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Abstract

It is well-known that typical word embedding001
methods have the property that the meaning002
can be composed by adding up the embeddings003
(additive compositionality). Several theories004
have been proposed to explain additive compo-005
sitionality, but the following problems remain:006
(i) The assumptions of those theories do not007
hold for the practical word embedding. (ii) Or-008
dinary additive compositionality can be seen009
as an AND operation of word meanings, but010
it is not well understood how other operations,011
such as OR and NOT, can be computed by the012
embeddings. We address these issues by the013
idea of frequency-weighted centering at its core.014
This method bridges the gap between practical015
word embedding and the assumption of theory016
about additive compositionality as an answer to017
(i). This paper also gives a method for taking018
OR or NOT of the meaning by linear opera-019
tion of word embedding as an answer to (ii).020
Moreover, we confirm experimentally that the021
accuracy of AND operation, i.e., the ordinary022
additive compositionality, can be improved by023
our post-processing method (3.5x improvement024
in top-100 accuracy) and that OR and NOT op-025
erations can be performed correctly. We also026
confirm that the proposed method is effective027
for BERT.028

1 Introduction029

Word embedding (Mikolov et al., 2013b; Penning-030

ton et al., 2014; Devlin et al., 2019), a fundamental031

technology in natural language processing, has the032

property that meaning can be composed by adding033

up the embeddings. This property is called addi-034

tive compositionality, e.g., vking ≈ vroyal + vman035

(Mikolov et al., 2013b). In this paper, we pose036

two questions about additive compositionality, as037

described below.038

(i) Do the theories of additive compositional-039

ity adequately reflect the property of word em-040

beddings in practice? Several theories have been041

proposed to explain why additive compositionality042
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Figure 1: Illustration of AND, OR and NOT operations
with word embeddings.

holds (Arora et al., 2016; Gittens et al., 2017; Allen 043

and Hospedales, 2019); however, as we show in 044

this paper, assumptions have been made that do not 045

hold for practical word embedding. Besides, since 046

these theories depend on specific methods such 047

as Skip-Gram (Mikolov et al., 2013a), a unified 048

understanding with other methods such as GloVe 049

(Pennington et al., 2014) and BERT (Devlin et al., 050

2019) remains a challenge in the field of natural 051

language processing. 052

(ii) Ordinary additive compositionality corre- 053

sponds to operations that take logical AND of the 054

word meanings, but how can operations that take 055

the logical OR or NOT be computed by embed- 056

dings? OR corresponds to the compositionality of 057

polysemous words (e.g. case ≈ box ∨ instance), 058

and NOT corresponds to the compositionality of 059

antonyms (e.g. hate ≈ ¬love). 060

In this paper, these two questions are addressed 061

by a simple idea of frequency-weighted centering 062

of word vectors. We provide the following theoret- 063

ical and experimental contributions for the above- 064

mentioned questions. 065

1. We show that the theory of additive com- 066
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Figure 2: An overview of this paper and the previous
research.

positionality (Allen and Hospedales, 2019)067

can be applied to practical word embeddings068

when word embeddings are centered using069

the frequency-weighted average of vocabulary070

words. To be precise, frequency-weighted cen-071

tering works so that word embeddings approx-072

imately satisfy the assumptions of Allen and073

Hospedales (2019). This fact holds for both074

SGNS (Skip-Gram with Negative Sampling,075

one of the variations of Word2Vec by Mikolov076

et al. 2013b) and GloVe (Pennington et al.,077

2014). This implies that centering allows078

SGNS and GloVe to be described in an almost079

unified form. We also point out the similarities080

between the limited BERT architecture and081

SGNS, and suggest that frequency-weighted082

centering may be applicable to BERT as well.083

084

2. Utilizing the results obtained in 1. as a starting085

point, we extend the theory of ordinary addi-086

tive compositionality (AND) to composition-087

ality of polysemy (OR) and antonym (NOT)088

(see Figure 1). OR operation is a frequency-089

weighted average for a specified subset of vo-090

cabulary words. NOT operation is based on a091

novel conditional embedding that is computed092

by frequency-weighted centering.093

3. We experimentally confirm that our theory is094

correct (§5). The experimental results show095

that frequency-weighted centering makes ad-096

ditive compositionality, which corresponds to097

AND operation, holds more accurately (3.5x098

improvement in top-100 accuracy). We also099

confirm that this method is effective for BERT 100

(Devlin et al., 2019). We also showed that the 101

proposed formula can successfully compute 102

OR and NOT embeddings. 103

2 Preliminaries: Word Embedding 104

In this section, we pointed out the similarities 105

between BERT and SGNS, and briefly introduce 106

some properties of popular word embedding meth- 107

ods. In the next section, we point out the gap 108

between these properties and the assumption of 109

the theory of additive compositionality (Allen and 110

Hospedales, 2019), and propose a method to re- 111

solve it. 112

Word embedding methods based on co- 113

occurrence information between words, such as 114

SGNS and GloVe, are used across a wide range 115

of fields such as information retrieval and recom- 116

mendation systems (Roy et al., 2018; Grover and 117

Leskovec, 2016; Grbovic et al., 2015). 118

Furthermore, BERT (Devlin et al., 2019), which 119

has attracted attention in recent years, obtains 120

word embeddings by predicting a word from its 121

context, and can be regarded as an extension of 122

SGNS. Consider a one-layer BERT model pre- 123

trained by masked LM only. If the attention weight 124

of a [MASK] token is one-hot vector, BERT pre- 125

dicts [MASK] from one context word and can be 126

regarded as a Skip-gram model (Mikolov et al., 127

2013b). Thus, since BERT can be regarded as 128

a generalization of Skip-gram, methods based on 129

Skip-gram theory may be applicable to BERT. 130

SGNS and GloVe (and maybe BERT) encode 131

the co-occurrence information of words. Levy 132

and Goldberg (2014) showed that optimally trained 133

SGNS embedding satisfies 134

log
p(w, c)

p(w)q(c)
− log k = v⊤

wuc, (1) 135

where p is the word distribution of corpus, q is the 136

distribution of negative samples, k is the number of 137

negative samples per co-occurring word pair (w, c), 138

vw is the embedding of a target word w, and uc is 139

the embedding of a context word c. GloVe (Pen- 140

nington et al., 2014) takes a direct approach to fac- 141

torize the co-occurrence matrix, and the optimally 142

learned embedding satisfies 143

log p(w, c) = v⊤
wuc + aw + bc − logZ, (2) 144

where aw, bc are bias terms and Z is a normaliza- 145

tion constant. In the following, we assume that 146

SGNS and GloVe satisfy (1) and (2), respectively. 147
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3 Structure Common to SGNS and GloVe148

In this section, we show that when SGNS and149

GloVe are centered using the frequency-weighted150

average, they share a common structure.151

Allen and Hospedales (2019) explained additive152

compositionality with the assumption153

PMI(w, c) = v⊤
wuc, (3)154

where PMI(w, c) is the pointwise mutual informa-155

tion (PMI) between w and c156

PMI(w, c) := log
p(w, c)

p(w)p(c)
. (4)157

However, neither SGNS nor GloVe satisfies the158

assumption (3), as explained in §3.1. If we can159

modify the word embeddings so that they satisfy160

assumption (3), then we can expect additive com-161

positionality to more accurately hold.162

In this section, we show a post-processing163

method for this modification, which can be applied164

to both SGNS and GloVe.165

3.1 Error Terms in (3)166

Rearranging the formulas of the word embedding167

assumptions (1) and (2), we have168

SGNS PMI(w, c)169

= v⊤
wuc + log

q(c)

p(c)
+ log k, (5)170

GloVe PMI(w, c)171

= v⊤
wuc + (aw − log p(w))172

+(bc − log p(c))− logZ. (6)173

Clearly, they differ from (3). Allen and Hospedales174

(2019) ignores the second and subsequent terms175

on the right-hand side of (5) and (6); these ignored176

terms are considered as error terms in (3). The177

experiments in this paper show that the error terms178

are not so small as to be negligible (§5.1).179

3.2 Frequency-weighted Centering180

First, we show that (3) can be derived by centering181

the SGNS/GloVe embedding in a form that includes182

some error terms. Let the frequency-weighted av-183

erage of word embeddings be v̄ =
∑

w p(w)vw,184

ū =
∑

c p(c)uc, and the centered word embed-185

dings be ṽw = vw − v̄, ũc = uc − ū.186

Theorem 1. When the embedding of SGNS and187

GloVe satisfies (1) and (2), respectively, the follow-188

ing equality holds:189

PMI(w, c) = ṽ⊤
w ũc + ϵ̄− ϵw − ϵc, (7)190

where the error terms are defined, with KL- 191

divergence, as ϵw = DKL(p(·)∥p(·|w)), ϵc = 192

DKL(p(·)∥p(·|c)), and ϵ̄ =
∑

w p(w)ϵw. 193

Proof. See Appendix A. 194

The following proposition shows that the error 195

terms are negligible when |PMI(w, c)| ≪ 1. 196

Proposition 2. Let ∆ = maxw,c |PMI(w, c)|. For 197

sufficiently small ∆, ϵw = O(∆2), ϵ̄ = O(∆2). 198

Proof. See Appendix B. 199

3.3 Discussion 200

Interpretation Theorem 1 suggests that the cen- 201

tered SGNS and GloVe can be described in roughly 202

the same form. In other words, we can say that 203

(3) is a structure essentially common to SGNS and 204

GloVe if properly centered. 205

Relation to experimental results The experi- 206

ments described below confirm that the error in 207

assumption (3) is greatly reduced by the frequency- 208

weighted centering (§5.1), which supports the the- 209

ory in §3.2. Furthermore, we have confirmed that 210

the accuracy of additive compositionality is im- 211

proved by frequency-weighted centering, as we 212

expected. These improved word vectors are appli- 213

cable to various downstream tasks. 214

Comparison with All-but-The-Top Mu and 215

Viswanath (2018) suggested that uniform center- 216

ing vw ← vw −
∑

c vc/|V | is useful as a post- 217

processing method to get high-performance word 218

embeddings. This method is described as correct- 219

ing the embeddings so that they satisfy isotropy, 220

a property that the RAND-WALK model (Arora 221

et al., 2016) should satisfy. However, its argument 222

is not complete because the theoretical basis for 223

RAND-WALK’s high performance on each down- 224

stream task is not clearly stated. On the other hand, 225

since our method is designed with the goal of satis- 226

fying the assumption of the theory of additive com- 227

positionality (Allen and Hospedales, 2019), there 228

is a direct connection between our theory and the 229

experimental results. 230

4 Logical Operations with Word 231

Embeddings 232

In this section, we point out that ordinary additive 233

compositionality is an AND-like operation, and 234

show that other operations, such as OR and NOT, 235

can also be computed by embeddings. We adopt 236

3



assumption (3) in this section as well as Allen and237

Hospedales (2019); embeddings satisfying (3) can238

be obtained by simple post-processing of SGNS239

and GloVe (see §3).240

4.1 AND Operation241

Allen and Hospedales (2019) showed that when the242

PMI factorization structure (3) is strictly satisfied, a243

semantic AND composite such as queen = royal∧244

woman corresponds to vector additivity such as the245

following formula:246

vroyal = vroyal + vwoman. (8)247

In this section, we outline the proof of Allen and248

Hospedales (2019).249

4.1.1 Formulation with Co-occurrence250

Probability251

Let w = w1 ∧ w2 ∧ · · · ∧ ws. Let us assume, for252

example, that queen meaning appearing is the mul-253

tiplication of the probabilities of royal and woman254

meaning appearing. Generalizing this, we formu-255

late AND-like compositionality as follows:256

∀c ∈ V, p(w|c) = p(w1|c) · · · p(ws|c), (9)257

p(w) = p(w1) · · · p(ws) (10)258

4.1.2 Computation on Embedding Space259

From the above formulation, additive composition-260

ality is proved.261

Theorem 3 (Allen and Hospedales 2019). When262

w,w1, . . . , ws satisfy (3), (9) and (10),263

vw =
s∑

i=1

vwi . (11)264

Proof. Dividing (9) by (10) and taking the loga-265

rithm, we get PMI(w, c) = PMI(w1, c) + · · · +266

PMI(ws, c). From (3), v⊤
wuc = v⊤

w1
uc + · · · +267

v⊤
ws
uc. Since c ∈ V is arbitrary, (11) follows.268

4.2 OR Operation269

As mentioned in §1, in addition to AND operation,270

OR operation can also be considered. In this sec-271

tion, we show that OR operation corresponds to the272

frequency-weighted average of the embeddings for273

a set of words.274

4.2.1 Formulation with Co-occurrence275

Probability276

OR operation is denoted by operator ∨. Let w be277

the OR word of w1, w2, . . . , ws, i.e. w = w1∨w2∨278

· · ·∨wn. For example, case ≈ box∨ instance. The 279

probability of occurrence of w in each context c 280

can be formulated as the sum of the probabilities 281

of occurrence of w1, . . . , ws: 282

∀c ∈ V, p(w|c) = p(w1|c) + · · ·+ p(ws|c).
(12)

283

Taking case ≈ box ∨ instance as an example, 284

the co-occurrence probability of case is the sum 285

of the co-occurrence probabilities of box and in- 286

stance in each context c. This formulation clearly 287

holds for the polysemous word w composed of 288

imaginary words w1, . . . , ws. From (12), we get 289

p(w) =
∑s

i=1 p(wi). 290

4.2.2 Computation on Embedding Space 291

On the basis of the above simple formulation, we 292

give a method to perform OR operation on the 293

embeddings. 294

Theorem 4 (OR formula). We assume that 295

w,w1, w2, . . . , ws satisfy (3) and (12). When 296

|PMI(w, c)| ≪ 1, word embeddings satisfy 297

vw ≈
s∑

i=1

p(wi)

p(w)
vwi . (13) 298

Proof. See Appendix C. 299

OR formula (13) suggests that the embedding of 300

case approximates the sum of the embeddings of 301

box and instance, weighted by their probability of 302

occurrence in the corpus. Note that the OR formula 303

is invariant to the translation of the origin, so it is 304

valid to some extent for SGNS and GloVe without 305

the frequency-weighted centering. 306

4.2.3 Discussion 307

Relation to experimental results On the real 308

data, |PMI(w, c)| ≪ 1 does not strictly hold, but 309

we confirmed that the OR formula holds well in the 310

experiment in §5.3. 311

Comparison with previous work Arora et al. 312

(2018) obtained the same formula by assuming the 313

random walk of the context vector (RAND-WALK 314

model), but the proof in this paper does not require 315

that assumption. 316

4.3 Conditional Embedding and NOT 317

Operation 318

With assumption (3), we derive not only AND and 319

OR operations but also NOT operation. In this sec- 320

tion, we formulate the NOT operation using the 321
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concept of conditional embedding, word embed-322

ding that expresses the local relationship between323

words in a small set of words A. We derive that the324

conditional embedding of the antonym is propor-325

tional to minus of the conditional embedding of the326

original word.327

4.3.1 Formulation with Co-occurrence328

Probability329

In contrast to human senses, antonyms have the330

property of being dissimilar and similar at the same331

time (Cruse, 1986; Willners, 2001), e.g., hate and332

love have opposite meanings, but both of them are333

related to emotion. For this reason, antonyms tend334

to appear in similar contexts, and thus their word335

embeddings trained by the method based on the dis-336

tributional hypothesis (Harris, 1954; Firth, 1957)337

exhibit a high similarity1. Therefore, antonyms338

are quite related to synonyms, which makes it dif-339

ficult to understand how antonyms are embedded.340

In this section, we dispense with the mystery of341

antonyms by formulating them in a way that takes342

their similarity into account.343

Let us take the following example: the opposite344

of mother is father in the “parent" category, but345

daughter in the “parent-child relationship" cate-346

gory. In this way, when considering antonyms, one347

needs to specify a category that corresponds to the348

similarity portion of the antonyms. In this paper, a349

category is represented by a set of words A. From350

the intuition that the antonym ¬w of word w ∈ A351

corresponds to the complement of w in A when352

viewed in a small word set A, the co-occurrence353

probability of NOT word can be formulated by the354

following conditional probability:355

356

p(W = ¬w |W ∈ A, c)357

= p(W ∈ A \ {w} |W ∈ A, c), (14)358

where word W denotes a random variable and p(·|·)359

denotes the conditional probability. Because the360

event W ∈ A appears in the conditioning for the361

probability of (14), we need embeddings condi-362

tioned on A instead of the whole vocabulary. In363

this paper, we refer to this embedding as condi-364

tional embedding on A.365

4.3.2 Conditional Embedding366

From the analogy to (3), we consider the equality367

to be satisfied by the conditional embedding vw|A368

1The cosine similarity between hate and love is about 0.5
for vectors obtained by SGNS (without centering).

of the word w in set A as follows: 369
370

p(W = w |W ∈ A, c) 371

= p(W = w |W ∈ A) exp(v⊤
w|Auc). (15) 372

From the following Theorem 5, we can see that 373

conditional embedding can be approximated by 374

frequency-weighted centering on a subset A. 375

Theorem 5. When embeddings satisfy (3), 376

vw|A ≈ vw − vA, (16) 377

where p(A) = p(W ∈ A) =
∑

w∈A p(w) and 378

vA =
∑

w∈A
p(w)
p(A)vw. 379

Proof. See Appendix D. 380

Theorem 5 allows us to explain the com- 381

mon practice of centering, although typically un- 382

weighted, on a particular set of words (e.g., im- 383

plicit centering in PCA visualization of the word 384

embedding of country-capital) as “elaboration” of 385

the interrelationships between words in the set of 386

words. 387

4.3.3 Computation on Embedding Space 388

On the basis of the above formulation, we derive 389

a method for computing NOT with word embed- 390

dings. 391

Theorem 6 (NOT formula). Assuming that the 392

words w and ¬w|A satisfy (15), we have 393

v¬w|A ≈ −
p(W = w |W ∈ A)

1− p(W = w |W ∈ A)
vw|A. (17) 394

Proof. See Appendix E. 395

From this formula, we can see that the condi- 396

tional embedding of the NOT word of w is the 397

vector in the negative direction of the conditional 398

embedding of the original word w. 399

5 Experiments 400

In order to keep the description concise, the 401

detailed experimental setup is described in Ap- 402

pendix F. 403

5.1 Centering and PMI Factorization 404

In this section, we experimentally confirm that (3) 405

holds more accurately if we perform frequency- 406

weighted centering (§3.2). To show that the accu- 407

racy of PMI factorization formula PMI(w, c) = 408

v⊤
wuc is improved by centering the embeddings, 409

we observed the distribution of the error ewc = 410

PMI(w, c) − v⊤
wuc in several experimental set- 411

tings. 412
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Figure 3: The distribution of the error ewc is plotted
for the word pairs (w, c) that co-occur more than once.
The distribution of PMI(w, c) itself is shown as purple
dashed line for reference of the error order.

Embeddings We use 300-dimensional embed-413

dings trained by SGNS and GloVe with text8 cor-414

pus2. The results are compared between the follow-415

ing three set of embeddings.416

• orig : original embeddings.417

• freq : embeddings with frequency-weighted418

centering.419

• unif : embeddings with uniform centering3420

(Mu and Viswanath, 2018), i.e., vw ← vw −421 ∑
w′ vw′/|V |.422

Results We plot the histogram of ewc (Fig-423

ure 3). We see that the magnitude of error ewc of424

frequency-weighted centering ( freq ) is small and425

PMI(w, c) = v⊤
wuc holds more accurately regard-426

less of whether the method is SGNS or GloVe. It427

is worth noting that frequency-weighted centering428

( freq ) and uniform centering ( unif ) have sub-429

stantially different results, which is non-trivial.430

5.2 Assessing Accuracy of AND Formula431

From Theorem 1, Proposition 2 and Allen and432

Hospedales (2019), frequency-weighted centering433

is expected to result in stronger additive composi-434

tionality (§3). In this section, we experimentally435

confirm that additive compositionality holds more436

accurately by frequency-weighted centering. The437

experiments are for three types of additive compo-438

sitionality: word-to-sentence, word-to-phrase, and439

word-to-word. We also experimentally see that the440

same result holds for BERT as well as SGNS and441

GloVe.442

2http://mattmahoney.net/dc/textdata.
html

3This is a standard post-processing of word embedding
(Mu and Viswanath, 2018).
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Figure 4: Top-n accuracy of rank (word-to-phrase). Up-
per left is better.

Embeddings We use 300-dimensional embed- 443

dings trained by SGNS and GloVe with Wikipedia4. 444

For BERT embeddings, we used the first layer5, 445

which corresponds to the target vector of the skip- 446

gram6. We compare four types of embeddings: 447

orig , unif , freq and All-but-the-Top (Mu and 448

Viswanath, 2018) ( ABTT , for SGNS and GloVe), 449

a post-processing method for embeddings that in- 450

corporates uniform centering. 451

5.2.1 Word-to-sentence compositionality 452

We evaluate sentence vectors by simply adding 453

word vectors using semantic textual similarity task 454

(Agirre et al., 2012). If additive compositionality 455

holds more accurately, it is expected that sentence 456

vectors are more accurate and scores increase. 457

Results The results are shown in Table 1. As we 458

can see, our proposed method freq consistently 459

performs the best. All-but-the-Top is also a post- 460

processing method for correcting the embeddings 461

(Arora et al., 2016), but ours is better in terms of 462

additive compositionality. 463

5.2.2 Word-to-phrase compositinality 464

We evaluate how strongly word-to-phrase additive 465

compositionality holds by learning phrase vectors. 466

Preprocessing of Corpus We train phrase vec- 467

tors by treating multiple words as single word, 468

i.e.card game → card_game. Only phrases with 469

high compositionality included in Farahmand et al. 470

(2015); Ramisch et al. (2016); Reddy et al. (2011) 471

were used7. 472

4https://dumps.wikimedia.org/
5In the word-to-sentence experiment, the results for the

final layer are also included (§G.1); in the word-to-word exper-
iment, only the results for the first layer are included because
there is no point in contextualizing the word embedding.

6https://huggingface.co/
bert-base-uncased

7These datasets include human ratings of the composition-
ality of phrases. Since words with weak compositionality are
not suitable for the additive compositionality experiment, only

6

http://mattmahoney.net/dc/textdata.html
http://mattmahoney.net/dc/textdata.html
https://dumps.wikimedia.org/
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased


SGNS GloVe BERT
STSx orig freq unif ABTT orig freq unif ABTT orig freq unif

12 0.53 0.55 0.53 0.52 0.32 0.37 0.32 0.35 0.52 0.53 0.49
13 0.59 0.64 0.59 0.57 0.37 0.48 0.37 0.43 0.49 0.52 0.47
14 0.60 0.68 0.60 0.59 0.38 0.52 0.38 0.44 0.57 0.62 0.54
15 0.62 0.70 0.62 0.60 0.44 0.55 0.44 0.48 0.60 0.68 0.57
16 0.55 0.65 0.55 0.53 0.33 0.51 0.33 0.38 0.60 0.69 0.57

Table 1: Results of semantic textual similarity tasks.

orig freq unif ABTT
SGNS 0.028 0.071 0.072 0.074
GloVe 0.067 0.078 0.065 0.057
BERT 0.036 0.062 0.044 —

Table 2: MRR of rank (word-to-word).

Evaluation We calculated the cosine similarities473

between vword1+vword2 and all the vw, w ∈ V , and474

how many words had a cosine similarity greater475

than or equal to the cosine similarity between476

vword1_word2 and vword1 + vword2; this number is477

simply denoted as rank8.478

Results The top-n accuracy of rank is shown in479

Figure 4. The overall results show that centering,480

especially with frequency weights, improves the481

accuracy for additive compositionality. For SGNS,482

the top-10 accuracy improves by 1.7 times, and for483

GloVe, the top-100 accuracy improves by 3.5 times.484

Moreover, the results for GloVe are significantly485

different between uniform and frequency-weighted486

centering, which is consistent with the results in487

§5.1.488

5.2.3 Word-to-word compositinality489

We evaluate the additive compositionality of a word490

from words such as royal+woman=queen.491

Dataset BATS (Gladkova et al., 2016), the492

dataset for the analogy task, specifies the re-493

lationship between the two words: the file494

country-capital contains word pairs such as495

bankok:thailand and beijing:china. For example,496

phrases with a rating of 3 or 4 were used in Farahmand et al.
(2015) and only phrases with a rating of 3.0 or higher were
used in Reddy et al. (2011) or Ramisch et al. (2016).

8We should not simply use the similarity between vword1 +
vword2 and vword1_word2 as the accuracy of additive composition-
ality. To be precise, if the similarity with vword1_word2 is high
and the similarity with other embeddings is low, we can say
that additive compositionality is accurate. This paper uses
rank as a metric that satisfies this requirement.

by assigning thailand to x, capital to y, and bankok 497

to z, we create a dataset of triplets of words for 498

which x+ y = z. 499

Evaluation We use ranks of vx + vy and vz for 500

evaluation. Mean Reciprocal Rank (MRR) is used 501

as the representative value. 502

Results Table 2 shows the results. One can see 503

that the proposed method freq consistently con- 504

tributes to the performance improvement of addi- 505

tive compositionality. We can also see that, for 506

GloVe and BERT, freq is superior to the other 507

methods. freq loses to unif in SGNS, but this is 508

related to the lack of significant difference in the 509

structure of embeddings between unif and freq , 510

as can be seen in Figure 3. 511

5.3 Assessing Accuracy of OR Formula 512

In this section, we confirm that the OR formula 513

(13) is valid. 514

Embeddings We use 300-dimensional embed- 515

dings trained by SGNS and GloVe with Wikipedia 516

based corpus. 517

Preprocessing of Corpus We generated 500 arti- 518

ficial polysemous words and learned their embed- 519

dings as follows. We constructed artificial poly- 520

semous words from two randomly selected words 521

(e.g. apple, banana → apple_OR_banana), and 522

create a new corpus in which all the selected words 523

are replaced by the artificial polysemous words. 524

Then we concatenate the original corpus with the 525

new corpus and used it to train word embeddings. 526

Evaluation As in § 5.2, we evaluated the OR 527

formula by the rank of word1_OR_word2. 528

Results The average rank was 1.012 for SGNS 529

and 1.000 for GloVe, surprisingly good perfor- 530

mance. Even though the OR formula is an ap- 531

proximation, the precision of the OR formula is 532

high enough that it is almost always able to predict 533
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Figure 5: The embeddings of numbers are visualized
using PCA. The × is the origin of the conditional em-
bedding vw|A when A = {−9, . . . , 9} \ {0}, and red
triangle and blue triangle are the origins of A for posi-
tive numbers and negative numbers, respectively.

correct answer (among 2M words). Since the OR534

formula is translation-invariant, the result is the535

same for orig , unif and freq .536

5.4 Observation of NOT Formula537

The visualization of the embeddings of the num-538

bers from -9 to 9 is shown in Figure 59. Confining539

attention to A = {1, . . . , 9}, 1 and 9 are located540

in the negative direction each other across the ori-541

gin (red triangle) in the conditional embedding of542

A; this confirms the NOT formula (29). On the543

other hand, if we expand set A to include negative544

numbers, 1 and 9 are located in a similar direction545

from the origin (black ×). In this case, the positive546

and negative numbers are on the opposite sides of547

the origin, which supports the NOT formula again.548

As you can see, it is important to determine the549

category in which antonyms are considered, and550

the NOT formula is able to formulate this fact well.551

6 Connection to Previous Work552

The summaries of the previous researches on addi-553

tive compositionality and their relationships to this554

study are given below.555

• Arora et al. (2016, 2018) explained the opera-556

tions of Analogy and OR by considering a la-557

tent variable model. On the other hand, there is558

a slight gap between the embedding properties559

suggested by their theory and the properties of560

the word embeddings used in practice. For ex-561

ample, their theory shows that high-frequency562

9The origin of the conditional embedding is calculated
with uniform weights instead of the actual frequencies.

words have large norm, but in actual word em- 563

beddings, the norm of medium and low fre- 564

quency words is large (Schakel and Wilson, 565

2015), and this is one of the reasons why ad- 566

ditive construction works well (Yokoi et al., 567

2020). Our theory describes a more realistic 568

embedding model. 569

• Gittens et al. (2017) explained the AND op- 570

eration with the assumption p(w) = 1/|V | in 571

the Skip-Gram model (Mikolov et al., 2013a). 572

While their theory succeeds in explaining the 573

essential reason for additive compositionality, 574

note that it makes the assumption that all words 575

have the same frequency, an assumption that 576

does not hold in practice. Word frequencies 577

are known to have a skewed distribution (Pi- 578

antadosi, 2014), and a feature of our theory is 579

that we actively incorporate this non-uniform 580

distribution into our theory (§4). 581

• Allen and Hospedales (2019) explained addi- 582

tive compositionality (AND) and Analogy start- 583

ing from assumption (3). Our theory is posi- 584

tioned as contributing to the elaboration of their 585

theory by resolving the problems of arbitrari- 586

ness of bias terms in GloVe and the log k shift 587

in SGNS, which they had raised as an issue in 588

their own theory. 589

7 Conclusion 590

In this paper, we show that when frequency- 591

weighted centering is performed, SGNS and GloVe 592

share a common structure and additive composi- 593

tionality becomes more accurate. We also show 594

how to compute OR and NOT operations by word 595

embeddings in addition to the ordinal additive com- 596

positionality (AND). 597

Simple models such as SGNS and GloVe are 598

explained theoretically in this paper, but our theory 599

is not directly applied to more complex models 600

such as BERT (Devlin et al., 2019). We confirmed 601

the effectiveness of our method on BERT, though 602

experimentally. However, we do not know how 603

general the results of the BERT experiment in this 604

paper are. As future work, we aim to interpret 605

BERT theoretically and explain the results of these 606

experiments on BERT, and clarify the generality of 607

the experimental results. 608
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Appendices 730

A Proof of Theorem 1 731

Proof. For SGNS, let ζw = 0, ξc = log q(c)
p(c) , γ = 732

log k; for GloVe, let ζw = aw − log p(w), ξc = 733

bc − log p(c), γ = − logZ. Then, from (1), (2), 734

we get 735

PMI(w, c) = v⊤
wuc + ζw + ξc + γ. (18) 736

Multiplying both sides of (18) by p(w) and sum- 737

ming with respect to w ∈ V , we get 738

−ϵc = v̄⊤uc + ζ̄ + ξc + γ, (19) 739

where ζ̄ =
∑

w∈V p(w)ζw. From (18) and (19): 740

PMI(w, c) = ṽ⊤
wuc + (ζw − ζ̄)− ϵc. (20) 741

Multiplying both sides of (20) by p(c) and sum- 742

ming with respect to c ∈ V , we get 743

−ϵw = ṽ⊤
w ū+ (ζw − ζ̄)− ϵ̄ (21) 744

From (20) and (21), we have 745

PMI(w, c) = ṽ⊤
w ũc + ϵ̄− ϵw − ϵc 746

747

B Proof of Proposition 2 748

Proof. There exists c1 > 0 such that for all 749

(w, c) ∈ V 2, 750
751∣∣∣∣−1 + p(w, c)

p(w)p(c)

∣∣∣∣ 752

= | − 1 + exp(PMI(w, c))| < c1∆. (22) 753

754

ϵw = −
∑
c∈V

p(c) log
p(w, c)

p(w)p(c)
755

= −
∑
c∈V

p(c)

[(
−1 + p(w, c)

p(w)p(c)

)
756

+O

(∣∣∣∣−1 + p(w, c)

p(w)p(c)

∣∣∣∣2
)]

757

=
∑
c∈V

p(c)−
∑
c∈V

p(c|w) 758

−
∑
c∈V

p(c)O

(∣∣∣∣−1 + p(w, c)

p(w)p(c)

∣∣∣∣2
)

759

= −
∑
c∈V

p(c)O

(∣∣∣∣−1 + p(w, c)

p(w)p(c)

∣∣∣∣2
)
. (23) 760
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Therefore, there exists c2 > 0 such that for all761

w ∈ V ,762

|ϵw| <
∑
c∈V

p(c)c2c
2
1∆

2 = c21c2∆
2. (24)763

|ϵ̄| < c1c2∆
2 also readily follows.764

C Proof of Theorem 4765

Proof. Calculating both sides of (12), we get766

p(w|c) = p(w) exp(PMI(w, c))767

≈ p(w) (1 + PMI(w, c))768

= p(w)(1 + v⊤
wuc), (25)769

s∑
i=1

p(wi|c) =
s∑

i=1

p(wi) exp(PMI(wi, c))770

≈
s∑

i=1

p(wi)(1 + v⊤
wi
uc)771

= p(w)

1 +( s∑
i=1

p(wi)

p(w)
vwi

)⊤

uc

 .

(26)

772

(13) follows the fact that for any c ∈ V , (25) ≈773

(26) .774

D Proof of Theorem 5775

Proof. Calculating the left-hand side of (15) using776

assumption (3) and OR formula (13), we get777

778

p(W = w |W ∈ A, c)779

=
p(W = w,W ∈ A | c)

p(W ∈ A | c)
≈ p(w) exp(v⊤

wuc)

p(A) exp(v⊤
Auc)

780

= p(W = w |W ∈ A) exp((vw − vA)
⊤uc),

(27)
781

By comparing (15) and (27), we get (16).782

E Proof of Theorem 6783

Proof. By using (13), the right-hand side of (14) is784

rearranged as785

786

p(W ∈ A \ {w} |W ∈ A, c)787

=
p(W ∈ A \ {w} | c)

p(W ∈ A | c)
788

≈ p(A \ {w})
p(A)

exp((vA\{w} − vA)
⊤uc). (28)789

Thus v¬w|A ≈ vA\{w} − vA, and further calcula- 790

tion yields 791

792

v¬w|A ≈
p(A)

p(A)− p(w)

(
vA −

p(w)

p(A)
vw

)
−vA 793

= − p(W = w |W ∈ A)

1− p(W = w |W ∈ A)
vw|A. (29) 794

795

F Details of Experiments 796

The default parameters of the implementation10 797

were used for all but the most notable cases. 798

F.1 Details of §5.1 799

Corpus text8 corpus11, from which low- 800

frequency words (< 100) were removed. 801

Hyperparameters for learning word embed- 802

dings We run 100 iterations for 300-dimensional 803

vectors. The size of the context window is 5 words 804

(symmetric context). For SGNS, the number of 805

negative samples k is 15 and subsampling of high- 806

frequency words was disabled. For GloVe, the pa- 807

rameter for the weights of the least-squares method 808

xmax is 100. 809

Others For freq and unif , uc is also centered. 810

F.2 Details of §5.2 and §5.3 811

Corpus Wikipedia12(2.1G tokens) 812

Hyperparameters for learning word embed- 813

dings The dimension of the word embeddings is 814

300 and the size of the context window is 5 words. 815

For SGNS, the number of negative samples k is 816

15. For GloVe, the parameter for the weights of the 817

least-squares method xmax is 100. 818

Others In §5.3, the words used to construct artifi- 819

cial polysemous words were those with more than 820

100 occurrences. In the calculation of rank, word1 821

and word2 were excluded from the search. 822

F.3 Details of §5.4 823

Word embeddings GloVe pre-trained with Com- 824

mon Crawl (840G tokens)13 825

10https://github.com/tmikolov/word2vec,
https://github.com/stanfordnlp/GloVe

11http://mattmahoney.net/dc/textdata.
html

12https://dumps.wikimedia.org/
13https://nlp.stanford.edu/projects/

glove/

11

https://github.com/tmikolov/word2vec
https://github.com/stanfordnlp/GloVe
http://mattmahoney.net/dc/textdata.html
http://mattmahoney.net/dc/textdata.html
https://dumps.wikimedia.org/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/


orig freq unif
STS12 0.350 0.334 0.335
STS13 0.254 0.280 0.277
STS14 0.377 0.402 0.391
STS15 0.457 0.493 0.486
STS16 0.446 0.472 0.455

Table 3: The results of semantic textual similarity using
the final layer of BERT.

Others 0 is not used because the sign cannot be826

defined.827

G Additional Experimental Results828

G.1 §5.2.1829

The results of semantic textual similarity using the830

final layer of BERT are shown in Table 3. It can be831

seen that freq is almost consistently the best.832
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