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ABSTRACT

The detection of human parts (e.g., hands, face) and their correct association with
individuals is an essential task, e.g., for ubiquitous human-machine interfaces and
action recognition. Traditional methods often employ multi-stage processes, rely
on cumbersome anchor-based systems, or do not scale well to larger part sets. This
paper presents PBADet, a novel one-stage, anchor-free approach for part-body as-
sociation detection. Building upon the anchor-free object representation across
multi-scale feature maps, we introduce a singular part-to-body center offset that
effectively encapsulates the relationship between parts and their parent bodies.
Our design is inherently versatile and capable of managing multiple parts-to-body
associations without compromising on detection accuracy or robustness. Compre-
hensive experiments on various datasets underscore the efficacy of our approach,
which not only outperforms existing state-of-the-art techniques but also offers a
more streamlined and efficient solution to the part-body association challenge.
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Figure 1: A comparative illustration between BPJDet (Zhou et al., 2023a) and our PBADet in terms
of the extended representations. Using the joint detection of three parts—head, left hand, and right
hand—as an example, the original BPJDet’s body-to-part configuration demands an extended rep-
resentation of length 15 (6+K+2K, K=3). Due to unused positions in the part object representation,
this approach can result in inefficiencies and redundancies. In contrast, our PBADet, operating on a
part-to-body principle, adopts a more concise representation of length 10 (5+K+2, K=3), optimizing
for greater utilization and efficiency.

1 INTRODUCTION

Human part-body association refers to the task of detecting human parts within an image and identi-
fying the location of the corresponding person for each detected part, e.g., left and right hands, face,
left and right feet, etc. This task is vital in scenarios where multiple individuals are present, and,
e.g., specific gestures from a particular person must be recognized and acted upon. An illustrative
example is found in medical scan rooms, where technicians use hand gestures to locate the scanning
area of a patient and initiate the scanning process. In such intricate scenarios, it is crucial that the
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system responds only to the technician’s gestures, effectively filtering out the patient’s hands to avoid
unintended interference. By achieving this nuanced recognition, part-body association serves as a
foundational technology across various fields, including human-computer interaction, virtual reality,
robotics, and medical analysis, paving the way for more intuitive and precise control systems.

Despite the evident necessity of part-body association, achieving accuracy in complex scenarios re-
mains a significant challenge. Existing approaches often involve two-stage processes that rely on
heuristic strategies or learned association networks. For example, Zhou et al. (2018) presents an
approach that detects hands and the human body pose, employing a heuristic matching strategy for
hand-body association; specifically, they verify whether a left or right arm joint falls within a bound-
ing box of a raised hand. BodyHands (Narasimhaswamy et al., 2022) proposes to detect hands and
bodies separately, utilizing a hand-body association network to predict association scores between
them. However, these methods predict hand-body relationships in two distinct stages. The two-stage
nature potentially introduces complexity and possibly compromises efficiency, highlighting the need
for a more streamlined approach to hand-body association.

BPJDet (Zhou et al., 2023b) introduces a body-part joint detector that can be integrated with one-
stage anchor-based detectors, such as the YOLO series (Redmon et al., 2016; Redmon & Farhadi,
2018; Jocher et al., 2022; Wang et al., 2023b). This method extends object detection by incorporating
center offsets from a body to specific body parts, such as the left and right hands, left and right feet,
and head. These center offsets act as bridges, enabling body-part association with post-processing.
However, the method poses some inherent challenges. Incorporating center offsets to each body part
means that as the number of body parts increases, so does the complexity of the object detection
representation, which causes the lack of flexibility to handle various numbers of body parts. This
increase in complexity leads to a corresponding degradation in the overall detection performance.
Furthermore, not all body parts are always visible within a body image, and when they are obscured,
the corresponding center offsets become invalid, rendering the method less effective.

This paper introduces a novel one-stage anchor-free approach for part-body association, called
PBADet, which creatively extends anchor-free object detection by introducing a single part-to-body
center offset. The key innovations of our method are detailed in three primary aspects. First, anchor-
free object detection methods (Tian et al., 2019; Feng et al., 2021) inherently contain information
about part-body association, as each location within a bounding box predicts a 4D vector repre-
senting distances to the bounding box’s sides. Our approach leverages this natural relationship by
supplementing it with a 2D vector, denoting the distances from the location to the center of the
body bounding box, thereby explicitly representing the part-body association in a logical extension
to current techniques. Second, using a single part-body center offset, our method can accommodate
any number of body parts without increasing the number of center offsets correspondingly. This
scalable design avoids degrading the overall object detection performance and provides an elegant
solution for part-body association. Lastly, unlike body-part center offsets, which may involve one-
to-many correspondence and become invalid when some parts are invisible, our method guarantees
a one-to-one correspondence between each part and a body. The part-body center offset is always
valid, providing a well-defined ground truth for supervised training. In addition, this one-to-one
correspondence simplifies post-processing and ensures precise part-body associations.

In summary, the contributions of this paper are as follows:

• We introduce a novel extension to one-stage anchor-free object detection methods for part-body
association. This extension is characterized by incorporating a single part-body center offset,
offering a streamlined and intuitive approach to identifying part-body relationships.

• Our proposed method serves as a universal framework, capable of supporting multiple parts-
to-body associations. The innovative design ensures scalability without compromising the ac-
curacy and robustness of the detection process.

• Through experiments, we validate that our method delivers state-of-the-art performance,
demonstrating its efficacy and potential as a new standard in part-body association techniques.

2 RELATED WORK

Body-part Joint Detection. Human body and part detection fall within the broader category of
general object detection (Girshick, 2015; Redmon et al., 2016; Liu et al., 2016) and have seen signif-

2



Published as a conference paper at ICLR 2024

icant exploration and advancement in recent years (Dollar et al., 2011; Liu et al., 2019; Deng et al.,
2020; Bambach et al., 2015). This surge in research has been facilitated by the availability of public
human body and part datasets, such as COCO-WholeBody (Jin et al., 2020), COCO-HumanParts
(Yang et al., 2020), CrowdHuman (Shao et al., 2018), Wider Face (Yang et al., 2016), among others.
In the context of this rich landscape, our paper specifically targets the challenge of human body-part
joint detection and association.

Previous works have approached the task of body-part joint detection using various strategies. DA-
RNN (Zhang et al., 2019) proposes to detect bodies and heads in pairs using a double-anchor RPN
to enhance person detection in crowded environments. JointDet (Chi et al., 2020b) incorporates a
head-body relationship discriminating module to facilitate relational learning between human bodies
and heads, aiming to improve human detection accuracy and reduce head false positives. BFJDet
(Wan et al., 2021) introduces a head hook center in object representation and employs an embedding
matching loss to associate the body and face of the same person. Hier R-CNN (Yang et al., 2020)
extends the Mask R-CNN (He et al., 2017) pipeline, adopting a two-branch system to detect human
bodies through the faster branch and human parts through an anchor-free Hier branch utilizing a
per-pixel prediction mechanism. Detector-in-Detector (Li et al., 2019) takes a similar approach,
using Faster R-CNN (Ren et al., 2015) with two detectors to separately focus on the human body
and parts in a coarse-to-fine manner. Distinct from these methods, our paper introduces a one-stage
anchor-free approach for hand-body association.

Human-object Interaction. Human-object interaction (HOI) and body-part association aim to un-
derstand spatial relationships but present distinct characteristics. In the realm of HOI, various meth-
ods have been proposed to handle different aspects of the problem. GPNN (Wang et al., 2020) treats
HOI as a keypoint detection and grouping challenge, whereas HOTR (Kim et al., 2021) directly pre-
dicts human, object, and interaction triplets from an image, utilizing a transformer encoder-decoder
architecture. Additionally, in the specialized field of hand-contact detection, Shan et al. (Shan et al.,
2020) developed a hand-object detector that furnishes detailed hand attributes such as the location,
side, contact state, and bounding box of the interacting object. ContactHands (Narasimhaswamy
et al., 2020) builds upon this by localizing hands and deploying another object detector to determine
physical contact. However, part-body association focuses solely on the connection between human
parts and the body, simplifying the task but requiring specific attention to this nuanced relationship.

Multi-person Pose Estimation. Multi-person pose estimation, exemplified by works such as Jin
et al. (2022); Nie et al. (2019); Newell et al. (2017), bears a significant resemblance to the task
of hand-body association. . In Jin et al. (2022), the concept of centripetal offsets is introduced to
effectively group human joints, thereby facilitating efficient and accurate multi-person pose estima-
tion. YOLO-Pose (Maji et al., 2022), an advancement in the YOLO series, integrates bounding box
detection with simultaneous 2D pose prediction for multiple individuals within a single processing
framework. Similarly, ED-Pose (Yang et al., 2023) employs a dual explicit box detection approach to
synergize human-level and keypoint-level contextual learning. Despite these advancements, multi-
person pose estimation methods typically do not provide specific bounding boxes for human parts,
an essential element for tasks like hand-body association.

Note that while Jin et al. (2022) and our proposed method both utilize part-to-body center offsets,
their functionalities and roles within each framework are different. Jin et al. (2022) leverages these
offsets primarily for grouping in pose estimation, whereas our method focuses on establishing a
one-to-one correspondence for accurate part-body association.

Anchor-free Detection. The utilization of anchor boxes, featured prominently in detection archi-
tectures such as Faster R-CNN (Ren et al., 2015), SSD (Liu et al., 2016), and YOLOv3 (Redmon
& Farhadi, 2018), has become foundational in many detection frameworks. Nevertheless, these an-
chor boxes introduce numerous hyper-parameters, necessitating meticulous tuning for optimal per-
formance. Furthermore, they present challenges from the imbalance between positive and negative
training samples. Crucially, for our specific task of part-body association, the part-body center offset
can fall far outside the predefined anchor boxes designated for the parts. This characteristic makes
the task of learning part-body association using anchor-based methods particularly challenging.

Recent years have witnessed the emergence of several anchor-free methods. YOLOv1 (Redmon
et al., 2016), for example, determines bounding boxes using points proximal to object centers. How-
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ever, this approach exhibits a lower recall than its anchor-based counterparts, primarily because it
relies solely on near-center points. In a departure from this strategy, FCOS (Tian et al., 2019) lever-
ages all points within a ground-truth bounding box, incorporating a centerness branch to suppress
suboptimal detected boxes. However, this method performs object classification and localization
independently, which may cause a lack of interaction between the two tasks, leading to inconsis-
tent predictions. Instead of using a centerness branch, TOOD (Feng et al., 2021) introduces task
alignment learning to enhance interaction between the two tasks for high-quality predictions. This
refined concept from TOOD serves as the foundation for our part-body association method.

3 METHODOLOGY

3.1 TASK FORMULATION

Given an input image, we consider the task of regressing a set of bounding boxes, the corresponding
classes (i.e., body and each part), and the corresponding association offsets to the bodies.

Anchor-free Dense Bounding-box Prediction. Let Fi ∈ RHi×Wi×Ci represents the feature map
at layer i ∈ {1, · · · , L} of a backbone CNN, with si being the total stride up to that layer; Hi, Wi,
and Ci the height, width, and depth of the feature maps respectively; and L the number of layers
whose feature maps are considered. We task a sub-network to regress the bounding-box of each
target and another to classify the boxes, i.e., to match the ground-truth targets T = (B, c). Here
B = {xl, yt, xr, yb} ∈ R4 denotes the coordinates of the left-top and right-bottom corners of the
bounding box; c ∈ {1, 2, · · · , N} specifies the class of the object within the bounding box; N stands
for the total number of classes. For example, N = 4 when focusing on the body, left hand, right
hand, and face. In the anchor-free paradigm, detection is formulated as a dense inference, i.e., in
a per-pixel prediction fashion in feature maps. For each position pi = (xi, yi) in Fi, the detection
head regresses a 4D vector (li, ti, ri, bi), which represents the relative offsets from the four sides
of a bounding box anchored in pi. Based on the relation (xi, yi) = (⌊ x

si
⌋, ⌊ y

si
⌋) between feature

map locations pi and corresponding locations p = (x, y) in the original image, the predicted values
should satisfy the following equations w.r.t. the ground-truth B:

⌊xl

si
⌋ = xi − li, ⌊yt

si
⌋ = yi − ti, ⌊xr

si
⌋ = xi + ri, ⌊yb

si
⌋ = yi + bi. (1)

Note that anchor points pi are selected from multi-level feature maps, which aids in detecting objects
of varying sizes and enhances the robustness of predictions. Similarly, a classification head densely
returns a score vector oc ∈ RN w.r.t. each class for each position in the feature maps.

Part-to-body Association. In anchor-free approaches, all points enclosed within a ground-truth
bounding box are treated as positive samples, i.e., only those are used to supervise the bounding
box during training (Tian et al., 2019). We utilize this property to naturally enable part-to-body
associativity: any anchor point belonging to a part’s bounding-box should also belong to the body’s
bounding box; and thus should satisfy Equation (1) for both sets of bounding parameters. Hence,
we can extend the part detection task to not only predicting the 4D vector corresponding to the part’s
own bounding box, but also a second vector pertaining to the corresponding body’s bounding box.
For a more concise delineation of the part-body association, we define the second vector as only the
2D center offset from part to body (i.e., transitioning from a 4D vector to a 2D vector).

Therefore, we extend the ground-truth target as T = {B, c, cb} ∈ R4 × {1, 2, · · · , N} ×R2, where
cb = {cbx, cby} is the center of the body that encloses the part. For an anchor point within the part’s
bounding box, we thus additionally regress a 2D vector (mi, ni), representing the offset from the
anchor point to the body center to encode the part-body association, which should satisfy:

⌊c
b
x

si
⌋ = xi + λmi, ⌊

cby
si
⌋ = yi + λni, (2)

where λ is a scaling factor of mi and ni to control the range of the network outputs. The part-body
association prediction is also performed over the multi-level feature maps.

In summary, our per-position network predictions can be denoted as o = {ob, oc, od}, where ob =
{li, ti, ri, bi} is the bounding box prediction, oc = {c1, · · · , cN} is the classification result, and od =
{mi, ni} relates to the part-body association. It is worth noting that our discussion of the human

4



Published as a conference paper at ICLR 2024

P1
P2

P3
P4

P5

Detection Head

Detection Head

P5

P4

P3

Input Backbone Multi-scale features Detection heads Output

H1×W1×C1

H2×W2×C2

H3×W3×C3

Detection Head

Classification

Displacement

Task Align
Localization

H
1 ×

W
1 ×

N
H

1 ×
W

1 ×
4
 

H
1 ×

W
1 ×

2
 

Top-K

Displacement

Figure 2: Illustration of the proposed pipeline.

part-body association serves as a representative example. However, this formulation stands as a
universal framework, aptly addressing various parts-to-body association challenges (e.g., the wheel-
and-car association) without requiring any modifications. Since we define the part-body association
as a 2D vector that denotes the center offset from the part to the body, it can seamlessly accommodate
associations involving multiple parts.

3.2 NETWORK ARCHITECTURE

Our approach is founded on one-stage anchor-free detectors, including models like
YOLOv5 (Jocher, 2020), YOLOv7 (Wang et al., 2023a), YOLOv8 (Jocher et al., 2023), among oth-
ers. While YOLOv5 and YOLOv7 were originally designed as anchor-based methods, they can be
conveniently adapted with anchor-free heads. Given the feature maps Fi ∈ RHi×Wi×Ci produced
by the backbone network as inputs, the detection head comprises three distinct output branches.
These branches are responsible for bounding box prediction, class prediction, and part-body associ-
ation prediction, respectively. Each branch is constructed using a three-layer convolutional network,
where the kernel sizes are {3 × 3, 3 × 3, 1 × 1} and the stride is 1. Specifically, the bounding-box
sub-network has the channel structure {Ci, ⌊Ci

4 ⌋, ⌊Ci

4 ⌋, 64} and is followed by a DFL module (Li
et al., 2022) to output Ob =∈ RHi×Wi×4 (2D map of ob predictions), the class branch adopts {Ci,
Ci, Ci, N} to output Oc ∈ RHi×Wi×N , and the part-body association branch uses {Ci, ⌊Ci

4 ⌋, ⌊Ci

4 ⌋,
2} to output Od ∈ RHi×Wi×2.

3.3 LOSS FUNCTIONS

Our method incorporates the task-alignment learning strategy from TOOD (Feng et al., 2021) to
supervise bounding box and class predictions, which includes a bounding-box IoU loss Liou, a
bounding-box DFL loss Ldfl, and a classification loss Lcls (refer to Feng et al. (2021) and Li et al.
(2022) for the explicit definition of these functions). Furthermore, a dedicated part-body association
loss is introduced for our specific objective.

Given the feature maps Fi ∈ RHi×Wi×Ci , the part-body association detection branch produces an
output Od ∈ RHi×Wi×2, indicating that each anchor point yields a 2D vector. Drawing inspiration
from the task-alignment learning concept, the anchor assignment for the part-body association re-
mains consistent with those used for bounding-box and class supervision—“a well-aligned anchor
point should be able to predict a high classification score with a precise localization jointly” (Feng
et al., 2021). The anchor alignment metric is expressed as t = sα · uβ , where s and u denote a
classification score and an IoU value, respectively. α and β are hyper-parameters used to control
the impact of the two tasks over the anchor alignment metric t. Utilizing the proposed metric t, we
choose the top K anchor points for supervision at each training step. The part-body association loss
is then articulated as:

Lassoc =
1

K

1

P

∑
j∈J

i∈{1,·,L}

1

2

(∥∥∥∥⌊cbx[j]si
⌋ − (xi[j] + λmi[j])

∥∥∥∥
1

+

∥∥∥∥⌊cby[j]si
⌋ − (yi[j] + λni[j])

∥∥∥∥
1

)
, (3)

with J representing the index list of the top K aligned anchor points for each part and P indicating
the number of parts in the image. Thus, the overall loss is expressed as:

L = λiouLiou + λdflLdfl + λclsLcls + λassocLassoc. (4)
with λiou, λdfl, λcls, and λassoc are the objective-weighting hyper-parameters.
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3.4 DECODING PART-TO-BODY ASSOCIATIONS

Our model predicts the center offset between a part and its corresponding body, serving as a crucial
link in the part-to-body relationship. During inference, we initiate the process by filtering out over-
lapping predictions through non-maximum suppression (NMS). This yields refined results for parts
and bodies as follows:

Ôb = NMS(Ob, τ bconf , τ
b
iou), Ôp = NMS(Op, τpconf , τ

p
iou), (5)

where τ bconf , τpconf , τ biou, and τpiou represent the confidence and IoU overlap thresholds for both the
body and part in the NMS procedure.

Subsequently, for each part, we compute its anticipated body center using the relationship defined
in Equation (2) as:

ĉbx = si(xi + λmi), ĉby = si(yi + λni). (6)
Finally, for each individual part, we determine the Euclidean (ℓ2) distance between the estimated
body center and the centers of the bodies that are unassigned and also enclose the part. The body
with the smallest distance is chosen as the corresponding body for the given part.

The decoding mechanism in our part-to-body association is notably more straightforward than the
body-to-part association employed in BPJDet (Zhou et al., 2023b). In BPJDet, complexities arise
since each body can be associated with various parts due to occlusions.

4 EXPERIMENTS

4.1 EVALUATION PROTOCOLS

Datasets. We evaluate our method on two datasets: BodyHands (Narasimhaswamy et al., 2022)
and COCOHumanParts (Yang et al., 2020). Additional experiments on CrowdHuman (Shao et al.,
2018) are provided in Appendix A.1. BodyHands is a large-scale dataset containing unconstrained
images with annotations for hand and body locations and correspondences. This dataset consists of
18,861 training images and 1,629 test images. COCOHumanParts is an instance-level human-part
dataset with rich-annotated and various scenarios based on COCO 2017 (Lin et al., 2014). This
dataset consists of 66,808 training images, 64,115 test images, and 2,693 validation images.

Evaluation Metric. We report the standard VOC average precision (AP) metric with IoU = 0.5
to evaluate the detection of bodies and parts. We also present the log-average miss rate on false
positive per image (FPPI) in the range of [10−2, 100] shortened as MR−2 (Dollar et al., 2011) of the
body and its parts. To qualify the part-body association, we report the log-average miss matching rate
(mMR−2) on FPPI of part-body pairs in [10−2, 100], which was originally proposed by BFJDet (Wan
et al., 2021) for exhibiting the proportion of body-face pairs that are mismatched. For BodyHands,
we provide the conditional accuracy and joint AP defined by BodyHands (Narasimhaswamy et al.,
2022). Lastly, for COCOHumanParts, we follow the evaluation protocols defined in Hier R-CNN
(Yang et al., 2020) and report the detection performance with a series of APs (AP.5:.95, AP.5, AM ,
AL) as in COCO metrics where subordinate APs represent the part-body association state.

Implementation Specifics. Our experimentation framework is constructed using PyTorch (Paszke
et al., 2019), and the models are trained across 4 Tesla V100 GPUs, leveraging automatic mixed
precision (AMP) over a span of 100 epochs. Consistent with YOLOv7 (Wang et al., 2023a), we
utilize the same learning rate scheduler, SGD optimizer (Robbins & Monro, 1951), and prescribed
data augmentations. We followe the same protocol established in BPJDet (Zhou et al., 2023b) that
uses pretrained YOLO weights. The input image resolution is 1024 × 1024, and the batch size is
24. We employ two backbone architectures, YOLOv7 and YOLOv5l6, to demonstrate the versatility
and adaptability of our approach.

In our experiments, we set the loss weights λiou = 7.5, λdfl = 1.5, λcls = 0.5, λassoc = 0.2, the
scaling factor λ = 2.0, and the anchor alignment parameters K = 13, α = 1.0, β = 6.0. During
inference, we set the NMS parameters as: the body thresholds τ bconf = 0.05, τ biou = 0.6; while
the part thresholds τpconf = 0.05, τpiou = 0.6 for BodyHands, and τpconf = 0.005, τpiou = 0.75 for
COCOHumanParts.
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BodyHands BPJDet (YOLOv5l6) Ours (YOLOv5l6)

Figure 3: Qualitative results on BodyHands. Red arrows highlight our correct predictions.

Methods Param (M) Size Hand AP↑ Cond. Accuracy↑ Joint AP↑

OpenPose (2017) 199.0 1536 39.7 74.03 27.81
Keypoint Com. (2021) 27.3 1536 33.6 71.48 20.71
MaskRCNN+FD (2017) 266.0 1536 84.8 41.38 23.16
MaskRCNN+FS (2017) 266.0 1536 84.8 39.12 23.30
MaskRCNN+LD (2017) 266.0 1536 84.8 72.83 50.42
MaskRCNN+IoU (2017) 266.0 1536 84.8 74.52 51.74
BodyHands (2022) 700.3 1536 84.8 83.44 63.48
BodyHands* (2022) 700.3 1536 84.8 84.12 63.87

BPJDet (YOLOv5s6) (2023a) 15.3 1536 84.0 85.68 77.86
BPJDet (YOLOv5m6) (2023a) 41.2 1536 85.3 86.80 78.13
BPJDet (YOLOv5l6) (2023a) 86.1 1536 85.9 86.91 84.39

Ours (YOLOv7) 36.9 1024 89.1 92.62 85.98
Ours (YOLOv5l6) 86.1 1024 88.1 92.71 85.73

Table 1: Quantitative evaluation on BodyHands.

4.2 COMPARISON WITH STATE-OF-THE-ART

BodyHands. We conduct the hand-body association task on the BodyHands dataset
(Narasimhaswamy et al., 2022). Notably, this dataset contains only one type of part annotation
since it does not distinguish between left and right hands. Table 1 compares our PBADet with
leading methods. Our approach surpasses competitors across all metrics, including hand AP, condi-
tional accuracy, and joint AP, by large margins. In particular, our YOLOv7 model, despite having a
smaller model size than BPJDet (YOLOv5m6) (Zhou et al., 2023a), delivers superior performance.
Furthermore, our YOLOv5l6 model, which utilizes the same backbone as BPJDet (YOLOv5l6), also
demonstrates enhanced results. Figure 3 shows that our method demonstrates the best body and part
detection and part-body association detection.

COCOHumanParts. We evaluate our approach for the multi-part-to-body association task using
the COCOHumanParts dataset (Yang et al., 2020), which includes six distinct body parts: head,
face, left hand, right hand, left foot, and right foot. Tables 2 and 3 provide a comparative analysis
with leading methods. As depicted in Table 2, our method achieves APs that are on par with BJPDet
(Zhou et al., 2023b). Notably, we lead in metrics such as APM , APL, and APs specific to person
and feet detections. Furthermore, Table 3 underscores our method in achieving the lowest average
mMR−2 across categories like head, face, both left and right hands, and right foot, emphasizing
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Hier R-CNN BPJDet (YOLOv5l6) Ours (YOLOv5l6)

Figure 4: Qualitative results on COCOHumanParts. Yellow and red arrows highlight other methods’
failure cases and our correct predictions, respectively.

Methods Joint
Detect?

All categories APs↑ (original / subordinate) Per categories APs↑

AP.5:.95 AP.5 APM APL person head face r-hand l-hand r-foot l-foot

Faster-C4-R50 (2015) 32.0 / — 55.5 / — 54.9 / — 52.4 / — 50.5 47.5 35.5 27.2 24.9 19.2 19.3
Faster-FPN-R50 (2017) ✓ 34.8 / 19.1 60 / 38.5 55.4 / 22.4 52.2 / 33.6 51.4 48.7 36.7 31.7 29.7 22.4 22.9
RetinaNet-R50 (2017b) 32.2 / — 54.7 / — 54.5 / — 53.8 / — 49.7 47.1 33.7 28.7 26.7 19.7 20.2
FCOS-R50 (2019) 34.1 / — 58.6 / — 55.1 / — 55.1 / — 51.1 45.7 40.0 29.8 28.1 22.2 21.9
Faster-FPN-X101 (2017) 36.7 / — 62.8 / — 57.4 / — 55.3 / — 53.6 49.7 37.3 33.8 32.2 25 25.1

Hier-R50 (2020) ✓ 36.8 / 33.3 65.7 / 67.1 53.9 / 29.9 47.5 / 47.1 53.2 50.9 41.5 31.3 29.3 25.5 26.1
Hier-R101 (2020) 37.2 / — 65.9 / — 55.1 / — 50.3 / — 54.0 50.4 41.6 31.6 30.1 26.0 26.6
Hier-X101 (2020) ✓ 38.8 / 36.6 68.1 / 69.7 56.6 / 32.6 52.3 / 51.1 55.4 52.3 43.2 33.5 32.0 27.4 27.9
Hier-R50†‡ (2020) ✓ 40.6 / 37.3 70.1 / 72.5 57.5 / 35.4 51.5 / 48.9 — — — — — — —
Hier-X101†‡ (2020) ✓ 42.0 / 38.8 71.6 / 72.3 59.0 / 37.4 53.3 / 50.3 — — — — — — —

BPJDet (YOLOv5s6) ✓ 38.9 / 38.4 65.5 / 64.4 59.1 / 57.7 49.7 / 47.5 56.3 53.5 41.9 34.7 33.7 25.5 26.5
BPJDet (YOLOv5m6) ✓ 42.0 / 41.7 68.9 / 68.1 62.3 / 61.6 54.6 / 52.9 59.8 55.7 44.7 38.7 37.6 28.6 29.2
BPJDet (YOLOv5l6) ✓ 43.6 / 43.3 70.6 / 69.8 63.8 / 63.2 61.8 / 58.9 61.3 56.6 46.3 40.4 39.6 30.2 30.9

Ours (YOLOv7) ✓ 42.7 / 41.5 69.5 / 67.9 65.8 / 64.4 66.7 / 63.3 62.1 54.5 44.7 38.7 37.5 30.4 30.9
Ours (YOLOv5l6) ✓ 43.0 / 41.8 70.0 / 68.4 66.2 / 65.0 67.2 / 64.4 62.4 54.6 44.6 39.0 37.7 30.9 31.5

Table 2: Quantitative evaluation on COCOHumanParts with all and per categories APs. All cate-
gories APs include the original detection APs and subordinate APs. The marker †‡ in Hier R-CNN
indicates using deformable convolutional layers and multi-scale training (Yang et al., 2020).

our method’s superior part-body association capabilities. Figure 4 demonstrates that our method
performs as well as (or better than) BPJDet and much better than Hier R-CNN.

Comparison to Multi-person Pose Estimation. We present a qualitative analysis contrasting our
approach with ED-Pose (Yang et al., 2023), a state-of-the-art multi-person pose estimation method,
as illustrated in Figure 5 (see quantitative restuls in Appendix A.2) Despite utilizing the powerful
Swin-L backbone (Liu et al., 2021), ED-Pose occasionally provides imprecise or speculative pre-

Methods Params (M) Size head face l-hand r-hand r-foot l-foot

BPJDet (YOLOv5s6) 15.3 1536 33.4 36.7 50.2 51.4 58.3 58.4
BPJDet (YOLOv5m6) 41.2 1536 29.7 32.7 42.5 44.2 53.4 52.3
BPJDet (YOLOv5l6) 86.1 1536 30.8 31.8 41.6 42.2 49.1 50.4

Ours (YOLOv7) 36.9 1024 29.2 31.3 41.1 42.7 52.6 52.5
Ours (YOLOv5l6) 86.1 1024 27.9 30.5 36.2 40.8 50.4 47.9

Table 3: Quantitative evaluation on COCOHumanParts with the average mMR−2.
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dictions, especially for limbs such as legs and arms. Such unreliable results cloud the discernment
of the relationship between a body and its corresponding parts. Our part-body association detention
method can effectively address and diminish this issue.
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Figure 5: Qualitative comparison with ED-Pose (Yang et al., 2023) on images from COCO. Yellow
circles highlight erroneous predictions.

4.3 ABLATION STUDY

Methods Hand AP↑ Cond. Accuracy↑ Joint AP↑

w/o Lassoc (baseline) 89.1 80.78 78.07
w/o Multi-scale 88.8 91.64 85.46
w/o Task-align 89.0 92.08 85.78
Full 89.1 92.62 85.98

Table 4: Ablation experiments on BodyHands with the YOLOv7 backbone architecture.

To better understand the contribution of various components in our approach, we undertake ablation
experiments on the BodyHands dataset with the YOLOv7 backbone architecture, summarized in
Table 4 and more in Table 8 in Appendix A.4. Initially, we examine a configuration without the
association loss, Lassoc, which serves as our baseline for detecting human bodies and parts. For
part-body association in this scenario, we utilize Euclidean distances between a part center and the
unassigned body centers. The body that encloses the part and has the minimal distance is then tagged
as the corresponding body for the given part. Compared to the baseline model, the introduction of
our association prediction head maintains the accuracy in hand detection, and considerably boosts
the efficacy of part-body association.

In our subsequent variant, the center offset is defined in relation to the multi-scale feature anchor
points. When this center offset is interpreted as a normalized absolute distance (i.e., w/o Multi-
scale), we observe a decline in metrics, including hand prediction accuracy, conditional accuracy,
and joint AP. Lastly, our method adopts task alignment learning for supervising part-body associ-
ations. Disregarding task alignment (i.e., w/o Task-align), where all positive samples are used for
training, leads to decreased performance in all metrics, in contrast with our full model.

5 CONCLUSION

The task of human part-body detection and association is critical for a wide range of computer vision
applications. In this work, we introduced an innovative one-stage, anchor-free methodology for this
purpose. By extending the anchor-free object representation across multi-scale feature maps, we
incorporate a singular part-to-body center offset, effectively bridging parts and their corresponding
bodies. Our approach is purposely designed to handle multiple parts-to-body associations without
sacrificing detection accuracy or robustness. Experimental results validate that our proposed method
sets new standards in the domain, surpassing existing state-of-the-art solutions.
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Methods Stage MR−2↓
body

MR−2↓
face

AP↑
body

AP↑
face

mMR−2↓
body-face

RetinaNet+POS (2017b) One 52.3 60.1 79.6 58.0 73.7
RetinaNet+BFJ (2017b) One 52.7 59.7 80.0 58.7 63.7
FPN+POS (2017a) Two 43.5 54.3 87.8 70.3 66.0
FPN+BFJ (2017a) Two 43.4 53.2 88.8 70.0 52.5
CrowdDet+POS (2020) Two 41.9 54.1 90.7 69.6 64.5
CrowdDet+BFJ (2020) Two 41.9 53.1 90.3 70.5 52.3

BPJDet (YOLOv5s6) (2023a) One 41.3 45.9 89.5 80.8 51.4
BPJDet (YOLOv5m6) (2023a) One 39.7 45.0 90.7 82.2 50.6
BPJDet (YOLOv5l6) (2023a) One 40.7 46.3 89.5 81.6 50.1

Ours (YOLOv7) One 36.5 44.7 91.6 81.6 50.8
Ours (YOLOv5l6) One 37.5 45.3 91.4 81.2 50.9

Table 5: Quantitative evaluation on CrowdHuman for the face-body association task.

Methods Joint Detect? Backbone body MR−2↓ body AP↑ mMR−2 ↓
Adaptive-NMS (2019) ✗ CNN 49.7 84.7 —
PBM (2020) ✗ CNN 43.3 89.3 —
CrowdDet (2020) ✗ CNN 41.4 90.7 —
AEVB (2021) ✗ CNN 40.7 — —
AutoPedestrian (2021) ✗ CNN 40.6 — —
Beta RCNN(KLth = 7) (2020) ✗ CNN 40.3 88.2 —
PedHunter (2020a) ✗ CNN 39.5 — —

Sparse-RCNN (2021) ✗ DETR 44.8 91.3 —
Deformable-DETR (2020) ✗ DETR 43.7 91.5 —
PED-DETR (2020) ✗ DETR 43.7 91.6 —
Iter-E2EDET (2022) ✗ DETR 41.6 92.5 —

DA-RCNN (2019) ✓ CNN 52.3 — —
DA-RCNN + J-NMS (2019) ✓ CNN 51.8 — —
JointDet (2020b) ✓ CNN 46.5 — —
BPJDet (YOLOv5s6) (2023b) ✓ CNN 41.3 89.5 51.4
BPJDet (YOLOv5m6) (2023b) ✓ CNN 39.7 90.7 50.6
BPJDet (YOLOv5l6) (2023b) ✓ CNN 40.7 89.5 50.1

Ours (YOLOv7) ✓ CNN 36.5 91.6 50.8
Ours (YOLOv5l6) ✓ CNN 37.5 91.4 50.9

Table 6: The performance comparison of our method for the joint face-body detection task with
other crowded person detection methods in the val-set of CrowdHuman.

A APPENDIX

A.1 EXPERIMENTS ON CROWDHUMAN

We additionally conduct experiments on the CrowdHuman dataset (Shao et al., 2018). CrowdHuman
is a dataset tailored for crowded scenarios, providing individual annotations for each pedestrian. This
dataset includes 15,000 training images and 4,375 validation images. The initial annotations include
boxes for visible bodies and heads. Labels of faces are added by BFJDet (Wan et al., 2021) for the
body-face association.

In our experiments, the input image resolution is 1536 × 1536, and the batch size is 12. The other
settings are the same as in the main paper. During inference, we set the NMS parameters as: the
body thresholds τ bconf = 0.05, τ biou = 0.6; while the part thresholds τpconf = 0.1, τpiou = 0.3 as in
BPJDet (Zhou et al., 2023b).
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We benchmark our approach for the face-body association task utilizing the CrowdHuman dataset
(Shao et al., 2018). The results, as illustrated in Table 5, draw a comparison between our proposed
PBADet and existing methods. Performance-wise, PBADet is comparable with BPJDet, with our
PBADet (YOLOv7) achieving the best metrics in MR−2 for both body and face, as well as AP for
the body. It’s essential to highlight that the face-body association task is singular in nature, involving
just one part. Consequently, the advantages of our method over BPJDet are not as pronounced as
seen in scenarios with multiple parts-to-body associations, such as on the BodyHands and COCO-
HumanParts datasets.

Besides, we also try to compare our joint detector PBADet with other methods specifically designed
for crowded person detection, either CNN-based or DETR-based (Carion et al., 2020). As shown in
Table 6, apart from obtaining the best MR −2 result for body detection, our PBADet achieves a com-
parable AP performance with those cumbersome DETR-based detectors such as PED-DETR (Lin
et al., 2020) and Iter-E2EDET (Zheng et al., 2022). Comparing with the counterpart BPJDet, our
superiority is still evident. This indicates that our proposed PBADet for addressing the face-body
association task can keep a better balance between detection and association.

A.2 QUANTITATIVE COMPARISON TO MULTI-PERSON POSE ESTIMATION

ED-Pose (2023) Ours

Parts Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑

lefthand 18.36 30.34 22.87 37.63 60.82 46.50
righthand 19.57 31.59 24.17 38.58 61.26 47.34
leftfoot 29.32 65.28 40.46 41.56 66.24 51.08
rightfoot 29.13 65.58 40.34 40.86 65.55 50.34
all parts 24.09 45.51 31.51 39.41 63.09 48.52

Table 7: Comparison with ED-Pose (Yang et al., 2023), a state-of-the-art multi-person pose estima-
tion method.

We compare our method with ED-Pose (Yang et al., 2023), a current leading method in multi-person
pose estimation. A qualitative comparison with ED-Pose on images from COCO (Lin et al., 2014)
is presented in Figure 5.

For a fair and meaningful quantitative comparison, we conducted evaluations on the COCO vali-
dation set (Lin et al., 2014), as ED-Pose was also trained on the COCO dataset. This validation
set contains 2,693 images, each featuring at least one person. To ensure consistency, we utilized
the ground truth body-part bounding boxes from COCO-HumanParts, which are derived from the
original COCO annotations. We excluded facial and head parts due to their inconsistent number of
keypoints and focused on four challenging and smaller parts: left hand, right hand, left foot, and
right foot, which can be determined by one keypoint. For evaluation, we used the ED-Pose model
(Swin-L) trained on the COCO training set and our PBADet model (YOLOv5l6) trained on the
COCO-HumanParts training set.

In assessing performance, we considered a predicted keypoint by ED-Pose as a true positive if it
fell within a ground truth part box. In favor of ED-Pose, we do not use a part detection model but
directly use the ground truth part boxes. For PBADet, a predicted part box with successful part-body
association was deemed a true positive when it achieved an IoU greater than 0.5 with the ground
truth box. The results, as shown in the table below, indicate that PBADet demonstrates superior
robustness in part-body association compared to ED-Pose, especially in the precision, recall, and
F1 score metrics for the selected body parts. This comparative analysis underscores the efficacy
of PBADet in handling part-body associations, affirming its robustness and precision over existing
methods in this domain.

A.3 EXPERIMENTS ON ANIMAL DATASETS

We expand our research to include experiments on AnimalPose (Cao et al., 2019) and AP-10K (Yu
et al., 2021) to demonstrate our model’s scalability and performance in domains beyond human
part-to-body associations.
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Figure 6: Qualitative results on AP-10K (Yu et al., 2021).

Our study includes five common quadruped animals: dogs, cats, sheep, horses, and cows. These
animals are chosen due to the similarity in their anatomical structure, particularly having five iden-
tifiable parts: head and four feet. This similarity allows us to treat these diverse animal types as
a single class for analysis purposes. The body bounding boxes for these animals are derived from
the provided ground truth labels in the datasets, while the part bounding boxes are generated based
on keypoint annotations. In our experiments, we use 4,608 images with 6,117 instances of animal
bodies from AnimalPose (Cao et al., 2019) for training and use 2,000 images containing 7,962 body
instances from AP-10K (Yu et al., 2021) for evaluation. We train our PBADet (YOLOv5l6) model
with the same experimental setup as described in Section 4.1 of the main paper.

Qualitative results, as illustrated in Figure 6, showcase successful part-body association in these
animals. These outcomes affirm that extending our method to quadruped animals not only is feasible
but also yields convincing and meaningful results, demonstrating the potential of our approach for
broader applications in part-body association tasks across different domains.

A.4 MORE ABLATION STUDY

Methods Param (M) Size Hand AP↑ Cond. Accuracy↑ Joint AP↑

BPJDet (anchor-based body-to-part) 41.2 1536 85.3 86.80 78.13
Ours (anchor-based part-to-body) 36.9 1024 88.4 92.31 85.28
Ours (anchor-free part-to-body) 36.9 1024 89.1 92.62 85.98

Table 8: Comparison of anchor-based vs. anchor-free backbones and body-to-part vs. part-to-body
definitions.

We conduct an ablation study to compare our model with the traditional anchor-based YOLOv7
model, using the same association definition of part-to-body center offset as in our approach. This
comparison has been instrumental in highlighting the advantages of the anchor-free design, espe-
cially in the context of part-body association tasks. Our findings show that the anchor-free version
of YOLOv7 outperforms its anchor-based counterpart, validating the effectiveness of our method.
Furthermore, we compared the traditional anchor-based YOLOv7 model with BPJDet, which also
adopts an anchor-based approach but utilizes a body-to-part association definition. This compar-
ison demonstrates that our part-to-body association definition significantly enhances performance,
offering clear evidence of the superiority of our approach over previous methods.

A.5 DETAIL RESULTS OF COCOHUMANPARTS

All categories APs↑ (original / subordinate)

AP.5:.95 AP.5 AP.75 APS APM APL

Ours (YOLOv7) 42.7 / 41.5 69.5 / 67.9 43.5 / 42.2 31.4 / 30.3 65.8 / 64.4 66.7 / 63.3
Ours (YOLOv5l6) 43.0 / 41.8 70.0 / 68.4 43.7 / 42.4 31.5 / 30.3 66.2 / 65.0 67.2 / 64.4

Table 9: Evaluation results of the proposed method on COCOHumanParts with all categories APs.

In the original Hier R-CNN paper (Yang et al., 2020), small objects are further categorized into small
and tiny objects, and AP for small objects is not explicitly provided. Similarly, another comparison
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method, BPJDet (Zhou et al., 2023b), also does not offer AP details for small objects. We further
include the results of AP.75 and APS in Table 9 for transparency and comparison to future work. We
emphasize that Table 2 demonstrates our method’s competitive object detection accuracy relative to
state-of-the-art approaches. More importantly, the critical metric for our task is association accuracy,
where, as shown in Table 3, our method achieves superior performance.
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