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Abstract

We consider how to privately share the personalized privacy losses incurred by
objective perturbation, using per-instance differential privacy (pDP). Standard
differential privacy (DP) gives us a worst-case bound that might be orders of
magnitude larger than the privacy loss to a particular individual relative to a fixed
dataset. The pDP framework provides a more fine-grained analysis of the privacy
guarantee to a target individual, but the per-instance privacy loss itself might be a
function of sensitive data. In this paper, we analyze the per-instance privacy loss of
releasing a private empirical risk minimizer learned via objective perturbation, and
propose a group of methods to privately and accurately publish the pDP losses at
little to no additional privacy cost.

1 Introduction

An explosion of data has fueled innovation in machine learning applications and demanded, in equal
turn, privacy protection for the sensitive data with which machine learning practitioners train and
evaluate models.

Differential privacy (DP) (Dwork et al., 2006, 2014a) has become a mainstay of privacy-preserving
data analysis, replacing less robust privacy definitions such as k-anonymity which fail to protect
against sufficiently powerful de-anonymization attacks (Narayanan & Shmatikov, 2008). In contrast,
DP offers provable privacy guarantees that are robust against an arbitrarily strong adversary.

The data curator could trivially protect against privacy loss by reporting a constant function, or by
releasing only data-independent noise. The key challenge of DP is to release privatized output that
retains utility to the data analyst.

A desired level of utility in a machine learning application might necessitate a high value of ε, but the
privacy guarantees degrade quickly past ε = 1. (Triastcyn & Faltings, 2020) construct an example
whereby a differentially private algorithm with ε = 2 allows an attacker to use a maximum-likelihood
estimate to conclude with up to 88% accuracy that an individual is in a dataset. For ε = 5, the
theoretical upper bound on the accuracy of an optimal attack is 99.3%.

Moreover, practical applications of differential privacy commonly use large values of ε. A study of
Apple’s deployment of differential privacy revealed that the overall daily privacy loss permitted by
the system was as high as ε = 6 for Mac OS 10.12.3 and ε = 14 for iOS 10.1.1 (Tang et al., 2017) –
offering only scant privacy protection!

Recent work (Yu et al., 2021) has empirically justified large privacy parameters by conducting
membership inference attacks to demonstrate that these seemingly tenuous privacy guarantees are
actually much stronger in practice. These results are unsurprising from the perspective that DP gives
a data-independent bound on the worst-case privacy loss which is likely to be a conservative estimate
of the risk to a particular individual when a DP algorithm is applied to a particular input dataset.
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Per-instance differential privacy provides a theoretically sound alternative to the empirical approach
for revealing the gap between the worst-case DP bound and the actual privacy loss in practice. The
privacy loss to a particular individual relative to a fixed dataset might be orders of magnitude smaller
than the worst-case bound guaranteed by standard DP. In this case, an algorithm meeting a desired
level of utility but providing weak DP guarantees may, for the same level of utility, achieve drastically
more favorable per-instance DP guarantees.

The remaining challenge is that the per-instance privacy loss is a function of the entire dataset;
publishing it directly would negate the purpose of privately training a model in the first place! In this
paper, we propose a methodology to privately release the per-instance privacy losses associated with
private empirical risk minimization. Our contributions are as follows:

• We introduce ex-post per-instance differential privacy to provide a sharp characterization
of the privacy loss to a particular individual that adapts to both the input dataset and the
algorithm’s output.

• We present a novel analysis of the ex-post per-instance privacy losses incurred by the objective
perturbation mechanism, demonstrating that these ex-post pDP losses are orders of magnitude
smaller than the worst-case guarantee of differential privacy.

• We propose a group of methods to privately and accurately release the ex-post pDP losses. In
the particular case of generalized linear models, we show that we can accurately publish the
private ex-post pDP losses using a dimension- and dataset-independent bound.

• One technical result of independent interest is a new DP mechanism that releases the Hessian
matrix by adding a Gaussian Orthogonal Ensemble matrix, which improves the classical
“AnalyzeGauss” (Dwork et al., 2014b) by roughly a constant factor of 2.

1.1 Related Work

This paper builds upon (Wang, 2019), which proposed the per-instance DP framework and left as an
open question the matter of publishing the pDP losses. We extend the pDP framework to an ex-post
setting to provide privacy guarantees that adapt even more fluidly to data-dependent properties of
our algorithms. Another fundamental ingredient in our privacy analysis is the objective perturbation
algorithm (Obj-Pert) of (Chaudhuri et al., 2011), further analyzed by (Kifer et al., 2012), which
privately releases the minimizer of an empirical risk by adding a linear perturbation to the objective
function before optimizing.

Per-instance DP and ex-post per-instance DP belong to a growing family of DP definitions that
provide a more fine-grained characterization of the privacy loss. Among these are data-dependent DP
(Papernot et al., 2018), which conditions on a fixed dataset; personalized DP (Ghosh & Roth, 2011;
Ebadi et al., 2015; Liu et al., 2015), which conditions on a fixed individual’s datapoint; and ex-post
DP (Ligett et al., 2017), which conditions on the realized output of the algorithm. Per-instance DP
conditions on both a fixed dataset and a fixed individual’s datapoint, and ex-post per-instance DP
adapts even further to the realized output of the algorithm. A more detailed comparison of these DP
variants is included in the supplementary materials.

Other data-adaptive methodologies include propose-test-release (Dwork & Lei, 2009) and local
sensitivity (Nissim et al., 2007). In addition, Bayesian differential privacy (Triastcyn & Faltings,
2020) provides data-dependent privacy guarantees that afford strong protection to “typical” data
by making distributional assumptions about the sensitive data. The Rényi-DP-based privacy filters
of (Feldman & Zrnic, 2020) are also closely related to our work; the authors study composition of
personalized (but not per-instance) privacy losses using adaptively-chosen privacy parameters.

2 Preliminaries

2.1 Symbols and Notation

We write the output of a randomized algorithm A as A(·), and for continuous distributions we take
Pr[A(D) = o] to be the value of the probability density function at output o.

We will let z ∈ Z refer to both an individual and their data; for example, individual z holds data
z = (x, y) in a supervised learning problem. We take Z∗ = ∪∞n=0Zn to be the space of datasets with
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an unspecified number of data points. D±z ∈ Z∗ denotes the fixed dataset D = {z1, . . . , zn} ∈ Z∗
with the data point z removed from D if z ∈ D, or added to D if z /∈ D. In our mathematical
expressions, we use “±” to mean “add if z /∈ D, subtract otherwise”. Similarly. “∓” means “subtract
if z /∈ D, add otherwise”.

We distinguish between ε as fixed input to a DP algorithm, and ε(·) as a function parameterized
according to a particular DP relaxation — e.g., ε(o,D,D±z) means the ex-post per-instance privacy
loss conditioned on output o, dataset D, and data point z.

2.2 Differential Privacy

Let Z denote the data domain, andR the set of all possible outcomes of algorithm A. Fix ε, δ ≥ 0.

Definition 1. (Differential privacy) A randomized algorithm A : Z∗ → R satisfies (ε, δ)-DP if for
all datasets D ∈ Z∗ and data points z ∈ Z , and for all measurable sets S ⊂ R,

Pr
[
A(D) ∈ S

]
≤ eεPr

[
A(D±z) ∈ S

]
+ δ.

Differential privacy guarantees that the presence or absence of any particular data record has little
impact on the output distribution of a randomized algorithm. In this paper we use the “add/remove”
notion of DP, by which we construct neighboring dataset D±z by adding or removing an individual z
from dataset D.

DP is powerful and universal in that its guarantee applies to any D, z and set of output events.
However, there are often situations where the privacy losses of A vary drastically depending on its
input data, and the privacy loss bound ε (protecting even the worst-case pair of neighboring datasets)
may not be informative of the privacy loss incurred to individuals when the input toA is typical. This
motivated (Wang, 2019) to consider a per-instance version of the DP definition.

Definition 2. (Per-instance differential privacy) A randomized algorithm A : Z∗ → R satisfies(
ε(D,D±z), δ

)
-pDP if for dataset D and data point z, and for all measurable sets S ⊂ R,

Pr
[
A(D) ∈ S

]
≤ eεPr

[
A(D±z) ∈ S

]
+ δ,

Pr
[
A(D±z) ∈ S

]
≤ eεPr

[
A(D) ∈ S

]
+ δ.

The pDP definition can be viewed as using a function ε(D,D±z) that more precisely describes the
privacy guarantee in protecting a fixed data point z when A is applied to dataset D.

As it turns out, it is most convenient for us to work with an even more instance-specific description of
the privacy loss that is further parameterized by the realized output of A ex-post — after the random
coins of A are flipped and the outcome released.

Definition 3. (Ex-post per-instance differential privacy) A randomized algorithm A satisfies ε(·)-
ex-post per-instance differential privacy for an individual z and a fixed dataset D at an outcome
o ∈ Range(A) if ∣∣∣∣∣log

(
Pr
[
A(D) = o

]
Pr
[
A(D±z) = o

])∣∣∣∣∣ ≤ ε(o,D,D±z).
This definition generalizes the ex-post DP definition (Ligett et al., 2017) (introduced for a different
purpose) to a per-instance version that depends on a given pair of neighboring datasets. The above
quantity is essentially the absolute value of the log-odds ratio, used extensively in hypothesis testing.
Intuitively, the ex-post per-instance privacy loss ε(o,D,D±z) describes how confidently an attacker
could infer, given the output of algorithm A, whether or not individual z is in dataset D.

Despite (or perhaps because of) its precise accounting for privacy, ex-post pDP could reveal sensitive
information about the dataset, as the following example explicitly illustrates.

Example 4 (The privacy risk of exposing ex-post pDP). Consider a standard Gaussian mechanism
A that adds noise to a counting query Q applied to dataset D, i.e. A(D) = Q(D) +N (0, σ2). Q
has global sensitivity ∆Q = 1. We will show that an attacker, knowing only the output o of algorithm
A, her ex-post pDP loss and that her individual data is not contained in dataset D, can conclusively
uncover the sensitive quantity Q(D) protected by algorithm A.
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Following the proof of Theorem ??, the ex-post pDP can be directly calculated as

ε(o,D,D±z) =
|Q(D)−Q(D±z)||2o−Q(D)−Q(D±z)|

2σ2
.

Enter attacker z, who has auxiliary information: she knows that her own individual data is not
contained in D. After algorithm A is applied to D, attacker z receives output o = 1 and is informed
of her ex-post pDP ε(o,D,D+z). Since Q(D+z) = Q(D) + 1 is known, attacker z can solve for
Q(D) and obtain Q(D) = o − 0.5 ± σ2ε(o,D,D+z). With probability 1, only one of the two
possibilities is an integer1. Therefore, exposing ex-post pDP in this case completely reveals Q(D).

Problem statement. The lesson of Example 4 is that we cannot directly reveal the ex-post pDP
losses without potentially nullifying the algorithm’s privacy benefits. How, then, can we privately
and accurately publish the ex-post pDP losses?

The goal of this paper is to develop an algorithm that publishes a function ε̃ : Z → R whose output
estimates the ex-post pDP loss to an individual z of releasing the output θ̂P from the objective
perturbation mechanism. Any individual (not just those whose data is contained in the dataset) can
plug her own data z into this function in order to receive a high-probability bound on her ex-post pDP
loss which does not depend directly on any sensitive data except her own.

This requirement offers the same type of privacy protection as joint differential privacy (Kearns et al.,
2014), which relaxes the standard DP definition by allowing an algorithm’s output to individual z
to be sensitive only in her own private data. Our notion of privacy is slightly more general in that it
holds for individuals both in and out of the dataset. The difference lies in how the algorithm’s output
space is defined; whereas a joint DP algorithm produces a fixed-length tuple partitioning the output to
each individual in the dataset, our algorithm outputs a function whose domain includes any data point
z ∈ Z . As a result, our methods are robust against collusion by arbitrary coalitions of adversaries,
allowing repeated queries by any group of individuals without invalidating the privacy guarantees
promised by the pDP losses.

2.3 Problem Setting

We consider a general family of problems known as private empirical risk minimization (ERM),
which aim to approximate the solution to an ERM problem while preserving privacy. That is, we
wish to privately solve optimization problems of the form

θ̂ = argmin
θ∈Θ

L(θ;D) + r(θ),

where r(θ) is a regularizer and L(θ;D) =
∑n
i=1 `(θ; zi) a loss function. Throughout, we assume

that `(θ; z) and r(θ) are convex and twice-differentiable with respect to θ. Dataset D is given by
D = {zi}ni=1, and zi = (xi, yi) for xi ∈ X ⊆ Rd and y ∈ Y ⊆ R, where ||x||2 ≤ 1 and |y| ≤ 1.
We consider only unconstrained optimization over Θ = Rd.

2.4 Objective Perturbation

The objective perturbation algorithm solves

θ̂P = argmin
θ∈Θ

L(θ;D) + r(θ) +
λ

2
||θ||22 + bT θ, (1)

where b ∼ N (0, σ2Id) and parameters σ, λ are chosen according to a desired (ε, δ)-DP guarantee.

Algorithm 1 Release θ̂P via Obj-Pert (Kifer et al., 2012)

Input: Dataset D, noise parameter σ, regularization parameter λ, loss function L(θ;D) =∑
i `(θ; zi), convex and twice-differentiable regularizer r(θ), convex set Θ.

Output: θ̂P , the minimizer of the perturbed objective.
Draw noise vector b ∼ N (0, σ2I).
Compute θ̂P according to (1).

1Take Q(D) = 0 and o = 0.1 as an example, the two possibilities are 0 and −0.8.
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Theorem 5 (Privacy guarantees of Algorithm 1 (Kifer et al., 2012)). Consider dataset D = {zi}ni=1;
loss function L(θ;D) =

∑
i `(θ; zi); convex regularizer r(θ); and convex domain Θ. Assume that

∇2`(θ; zi) ≺ βId and ||∇`(θ; zi)||2 ≤ ξ for all zi ∈ X × Y and for all θ ∈ Θ. For λ ≥ 2β/ε1 and
σ = ξ2(8 log(2/δ) + 4ε1)/ε21, Algorithm 1 satisfies (ε1, δ)-differential privacy.

The privacy guarantees stated in Theorem 5 apply even when θ is constrained to a closed convex set,
but for ease of our per-instance privacy analysis we will require Θ = Rd from this point on.

3 Privately Publishable pDP

3.1 pDP Analysis of Objective Perturbation

Our goal in this section is to derive the personalized privacy losses (under Definition 3) associated
with observing the output θ̂P of objective perturbation. This ex-post perspective is highly adaptive
and also convenient for our analysis of Algorithm 1, whose privacy parameters are a function of the
data. Since we are analyzing the per-instance privacy cost of releasing θ̂P , it makes perfect sense to
condition the pDP loss on the privatized output of the computation.

Our first technical result is a precise calculation of the ex-post pDP loss of objective perturbation.

Theorem 6 (ex-post pDP loss of objective perturbation for a convex loss function). Let J(θ;D) =
L(θ;D) + r(θ) + λ

2 ||θ||22 such that L(θ;D) + r(θ) =
∑
i `(θ; zi) + r(θ) is a convex and twice-

differentiable regularized loss function, and sample b ∼ N (0, σ2Id). Then for every privacy
target z = (x, y), releasing θ̂P = argminθ∈Rd J(θ;D) + bT θ satisfies ε1(θ̂P , D,D±z)-ex-post
per-instance differential privacy with

ε1(θ̂P , D,D±z) =

∣∣∣∣∣∣− log

d∏
j=1

(
1∓ µj

)
+

1

2σ2
||∇`(θ̂P ; z)||22 ±

1

σ2
∇J(θ̂P ;D)T∇`(θ̂P ; z)

∣∣∣∣∣∣ ,
where µj = λju

T
j

(
∇b(θ̂P ;D) ∓ ∑j−1

k=1 λkuku
T
k

)−1

uj according to the eigendecomposition

∇2`(θ; z) =
∑d
k=1 λkuku

T
k .

Proof sketch. Following the analysis of (Chaudhuri et al., 2011), we establish a bijection between
the mechanism output θ̂P and the noise vector b, and use a change-of-variables defined by the
Jacobian mapping between θ̂P and b in order to rewrite the log-probability ratio in terms of the
probability density function of b. First-order conditions then allow us to solve directly for the
distribution of b. To calculate the first term of the above equation, we use the eigendecomposition of
the Hessian∇2`(θ̂P ; z) and recursively apply the matrix determinant lemma. The rest of the proof is
straightforward algebra. The full proof is given in Appendix ??.

The above expression holds for any convex loss function, but is a bit unwieldy. The calculation
becomes much simpler when we assume `(·) to be a generalized linear loss function, with inner-
product form `(θ; z) = f(xT θ; y). For the sake of interpretability, we will defer further discussion of
the ex-post pDP loss of objective perturbation until after presenting the following corollary.

Corollary 7 (ex-post pDP loss of objective perturbation for GLMs). Let J(θ;D) = L(θ;D) +
r(θ) + λ

2 ||θ||22 such that L(θ;D) =
∑
i `(θ; zi) is a linear loss function, and sample b ∼ N (0, σ2Id).

Then for every privacy target z = (x, y), releasing θ̂P = argminθ∈Rd J(θ;D) + bT θ satisfies
ε1(θ̂P , D,D±z)-ex-post per-instance differential privacy with

ε(θ̂P , D,D±z) ≤
∣∣∣∣− log

(
1± f ′′(·)µ(x)

)
+

1

2σ2
||∇`(θ̂P ; z)||22 ±

1

σ2
∇J(θ̂P ;D)T∇`(θ̂P ; z)

∣∣∣∣ ,
where µ(x) = xT

(
∇2J(θ̂P ;D)

)−1
x, ∇`(θ̂P ; z) = f ′(xT θ̂P ; y)x and f ′′(·) is shorthand for

f ′′(·) = f ′′(xT θ̂P ; y). The notation b(θ̂P ;D) means the realization of the noise vector b for
which the output of Algorithm 1 will be θ̂P when the input dataset is D.
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Note that the quantity µ(x) in the first term is the generalized leverage score (Wei et al., 1998),
quantifying the influence of a data point on the model fit. The second and third terms are a function of
the gradient of the loss function and provide a complementary measure of how well the fitted model
predicts individual z’s data.
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Figure 1: Visualization of ex-post pDP losses for logistic regression (n = 1000, d = 2).

Since the ex-post pDP is a function of θ̂P , we don’t even need to run Algorithm 1 to calculate ex-post
pDP losses – we can plug in directly to Corollary 7 in order to calculate the pDP distribution induced
by any hypothetical θ̂P . For Figure 1, we use a synthetic dataset D sampled from the unit ball with
two linearly separable classes separated by margin m = 0.4. Then we solve for θ̂ = argmin J(θ;D)
with λ = 1 to minimize the logistic loss, and directly perturb the output by rotating it by angle
ω ∈ [0, π12 ,

π
4 ,

π
2 ,

3π
4 , π]. We then denote θ̂P := θ+ω to mean θ rotated counter-clockwise by angle ω.

The color scale is a function of the ex-post pDP loss of data point z.

Figure 1 illustrates how the mechanism output θ̂P affects the ex-post pDP distribution of objective
perturbation for our logistic regression problem. For ω ∈ [0, π12 ], the data points closest to the
decision boundary have the highest ex-post pDP loss. These data points have a strong effect on the
learned model and would therefore have high leverage scores, making the first term dominate. As
the perturbation (and model error) increases, the second and third terms dominate; the more badly a
model predicts a data point, the less protection this data point has.

Hidden in this analysis are the δ’s of Theorem 5, which along with the choice of σ and λ could
affect which of the three terms is dominant. Fortunately, the probability of outputting something like
θ̂P = θ+π is astronomically low for any reasonable privacy setting!

3.2 Releasing the pDP losses

Next we consider: after having released θ̂P and calculated the per-instance privacy losses of doing
so, how do we privately release these pDP losses? Our goal is to allow any individual z ∈ Z (in the
dataset or not) to know her privacy loss while preserving the privacy of others in the dataset.

Observe that the expression from Theorem 6 depends on the dataset D only through two quantities:
the leverage score µ(x) = xT

(
∇2J(θ̂P ;D)

)−1
x and the inner product∇J(θ̂P ;D)T∇`(θ̂P ; z). As

a result, if we can find a data-independent bound for these two terms, or privately release them with
only a small additional privacy cost, then we are done.
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3.2.1 Data-independent bound of ex-post pDP losses

Below, we present a pair of lemmas which will allow us to find a high-probability, data-independent
bound on the ex-post pDP loss.
Theorem 8. Suppose `(·) is a function with continuous second-order partial derivatives. Then∣∣∣∣∣∣− log

d∏
j=1

(
1∓ µj

)∣∣∣∣∣∣ ≤ −
d∑
j=1

log(1− λj
λ

),

where µj = λju
T
j

(
∇b(θ̂P ;D) ∓ ∑j−1

k=1 λkuku
T
k

)−1

uj according to the eigendecomposi-

tion ∇2`(θ̂P ; z) =
∑d
k=1 λkuku

T
k . When specializing to linear loss functions such that

`(θ; z) = f(xT θ; y), λj = 0 for all j > 1 and the above bound can be simplified to

− log
(

1− f ′′(xT θ̂P ; y)||x||22/λ
)

.

Theorem 9. Let θ̂P be a random variable such that θ̂P = argmin
(
J(θ;D) + bT θ

)
as in (1), where

b ∼ N (0, σ2Id) and `(θ; z) is a convex and twice-differentiable loss function. Then for z ∈ Z , the
following holds with probability 1− ρ:∣∣∣∇J(θ̂P ;D)T∇`(θ̂P ; z)

∣∣∣ ≤ σ√2 log(2d/ρ)‖∇`(θ̂P ; z)‖1.
For linear loss functions the bound can be substantially strengthened to∣∣∣∇J(θ̂P ;D)T∇`(θ̂P ; z)

∣∣∣ ≤ f ′(xT θ̂p; y)σ||x||2
√

2 log(2/ρ).

We make a few observations on the bounds. First, the general bound in Theorem 9 holds simul-
taneously for all z and it depends only logarithmically in dimension when the features are sparse.
Second, the bound for a linear loss function is dimension-free and somewhat surprising because we
are actually bounding an inner product of two dependent random vectors (both depend on θ̂P ).

Finally, we remark that the bounds in this section are data-independent in that they do not depend on
the rest of the dataset beyond already released information θ̂P . It allows us to reveal a pDP bound of
each individual when she plugs in her own data without costing any additional privacy budget!

3.3 The privacy report

For certain regimes, we may wish to consider privatizing the data-dependent quantities of the ex-post
pDP losses, at an additional privacy cost, as an alternative to using data-independent bounds. Of
course, it only makes sense to do so if we can show that (a) these data-dependent estimates are more
accurate than the data-independent bounds; (b) the overhead of releasing additional quantities (the
additional privacy cost in terms of both DP and pDP) is not too large; and (c) we can share the
pDP losses of the private reporting algorithm using data-independent bounds (so we do not have to
recursively publish such reports).

Full details are in the appendix. We show that by adding slightly more regularization than required by
Obj-Pert (i.e., making λ just a bit larger so that the minimum eigenvalue of the Hessian H = ∇2J
is above a certain threshold), we can find a multiplicative bound that estimates µ(x) = xTH−1x
uniformly for all x. We do so by adding noise to the Hessian using a natural variant of “Analyze
Gauss” (Dwork et al., 2014b), hence privately releasing µP : X → R. See Algorithm 2 for details.

For brevity, we use the short-hands f ′(·) := f ′(xT θ̂P ; y) and f ′′(·) := f ′′(xT θ̂P ; y), where `(θ; z) =
f(xT θ; y) for GLMs. F−1

N (0,1) is the inverse CDF of the standard normal distribution, and F−1
GOE(d) is

the inverse CDF of the largest eigenvalue of the Gausian Orthogonal Ensemble (GOE) matrix, whose
distribution is calculated exactly by (Chiani, 2014). Algorithm 2 specializes to GLMs for clarity of
presentation, but we could adapt it to any convex loss function by replacing the GLM-specific bounds
with the more general ones.

We implicitly assume that the data analyst has already decided the privacy budgets ε2 and ε3 for the
data-dependent release of the gradient (third term of ε1(·)) and of the Hessian (first term of ε1(·)).
Inputs σ2 and σ3 are then calibrated to achieve (ε2, ρ)-DP and (ε3, ρ)-DP, respectively.
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Algorithm 2 Privacy report for Obj-Pert on GLMs

Input: θ̂p ∈ Rd from Obj-Pert, noise parameter σ, σ2, σ3; regularization parameter λ; Hessian
H :=

∑
i∇2`(θ̂p; zi) + λId, Boolean B ∈ [DATA-INDEP, DATA-DEP], failure probability ρ

Require: λ ≥ 2σ3F
−1
λ1(GOE(d))(1− ρ/2)

Output: Reporting function ε̃ : (x, y), δ → R3
+

if B = DATA-INDEP then
Set ε2(·) := 0, ε3(·) := 0.

Set gP (z) := σ||f ′(·)x||2F−1
N (0,1)(1− ρ/2) and set µp(x) := ‖x‖2

λ .
else if B = DATA-DEP then

Privately release ĝp by Algorithm ?? with parameter σ2.
Set ε2(·) according to Theorem ??.
Set gP (z) := min

{
f ′(·)[ĝP (z)]Tx+ σ2||f ′(·)x||2F−1

N (0,1)(1− ρ/2), σ||f ′(·)x||2F−1
N (0,1)(1− ρ/2)

}
.

Privately release Ĥp by a variant of “Analyze Gauss”2with parameter σ3.
Set ε3(·) according to Statement 2 of Theorem 10.
Set µp(x) = 3

2x
T [Ĥp]−1x.

end if

Set εp1(z) :=
∣∣− log

(
1− f ′′(·)µp(x)

)∣∣+
||f ′(·)x||22

2σ2 +

∣∣gP (z)
∣∣

σ2 .

Output the function ε̃(z) :=
(
εp1(z), ε2(z), ε3(z)

)
.

Note that the pDP functions ε2(·) and ε3(·) – which we use to report the additional pDP losses of
releasing the private estimates of the gradient and the Hessian – do not depend on the dataset, and
thus are not required to be separately released. The privately released pDP functions depend on θ̂P ;
to reduce clutter, we omit this parameter in our presentation of Algorithm 2.

Theorem 10. There is a universal constant C such that if λ > Cσ2

√
d(1 + (log(1/ρ))2/3), then

Algorithm 2 satisfies the following properties

1. ( ξ2

2σ2
2

+ β2

4σ2
3

+
√

ξ2

σ2
2

+ β2

2σ3
3

√
2 log(1/δ), δ)-DP

2. ( f
′(θ̂p;z)2‖x‖2

2σ2
2

+ f ′′(θ̂p;z)2‖x‖4
4σ2

3
+

√
f ′(θ̂p;z)2‖x‖2

σ2
2

+ f ′′(θ̂p;z)2‖x‖4
2σ2

3

√
2 log(1/δ), δ)-pDP for all

x ∈ X and 0 ≤ δ < 1.

3. For a fixed input z and D, and all ρ > 0, the privately released privacy report ε̃(·) satisfies
that ε1(θ̂p, D,D±z) ≤ εp1(z) ≤ 12ε1(θ̂p, D,D±z) + |f ′(·)|‖x‖

σ2

√
2 log(2/ρ) with probability

1− 3ρ where ε1(·) is the expression from Theorem 6.

Accurate approximation with low privacy cost. This theorem shows that if we use a slightly larger
λ in ObjPert then we get an upper bound of the pDP for each individual z up to a multiplicative
and an additive factor. The multiplicative factor is coming from a multiplicative approximation of
− log

(
1± f ′′(·)µ(x)

)
and the additive error is due to the additional noise added for releasing the

third term 1
σ2∇J(θ̂P ;D)T∇`(θ̂P ; z). The additional DP and pDP losses for releasing H and g are

comparable to the DP and pDP losses in Objective Perturbation itself if σ2 � σ3 � σ.

Moreover, while using a large λ may appear to introduce additional bias, the required choice of
λ �
√
dσ is actually exactly the choice to obtain the minimax rate in general convex private ERM

(Bassily et al., 2014) (Figure 2 demonstrates the impact of increasing λ).

Joint DP interpretation. Finally, we can also interpret our results from a joint-DP perspective
(Kearns et al., 2014). Given any realized output θ̂p ∈ Rd, the tuple of {ε̃(z1, θ̂

p), ..., ε̃(z1, θ̂
p)}

2Instead of adding “analyze-gauss” noise, we sample from the Gaussian Orthogonal Ensemble (GOE)
distribution to obtain a random matrix (Appendix ??). Under this model we show that τ is on the order of
O(
√
d(1 + log(C/ρ)3/2)).
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satisfies joint DP with the same ε parameter as in Theorem 10. This follows from the billboard lemma
(Hsu et al., 2016).

4 Experiments

Here we evaluate our methods to release the pDP losses using logistic regression as a case study. In
Section 4.1, we demonstrate that the stronger regularization required by Algorithm 2 does not affect
the utility of the model. In Section 4.2 we show that by carefully allocating the privacy budget of
the data-dependent release, we can achieve a more accurate estimate of the ex-post pDP losses of
Algorithm 1 compared to the data-independent release, with reasonable overhead (same overall DP
budget and only a slight uptick in the overall pDP losses).

Experiments with linear regression, with additional datasets and with alternative privacy budget
allocation schemes are included in the supplementary materials.

4.1 Stronger regularization does not worsen model utility

In this experiment we use a synthetic dataset generated by sampling xi, θ ∼ N (0, Id) and normal-
izing each xi ∈ X so that ||xi||2 = 1. Then we rescale Y = Xθ to ensure yi ∈ [0, 1] for each yi ∈ Y .

Algorithm 2 requires a larger λ than sug-
gested by Theorem 5 in order to achieve
a uniform multiplicative approximation
of µ(·). We investigate the effect of
stronger regularization on the utility of a
private logistic regression model applied
to a synthetic dataset (n = 1000, d =
50), for several settings of ε1. Since
each value of ε1 demands a different
minimum value of λ in order to achieve
(ε1, δ)-differential privacy, we compare
via “λ-inflation”: a measure of how
many times larger we set λ than its mini-
mum value required to achieve the worst-
case DP bound of objective perturbation.

85 90 95 100 105 110

λ-inflation

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0-
1

lo
ss

ε1 = 0.1

ε1 = 0.5

ε1 = 1

ε1 = 2

Alg 2

Figure 2: Utility of Obj-Pert with larger λ.

E.g., for logistic regression the objective perturbation mechanism requires λ ≥ 1
2ε , and so in Figure 2

a λ-inflation value of 10 means that we set λ = 5
ε . For each λ-inflate value c , we run Algorithm 1 with

λ = cλObj-Pert. In particular, the star symbol marks the level of λ-inflation enforced by Algorithm 2.
The experimental results summarized in Figure 2 show that the performance of the private logistic
regression model (as measured by the 0-1 loss) remains roughly constant across varying scales of λ.

4.2 Comparison of data-independent and data-dependent bounds

The following experiments feature the credit card default dataset (n = 30000, d = 21) (Yeh & Lien,
2009) from the UCI Machine Learning Repository. We privately train a binary classifier to predict
whether or not a credit card client z defaults on her payment (Algorithm 1), and calculate the true pDP
loss ε1(·) as well as the data-independent and -dependent estimates εP1 (·) for each z in the training
set (Algorithm 2).

The failure probabilities for both Algorithms 1 and 2 are set as δ = ρ = 10−6. Our choices of σ and
λ depend on ε1 and follows the requirements stated in Theorem 5 to achieve DP. We don’t use any
additional regularization, i.e. r(θ) = 0. For the data-dependent release, the noise parameters σ2, σ3

are each calibrated according to the analytic Gaussian mechanism of (Balle & Wang, 2018).

Using ε = 1 as a DP budget, we investigate how to allocate the privacy budget among the components
of the data-dependent release (ε = ε1 + ε2 + ε3) to achieve a favorable comparison with the data-
independent release which requires no additional privacy cost (ε = ε1). The configuration described
in Figure 3, which skews the data-dependent privacy budget toward more accurately releasing εP1 (·),
was empirically chosen as an example where the sum εP1 (·) + ε2(·) + ε3(·) of privately released pDP

9



losses of the data-dependent approach are comparable to the privately released ex-post pDP loss
εP1 (·) of the data-independent approach. Note that ε2(·) and ε3(·) aren’t ex-post in the traditional
sense; however, we feel comfortable summing εP1 (·) + ε2(·) + ε3(·) since all three terms are a
function of θ̂P and individual z’s data. Note also that since the total budget ε is the same for both the
data-independent and -dependent releases, ε1 differs between them. Therefore Figure ?? compares
the accuracy of both approaches using the ratio between εP1 (·) and ε1(·) rather than their raw values.

0.0 0.2 0.4 0.6 0.8 1.0
privacy loss
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t

DP budget ✏1 + ✏2 + ✏3

data-indep ✏P1 (·)
data-dep ✏P1 (·)
data-dep ✏P1 (·) + ✏2(·) + ✏3(·)

100 101

✏P1 (·)/✏1(·)
0

500

1000

1500

2000

2500
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un

t

data-indep median

data-dep median

data-indep

data-dep

(a) Distribution of privately released ex-post
pDP losses.

(b) Distribution of ratios between the
privately released ex-post pDP losses
εP1 (·) and their true values ε1(·).

Figure 3: True and privately released pDP losses when the total privacy budget is ε = 1. For
the data-independent release we use the entire privacy budget on releasing θ̂P (ε1 = 1). For
the data-dependent release we reserve some of the privacy budget for releasing µP (·) and gP (·)
(ε1 = 0.2, ε2 = 0.7, ε3 = 0.1).

When including the additional privacy budget incurred by the data-dependent approach, the data-
dependent approach loses its competitive edge over the data-independent approach. Note that setting
ε2 = ε3 = 0 would reduce the data-dependent approach to the data-independent one. The real
advantage of the data-dependent approach can be best seen by allotting only a small portion of the
overall privacy budget to Algorithm 1; then we can release θ̂P and εP1 (·) with reasonable overhead
while achieving tighter and more accurate upper bounds for µP (·) and gP (·). By suffering a small
additional ex-post pDP loss (Figure 3a), we can release the ex-post pDP losses of Algorithm 1 much
more accurately (Figure ??). The downside to this is that reducing ε1 reduces the accuracy of the
output θ̂P . Deciding how to allocate the privacy budget between ε1, ε2 and ε3 thus requires weighing
the importance of an accurate θ̂P against the importance of an accurate εP1 (·).

5 Conclusion

We precisely calculate the privacy loss that an individual z suffers after the objective perturbation
algorithm is run on a specific dataset. The ex-post pDP loss function in DP-ERM can be accurately
released to all individuals with little or no additional privacy cost. In particular, we present a data-
independent bound which empirically provides a reasonably accurate estimate of the ex-post pDP
loss while requiring no further privatization step. Reserving some of the privacy budget allows us to
alternatively release a tighter data-dependent bound.

An important next step is to extend the per-instance DP analysis to the setting of constrained
optimization. There are many promising future directions including using publishable pDP losses for
designing more data-adaptive DP algorithms.
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