages 1639–1650. PMLR, 26–28 Aug 2020.
URL https://proceedings.mlr.press/v108/abel20a.html.

[34] Y. Yang, J. Inala, O. Bastani, Y. Pu, A. Solar-Lezama, and M. Rinard. Program synthesis
guided reinforcement learning, 02 2021.

[35] N. Gopalan, M. desJardins, M. L. Littman, J. MacGlashan, S. Squire, S. Tellex, J. Winder, and
L. L. S. Wong. Planning with abstract markov decision processes. In ICAPS, 2017.

[36] K. Jothimurugan, S. Bansal, O. Bastani, and R. Alur. Compositional reinforcement learning
from logical specifications. CoRR, abs/2106.13906, 2021. URL https://arxiv.org/abs/
2106.13906.

[37] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

[38] A. Levy, G. Konidaris, R. Platt, and K. Saenko. Learning multi-level hierarchies with hindsight.
arXiv preprint arXiv:1712.00948, 2017.

[39] X. Yang, Z. Ji, J. Wu, Y.-K. Lai, C. Wei, G. Liu, and R. Setchi. Hierarchical reinforcement
learning with universal policies for multistep robotic manipulation. IEEE Transactions on
Neural Networks and Learning Systems, 2021.

11

https://proceedings.mlr.press/v108/abel20a.html
https://arxiv.org/abs/2106.13906
https://arxiv.org/abs/2106.13906

	Introduction
	Background
	Learning with Option Templates
	Option Templates
	Learning with Option Templates

	Experiments
	Experiments on Planning tasks in the Craft Environment
	Experiments on Manipulation Tasks in the Fetch and Stack Environment
	Experiments on Multi-Robot Tasks in the GFootball Environment

	Related Work
	Limitations and Conclusion
	Appendix
	Related Work
	Additional Details of Experiments on the Craft Environment
	Results on the get gold Task.
	Additional Environment Details
	Hyperparameters
	Discussion

	Additional Details of Experiments on the Fetch and Stack Environment
	Hyperparameters
	Comparison to Learning multi-level hierarchies with hindsight newcomparison

	Additional Details of Experiments on the GFootball Environment
	Additional Environment and Option Template Details
	Hyperparameters

