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ABSTRACT

Machine learning (ML) methods generally assume the full set of features are avail-
able at no cost. If the acquisition of a certain feature is costly at run-time, one
might want to balance the acquisition cost and the predictive value of the feature
for the ML task. The task of training an AI agent to decide which features are
necessary to be acquired is called active feature acquisition (AFA). Current AFA
methods, however, are challenged when the AFA agent has to be trained/tested
with datasets that contain missing data. We formulate, for the first time, the prob-
lem of active feature acquisition performance evaluation (AFAPE) under missing
data, i.e. the problem of adjusting for the inevitable missingness distribution shift
between train/test time and run-time. We first propose a new causal graph, the
AFA graph, that characterizes the AFAPE problem as an intervention on the envi-
ronment used to train AFA agents. Here, we discuss that for handling missing data
in AFAPE, the conventional approaches (off-policy policy evaluation, blocked fea-
ture acquisitions, imputation and inverse probability weighting (IPW)) often lead
to biased results or are data inefficient. We then propose active feature acquisition
importance sampling (AFAIS), a novel estimator that is more data efficient than
IPW. We demonstrate the detrimental conclusions to which biased estimators can
lead as well as the high data efficiency of AFAIS in multiple experiments using
simulated and real-world data under induced MCAR, MAR and MNAR missing-
ness.

1 INTRODUCTION

Machine learning methods generally assume the full set of input features is available at run-time at
little to no cost. This is, however, not always the case as acquiring features may impose a significant
cost. For example in medical diagnosis, the cost of feature acquisition (e.g. a biopsy test) could
include both its monetary cost as well as the potential adverse harm for patients. In this case, the
predictive value of a feature should be balanced against its acquisition cost. Physicians acquire
certain features via biopsies, MRI scans, or lab tests, only if their diagnostic value outweighs their
cost or risk. This challenge becomes more critical when physicians aim to predict a large number
of diverse outcomes, each of which has different sets of informative features. Going back to the
medical example, a typical emergency department (ED) is able to diagnose thousands of different
diseases based on a large set of possible observations. For every new emergency patient entering ED
with an unknown diagnosis, clinicians must narrow down their search for a proper diagnosis via step
by step feature acquisitions. In this case an ML model designed to do prediction given the entire
feature set is infeasible.

Active feature acquisition (AFA) addresses this problem by designing two AI systems: i) a so-called
AFA agent, deciding which features must be observed, while balancing information gain vs. feature
cost; ii) an ML prediction model, often a classifier, that solves the prediction task based on the
acquired set of features. An AFA agent, by definition, induces missingness by selecting only a
subset of features. We call this AFA missingness which occurs at run-time (e.g. when the AFA agent
is deployed at the hospital). In addition, in many AFA applications, retrospective data which we use
for model training and evaluation also contain missing entries. This is induced by a different feature
acquisition process (e.g. by physicians, ordering from a wide range of diagnostic tests). We call this
retrospective missingness. While using retrospective data (during training/evaluation), the agent can
only decide among available features. At run-time, however, we make the assumption that the agent
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has the freedom to choose from all features. This corresponds to a feature ”availability” distribution
shift that requires adjustment. Apart from difficulties of training an AFA agent using incomplete
data, estimating the real world performance of agents (at run-time) using incomplete retrospective
data is nontrivial and challenging. Evaluation biases might lead to false promises about the agent’s
performance, a serious risk especially in safety-critical applications.

This paper is the first, to our knowledge, to systematically study the evaluation of AFA agents
under this distribution shift. We call this problem active feature acquisition performance evaluation
(AFAPE) under missing data. Our work on the AFAPE problem contains 4 major contributions for
the field of AFA:

First, we propose the AFA graph, a new causal graph, that characterizes the AFAPE problem under
retrospective missingness as off-environment policy evaluation under an environment intervention.
This is, in our opinion, a very important connection between the fields of missing data and policy
evaluation (including reinforcement learning (RL)) that will result in cross-fertilization of ideas from
these two areas.

Second, we show that the AFA literature only contains approaches to handle missing data that are
either derived from a pure RL perspective (off-policy policy evaluation (OPE) (Chang et al., 2019),
blocking of acquisition actions (Janisch et al., 2020; Yoon et al., 2018)) or correspond to biased
methods for missing data (conditional mean imputation (An et al., 2022; Erion et al., 2021; Janisch
et al., 2020)). We show that these approaches will almost certainly lead to biased results and/or can
be extremely data inefficient. We demonstrate in experiments with exemplary missing completely at
random (MCAR), missing at random (MAR), and missing not at random (MNAR) patterns that these
biased evaluation methods can lead to detrimental conclusions about which AFA agent performs
best. This can lead for example to high risks for patients’ lives if these methods are deployed
without proper evaluation.

Third, we bring the readers’ attentions to unbiased estimators from the missing data literature (in-
verse probability weighting (IPW) (Seaman & White, 2013) and multiple imputation (MI) (Sterne
et al., 2009)) which haven’t been applied to AFA previously. These methods, however, do not ac-
count for the special structure of the AFAPE problem as not every feature might be acquired by the
AFA agent. We show that missing data methods can, therefore, lead to data inefficiency.

Fourth, we instead propose AFAIS (active feature acquisition importance sampling), a new estimator
based on the off-environment policy evaluation view. AFAIS is more data efficient than IPW, but
cannot always be used for complex MNAR scenarios. For these cases, we propose a modification
to AFAIS that allows it to be closer to IPW when required, at the cost of some data efficiency. We
demonstrate the improved data efficiency of AFAIS over IPW in multiple experiments.

2 RELATED METHODS

AFA: Various approaches have been proposed for designing AFA agents and prediction models for
active feature acquisition (AFA) (An et al., 2006; Li & Oliva, 2021a; Li et al., 2021; Chang et al.,
2019; Shim et al., 2018; Yin et al., 2020). This work focuses, however, not on any particular AFA
method, but on the evaluation of any AFA method under missingness. Nevertheless, we refer the
interested reader to Appendix A.1 for a more detailed literature review of existing AFA methods and
a distinction between AFA and other related fields.

Missing data: AFAPE under missingness can be viewed as a missing data problem, and hence
methods from the missing data literature can be adopted. There are in general two difficulties for
solving missing data problems. The first is identification, i.e. the determination whether the estimand
of the full (unknown) data distribution can be estimated from the observed data distribution. The
second is estimation, for which there exist generally two strategies which are based on importance
sampling (IS), i.e. inverse probability weighting (IPW) (Seaman & White, 2013), and multiple
imputation (MI) (Sterne et al., 2009). See Appendix A.2 for an in-depth review on missing data.

Off-policy policy evaluation (OPE): As we show in Section 3, the AFAPE problem can be formu-
lated as an off-policy policy evaluation (OPE)(Dudik et al., 2011; Kallus & Uehara, 2020) problem.
The goal in OPE is to evaluate the performance of a ”target” policy (here the AFA policy) from data
collected under a ”behavior” policy (here the retrospective missingness induced by e.g. the doctor).
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In this special case, the behavior policy cannot be changed, leading to offline reinforcement learning
(Levine et al., 2020). Similar to missing data, there are two general OPE estimation strategies based
on IS (Precup et al., 2000) and outcome regression (using q-functions (Munos & Szepesvári, 2008)).
We show that these approaches are extremely data inefficient in AFA settings and can lead to biased
results in complex missing data scenarios.

3 METHODS

We open this section by contrasting two views on missingness, which we denote as the set view
(which focuses on which set of features was acquired), and the sequence view (which focuses on the
order of feature acquisitions). Using the sequence view on AFA missingness, we formulate AFA
as a sequential decision problem. We further introduce retrospective missingness in the set view
and propose a novel graphical representation, the AFA graph, to describe the AFA problem under
retrospective missingness. We continue by formulating the AFAPE problem as a distribution shift
problem. This formulation allows us to first, discuss different views on the problem, second, study
existing solutions, and finally, propose the AFAIS estimator, a novel estimator for AFAPE.

3.1 THE SET AND SEQUENCE VIEWS ON MISSINGNESS

The traditional view on missingness defines the problem by features X , missingness indicators R̄
and observed proxies X̄ . In AFAPE, we also consider corresponding feature acquisition costs C̄.
We provide a glossary in Appendix A.13 to help the reader keep track of the different variables and
terms. The relationship between variables in this view is graphically modelled by a missing data
graph (m-graph) (Figure 1A) (Mohan et al., 2013; Shpitser et al., 2015). We name this view the set
view, as it focuses on the set of acquired features collectively. See Appendix A.2 for an in-depth
review on this view on missingness.

Figure 1: Missing data graphs for a simplified hospital setting of a heart attack diagnosis: X1: chest
pain; X2: troponin (lab test); X3: coronography (CAG) (invasive imaging). A) m-graph from a set
view. Presence of chest pain increases the chance for the ordering of a lab test (X1 → R̄2). Based
on the results from the lab test or the symptom of chest pain, a coronography might be ordered
(X1 → R̄3; X2 → R̄3 ; R̄2 → R̄3). The application of coronography produces a large cost C̄3

due to its invasiveness and radiation. B) m-graph from a sequence view, showing a (different) MAR
missingness policy π(Ū (k)|X̄(k), R̄(k)) ∈ FMAR. Based on the acquired features at acquisition step
k, a new observation action Ū (k) is performed (here: Ū (k) = ”observe(X3)”).

In order to formulate the AFA problem, we employ an alternative view on missingness, the sequence
view, which focuses on the sequence of feature acquisitions (Figure 1B). The sequence view arises
from inducing a topological ordering in m-graphs, as follows. We assume that a missingness in-
dicator R̄ is formed during a sequence of observation actions Ū = (Ū (1), ..., Ū (N)), where action
Ū (k) can take on values in {”observe(X1)”,”observe(X2)”,...} if k < N . The last observation ac-
tion is always defined as Ū (N) = “stop observation”. Thus, R̄(k) (resp. X̄(k)) corresponds to the
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intermediate missingness indicator (resp. intermediate observed proxy) after k steps of observa-
tion. We denote the distribution p(Ū (k)|X, R̄(k)) ≡ π(Ū (k)|X, R̄(k)) as the missingness policy.
In order to introduce an AFA policy later, we need to define a restriction to the space of policies
as follows. We define the functional space FMAR (for MAR policies πMAR ∈ FMAR) by restrict-
ing the missingness policy to be dependent only on data observed up to the current time step k:
πMAR(Ū

(k)|X, R̄(k)) = πMAR(Ū
(k)|X̄(k), R̄(k)). This means a MAR policy cannot base acquisition

decisions on the values of not (yet) observed features. Note that this is a special case of MAR in
which observations depend on the earlier variables in the m-graph under the sequence view.

3.2 PROBLEM FORMULATION: ACTIVE FEATURE ACQUISITION (AFA)

The AFA problem without retrospective missingness is visualized as a causal graph in Figure 2.
The goal of AFA is to find i) an optimal AFA agent that decides which features to acquire and
ii) a prediction model which uses the acquired features to perform a prediction. We assume here a
classification task as the subsequent prediction task, but the problem extends naturally to other tasks.

Data (Figure 2 bottom right):

Consider a nD × (dx + 1) dataset comprised of nD i.i.d. realizations of a dx-dimensional random
vector of features X ∈ Rdx and a 1-dimensional random variable of the label Y ∈ N. We consider
X and Y fully observed for now and denote them as the environment of the AFA agent. The AFA
graph shows an arrow X → Y (the features cause the label), but all results in this paper also hold
under a reversed causal relationship (X ← Y ).

Figure 2: Causal graph for AFA: The AFA agent
decides which of the features in X to acquire
(which produces R̂) and pays feature acquisition
costs Ĉ. Based on the acquired set of features,
the classifier predicts Ỹ and pays a misclassifi-
cation cost C̃ if Y and Ỹ mismatch.

AFA missingness (Figure 2 top left):
The AFA missingness is induced by the AFA
agent that decides which subset of features to ac-
quire. Let the missingness indicator R̂ denote
the AFA missingness in X (which produces ob-
served proxies X̂). The corresponding policy
π(Û (k)|X(k), R̂(k)) is the AFA missingness pol-
icy. Our MAR assumption holds for the AFA
missingness policy (i.e. π(Û (k)|X(k), R̂(k)) =

π(Û (k)|X̂(k), R̂(k)) ∈ FMAR). Further, consider
a predefined, fixed acquisition cost cacq(i) of ob-
serving a feature Xi. The acquisition cost ran-
dom variable Ĉ represents the cost that the AFA
policy exerts when observing features in X: Ĉ =∑dx

i=1 R̂i · cacq(i). We make one important as-
sumption about the application of the AFA agent
at run-time/deployment:

Assumption 1 The AFA agent has full control of
missingness at run-time.

Assumption 1 implies that there are no other mechanisms that prevent the feature acquisition when
the AFA agent requests the acquisition of a feature, i.e. the features are available for the agent, when
asked for.

Classification (Figure 2 top right):
Consider a predicted label random variable Ỹ = f(R̂,X) = f(R̂, X̂) that is predicted based
on the observed features X̂ using classifier f . Further, consider wrong predictions produce a
misclassification cost C̃ = cmc(Ỹ , Y ), where cmc(yl, ym) : N2 → R is the cost of predicting a
label of class yl as belonging to class ym.

AFA objective:
The goal of AFA is to find a missingness policy πθ(Û

(k)|X̂(k), R̂(k)), parameterized by θ

and a classifier fϕ(R̂, X̂), parameterized by ϕ, that minimize the total sum of acquisition and
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misclassification costs C = Ĉ + C̃. The associated objective function is defined as

argmin
ϕ,θ

J(ϕ, θ) = argmin
ϕ,θ

E
[
C
∣∣∣ϕ, θ] (1)

where J(ϕ, θ) denotes the expected total cost after applying AFA missingness policy and classifier.
Based on the described sequential nature of the AFA problem, one may find an optimal AFA agent
using a method of choice, for example RL. In this work, however, we focus on the important issue of
AFAPE, i.e. the unbiased evaluation of AFA agents (via estimating J) under retrospective missing-
ness, which arises when the available dataset contains missingness. For ease of reference, we drop
ϕ and θ, the arguments of the J notation.

3.3 PROBLEM FORMULATION: ACTIVE FEATURE ACQUISITION PERFORMANCE
EVALUATION (AFAPE) UNDER MISSING DATA

The objective of evaluating AFA agents is to estimate the expected cost J in Eq.(1). For a fully
observed dataset, estimation is trivially done by sampling from the causal graph in Figure 2 (i.e.
running both the agent and the classifier on the dataset) and averaging the resulting costs. Under
retrospective missingness, however, one cannot sample from p(X,Y ), as some of the features in X
are missing. We assume retrospective missingness scenarios without missingness in the label Y and
no direct influence of Y on missingness (i.e. no arrow Y → R̄), but these restrictions can also be
relaxed. Note that, in contrast to the AFA missingness (denoted by R̂, Û and X̂), the retrospective
missingness (denoted by R̄, Ū and X̄) is not necessarily restricted to FMAR.

Figure 3: AFA graph: Causal graph for AFA
setting with retrospective missingness. The dis-
tribution shift corresponds to an intervention
do(R̄ = 1⃗).

A possible strategy to still run the agent under
retrospective missingness is to allow the agent to
acquire only the available features and block the
acquisition action if the feature is not available
(i.e. if R̄i = 0, then R̂i = 0). This results in
a modified causal graph, the AFA graph (Figure
3), which comprises the retrospective missing-
ness indicator R̄ as an environment variable. In
Appendix A.3 we provide details about sampling
from the AFA graph. The arrow R̄ → R̂ restricts
the AFA policy to observe only features that are
available. The arrow X → R̄ corresponds to the
retrospective missingness mechanism which is it-
self represented by an m-graph (as described in
Figure 1A).

Assumption 1, which assumes full control of the
AFA agent over the missingness at run-time, im-
plies that the AFA agent is allowed to implement
causal interventions on R̄. This is contrary to the
situation shown in Figure 3, where R̄ depends on X . This causal intervention is mathematically ex-
pressed as do(R̄ = 1⃗). As a result, we define the problem of active feature acquisition performance
evaluation (AFAPE) under missing data as the task of evaluating

Jdo(R̄=1⃗) = E
[
C
∣∣∣do(R̄ = 1⃗)

]
. (2)

In the causal graph in Figure 3, X is a confounder (there exists a path R̄← X → C) which requires
adjustment.

3.4 SOLUTIONS TO AFAPE

We now examine different views and estimation strategies for the AFAPE problem that make use of
the different views on missingness and the variables in the AFA graph.
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3.4.1 BLACK-BOX MISSING DATA VIEW

Figure 4: Reduced AFA graph for different es-
timation strategies. A) Black-box missing data
view. B) Off-environment bandit view.

We call the first view the black-box missing data
view. It corresponds to the traditional view on
missingness adjustment from the missing data lit-
erature, which hasn’t been applied in AFA set-
tings previously. It reduces the AFA graph to the
three variables X, R̄ and C, as shown in Figure
4A). We denote it as ’black-box’ since it makes
no use of the special structure of the AFA prob-
lem (knowledge about R̂) and treats the AFA
agent and classifier as a black-box function that
maps R̄ and X to C.

The black-box missing data view leads to the following IS-based estimator for Jdo(R̄=1⃗), called
inverse probability weighting (IPW) (Seaman & White, 2013):

JIPW = EC,X,R̄

[
C

I(R̄ = 1⃗)

p(R̄ = 1⃗|X)

]
= EC,Xadj,R̄

[
C

I(R̄ = 1⃗)

p(R̄ = 1⃗|Xadj)

]
(3)

where Xadj is a subset of features that blocks all backdoor paths between X and C.

Intuition behind IPW:
The importance ratio ρIPW = I(R̄=1⃗)

p(R̄=1⃗|X)
(where p(R̄ = 1⃗|X) denotes the propensity score) is derived

from the importance ratio p(X|do(R̄=1⃗))

p(X|R̄=1⃗)
. The idea of this IS approach is to sample from the known

distribution p(X|R̄ = 1⃗) instead of the unknown target feature distribution p(X|do(R̄ = 1⃗)) and to
adjust for the difference using the so-called importance ratio.

Advantage of IPW:
A big advantage of IPW is its completeness property, i.e. any function of the target distribution is
identified if and only if the propensity score is identified (Nabi et al., 2020). Therefore, if identifi-
cation for a particular missingness scenario fails for this approach, no other approach can perform
unbiased estimation.

Disadvantage of IPW:
Under IPW, AFA agents can only be tested on the complete subset of the data (the IS distribution is
p(X|R̄ = 1⃗)). This is a severe disadvantage, as even an agent that never acquires a certain feature
could nevertheless be evaluated only on data points where that feature has observed entries.

We point out another common estimation strategy in the missing data literature: multiple imputation
(MI) (Sterne et al., 2009) which we review in Appendix A.4. This approach can be adopted to over-
come the data inefficiency of IPW. However, it suffers from the disadvantage of a potentially very
complicated identification step and the requirement for fitting many conditional densities, which
increases the risk of model misspecification. In Appendix A.4, we also discuss common mistakes
such as imputing using only features (instead of features and label) and conditional mean imputation,
which both can lead to biased results.

3.4.2 OFF-ENVIRONMENT BANDIT VIEW

We now propose a second view for AFAPE that leverages the knowledge about the AFA feature
acquisitions R̂ (Figure 4B). Although AFA was defined as a sequential decision problem, the order
of acquisitions does not influence the evaluation step as the acquisition and misclassification costs
are invariant to the order of acquisitions. We therefore treat the whole set of acquisitions R̂ as one
action and the agent as a multiarmed bandit (Auer et al., 2002). Thus, R̄,X and Y can be seen
as the environment, while R̂ denotes the bandit’s action and C the return. We thus take the set
view for both the retrospective and the AFA missingness. The AFAPE problem can thus be seen as
off-environment policy evaluation of a bandit under an environment intervention.
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Based on the off-environment bandit view, we propose AFAIS (active feature acquisition importance
sampling), a novel unbiased and consistent estimator for Jdo(R̄=1⃗):

JAFAIS = EC,R̂,Xadj

[
C
p(R̄ = 1⃗|Xadj, R̂)

p(R̄ = 1⃗|Xadj)

]
(4)

The derivation is shown in Appendix A.5.

Intuition behind AFAIS:
The term ρAFAIS =

p(R̄=1⃗|Xadj,R̂)

p(R̄=1⃗|Xadj)
is derived from the importance ratio p(R̂|Xadj,R̄=1⃗)

p(R̂|Xadj)
. The idea

behind this approach is that we switch the adjustment from different feature distributions (as
in IPW) to an adjustment for different AFA feature acquisition distributions. The problem re-
mains that we cannot sample from the policy p(R̂|Xadj, R̄ = 1⃗) for every data point because
we do not have certain features (and have to block those actions). Instead, we sample from
p(R̂|Xadj) =

∑
R̄,X-adj

p(R̂|Xadj, X-adj, R̄)p(R̄,X-adj|Xadj) which is possible to do over all data
points (not just fully observed data points). The variable set X-adj corresponds to the subset of
features not in Xadj.

Advantage of AFAIS:
The obvious and main advantage of AFAIS is that it uses all data points instead of only complete
cases (as in IPW) which increases data efficiency. However, this advantage diminishes in case of
“data hungry” agents, i.e. agents that often acquire relatively large feature sets. For instance, if
the AFA agent always acquires all the features, i.e. p(R̂ = 1⃗|Xadj, R̄ = 1⃗) = 1 ∀Xadj, then the
numerator, which we denote as the AFA propensity score, p(R̄ = 1⃗|Xadj, R̂) = 0 if R̂ ̸= 1⃗ and
AFAIS and IPW will have equal weights.

Disadvantage of AFAIS:
One disadvantage of AFAIS is that it requires the fitting of a second function, the AFA propensity
score p(R̄ = 1⃗|Xadj, R̂), which increases the chance of model misspecification. Additionally, identi-
fication is more demanding for AFAIS. In Appendix A.6, we show the identifiability of JAFAIS under
MCAR and simple MAR missingness scenarios, and show how it cannot be evaluated in an MNAR
setting.

3.4.3 THE AFAIS-IPW SPECTRUM

AFAIS and IPW can be viewed as two ends of a spectrum. In IPW, we only use the complete cases,
while in AFAIS we use all data points with all missingness patterns. A tuning parameter that allows
us to gradually move on this spectrum toward each approach, helps us overcome the disadvantages of
both (low data efficiency for IPW and problem of evaluation under MNAR missingness for AFAIS).
We propose the modified AFAIS estimator as:

JAFAIS(s) = EC,R̂,Xadj,R̄s

[
C
p(R̄ = 1⃗|Xadj, R̂, R̄s = 1⃗)I(R̄s = 1⃗)

p(R̄ = 1⃗|Xadj)

]
(5)

for any desired index subset s ⊆ {0, . . . , dx}. The derivation is shown in Appendix A.7.

Intuition behind the modified AFAIS:
The idea behind this approach is to sample only from data points where an important set of features
(the features in s) are always observed while using the off-environment bandit approach for the
remaining features. To showcase the advantages of using the modified AFAIS, we demonstrate in
Appendix A.8 that the modified AFAIS is identified for the MNAR example from Appendix A.6
and that it can be evaluated when an appropriate conditioning set s is chosen. We do not give
general identifiability statements for the modified AFAIS estimator, but suggest a simple procedure
for choosing the set s in Appendix A.8.

3.4.4 OTHER VIEWS ON SOLVING AFAPE AND DATA EFFICIENCY

Other views on AFAPE include off-policy policy evaluation (OPE) which has been used in the AFA
literature before, but is very data inefficient in the context of AFA and can lead to biased results
in complex missing data scenarios. Another approach used in the AFA literature is to just block
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Figure 5: Error of expected cost estimation as a function of the number of data points in a synthetic
data experiments with MNAR missingness. Plots show two random agents that acquire each costly
feature with a probability of A) 10% and B) 90%. Error is defined as the difference between an
estimation and the ground truth estimator Jdo(R̄=1⃗) evaluated on the whole dataset (nD = 100000).

the acquisitions without adjustment which thus also leads to biased results. We review these two
approaches in Appendix A.9. In Appendix A.10 we quantify the improved data efficiency of the
off-environment bandit view over the black-box missing data and OPE views. We also show that the
improved data efficiency leads to weaker positivity assumptions required for the off-environment
bandit view compared to the other views.

4 EXPERIMENTS

4.1 EXPERIMENT DESIGN

We evaluate different estimators on synthetic and real world datasets (HELOC (FICO, 2018),
Retinopathy (Antal & Hajdu, 2014), and Income (Newman et al., 1998)) under examples of syn-
thetic MCAR, MAR and MNAR retrospective missingness. We evaluate random AFA policies and
a vanilla Deep Q-Network (DQN) RL agent (Mnih et al., 2015) as AFA agents and use a random
forest classifier. We compare the following estimators:

• JImp uses Missforest (Stekhoven & Bühlmann, 2012) to impute missing features.
• JR̄ blocks the acquisitions of not available features, but offers no correction.
• JR̄=1⃗ corresponds to complete case analysis and is only unbiased under MCAR.
• JIPW is the stabilized IPW estimator. Stabilization is achieved by normalizing the weights which

reduces variance at the cost of small bias (Rubinstein & Kroese, 2016).
• JAFAIS is the stabilized (modified) AFAIS estimator.
• Jdo(R̄=1⃗) is the ground truth, where the agent is run on the fully observed dataset.

We fit the propensity score and AFA propensity score using multi-layer perceptrons. Complete
experiment details are given in Appendix A.11.

4.2 RESULTS

Figure 5 depicts convergence rates of different estimators for the MNAR synthetic data experiment
for two random policies as a function of evaluation sample size. The results show that the three
knowingly-biased estimators JImp, JR̄ and JR̄=1⃗ do not converge to correct solutions as the sample
size increases. The stabilized AFAIS (and IPW) estimators converge to the correct solution, but
at different rates depending on the policy. In the case of a policy that only acquires 10% of the
costly features, the stabilized AFAIS estimator JAFAIS is converging almost as fast as the ground
truth Jdo(R̄=1⃗) (Figure 5 A). In the case where the agent acquires 90% of the data, the AFAIS
and IPW estimators are converging at similar rate, indicating there is not much benefit of using
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AFAIS over the conventional IPW estimator (Figure 5 B). The increased data efficiency of AFAIS
is illustrated in Figure 6 on real-world data experiments where it leads to tighter tighter boxplots for
AFAIS compared to IPW. This benefit is significant for agents that do not acquire much data (i.e.
the random 10% agent), and diminishes as the agent becomes more ”data hungry”. The experiments
results in Figure 6 further demonstrate the large errors biased estimators, such as JImp, JR̄ and JR̄=1⃗,
can produce and the potentially wrong conclusions these estimators can lead to. If the policies are
compared according to JImp, for example, one would conclude the differences between the random
policies in the HELOC dataset are large (JImp ranges between 6.5 and 8), when in fact they are only
small (Jdo(R̄=1⃗) is close to 6.5 for all random policies). Further experiment results are shown in
Appendix A.12.

Figure 6: Results for the A) HELOC, B) Retinopathy, and C) Income datasets for different miss-
ingness scenarios. Boxplots show variability of the estimate when bootstrapping 300 times without
replacement 70% of a total test dataset of size nDtest

(nDtest
= 17’781 for HELOC, nDtest

=575
for Retinopathy and nDtest

= 16’281 for Income).

5 DISCUSSION AND FUTURE WORK

The central argument of this paper is based on Assumption 1, the full control of the AFA agent over
the missingness at run-time. This assumption might, however, not always hold in practice (e.g. due
to the breaking of a sensor or a patient who is not cooperative). In this case, a different distribution
shift for R̄ should be assumed for evaluation.

In general, the choice of view and estimator for AFAPE must depend on the following questions:
1) Can identification be performed? The identification step might have varying degrees of difficulty
depending on the underlying m-graph and the chosen view/ estimator. Identification is for example
easier for IPW than for AFAIS.
2) Which estimator is most data efficient?/ Do all positivity assumptions hold? In this paper, we
demonstrate that the off-environment bandit view is more data efficient than the black-box missing
data and OPE views. Furthermore, it requires the weakest positivity assumptions.
3) Can the nuisance functions be fitted accurately? The nuisance functions (e.g. the AFA propensity
score) need to be fitted based on the available data. Fitting the AFA propensity score can thus pose
as an additional source of error of the AFAIS estimator that the IPW estimator does not have.

We consider the following suggestions as major extensions of this work: i) studying the evaluation
of AFA agents under missingness in the temporal setting with time-series features; ii) including the
counterfactual expected cost Jdo(R̄=1⃗) in the training of AFA agents and classifiers.

6 CONCLUSION

We study the problem of active feature acquisition performance evaluation (AFAPE) under missing
data which corresponds to an intervention on the environment used to train AFA agents. We propose
a new causal graph, the AFA graph, and demonstrate that current evaluation methods for the AFAPE
problem can be strongly biased leading to high risks for model deployment. We show that AFAIS, a
novel IS-based estimator is an unbiased estimator for evaluation, and more data efficient than IPW.
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A APPENDIX

A.1 LITERATURE REVIEW FOR ACTIVE FEATURE ACQUISITION

Active feature acquisition (AFA) (An et al., 2006; Li & Oliva, 2021a; Li et al., 2021; Chang et al.,
2019; Shim et al., 2018; Yin et al., 2020) has been studied under various other names including,
but not limited to, ”active sensing” (Yoon et al., 2019; 2018; Tang et al., 2020; Jarrett & van der
Schaar, 2020), ”active feature elicitation” (Natarajan et al., 2018; Das et al., 2021),”dynamic feature
acquisition” (Li & Oliva, 2021b), ”dynamic active feature selection” (Zhang, 2019), ”element-wise
efficient information acquisition” (Gong et al., 2019), ”classification with costly features” (Janisch
et al., 2020) and ”test-cost sensitive classification” (Xiaoyong Chai et al., 2004). AFA is different
from active learning (Settles, 2009). In active learning, one assumes a classification task with a
training data set that contains many unlabeled data points. The active learning task is then to decide
which label acquisitions will improve the training performance the most. Similar research also exists
for the acquisition of features for optimal improvement of training. This task has been referred to
as ”active selection of classification features” (Kok et al., 2021), and unfortunately also as ”active
feature acquisition” (Huang et al., 2018; Beyer et al., 2020), but its objective differs fundamentally
from ours. Huang et al. (2018) attempt to find out which missing values within the retrospective data
set would improve training the most when retroactively acquired. In this paper, we are, however,
interested which features, for a new data point, would improve the individual prediction for that data
point the most.

Many AFA approaches are based on a greedy feature acquisition strategy wrapping a subsequent
classification task. An idea is to employ decision tree classifiers and to acquire features sequentially
by traversing the branch of the decision tree (Ling et al., 2004; Sheng & Ling, 2006), while the
splitting criteria minimizes the combined cost of feature acquisition and misclassification (Ling
et al., 2004). Another approach, the test-cost sensitive Naive Bayes (csNB) classifier (Xiaoyong
Chai et al., 2004), exploits the Naive Bayes assumption of independence among the predictive power
of features. This allows for an efficient exploration whether acquiring a certain feature can reduce
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costs. Das et al. (2021) propose clustering-based cost-aware feature elicitation (CATE). In CATE,
data points are clustered based on a set of zero-cost features and the optimal, fixed set of features
is computed for each cluster. A new partially-observed data point is then attributed to a cluster, and
the corresponding optimal feature set is acquired for it.

The AFA problem is inherently a sequential decision process which one can address using rein-
forcement learning (RL). Model-based RL approaches learn the state-transition function which, for
AFA, corresponds to learning an imputation model (Yoon et al., 2018; Yin et al., 2020; Li & Oliva,
2021a;b; Ma et al., 2019). The imputation model is used at run-time to simulate possible outcomes
of a feature acquisition and derive desired acquisition strategies. Alternatively, model-free RL ap-
proaches do not require learning a state-transition function. One variant, Q-learning, relies on mod-
eling the expected cost of a particular acquisition decision (Chang et al., 2019; Janisch et al., 2020;
Shim et al., 2018). As an example, Shim et al. (2018) use double Q-learning for the AFA agent with
a deep neural network that shares network layers with the subsequent classification neural network.

A.2 MISSING DATA MODELS

Missing data problems relate the full data distribution p(X) and the observed data distribution where
variables in X may sometimes be unobserved. Each Xi ∈ X is observed if the corresponding miss-
ingness indicator R̄i assumes value 1. Thus, the observed version of Xi which we denote by X̄i

is defined to be equal to Xi if R̄i = 1, and is missing (equal to a special value “?”) otherwise.
We further consider an acquisition cost C̄i for the feature Xi. The cost C̄ is thus deterministically
defined by the missingness indicator R̄. The goal in missing data problems is to estimate some func-
tion of p(X), such as a parameter or a predictive model, using the i.i.d. samples from the observed
distribution p(X̄, R̄), where X̄ is the set of all observed proxies, and R̄ is the set of all missing-
ness indicators in the problem. Parameters of interest must be identified, i.e. unique functions of
p(X̄, R̄), in order to make the estimation problem well-posed.

The problem of identification is to determine whether or not a function of the full data can be
recovered from the observed data distribution. Identification is not possible in general, and relies
on assumptions encoded in a missing data model. The simplest identified missing data model is
the missing completely at random (MCAR) model, which assumes that p(R̄|X) = p(R̄). The
missing at random model (MAR) assumes that missingness only depends on observed features:
p(R̄ = r̄|X) = p(R̄ = r̄|{Xi : r̄i = 1}). Finally, any model that is neither MCAR nor MAR is
called missing not at random (MNAR) where missingness can now depend also on feature values
that are unobserved. While parameters of interest are not identified in general under MNAR, a large
class of identified MNAR models has been derived in the missing data literature (Bhattacharya et al.,
2020; Nabi et al., 2020).

In this paper, we will restrict attention to a special type of missing data models where identifiability
restrictions are represented by a directed acyclic graph (DAG) factorization of the distribution. The
restrictions are then formalized as p(X, R̄) =

∏
V ∈X∪R̄ p(V |paG(V )) for some graph G where

paG(V ) selects the parents of the node V in G. The graph G is termed the missing data graph
(m-graph) (Mohan et al., 2013; Shpitser et al., 2015) (Figure 1A). In models of missing data, the
identification problem for parameters in p(X) from p(X̄, R̄) may be formulated as an identification
problem of causal inference, where p(X) is obtained as a result of applying the intervention operator
do(.) (Pearl, 2009) to every missingness indicator R̄, hence p(X) = p(X̄|do(R̄ = 1⃗)) = p(X̄,R̄=1⃗)

p(R̄=1⃗|X)
.

In other words, the problem of identification of p(X) is translated to the problem of identification
of p(R̄ = 1⃗|X). If the missing data model is graphical, techniques from causal effect identification
theory may be applied to obtain identification of p(X) (Bhattacharya et al., 2020; Nabi et al., 2020).

A.3 SAMPLING FROM THE AFA GRAPH

In this section, we provide the details of factorizing the joint distribution over the variables of the
AFA process with respect to the AFA graph (Figure 3) into distributions from which we can sample.
The joint distribution factorizes as

p(C̃, Ỹ , Ĉ, R̂, R̄,X, Y ) = p(C̃|Ỹ , Y )p(Ĉ|R̂)p(Ỹ |X, R̂)p(R̂|X, R̄)p(R̄,X, Y ). (A.1)
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Figure A.1: AFA graph from an AFA missingness policy viewpoint. The node X̂(k) represents the
intermediate states at step k of the decision process. The state also contains R̂(k) which was left out
for clarity. The AFA policy π(Ū (k)|X̂(k), R̂(k), R̄) is restricted by R̄ to only allow the acquisition
of available features, i.e. π(Ū (k) = ”observe(Xi)”|X̂(k), R̂(k), R̄ = r̄) = 0 if r̄i = 0.

The sampling procedure thus is defined as follows. First, we sample from the retrospective dataset
p(R̄,X, Y ) (i.e. the ”environment”). Next, we run the AFA agent. This gives us samples from the
AFA missingness p(R̂|X, R̄) and the (deterministic) acquisition cost p(Ĉ|R̂) conditional distribu-
tions. As AFA missingness is not modelled from a set viewpoint (i.e. we cannot directly sample
p(R̂|X, R̄)), we sample equivalently from the corresponding AFA policy π(Û (k)|X̂(k), R̂(k), R̄). To
visualize this process, we present in Figure A.1 the AFA graph from an AFA missingness sequence
perspective. Sampling R̂ now corresponds to sampling Û . We block feature acquisition actions if
the desired feature is not available (i.e. p(R̂ = r̂|X, R̄ = r̄) = 0 if r̂i = 1 and r̄i = 0). Finally,
we apply the (deterministic) classifier and compute the misclassification cost (i.e. ”sample” from
p(Ỹ |X, R̂) and p(C̃|Ỹ , Y )).

A.4 MULTIPLE IMPUTATION (MI) FOR THE AFAPE PROBLEM

An alternative estimation strategy to IPW based on the missing data view is multiple imputation
(MI). The core idea of imputation is to fill in (impute) missing entries and then assume a fully
observed dataset. The procedure can be formulated as (Little & Rubin, 2019)

Jdo(R̄=1⃗) = EX,Y [h(X,Y )] = EX̄,Y

[
EXmiss [h(X̄,Xmiss, Y )]

]
(A.2)

=
∑
X̄,Y

∑
Xmiss

h(X̄,Xmiss, Y )p(Xmiss|X̄, Y )p(X̄, Y )

where h(X,Y ) ≡ C is the black-box function mapping the data to the costs and Xmiss represents
the unobserved data. Imputation thus corresponds to Monte Carlo integration by sampling observed
values p(X̄, Y ) and imputing missing values using an imputation model p(Xmiss|X̄, Y ). To increase
accuracy of the estimator, the imputation can be repeated multiple times leading to the MI proce-
dure. In the identification step, one determines whether the imputation model can be estimated from
retrospective data.

The first drawback of imputation is the requirement of modeling joint distributions which is in
practice a complex problem, especially in high-dimensional settings and under complex missingness
patterns. As an example, the multiple imputation by chained equations (MICE) method (van Buuren,
2007) requires fitting K conditional densities for K partially observed features. By comparison,
IPW requires only the propensity score, which is often much easier to specify.

Eq.(A.2) implies imputation by conditioning on the features X and the label Y . This introduces the
risk of data leakage, as the imputed features may carry predictive information not because of the true
data generation mechanism, but because of the imputation, resulting in a potentially overoptimistic
estimation of prediction performance. A common alternative, often used in ML, is to impute the data
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without conditioning on Y . This assumption, however, implies that a missing feature Xi ∈ Xmiss
is conditionally independent of the label given the observed features (Xi ⊥⊥ Y |X̄). Determining
marginal predictive value of a feature for predicting Y , is however, the whole task of AFA, which
renders this approach impractical.

A simplified imputation approach that reduces the complexity of modelling and that has been
applied in AFA settings (An et al., 2022; Erion et al., 2021; Janisch et al., 2020) is condi-
tional mean imputation. The missing values are thereby imputed using a conditional mean
model for E[Xmiss|X̄]. Conditional mean imputation assumes EX̄,Y [EXmiss [h(X̄,Xmiss, Y )]] =

EX̄,Y [h(X̄,EXmiss [Xmiss|X̄], Y )], which does not hold in general and can lead to strongly biased
results when h is nonlinear as is the case in AFA settings.

A.5 DERIVATION OF ACTIVE FEATURE ACQUISITION IMPORTANCE SAMPLING (AFAIS)

The AFAIS estimator is based on IS, a popular method in OPE and missing data to adjust for distri-
bution shift. IS assumes a problem setting where one has only access to samples from a ”behavior”
distribution, while the goal is the evaluation of a ”target” distribution. This is made possible when
knowledge of the ratio of the two distributions (importance ratio) is available. In the setting of
this paper, the target distribution is the distribution of C under the intervention do(R̄ = 1⃗). The
derivation of AFAIS is based on the reduced AFA graph from Figure 4B) which results from a latent
projection (Verma & Pearl, 1990) of the full AFA graph from Figure 3. This reduces the graph
factorization from equation Eq. (A.1) to only the features C, R̂, R̄ and X . We further consider only
a subset of the features Xadj that blocks all backdoor paths from R̄ to R̂ and C. Since this yields a
causal model of a DAG, we can apply the truncated factorization, or the g-formula, to obtain:

p(C, R̂,Xadj|do(R̄ = 1⃗)) = p(C|Xadj, R̂)p(R̂|Xadj, R̄ = 1⃗)p(Xadj) (A.3)

We propose the following behavior distribution:

p(C, R̂,Xadj) = p(C|Xadj, R̂)p(R̂|Xadj)p(Xadj) (A.4)

This means we sample from all data points and not only from observed data points as for IPW.
Sampling from Eq. (A.4) is equivalent to sampling from p(C, R̂,Xadj, X-adj, R̄) = p(C, R̂,X, R̄) =

p(C|X, R̂)p(R̂|X, R̄)p(X, R̄) which one can do as shown in Appendix A.3.

Based on the introduced target and behavior distribution, we now derive the AFAIS estimator:

Jdo(R̄=1⃗) = E
[
C
∣∣∣do(R̄ = 1⃗)

]
=

∑
C

Cp(C|do(R̄ = 1⃗))

=
∑

C,Xadj,R̂

Cp(C,Xadj, R̂|do(R̄ = 1⃗))

=
∑

C,Xadj,R̂

Cp(C|Xadj, R̂)p(R̂|Xadj, R̄ = 1⃗)p(Xadj)

=
∑

C,Xadj,R̂

Cp(C|Xadj, R̂)p(R̂|Xadj)p(Xadj) ·
p(R̂|Xadj, R̄ = 1⃗)

p(R̂|Xadj)

(∗)
=

∑
C,Xadj,R̂

Cp(C|Xadj, R̂)p(R̂|Xadj)p(Xadj) ·
p(R̄ = 1⃗|Xadj, R̂)

p(R̄ = 1⃗|Xadj)

= EC,R̂,Xadj

[
C
p(R̄ = 1⃗|Xadj, R̂)

p(R̄ = 1⃗|Xadj)

]
≡ JAFAIS (A.5)

where the equivalence (∗) holds due to Bayes rule:

p(R̂|Xadj, R̄ = 1⃗)

p(R̂|Xadj)
= p(R̂|Xadj, R̄ = 1⃗)

p(R̄ = 1⃗|Xadj, R̂)

p(R̂|Xadj, R̄ = 1⃗)p(R̄ = 1⃗|Xadj)
=

p(R̄ = 1⃗|Xadj, R̂)

p(R̄ = 1⃗|Xadj)
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Figure A.2: Missing data graph including the AFA and retrospective missingness. A) Retrospective
missingness is MAR. B) Retrospective missingness is MNAR.

A.6 IDENTIFICATION EXAMPLE FOR AFAIS

We give an instructive example of how to perform identification for the propensity score
p(R̄ = 1⃗|Xadj) and AFA propensity score p(R̄ = 1⃗|Xadj, R̂), needed for the AFAIS estimator JAFAIS.
We show that identification is possible for a simple MAR (and therefore MCAR) scenario, but that
the evaluation of the AFAIS estimator is not possible for an MNAR missing data scenario.

MAR

We assume the missing data graph in Figure A.2A) showing both retrospective and AFA missing-
ness. The figure shows a simple MAR missing data scenario, where X1 and X2 are not missing in
the retrospective dataset (we leave out R̄1 and R̄2 for clarity), but influence retrospective missing-
ness in X3 (X1 → R̄3; X2 → R̄3). The blocking of actions leads to: R̄3 → R̂i ∀i. Furthermore,
the AFA agent’s decision to acquire a feature can be made based on all previously acquired features
which translates to X̂i → R̂j ∀i ̸= j. Figure A.2 shows arrows R̂1 → R̂2 and R̂2 → R̂3, but
this does not hold in general. Other causes between missingness indicators are in general possible,
but this does not affect the identification procedure described in the following. The corresponding
adjustment set is Xadj = {X1, X2}.

Identification of p(R̄ = 1⃗|Xadj):
The propensity score is identified by:

p(R̄ = 1⃗|Xadj) = p(R̄3 = 1|X1, X2)

which is a function of the observed data (X1 and X2 are always observed).

Identification of p(R̄ = 1⃗|Xadj, R̂):
The AFA propensity score is also identified:

p(R̄ = 1⃗|Xadj, R̂) = p(R̄3 = 1|X1, X2, R̂)
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MNAR

We now assume the missing data graph in Figure A.2B). The missingness scenario is equal to the
previously described MAR case, except for an additional missingness R̄2 caused by X1 (X1 → R̄2).
As the missingness indicator R̄3 now depends on a potentially missing X2, the scenario is MNAR.
The corresponding adjustment set remains Xadj = {X1, X2}.

Identification of p(R̄ = 1⃗|Xadj):
The propensity score is still identified by

p(R̄ = 1⃗|Xadj) = p(R̄ = 1⃗|X1, X2)

= p(R̄2 = 1|X1)p(R̄3 = 1|X1, X2)

= p(R̄2 = 1|X1)p(R̄3 = 1|X1, X2, R̄2 = 1) (A.6)

where we used the conditional independence R̄3 ⊥⊥ R̄2|X1, X2 to make the expression a function
of the observed data. The problem with using the propensity score for the AFAIS estimator is that it
needs to be evaluated for all X and not only for fully observed samples of X (as is the case in regular
IPW). In this example, it is not possible to evaluate p(R̄ = 1⃗|Xadj) for data points where R̄2 = 0.
This means AFAIS cannot be used. One could impute the missing values using the MI procedure.
This can, however, be very difficult due to complex identification and modelling. Furthermore, the
identification of the AFA propensity score might also be very difficult or potentially impossible in
these scenarios.

A.7 DERIVATION OF THE MODIFIED ACTIVE FEATURE ACQUISITION IMPORTANCE
SAMPLING (AFAIS)

The derivation of the modified AFAIS estimator that combines importance sampling ideas from the
black-box missing data view and the off-environment bandit view, and therefore covers the AFAIS-
IPW spectrum, closely follows the derivation done in Appendix A.5. Again, the target distribution
is

p(C, R̂,Xadj|do(R̄ = 1⃗)) = p(C|Xadj, R̂)p(R̂|Xadj, R̄ = 1⃗)p(Xadj) (A.7)

Now, we propose the following behavior distribution:

p(C, R̂,Xadj|R̄s = 1⃗) = p(C|Xadj, R̂)p(R̂|Xadj, R̄s = 1⃗)p(Xadj|R̄s = 1⃗) (A.8)

This means we sample from data points where some subset s of the features is fully observed
(R̄s = 1). Sampling from Eq. (A.8) is equivalent to samping from p(C, R̂,Xadj, X-adj, R̄) =

p(C, R̂,X, R̄) = p(C|X, R̂)p(R̂|X, R̄)p(X, R̄|R̄s = 1⃗) which one can do as shown in Appendix
A.3.

Based on the introduced target and behavior distribution, we now derive the modified AFAIS esti-
mator:

Jdo(R̄=1⃗) = E
[
C
∣∣∣do(R̄ = 1⃗)

]
=

∑
C

Cp(C|do(R̄ = 1⃗))

=
∑

C,Xadj,R̂

Cp(C|Xadj, R̂)p(R̂|Xadj, R̄ = 1⃗)p(Xadj)

=
∑

C,Xadj,R̂

Cp(C|Xadj, R̂)p(R̂|Xadj, R̄s = 1⃗)p(Xadj|R̄s = 1⃗) ·
p(R̂|Xadj, R̄ = 1⃗)

p(R̂|Xadj, R̄s = 1⃗)

p(Xadj)

p(Xadj|R̄s = 1⃗)

(∗)
=

∑
C,Xadj,R̂

Cp(C|Xadj, R̂)p(R̂|Xadj, R̄s = 1⃗)p(Xadj|R̄s = 1⃗) ·
p(R̄ = 1⃗|Xadj, R̂, R̄s = 1⃗)p(R̄s = 1⃗)

p(R̄ = 1⃗|Xadj)

= EC,R̂,Xadj,R̄s

[
C
p(R̄ = 1⃗|Xadj, R̂, R̄s = 1⃗)I(R̄s = 1⃗)

p(R̄ = 1⃗|Xadj)

]
≡ JAFAIS(s) (A.9)
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where the equivalence (∗) holds due to Bayes rule:
The first fraction is

p(R̂|Xadj, R̄ = 1⃗)

p(R̂|Xadj, R̄s = 1⃗)
= p(R̂|Xadj, R̄ = 1⃗)

p(R̄ = 1⃗|Xadj, R̂, R̄s = 1⃗)

p(R̂|Xadj, R̄s = 1⃗, R̄ = 1⃗)p(R̄ = 1⃗|Xadj, R̄s = 1⃗)

=
p(R̂|Xadj, R̄ = 1⃗)

p(R̂|Xadj, R̄ = 1⃗)

p(R̄ = 1⃗|Xadj, R̂, R̄s = 1⃗)

p(R̄ = 1⃗|Xadj, R̄s = 1⃗)

=
p(R̄ = 1⃗|Xadj, R̂, R̄s = 1⃗)

p(R̄ = 1⃗|Xadj, R̄s = 1⃗)
(A.10)

The second fraction is:

p(Xadj)

p(Xadj|R̄s = 1⃗)
=

p(R̄s = 1⃗)

p(R̄s = 1⃗|Xadj)
(A.11)

Combining both Eqs.(A.10) and (A.11) gives for the importance ratio:

p(R̂|Xadj, R̄ = 1⃗)

p(R̂|Xadj, R̄s = 1⃗)

p(Xadj)

p(Xadj|R̄s = 1⃗)
=

p(R̄ = 1⃗|Xadj, R̂, R̄s = 1⃗)

p(R̄ = 1⃗|Xadj, R̄s = 1⃗)

p(R̄s = 1⃗)

p(R̄s = 1⃗|Xadj)

=
p(R̄ = 1⃗|Xadj, R̂, R̄s = 1⃗)p(R̄s = 1⃗)

p(R̄ = 1⃗|Xadj)
(A.12)

A.8 IDENTIFICATION EXAMPLE FOR THE MODIFIED AFAIS

Here we show that the modified AFAIS estimator with s = {2} is identified for the MNAR scenario
from Appendix A.6 and that it is possible to evaluate the AFAIS estimator in this case. We follow
the same example and see, first of all, that the propensity score now only needs to be evaluated
on the data points where R̄2 = 1 which is possible. Secondly we show identification of the AFA
propensity score:

Identification of p(R̄ = 1⃗|Xadj, R̂, R̄s = 1⃗) = p(R̄ = 1⃗|X1, X2, R̂, R̄2 = 1):
The identification of the AFA propensity score p(R̄ = 1⃗|X1, X2, R̂, R̄2 = 1) is straight-forward, as
the conditioning R̄2 = 1 makes this a function of observed data only.

How to choose s:
While we do not give general identifiability statements for the modified AFAIS estimator, we present
here a simple guide for choosing the set s that yields the most data efficient scenario under which
the modified AFAIS can be used: First, start with s = ∅ (full off-environment bandit view) and in-
vestigate identifiability and the possibility of evaluation. If identification and evaluation is possible,
then the entire dataset can be used for estimation. Otherwise, try larger sets for s until identification
and evaluation is possible or s = {0, . . . , dx} has been reached. When the set s = {0, . . . , dx}
is reached (full black-box missing data view), then JAFAIS(s) ≡ JIPW and the known identification
theories for IPW hold.

A.9 OTHER VIEWS ON AFAPE

OFF-POLICY POLICY EVALUATION (OPE) FOR AFA

A completely different view on the AFAPE problem is off-policy policy evaluation (OPE). In OPE,
one evaluates the performance of a target policy, the AFA policy, from data collected from a behavior
policy which in this case corresponds to the retrospective missingness (e.g. the policy the doctors
had in the hospital when deciding on what features to acquire). This view differs fundamentally
from the AFA graph proposed in this paper in that it does not look at retrospective missingness as
part of the environment, but rather as actions produced by a ”behavior” policy. There are again two
approaches that differ in their view on missingness. If both retrospective and AFA missingness are
looked at from a sequence view (Figure A.3), the problem can be characterized as OPE of RL agents.
One drawback of this view is that it requires additional knowledge about the order of acquisitions in
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the retrospective dataset Ū = (Ū (1), ...., Ū (N)) which is often not known. An OPE alternative, is to
look at retrospective and AFA missingness from a set perspective (with actions R̄/R̂) and therefore to
consider the problem as OPE of bandit agents. This again uses the fact that the order of acquisitions
does not have an impact on the evaluation step. In the following, we will, however, continue with
the OPE RL perspective as this view has been applied to AFA before (Chang et al., 2019), but the
described characteristics hold similarly also for the OPE bandit view.

For clarity, we denote the AFA missingness policy as πAFA ≡ π(Û (k)|X̂(k), R̂(k)) and the retro-
spective missingness policy as πRetro ≡ π(Ū (k)|X, R̄(k)). Note that Ū and Û now describe the
same variable, but the former is the retrospective distribution that acquired the data, while the latter
is the interventional distribution that we would like to apply when deploying the AFA agent. A
fundamental difference between the two distributions is, however, that πRetro /∈ FMAR in general,
which implies arrows X → Ū (k′) ∀k′ (depicted as blue arrows in Figure A.3) that are not mediated
by X̄(k′).

The evaluation of J under any AFA policy πAFA from the OPE RL view (and Assumption 1)
corresponds to:

Jdo(R̄=1⃗) = E[C|do(R̄ = 1⃗)] = E[C|do(Ū ∼ πAFA)] ≡ Jdo(Ū∼πAFA) (A.13)

This reads as: the expected cost had, instead of the retrospective policy, the AFA policy been applied.
This shows that the AFAPE problem can be formulated using the AFA graph (with black-box miss-
ing data and off-environment bandit views) or using this alternative OPE view and that all views can
be used to solve the same estimation problem. As the AFA policy does not depend on X , but only
on X̂ , the arrows X → Ū (k′) ∀k′ are eliminated under the intervention do(Ū ∼ πAFA). Thus, in this
setting, X is also a confounder due to for example the backdoor path Ū (k′) ← X → Y → C̃. There-
fore, unbiased evaluation requires adjustment of X which is complex due to potentially missing X
values. However, adjustment is not needed under the assumption πRetro ∈ FMAR, which means that
the retrospective data was potentially also acquired by a retrospective ”AFA” agent (e.g. the physi-
cian in the hospital). A huge drawback of the OPE view (from both RL and bandit perspectives) is
that it is very data inefficient as we show in Appendix A.10.

Figure A.3: AFA setting from an OPE RL view. The graph describes the observational data given
by the retrospective missingness policy πRetro = π(Ū (k)|X, R̄(k)). The state (shown as X̄(k)) also
contains R̄(k) which was left out for clarity. The run-time application of AFA agents then corre-
sponds to the intervention do(Ū ∼ πAFA) in which arrows X → Ū are eliminated. This necessitates
adjustment of the confounder X .

BLOCKING ACQUISITION ACTIONS

The last common approach used to handling missing data in AFA settings is to block a feature acqui-
sition action if the corresponding feature is missing (Janisch et al., 2020; Yoon et al., 2018). Yoon
et al. (2018) additionally supplied the AFA agent with the missingness indicators in the retrospective
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dataset, making use of ”informative missingness”. This approach, however, corresponds to evaluat-
ing JR̄ ≡ E[C] and not Jdo(R̄=1⃗) and thus is a biased estimator in the setting we consider (due to
Assumption 1). Under Assumption 1, there are no ”informative missingness” indicators at run-time
that could be given to the agent. This method is unbiased only under the alternative assumption that
the exact same restrictions for the agent at train/evaluation time apply also at run-time.

A.10 DATA EFFICIENCY AND POSITIVITY ASSUMPTIONS OF DIFFERENT VIEWS ON AFAPE

In this work, we propose different views on the retrospective and the AFA missingness. Here, we
derive first the data efficiency of importance sampling approaches of the different views for the
AFA setting; and then show the resulting implications of the required positivity assumptions of each
approach.

DATA EFFICIENCY

We represent data efficiency for AFA by two key quantities: 1) nÛ : the number of distinct AFA
sequence trajectories Û that can be evaluated using a single retrospective data point (defined by
Y , X̄ , R̄ and Ū ), and 2) nruns: the number of times we have to run an agent on the data point
(i.e. choose the data point as the environment) to be able to evaluate these trajectories. Table A.10
presents the views on retrospective and AFA missingness of different approaches, along with their
data efficiency. We present the details of derivation and conclusion for each approach below.

We start with a short example of a data point with 3 features with given missingness ū =
(“observe(X3)”, “observe(X1)”, “stop observation”) / r̄ = (1, 0, 1) before deriving the general data
efficiency for each view. We abbreviate with a slight abuse of notation: ū = (3, 1).

Approach Retrospective
missingness AFA missingness Data efficiency

OPE RL view Sequence view Sequence view nÛ = nruns = 1

OPE bandit view Set view Set view
nÛ = ∥R̄∥1!
nruns = 1

Black-box missing
data view

Set view
(as environment)

Black-box
function

If R̄ = 1⃗ : nÛ =
∑dx

i=0 i!
(
dx

i

)
nruns = 2dx

If R̄ ̸= 1⃗ : nÛ = nruns = 0

Off-environment
bandit view

Set view
(as environment) Set view

nÛ =
∑∥R̄∥1

i=0 i!
(∥R̄∥1

i

)
nruns = 2∥R̄∥1

Off-environment
RL view

Set view
(as environment) Sequence view nÛ = nruns =

∑∥R̄∥1

i=0 i!
(∥R̄∥1

i

)
Table A.1: Different approaches on the AFAPE problem with their corresponding views on retro-
spective and AFA missingness, and the data efficiency. nÛ denotes the number of AFA trajectories
that can be evaluated from a single retrospective data point using the respective approach. nruns
denotes the number of times an agent has to be run on the datapoint to evaluate the nÛ trajectories.
The off-environment bandit view is strictly more data efficient than all other views.

Off-policy policy evaluation (OPE) view (RL perspective)
In the OPE view from an RL perspective, the retrospective sequence trajectory ū = (3, 1) is used
directly to evaluate the target trajectory û = (3, 1). Thus, in the example and in general, one data
point can be used to evaluate one target trajectory (nÛ = 1) with one run (nruns = 1). This view
is thus very data inefficient. It has the fundamental drawback that only trajectories of the behavior
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policy are used to evaluate the target policy. It does not make use of the fact that one can also assess
what would happen if less features were used or if the features were acquired in a different order.

OPE view (bandit perspective)
In the OPE view from a bandit perspective, the retrospective missingness indicator r̄ = (1, 0, 1) is
treated as one action (set view). It is then used to evaluate the target action r̂ = (1, 0, 1). This jointly
evaluates the AFA sequence trajectories û ∈ {(1, 3), (3, 1)}. Thus, the exemplary data point can be
used to simultaneously evaluate two target sequence trajectories (nÛ = 2) with one run (nruns = 1).
The number of trajectories that can be evaluated in general is equal to the number of permutations of
the retrospectively-acquired features, i.e. nÛ = ∥R̄∥1!, where the L1 norm ∥R̄∥1 gives the number
of acquired features.

This view is similar to the OPE view from the RL perspective shown above, except that it leverages
the fact that the order of acquisitions does not have an influence on evaluation. Therefore, it con-
siders all possible permutations which result the final set of features. Otherwise, it shares the same
disadvantages as the OPE view from an RL perspective.

Black-box missing data view
In the black-box missing data view, the retrospective missingness is seen as part of the environ-
ment and the agent is allowed to choose different combinations of the available features. Only
fully observed data points can, however, be used for evaluation. Therefore, one can evaluate
no AFA sequence trajectories for the exemplary data point as it is not fully observed. Con-
sider instead a (fully-observed) data point with retrospective missingness ū∗ = (3, 1, 2), r̄∗ =
(1, 1, 1). This data point can be used to evaluate all possible AFA sequence trajectories û∗ ∈
{(1, 2, 3), (1, 3, 2), ..., (1, 2), .., (1), (2), (3), ()} (16 distinct trajectories). All trajectories that share
the same AFA missingness (r̂∗) can be simultaneously evaluated (as in the bandit view), thus requir-
ing one run per possible subset, i.e. r̂∗ ∈ {(1, 1, 1), (1, 1, 0), ..., (1, 0, 0), ..., (0, 0, 0)} (8 distinct
sets). In general, one obtains nÛ =

∑dx

i=0 i!
(
dx

i

)
and nruns = 2dx if R̄ = 1⃗ (dx is the total number

of features).

The black-box missing data view has the advantage of being a straight-forward approach based
on well-established literature. The downside is that it treats the AFA policy as any other function
applied to the data, and rejects the chance of evaluating the agent on incomplete data if the missing
features is not desired by the agent in the first place. This view is only recommended in complex
missing data scenarios where AFAIS fails, namely where the fraction of missing values is very low
or when the AFA policy is ”data hungry”, i.e. the agent often acquires almost all the features.

Off-environment bandit view
Like the black-box missing data view, the off-environment bandit view also treats the retro-
spective missingness as part of the environment. The difference is that partially-observed data
points can still be used for evaluation. In particular, all AFA sequence trajectories that con-
tain a subset of the available features can be evaluated. For our example, the trajectories are
û ∈ {(1, 3), (3, 1), (1), (3), ()} (5 distinct trajectories) which require 4 runs, i.e. one run per unique
set (r̄ ∈ {(1, 0, 1), (1, 0, 0), (0, 0, 1), (0, 0, 0)}). In general, one can evaluate nÛ =

∑∥R̄∥1

i=0 i!
(∥R̄∥1

i

)
different sequence trajectories with nruns = 2∥R̄∥1 different runs.

This view combines the advantages of the OPE view (partially-observed data points can be used)
and the missing data view (one can evaluate trajectories with subsets of the available features). It is
strictly more data efficient than the OPE views and the black-box missing data view.

Off-environment RL view
The off-environment RL view also treats the retrospective missingness as part of the environment,
but looks at the AFA missingness from a sequence view. This view thus also allows the evaluation of
nÛ =

∑∥R̄∥1

i=0 i!
(∥R̄∥1

i

)
different sequence trajectories, but requires as many runs nruns = nÛ . This

view is equal to the off-environment bandit view, with the exception that it does not make use of
the fact that the order of acquisitions doesn’t have an influence on evaluation. It is thus sub-optimal
compared to the off-environment bandit view.
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POSITIVITY ASSUMPTIONS

Importance sampling approaches have to fulfill a positivity assumption that requires the behavior
distribution to have positive support wherever the target distribution has positive support. Since
behavior and target distributions differ between the different views, the required positivity assump-
tions will also be different. We first look at general positivity assumptions:

General positivity assumptions
In order to evaluate any possible AFA policy, the following positivity assumptions must hold:

OPE view (RL perspective): p(Ū = u|X) > 0 ∀X,u ∈ U where U is the set of all possible
sequences of actions
The positivity assumption of the OPE view requires each exact trajectory of actions to have positive
support (for all possible feature values). It is the strongest of the positivity assumption in this list.

OPE view (bandit perspective): p(R̄ = r|X) > 0 ∀X, r ∈ {0, 1}dx

The OPE view from a bandit perspective requires only each subset of acquired features to have
positive support (for all possible feature values).

Black-box missing data view: p(R̄ = 1⃗|X) > 0 ∀X
The black-box missing data view requires the possibility of a complete case (for each possible fea-
ture value). This is a much weaker assumption than the assumptions for the OPE views.

Off-environment bandit/RL view: p(R̄ = 1⃗|X) > 0 ∀X
The off-environment bandit view has the same positivity assumption as the black-box missing data
view when the goal is to evaluate any possible AFA policy.

Note that these are minimal positivity requirements. A complex missing data scenario might impose
additional positivity assumptions for each of these views to allow identification. In the missing data
view, for example, to identify any identifiable missing data scenario that can be represented by a
DAG (directed acyclic graph), the following additional requirement must be met (Malinsky et al.,
2020): p(R̄ = 1⃗− e⃗i|X) > 0 ∀X, i s.t. i indexes a partially missing feature. e⃗i denotes a vector of
zeros with a 1 at position i.

AFA policy specific positivity assumptions
The general positivity assumptions will relax to some extent, if we are interested in evaluating
specific AFA policies only with known support. In this case, the following modifications are to be
made:

OPE view (RL perspective): p(Ū = u|X) > 0 ∀X,u s.t. p(Û = u|X) > 0
The OPE view from an RL perspective thus requires the behavior policy to only have positive support
for action trajectories that could be taken by the AFA policy.

OPE view (bandit perspective): p(R̄ = r|X) > 0 ∀X, r s.t. p(R̂ = r|X) > 0
Similarly, the OPE view from a bandit perspective requires the behavior distribution to only have
positive support for sets of features that could be acquired by the AFA agent.

Black-box missing data view: p(R̄ = 1⃗|X) > 0 ∀X
The missing data view treats the AFA missingness as a black-box function and can thus not ex-
ploit the scenario where we look at only specific AFA policies. It thus still has the same positivity
assumption.

Off-environment bandit/RL view: p(R̄ ∈ {r′ : r′i ≥ ri∀i}|X) > 0 ∀X, r s.t. p(R̂ = r|X) > 0
The off-environment view requires the behavior distribution to have positive support for a superset
of the set of features that could be acquired by the AFA agent. This is thus strictly the weakest
positivity assumption amongst all views.

A.11 EXPERIMENT DETAILS

In this section, we first describe the general experiment and training setup before explaining each
dataset in detail. Afterwards, we provide a detailed list of the parameters and configurations for each
experiment.
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Data, costs and synthetic missing data
For the experiments, we defined a ”superfeature” as a feature that comprises multiple subfeatures,
which are usually acquired or skipped jointly and which have a single cost (e.g. the pixels of an
image). Furthermore, we assumed a subset of features is available at no cost (free features) and gen-
erated random acquisition costs cacq for the remaining features (from a uniform distribution between
0.5 and 1). We simulated misclassification costs to force good policies to find a balance between
feature acquisition cost and predictive value of the features. We induced synthetic missingness with
MCAR, MAR and MNAR missingness mechanisms similar to the scenarios described in Appen-
dices A.6 and A.8. The distribution of the missingness indicators follows the logistic model (e.g.
p(R̄2 = 1|X1) = σ(−X1 + 1)). To evaluate convergence of different estimators, we consider the
average cost of running the AFA agent on the dataset over all data points in the ground truth testset
(without missingness) as the true expected cost (Jdo(R̄=1⃗)).

Training
We used an Impute-then-regress classifier (Le Morvan et al., 2021) with unconditional mean impu-
tation and a random forest classifier for the classification task and trained it on fully available and
randomly subsampled data (where p(R̂i = 1) = 0.5). We tested three random acquisition policies
that acquire each costly feature with 10%, 50% and 90% probability, respectively. Furthermore, we
evaluated a vanilla Deep Q-Network (DQN) RL agent (Mnih et al., 2015) which during training,
blocks feature acquisitions if the respective feature is not available in the retrospective data. The
nuisance models (propensity score and afa propensity score) were trained on the test set using multi-
layer perceptrons and a cross-fitting approach was employed in the real-world data experiments to
make maximum use of the data (Kennedy, 2022). In cross-fitting, we split the data into K disjoint
folds and train K different sets of nuisance models where nuisance model i is trained on all folds
except fold i. The estimator is then evaluated on all folds by using the nuisance models i if a data
point is in fold i. We used K = 2 in all real-world experiments.

Synthetic dataset
We evaluated and compared the described methods on a synthetic dataset with X ∈ R4 and a bi-
nary label Y , simulated using Scikit-learn’s make_classification function (Pedregosa et al.,
2011). We assumed one superfeature ”superX3” to include X3 and X4. The synthetic data ex-
periment contains MNAR missingness for which we assumed i) X1 (fully observed) causes miss-
ingness in X2; ii) X2 causes missingness in superX3. We chose s = {1} as the conditioning set
when using the modified AFAIS estimator to allow evaluation. The fraction of complete cases is
p(R̄ = 1⃗) ≈ 12% in this experiment. For the synthetic data experiment we did not use cross-fitting,
but instead generated a separate datasplit (40’000 data points) to train the nuisance models (See
Table A.2 for full details).

HELOC dataset
We also tested on the HELOC (Home Equity Line of Credit) dataset which is part of the FICO ex-
plainable machine learning (xML) challenge (FICO, 2018). The dataset contains credit applications
made by homeowners. The ML task was to predict based on information at the application, whether
an applicant is able to repay their loan within two years. The dataset contains 9 superfeatures (See
Table A.3 for full details).

Retinopathy dataset
Next, we tested on the Retinopathy dataset (Antal & Hajdu, 2014). The ML task was to predict
diabetic retinopathy based on extracted image features. We considered image quality assessment
and pre-screening as free features and manually extracted image features by an expert as costly. The
dataset contains 7 superfeatures (See Table A.4 for full details).

Adult income dataset
We performed evaluation on the Income dataset from the UCI data repository (Newman et al., 1998).
The ML task was to predict whether a person has an income over 50’000$. We considered age as
a free feature and other private information (such as education, work experience, etc.) as costly
features. The dataset contains 10 superfeatures (See Table A.5 for full details).
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Data and environment

Sample size nDtest 10′000 (plus separate datasplit of nDnuisance = 40′000 for training of the
propensity and AFA propensity scores)

Superfeatures superX0: [X0], superX1: [X1], superX2: [X2, X3]

Label Y (class 0: 50%, class 1: 50%)

Feature acquisition cost cacq = [0.0, 0.84, 0.86]

Misclassification cost cmc(0, 1) = cmc(1, 0) = 10.0

Missingness mechanisms

MNAR

p(R0 = 1) = 1.0,
p(R1 = 1) = σ(1.0−X0),
p(R2 = 1) = σ(−1.0−X1)

Complete cases ratio: p(R̄ = 1⃗) = 0.12

Models

Classifier RandomForest (number of estimators: 5, max depth: 3)

Agents
Random (10%, 50%, 90%)
DQN (learning rate: 0.001, number of layers: 3,

hidden layer neurons: 50, hidden layer activation function: ReLU)

Nuisance functions

PS (number of layers: 2, hidden neurons per layer: 32, epochs: 2000,
hidden layer activation function: ReLU)

AFAPS (number of layers: 3, hidden neurons per layer: 32, epochs: 8000,
hidden layer activation function: ReLU)

Table A.2: Full experiment details: Synthetic dataset
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Data and environment

Sample size nDtest 35562 (data split: 50% train, 50% test)

Superfeatures

superX0: [‘ExternalRiskEstimate’]

superX1: [‘MSinceOldestTradeOpen’, ‘MSinceMostRecentTradeOpen’,
‘AverageMInFile’, ‘NumSatisfactoryTrades’]

superX2: [‘NumTrades60Ever2DerogPubRec’,
‘NumTrades90Ever2DerogPubRec’]

superX3: [‘PercentTradesNeverDelq’, ‘MSinceMostRecentDelq’,
‘MaxDelq2PublicRecLast12M’]

superX4: [‘MaxDelqEver’, ‘NumTotalTrades’]

superX5: [‘NumTradesOpeninLast12M’, ‘PercentInstallTrades’,
‘MSinceMostRecentInqexcl7days’]

superX6: [‘NumInqLast6M, NumInqLast6Mexcl7days’]

superX7: [‘NetFractionRevolvingBurden’, ‘PercentTradesWBalance’]

superX8: [‘NetFractionInstallBurden’, ‘NumRevolvingTradesWBalance’,
‘NumInstallTradesWBalance’,
‘NumBank2NatlTradesWHighUtilization’]

Label ‘RiskPerformance’ (class 0: 48%, class 1: 52%)

Feature acquisition cost cacq = [0.56, 0.84, 0., 0.58, 0.6, 0.6, 0.64, 0.57, 0.54]

Misclassification cost cmc(0, 1) = cmc(1, 0) = 15.0

Missingness mechanisms

MCAR
p(Ri = 1) = 1.0, i ∈ {0, 2, 4, 6, 8}
p(Rj = 1) = 0.5, j ∈ {1, 3, 5, 7}
Complete case ratio: p(R̄ = 1⃗) = 0.06

MAR
p(Ri = 1) = 1.0, i ∈ {0, 2, 4, 6, 8}
p(Rj = 1) = σ(0.0 + 3.0 ExternalRiskEstimate)
Complete case ratio: p(R̄ = 1⃗) = 0.21

MNAR

p(R0 = 1) = 0.8,
p(Ri = 1) = 1.0, i ∈ {2, 4, 6, 8}
p(Rj = 1) = σ(0.0 + 3.0 ExternalRiskEstimate)
Complete case ratio: p(R̄ = 1⃗) = 0.17

Models

Classifier RandomForest (number of estimators: 100, max depth: 15)

Agents
Random (10%, 50%, 90%)
DQN (learning rate: 0.001, number of layers: 3,

hidden layer neurons: 50, hidden layer activation function: ReLU)

Nuisance functions

PS (number of layers: 2, hidden neurons per layer: 32, epochs: 2000,
hidden layer activation function: ReLU)

AFAPS (number of layers: 3, hidden neurons per layer: 32, epochs: 8000,
hidden layer activation function: ReLU)

Table A.3: Full experiment details: HELOC dataset
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Data and environment

Sample size nDtest 1151 (data split: 50% train, 50% test)

Superfeatures

superX0: [‘quality assessment’]

superX1: [‘pre-screening’]

superX2: [‘MA detection {i}’], i= {1, ..., 6}
superX3: [‘exudates {i}’], i= {1, ..., 8}
superX4: [‘dist macula opt disc’]

superX5: [‘diam opt disc’]

superX6: [‘class AM FM’]

Label ‘DR’ (class 0: 47.0%, class 1: 53.0%)

Feature acquisition cost cacq = [0., 0., 0.55, 0.57, 0.78, 0.52, 0.64]

Misclassification cost cmc(0, 1) = cmc(1, 0) = 12.0

Missingness mechanisms

MCAR
p(Ri = 1) = 1.0, i ∈ {0, 1, 6}
p(Rj = 1) = 0.7, j ∈ {2, 3, 4, 5}
Complete case ratio: p(R̄ = 1⃗) = 0.23

MAR
p(Ri = 1) = 1.0, i ∈ {0, 1, 6}
p(Rj = 1) = σ(−1.0 + 2.0 pre-screening), j ∈ {2, 3, 4, 5}
Complete case ratio: p(R̄ = 1⃗) = 0.28

MNAR
p(R0 = 1) = p(R6 = 1) = 1.0, p(R6 = 1) = 0.9
p(Rj = 1) = σ(−1.0 + 2.0 pre-screening), j ∈ {2, 3, 4, 5}
Complete case ratio: p(R̄ = 1⃗) = 0.22

Models

Classifier RandomForest (number of estimators: 40, max depth: 6)

Agents
Random (10%, 50%, 90%)
DQN (learning rate: 0.001, number of layers: 3,

hidden layer neurons: 50, hidden layer activation function: ReLU)

Nuisance functions

PS (number of layers: 2, hidden neurons per layer: 32, epochs: 2000,
hidden layer activation function: ReLU)

AFAPS (number of layers: 3, hidden neurons per layer: 32, epochs: 4000,
hidden layer activation function: ReLU)

Table A.4: Full experiment details: Retinopathy dataset
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Data and environment
Sample size nDtest 32561 (data split: 50% train, 50% test)

Superfeatures

workclass: [‘Federal-gov’, ‘Local-gov’, ‘Never-worked’, ‘Private’,
‘Self-emp-inc’, ‘Self-emp-not-inc’, ‘State-gov’, ‘Without-pay’]

education: [‘1st-4th’, ‘5th-6th’, ‘7th-8th’, ‘9th’, ‘10th’, ‘11th’, ‘12th’,
‘Assoc-acdm’, ‘Assoc-voc’, ‘Bachelors’, ‘Doctorate’,
‘HS-grad’, ‘Masters’, ‘Preschool’, ‘Prof-school’,
‘Some-college’, ‘-num’]

marital-status: [‘Married-AF-spouse’, ‘Married-civ-spouse’,
‘Married-spouse-absent’, Never-married’, ‘Separated’,
‘Widowed’, ‘relationship Not-in-family’,
‘relationship Other-relative’, ‘relationship Own-child’,
‘relationship Unmarried’, ‘relationship Wife’]

occupation: [‘Adm-clerical’, ‘Armed-Forces’, ‘Craft-repair’,
‘Exec-managerial’, ‘Farming-fishing’, ‘Handlers-cleaners’,
‘Machine-op-inspct’, ‘Other-service’, ‘Priv-house-serv’,
‘Prof-specialty’, ‘Protective-serv’, ‘Sales’, ‘Tech-support’,
‘Transport-moving’]

race: [‘Asian-Pac-Islander’, ‘Black’, ‘Other’], sex: [‘sex Male’]
age: [‘age’], hours-per-week: [’hours-per-week’]
capital-gain: [‘capital-gain’], capital-loss: [‘capital-loss’]

Label ‘income’ (class 0: 76.0%, class 1: 24.0%)
Feature acquisition cost cacq = [0.53, 0.64, 0.64, 0.53, 0.64, 0.55, 0., 0.82, 0.52, 0.76]

Misclassification cost cmc(0, 1) = cmc(1, 0) = 20.0

Missingness mechanisms

MCAR
p(Ri = 1) = 0.8, i ∈ {0, 2, 3, 4, 7, 8, 9}
p(Rj = 1) = 1.0, j ∈ {1, 5, 6}
Complete case ratio: p(R̄ = 1⃗) = 0.16

MAR

p(Ri = 1) = 1.0, i ∈ {5, 6}
p(Rj = 1) = σ(1.0 + Male + 4.0 age), j ∈ {1, 2, 3, 4}
p(Rk = 1) = σ(1.0 + Male + 3.0 age), k ∈ {7, 8, 9}
Complete case ratio: p(R̄ = 1⃗) = 0.22

MNAR

p(R6 = 1) = 1.0, p(R5 = 1) = σ(2.0 + age),
p(Rj = 1) = σ(1.0 + Male + 4.0 age), j ∈ {1, 2, 3, 4}
p(Rk = 1) = σ(1.0 + Male + 3.0 age), j ∈ {7, 8, 9}
Complete case ratio: p(R̄ = 1⃗) = 0.20

Models
Classifier RandomForest (number of estimators: 100, max depth: 8)

Agents
Random (10%, 50%, 90%)
DQN (learning rate: 0.001, number of layers: 3,

hidden layer neurons: 50, hidden layer activation function: ReLU)

Nuisance functions

PS (number of layers: 2, hidden neurons per layer: 32, epochs: 2000,
hidden layer activation function: ReLU)

AFAPS (number of layers: 3, hidden neurons per layer: 32, epochs: 10000,
hidden layer activation function: ReLU)

Table A.5: Full experiment details: Income dataset
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A.12 ADDITIONAL EXPERIMENT RESULTS

Figure A.4: Evaluated performance of differ-
ent agents for the MNAR synthetic data exper-
iment. Box plots shows variability of the es-
timate by bootstrapping 300 times without re-
placement 70% of a total test dataset of size
nDtest

=100’000.

Figure 5 in the main text shows the convergence
of different estimators for the synthetic MNAR
data experiment. The corresponding estimates are
shown here in Figure A.4. The experiment fur-
ther exemplifies how large the errors of biased
estimators can be. Only JIPW and JAFAIS pro-
duce unbiased estimates for all agents. The esti-
mates produced by JImp and JR̄ are far from the
ground truth Jdo(R̄=1⃗), especially for the DQN
agent. This poses a high risk for model deploy-
ment, especially in safety-critical applications.

The main text also shows the estimates of the HE-
LOC (MCAR scenario), Retinopathy (MAR sce-
nario) and Income (MNAR scenario) real-world
data experiments (Figure 6). We provide the ex-
periment results for the remaining missingness
scenarios in Figure A.5.

An additional benefit of IS-based estimators is
that one can further use the estimator to not only
estimate the counterfactual cost, but also other
quantities of interest, such as counterfactual fre-
quency of feature acquisitions. Figure A.6 shows
the frequency of acquisitions for the DQN agent in MNAR Income dataset experiment. While the
sampling is done on a dataset with missingness and blocked acquisition actions for non-available fea-
tures (left plot), the AFAIS estimator (middle plot) gives estimates for the counterfactual frequency
of acquisitions, i.e. how many times each feature would have been observed had the retrospective
dataset been without missingness (right plot). As the result, the agent acquires the feature ‘occupa-
tion’ the most (among costly features) which is reasonable as it is a good indicator of income. The
estimation of counterfactual frequency of acquisition decisions at run-time (e.g. in hospitals) can be
a valuable information as it allows for resource management and allocation planning in advance.
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Figure A.5: Results for the HELOC, Retinopathy and Income dataset experiments for differ-
ent missingness scenarios. This is a complement to Figure 6 in the main text and shows the re-
maining missing data scenarios (MAR/MNAR for HELOC, MCAR/MNAR for Retinopathy and
MCAR/MAR for Income). Boxplots show variability of the estimate when bootstrapping 300
times without replacement 70% of a total test dataset of size nDtest (nDtest = 17’781 for HE-
LOC, nDtest =575 for Retinopathy and nDtest = 16’281 for Income).

Figure A.6: Acquisitions of the DQN agent for the Income dataset. R̄ corresponds to the acquisi-
tions that were performed by the agent on the retrospective dataset. The acquisitions that were made
by the agent when running it on the ground truth dataset (without missingness) are shown on the
right (do(R̄ = 1⃗)). The middle shows the estimate by the AFAIS estimator.
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A.13 GLOSSARY OF TERMS AND SYMBOLS

Term Description
run-time Time when the algorithm is applied prospectively (e.g. when de-

ployed in the hospital)

retrospective missingness Missingness in the retrospective dataset used to train/test the AI
systems

AFA missingness Missingness that is created at run-time when the AFA agent de-
cides on feature acquisitions

MCAR Missing completely at random

MAR Missing at random

MNAR Missing not at random

AFAPE Active feature acquisition performance evaluation: The problem
of estimating how an AFA agent and classifier would perform at
run-time from data with retrospective missingness

sequence view View on missingness with a focus on the sequence of feature ac-
quisitions

set view The traditional view on missingness with a focus on which set of
features was acquired

AFA graph Causal graph describing the AFA problem

black-box missing data view View on AFAPE where retrospective missingness is seen from a
set view and as part of the environment and AFA missingness is
seen as a black-box function

off-environment bandit view View on AFAPE where retrospective missingness is seen from a
set view and as part of the environment and AFA missingness is
also seen from a set view

off-environment RL view View on AFAPE where retrospective missingness is seen from a
set view and as part of the environment and AFA missingness is
seen from a sequence view

OPE Off-policy policy evaluation

OPE view (RL perspective) View on AFAPE with a sequence view on both retrospective and
AFA missingness

OPE view (bandit perspec-
tive)

View on AFAPE with a set view on both retrospective and AFA
missingness

IPW Inverse probability weighting

MI Multiple imputation

AFAIS Active feature acquisition importance sampling: novel estimator
for the AFAPE problem based on the off-environment bandit view

IS Importance sampling

propensity score p(R̄ = 1⃗|X) (weighting term in the IPW and AFAIS estimators)

AFA propensity score p(R̄ = 1⃗|X, R̂, R̄s = 1⃗) (weighting term in the AFAIS estima-
tors)

nuisance function Function that needs to be fitted on the data in order to use a corre-
sponding estimator (examples are the propensity score and AFA
propensity score)
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Symbol Description
X Ground truth value of features (potentially unknown)

Y Ground truth value of the label

R̄ Missingness indicator (retrospective missingness)

X̄ Observed proxy for X (retrospective missingness)

Ū (k) Feature acquisition action at acquisition step k (retrospective
missingness)

R̂ Missingness indicator (AFA missingness)

X̂ Observed proxy for X (AFA missingness)

Û (k) Feature acquisition action at acquisition step k (AFA missingness)

π Missingness policy, i.e. probability of taking a certain feature
acquisition action

FMAR Functional space for missingness policies that restricts decisions
of acquiring new features to be based only on previously acquired
features

cacq Vector of feature acquisition costs: element i is the cost of acquir-
ing feature Xi

cmc(yl, ym) Misclassification cost of predicting a label of class yl as belonging
to class ym.

Ỹ = f(R̂, X̂) Predicted value for label Y using classifier f from features that
have been acquired by the AFA agent

C = Ĉ + C̃ Random variable describing the total cost consisting of the accu-
mulated feature acquisition Ĉ and the misclassification cost C̃

J = E [C] Expected cost of applying an AFA missingness policy π and a
classifier f on a dataset with retrospective missingness

Jdo(R̄=1⃗) =E
[
C|do(R̄ = 1⃗)

]
Expected cost of applying an AFA missingness policy π and a
classifier f at run-time (without retrospective missingness)

h(X,Y ) := E[C|X,Y ] Expected cost given all features and the label

JAFAIS Active feature acquisition importance sampling (AFAIS) estima-
tor for Jdo(R̄=1⃗)

JIPW Inverse probability weighting (IPW) estimator for Jdo(R̄=1⃗)

JImp Imputation-based estimator for Jdo(R̄=1⃗)

JR̄ Estimator for Jdo(R̄=1⃗) based on the blocking of acquisition ac-
tions for not available features

JR̄=1⃗ Estimator for Jdo(R̄=1⃗) that only considers those data points
where all features are available (complete case analysis)

s ⊆ {0, . . . , dx} Hyperparameter of the modified AFAIS estimator that denotes
which subset of the features must be complete (i.e. R̄s = 1⃗)
in order for a data point to be used in the evaluation. A smaller
set s implies higher data efficiency (less restrictions on complete
information), while a larger set s increases the possibility of iden-
tification and evaluation for a particular missingness scenario.
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