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Abstract: The ability for robots to perform efficient and zero-shot grasping of
object parts is crucial for practical applications and is becoming prevalent with
recent advances in Vision-Language Models (VLMs). To bridge the 2D-to-3D
gap for representations to support such a capability, existing methods rely on neu-
ral fields (NeRFs) via differentiable rendering or point-based projection methods.
However, we demonstrate that NeRFs are inappropriate for scene changes due
to their implicitness and point-based methods are inaccurate for part localiza-
tion without rendering-based optimization. To amend these issues, we propose
GraspSplats. Using depth supervision and a novel reference feature computa-
tion method, GraspSplats generates high-quality scene representations in under
60 seconds. We further validate the advantages of Gaussian-based representation
by showing that the explicit and optimized geometry in GraspSplats is sufficient
to natively support (1) real-time grasp sampling and (2) dynamic and articu-
lated object manipulation with point trackers. With extensive experiments on
a Franka robot, we demonstrate that GraspSplats significantly outperforms exist-
ing methods under diverse task settings. In particular, GraspSplats outperforms
NeRF-based methods like F3RM and LERF-TOGO, and 2D detection methods.

Keywords: Zero-shot manipulation, Gaussian Splatting, Keypoint Tracking

1 Introduction

Efficient zero-shot manipulation with part-level understanding is crucial for downstream robotics ap-
plications. Consider a kitchen robot deployed to a new home: given a recipe with language instruc-
tions, the robot pulls a drawer by its handle, grasps a tool by its grips, and then pushes the drawer
back. To perform these tasks, the robot must dynamically understand part-level grasp affordances
to interact effectively with objects. Recent work, such as [1, 2, 3], explores this understanding by
embedding reference features from large-scale pre-trained vision models (e.g., CLIP [4]) into Neu-
ral Radiance Fields (NeRFs). However, those methods [2, 1] offer only a static understanding of
the scene at the object level and require minutes to train the scene, necessitating costly retraining
after any scene changes. This limitation significantly hinders practical applications involving ob-
ject displacements, or requiring part-level understanding. On the other hand, point-based methods
such as [5], which perform back-projection of 2D features, are efficient in feature construction but
struggle with visual occlusion and often fail to infer fine-grained spatial relationships without further
optimization.

In addition to dynamic and part-level scene understanding, achieving fine manipulation requires the
robot to have a strong understanding of both the geometry and semantics of the scene. For this
capability to emerge from coarse 2D visual features, further optimization is necessary to bridge the
2D-to-3D gap. NeRF-based methods [6, 2, 1] facilitate this understanding through differentiable
rendering. However, NeRFs [7, 6, 2, 1] are fundamentally implicit representations, making them
difficult to edit to accommodate scene changes, thus leading to a static assumption. To address
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Pick up tools by their grips Track truck and unload Grasp mugs by handles Lift a teapot by the handle

Grasp fruit from turntable Clean cluttered tools by grips Serve struck ball Open a cabinet by handle

Figure 1: GraspSplats supports diverse robotics tasks using feature-enhanced 3D Gaussians. Com-
pared to existing NeRF-based methods [1, 2], GraspSplats transforms the feature representation to
reflect object motions in real-time with point tracking from one or more cameras, which makes it
possible to perform zero-shot dynamic and articulated object manipulation by parts.

dynamic problems, some works [8, 9, 10, 11] commonly predict grasp poses using 3D dense cor-
respondences, where reliable grasps are identified based on keypoints in a reference state and then
applied to various viewpoints or object placements. However, these methods face challenges in
tracking object states over time and handling identical objects.

To this end, we propose GraspSplats. Given posed RGBD frames from a calibrated camera, Grasp-
Splats constructs a high-fidelity representation as a collection of explicit Gaussian ellipsoids via
3D Gaussian Splatting (3DGS) [12, 13]. GraspSplats reconstructs a scene in under 30 seconds and
supports efficient part-level grasping for static and rigid transformation, which enables manipula-
tion such as tracking part objects that is not possible with existing methods. GraspSplats initializes
Gaussians from the coarse geometry of depth frames; while computing reference features for each
input view in real time using MobileSAM [14] and MaskCLIP [15]. These Gaussians are further
optimized for geometry, texture, and semantics via differentiable rasterization. The user can sup-
ply an object name query (e.g., ‘mug’) and part query (e.g., ‘handle’) for GraspSplats to efficiently
predict part-level affordance and generate grasp proposals. GraspSplats directly generates grasp-
ing proposals using explicit Gaussian primitives in milliseconds, for which we extend an existing
antipodal grasp generator [16, 17]. In addition, we further exploit the explicit representation to main-
tain high-quality representations under object displacement. Using a point tracker [18], GraspSplats
coarsely edits the scene to capture rigid transformations and further optimizes it with partial scene
reconstruction.

We implemented GraspSplats on a desktop-grade computer with a real Franka Research (FR3) robot
to evaluate its efficacy in tabletop manipulation. Every component in GraspSplats is efficient and
empirically runs a magnitude (10×) faster than existing work [2, 1] — computing 2D reference
features, optimizing the 3D representation, and generating 2-finger grasp proposals. This makes
it possible to simultaneously generate GraspSplats representation in parallel to arm scans. In ex-
periments, GraspSplats outperforms NeRF-based methods like F3RM and LERF-TOGO, and other
point-based methods.

Our contribution is threefold:

• A framework that advocates 3DGS for grasping representation. GraspSplats efficiently re-
constructs scenes with geometry, texture, and semantics supervision, which outperforms baselines
on zero-shot part-based grasping in terms of both accuracy and efficiency.

• Techniques towards an editable high-fidelity representation, which goes beyond zero-shot ma-
nipulation in static scenes into dynamic and articulated object manipulation.

• Extensive real-robot experiments that validate GraspSplats as an effective tool for zero-shot
grasping in both static and dynamic scenes, which demonstrates the superiority of our method
over NeRF-based or point-based methods.
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2 Related Work

Language-guided Manipulation. To support zero-shot manipulation, robots must leverage priors
learned from internet-scale data. There have been some recent works [19, 20, 21, 22, 23, 24, 5] that
use 2D foundation vision models (CLIP [4], SAM [25], or GroundingDINO [26]) to build open-
vocabulary 3D representations. However, these methods mostly rely on simple 2D back-projection.
Without further rendering-based optimization, they generally fail to provide precise part-level in-
formation. Recently, building on LERF [6], researchers [1, 2, 27, 28] have found that combining
feature distillation with neural rendering yields promising representations for robotics manipulation,
as it offers both high-quality semantics and geometry. Notably, LERF-TOGO [2] proposed condi-
tional CLIP queries and DINO regularization for zero-shot manipulation by parts. F3RM [1] learned
grasping from few-shot demonstrations. Evo-NeRF [29] focuses on NeRF specialized for stacked
transparent objects. However, these methods are based on NeRFs [7], which is fundamentally im-
plicit. Though certain NeRF representations can be adapted to model dynamic movement, such as
grid-based methods [1], dynamic scenes are more natural to be modeled with explicit methods.

Grasp Pose Detection. Grasp pose detection has been a long-standing topic [30, 31, 32, 33, 16,
17, 34, 35, 36] in robotics manipulation. Existing methods can be roughly divided into two cat-
egories: end-to-end and sampling-based approaches. End-to-end methods [32, 33, 35, 36] offer
streamlined pipelines for grasp poses and incorporating learned semantic priors (e.g., mugs grasped
by the handle). However, these methods often require the testing data modalities (e.g., viewpoint,
object category, and transformations) to match training distribution exactly. For instance, LERF-
TOGO [2] resolves viewpoint variation of GraspNet [32] by generating hundreds of point clouds
for input using different transformations, requiring significant computational time. Sampling-based
methods [16, 17], on the other hand, do not learn semantic priors but offer reliable and rapid re-
sults when explicit representations are available. In this work, we find that the explicit Gaussian
primitives are natural to be connected to sampling-based methods [16, 17], and features embedded
in GraspSplats complements the semantic priors via language guidance. This intuitive combination
allows efficient and accurate sampling of grasping poses in dynamic and cluttered environments.

Concurrent Work. Some concurrent methods [37, 38, 39, 40, 41, 42, 43] interface Gaussian Splat-
ting [12] with 2D features [37, 38, 39] and robotics applications [40, 41, 42, 43]. GraspSplats is
based on Feature Splatting [38] for its engineeringly optimized implementation. Among methods
for robotics applications, GaussianGrasper [40] mostly supports object-level queries for static scenes
and displaces objects only when the robot arm moves them. On the other hand, SplatSim [43] and
ManiGaussian [42] require expert demonstrations for policy learning based on GS, where we inves-
tigate zero-shot grasping. Most related to our work, SplatMover [41] also studies zero-shot dynamic
grasping. Compared to SplatMover, GraspSplats (1) efficiently constructs feature-enhanced GS
under 1 minute; (2) shows the efficacy of grasp planning directly on explicit Gaussians than Grasp-
Net [32]; and (3) adapts point-tracking method to displaces object representations in real-time.

3 Efficient Manipulation with 3D Feature Splatting

Problem Formulation. We assume a robot with a parallel gripper, a calibrated in-wrist RGBD
camera, and a calibrated third-person view camera. Given a scene containing a set of objects, the
objective is for the robot to grasp and lift an object via language queries (e.g., ‘kitchen knife’).
Optionally, a part query may be further supplied to specify the part to grasp (e.g., ‘handle’) for task-
oriented manipulation [2]. It is worth noting that, unlike previous works [1, 2], we do not assume
that the scene is static. Instead, we aim to design a more generalized algorithm where part-level
grasping affordance and sampling can be done continuously even with object movement.

Background. We render depth D̂, color Ĉ, and features F̂ following existing work [38, 39, 37]:

{D̂, F̂, Ĉ} =
∑
i∈N

{di, fi, ci} · αi

i−1∏
j=1

(1− αj) , (1)
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Figure 2: GraspSplats employs two techniques to efficiently construct feature-enhanced 3D Gaus-
sians: hierarchical feature extraction and dense initialization from geometry regularization, which
reduces the overall runtime to 1/10 of existing GS methods [38]. (High-dimensional features are
visualized using PCA and the visualized Gaussian ellipsoids are trained without densification).

where di, fi, and ci is the distance to camera, latent feature, and color. αi is per-gaussian opacity,
and the indices i ∈ N are ordered by di. We provide complete details in appendix Sec. A.

Overview. To support open-ended grasping, GraspSplats proposes three key components. The
overviews are given in Fig. 2 and Fig. 3. First, a way to construct a scene representation efficiently
with novel reference features and geometric regularization. Second, a way to generate grasp pro-
posals directly on 3D Gaussians, using 3D conditional language queries and an extended antipodal
grasp proposer [16, 17]. Finally, a way to edit Gaussians under object displacement which enables
dynamic and articulated object manipulation.

3.1 Constructing Feature-enhanced 3D Gaussians

We use differentiable rasterization [12, 38] to lift 2D features to 3D representation. Though existing
works in feature-enhanced GS offers part-level understanding [38, 39], one commonly overlooked
weakness is the expensive overhead before the scene optimization begins. This overhead can be
further dissected to (1) costly reference feature computation [2] or (2) densification of sparse Gaus-
sians [38] originated from SfM preprocessing [12, 44], which we address in this work.

Efficient Hierarchical Reference Feature Computation. Existing methods [2, 39, 40] spend
most compute efforts to regularize coarse CLIP features — either through thousands of multi-scale
queries [2] or mask-based regularization [38, 39, 40] through costly grid sampling [25].

We propose a way to efficiently regularize CLIP using MobileSAMV2 [14]. We generate hierar-
chical features, object-level and part-level, specialized for grasping. Given an input image, Mo-
bileSAMV2 [14] predicts class-agnostic bounding boxes Dobj := {(xi, yi, wi, hi)}Ni=1 and a set of
object masks {M}. For object-level feature, we first use MaskCLIP [15] to compute coarse CLIP
features of the entire image FC ∈ RH′×W ′×C . We then follow Qiu et al. [38] and use Masked
Average Pooling to regularize object-level CLIP features with {M}, which we detail in Sec. F.

For part-level features, we extract image patches from Dobj for batched inference on
MaskCLIP [15]. Since Dobj incorporates object priors learned from the SA-1B dataset [25], N
is significantly smaller than the number of patches needed from uniform queries [6] for efficient
inference. We then interpolate the features to remap them into the original image shape and average
over multiple instances to form Fpart for part-level supervision.

During differentiable rasterization, we introduce a shallow MLP with two output branches that takes
in the rendered features F̂ from Eq. 1 as intermediate features. The first branch renders the object-
level feature F̂D and the second branch renders the part-level feature F̂obj , F̂part = MLP(F̂),
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Figure 3: Given an initial state of Gaussians and RGB-D observations from one or more cameras,
GraspSplats tracks the 3D motion of objects specified via language, which is used to deform the
Gaussian representations in real-time. Given object-part text pairs, GraspSplats proposes grasping
poses using both semantics and geometry of Gaussian primitives in milliseconds.

where F̂obj and F̂part are supervised using Fobj and Fpart with cosine loss. We scale the part-level
term in the joint loss Lobj + λ · Lpart with λ = 2.0 to emphasize part-level segmentation.

Geometry Regularization via Depth. Existing feature-enhanced GS methods [38, 39, 37] have
no supervision for geometry. In GraspSplats, we project points from depth images as centers of the
initial Gaussians. In addition, we use depth as supervision during training. Empirically, this addi-
tional geometric regularization significantly reduces the training time and better surface geometry.

3.2 Static Scene: Part-level Object Localization and Grasp Sampling

To support efficient zero-shot part-level grasping, GraspSplats performs object-level query, con-
ditional part-level query, and grasp sampling. Unlike NeRF-based approaches [2], which requires
costly rendering to extract language-aligned features and geometry from implicit MLPs, GraspSplats
operates directly on Gaussian primitives for efficient localization and grasping queries.

Open-vocabulary Object Querying. We first perform object-level open-vocabulary query (e.g.,
mug), where we take language queries to select objects for grasping, with optional negative queries
to filter out other objects. We do so by directly identifying 3D Gaussians whose isotropic CLIP
features more closely align with positive queries over negative queries. The feature-text comparison
process follows standard CLIP practices [4, 1] and is detailed in Sec. E.

Open-vocabulary Conditional Part-level Querying. As discussed by Rashid et al. [2], CLIP ex-
hibits bag-of-words-like behavior (e.g., the activation of ‘mug handle’ tends to contain both mugs
and handles). Thus, it is necessary to perform conditional queries. While LERF-TOGO [2] requires
a two-step (render-voxelization) process; GraspSplats natively supports CLIP queries conditioned
on Gaussian primitives. In particular, given an object segmented from the previous operation, we
simply repeat the procedure with the new part-level query and limit the set of Gaussians to the
segmented object. A qualitative example of this part-level conditioning is given in Fig. 3.

Grasp Sampling using Gaussian Primitives. We perform grasp sampling directly on the Gaussian
primitives for streamlined grasping. To do so, we combine GraspSplats with GPG, a sampling-
based grasp proposer [16, 17]. We first define a workspace Robj as the 3D space expanded from the
segmented object part. The expansion radius is the sum of both the longest axes of the scales of the
Gaussian primitives and the gripper’s collision radius. Then, we sample N points from Robj . Within
the neighborhood Rp of these sampled points where Rp refers to the area within a specified distance
from the selected point, we aggregate Gaussian primitives with rendered normals and compute the
reference coordinate system for grasp sampling with the average normal direction

M(p) =
∑
g∈Rp

n̂(g)n̂(g)T (2)
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Latency↓ Grasping Success↑
Method Training Grasping Static Dynamic
Tracking Anything [47] — 3.1s 41.9% 45%
ConceptGraphs⋆ [24] ∼30s 0.7s 51.1% —†

LERF-TOGO [2] ∼10min 9.9s 65.1% —†

F3RM⋆ [1] ∼3min 1.6s 72.1% —†

GraspSplats (Ours) 60s 1.3s 81.4% 74.2%

Table 1: Comparison to NeRF and 2D-based methods on latency, static/dynamic successful
rate averaged across variations in motions and objects/parts. Latencies are reported for (1) the time
for (re)building the representation; and (2) grasp latency given task texts. ⋆: reproduced variants that
use GraspNet [32] on objects segmented. †: methods require offline batch processing that does not
cope with dynamic scenes. We report detailed object-/part-level successes in appendix Sec. C.

where n̂(g) denotes the unit surface normal of the gaussian primitive g. In the reference frame of
each sampled point p, we perform a local grid search to find candidate grasps, where the finger of
the gripper at terminal candidate grasps contacts the geometry of the segmented part. The details
are given in Sec. G.

3.3 Dynamic Scene: Real-time Tracking and Optimization

Using representations optimized for semantics and geometry, it is natural to extend GraspSplats to
track object displacements and edit the Gaussian primitives in real time. It is worth noting that such
operation is challenging for existing NeRF-based methods [2, 1].

Multi-view Object Tracking with keypoints. Assume one or more calibrated cameras without
egocentric motions. Given an object language query, we segment its 3D Gaussian primitives and
rasterize a 2D mask to the camera. We then discretize the rendered mask into a set of points as
input to a point tracker [18], which continuously tracks the 2D coordinates of given points. We
translate these 2D correspondences into 3D using depth. To filter out noisy correspondences, we
use a simple DBSCAN [45] clustering algorithm to filter out 3D outliers. Finally, for the remaining
correspondence points, we use the Kabsch [46] algorithm to solve for the SE(3) transformation,
which we apply to the segmented 3D Gaussians primitives. For multiple cameras, we append the
estimated 3D correspondences from all cameras to the system of equations for the Kabsch algorithm.
Note that the displacement can be exerted either by the arm or other external forces.

Partial Fine-Tuning. Edited scenes may have undesirable artifacts for regions unobserved during
the initial reconstruction (e.g., surface underneath displaced objects). Optionally, GraspSplats sup-
ports partial scene re-training using object masks rendered before and after the displacement, which
is much more efficient than a complete reconstruction.

4 Experiments

In this section, we conduct experiments to validate the efficacy of GraspSplats. Specifically, our
experiments aim to address the following research questions:

• Main Results — Why is GraspSplats preferable than existing NeRF- and point-based methods?

• Ablation Study — What were the design choices?

Experiment Protocol. We evaluate GraspSplats on several static and dynamic task settings. The
full implementation details are provided in Appendix Sec. B.

• Static zero-shot part-level manipulation. We experiment with 8 different re-arrangements of
objects (4 are cluttered, shown in Fig. 1) with 24 objects and 43 trials. The common objects with
part queries including kitchenware, tableware, toys, and tools.
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Method Segment Grasp Sampling

Tracking Anything⋆ 2.5 ± 0.1s 0.6± 0.05s
ConceptGraph⋆ 0.1 ± 0.05s 0.6± 0.05s
LERF-TOGO 5.1± 0.3s 4.8± 0.7s

F3RM 1.0± 0.1s 6.9± 0.45s
GraspSplats 0.8± 0.1s 0.5 ± 0.06s

Table 2: Grasping latency breakdown. standard
deviations are reported over 10 runs. ⋆: our own
reproductions that use GPG [16] for grasping.

Method Query Time↓ Succ.↑
GraspNet-100 [2] 10.3s 76.7%
GraspNet-1 [32] 0.6s 65.1%

F3RM [1] 6.9s —
GraspSplats 0.5s 81.4%

Table 3: Query time and success rate
of different grasp sampling methods mea-
sured in the static scene. LERF-TOGO [2]
uses multi-view inferences that require 100
GraspNet passes.

• Dynamic zero-shot part-level manipulation. Objects in this setting are similar to static grasp-
ing (40 trials on 24 objects). After the initial scan, a human operator rearranges the scene. To
specifically evaluate tracking performance, we experiment with three types of dynamic motion:

– Easy. Objects are translated without rotation.
– Medium. Objects are rotated 180◦, with some occlusions from hand during rotation.
– Hard. Objects are translated and rotated simultaneously, with certain occlusions.

4.1 Main Results

We demonstrate the efficacy of GraspSplats over NeRF-based methods [2, 1], 2D+Depth point-cloud
based methods [47, 25] methods, and scene-graph based method [24]. We compare with two recent
NeRF-based methods, LERF-TOGO [2] and F3RM [1]. Since F3RM requires human demonstra-
tions, we implement a zero-shot variant, F3RM∗, which uses GraspNet [32] to generate grasps based
on rendered depth and features. For the projection-based baselines, we adapt TrackAnything [47],
which combines SAM [25] and GroundingDINO [26] for segmentation. Per-frame segmented depth
is used to build point clouds for input to GraspNet [32] to generate grasps. For the scene-graph-
based method, we use ConceptGraphs [24] for segmentation and GraspNet for grasp generation.
The results for latency, and success rate for static and dynamic scenes are shown in Table. 1. We
claim the following advantages for GraspSplats:

GraspSplats builds part-level representations more efficiently than NeRFs. As shown in Ta-
ble. 1, GraspSplats is more efficient in both representation building and grasp sampling than LERF-
TOGO [2] and F3RM [1]. Besides up to 10x training speed, GraspSplats achieves better grasping
success rate with 16.3 points better than LERF-TOGO, and 9.3 points better than F3RM. In addi-
tion, both baselines fall short under cluttered scenes with object overlapping without regularizing
the object boundary in the reference feature.

GraspSplats outperforms 2D foundation models. To demonstrate how optimized representations
improve grasping success, we compare GraspSplats against baselines [47, 24] that use off-the-shelf
2D vision foundation models (SAM [25] and GroundingDINO [26]). Due to existing methods’
reliance on GroundingDINO [26] that is not trained on part-level data, they yield reasonable perfor-
mance on object-level grasping but fail almost every part-level query.

Our method has supreme capabilities for accurate dynamic scene modeling. GraspSplats ex-
ploits the benefit of explicit representations, which allows editing reconstructed representations
without compromising the rich geometric and semantic scene features. We demonstrate that our
real-time tracking algorithm allows displacing reconstructed objects effectively, which works in dy-
namic scenes with a high success rate. This would otherwise be a challenging scenario for implicit
methods. Additionally, our approach reconstructs scenes with greater detail than 2D-based methods,
resulting in a higher success rate in dynamic scenarios.

4.2 Ablation Study

Reference Feature. We show advantages of our hierarchical features in Tab. 4. Specifically, since
there are no existing scene-scale part-level segmentation datasets, we manually annotate object-
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Track yellow ball and reset it to the serve point.

Reset yellow truck if it stops.

Open the cabinet door by the gray handle, and grasp the pineapple.

Figure 4: Qualtative examples of GraspSplats performing zero-shot task execution in real-world en-
vironments. Given object-part text queries (italicized in descriptions), GraspSplats executes grasp-
ing followed by heuristic trajectories. From left to right: illustration of scene change; grasp poses
sampled by GraspSplats; execution of grasping. Videos can be found on the website.

level and part-level masks for 4 scenes for evaluation. GraspSplats outperforms LERF [6] on open-
vocabulary object-/part-level segmentation. Qualitative results are provided in Fig. 8.

Grasp Sampling. We ablate different grasping methods in Table. 3.
Method IoU↑

LERF [6] 39.0
GraspSplats 50.7

Table 4: object/part IoU

GraspNet-n represents the grasps accumulated after running Grasp-
Net [32] n times from different viewpoints, a test-time augmentation
technique used in [2]. GraspSplats demonstrates superior stability and
speed in all cases. In other words, when the semantic affordance is satis-
factorily provided, then geometrically informed sampling based on explicit Gaussian representation
yields good results. We provide further breakdown of sampling efficiency in Table. 2 and qualitative
illustrations in Fig. 9.

Qualitative Results. Fig. 4 shows GraspSplats executing various zero-shot tasks. The heuristic
policies can be easily composed to involve various object-part text queries and trajectories.

More ablation studies, such as initialization from depth, can be found in appendix Sec. C. We also
present failure analysis and qualitative examples of 2D rendered heatmaps in the appendix.

5 Conclusion and Limitations

In this work, we present GraspSplats, a novel representation for zero-shot task-oriented manipula-
tion. GraspSplats is efficient in building feature-enhanced 3DGS and grasp sampling. We further
enhance GraspSplats with point trackers to directly edit optimized representation to capture the dy-
namics of objects, which would be challenging for implicit NeRF-based methods.

Limitations. We highlight the most pronounced limitations to facilitate future research and provide
detailed failure analysis in the appendix Sec. H. The current object corresponding algorithm based
on the Kabsch [46] algorithm assumes that objects undergo rigid transformation. While the Gaussian
representation is conceptually applicable to more general deformable objects (e.g., dough and clay),
this is not investigated in the current work. In addition, the tracking is sensitive to fast rotation
and the resulting visual occlusions and motion blurs, which could be potentially addressed as a
rendering-based optimization problem.
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Method Process Time↓ Train Iteration ↓
Colmap-S [12] 11.6 10,000
Colmap-D [48] 623.0 3,000
GraspSplats 0.7 3,000

Table 5: Comparison of different initialization
schemes. Processing time is averaged across 4
scenes. Train iteration reports the updates needed
for convergence in increments of 1,000.

Method Object-level Part-level

LERF-TOGO [2] 81.5% 63.0%
F3RM⋆ [1] 85.2% 77.8%

GraspSplats 96.3% 85.2%
Table 6: Analysis of object-level and part-
level grasping success rate under static
scenes. Note that this table is computed us-
ing 27 object-part pairs different from the
runs presented in Table. 1.

A Neural Rendering Background

Point and surface splatting methods represent a scene explicitly via a mixture of 2D or 3D Gaussian
ellipsoid. In the case of Gaussian Splatting, the geometry is represented as a collection of 3D
Gaussian, each being the tuple {X ,Σ} where X ∈ R3 is the centroid of the Gaussian and Σ is its
covariance matrix in the world frame. This gives the probability density function

G(X ,Σ) = exp−1

2
X⊤Σ−1X . (3)

Gaussian splatting decomposes it into a scaling matrix S and a rotation matrix R via Σ =
RSS⊤R⊤. The color information in the texture is encoded with a spherical harmonics map
ci = SHϕ(di), which is conditioned on the viewing direction ϕ.

To optimize for features, existing methods tend to append an additional vector fi ∈ Rd to each
Gaussian, which is rendered in a view-independent manner because the semantics of an object shall
remain the same regardless of view directions. The rasterization procedure starts with culling the
mixture by removing points that lay outside the camera frustum. The remaining Gaussians are
projected to the image plane according to the projection matrix W of the camera, which is then
sorted from low to high using the distance from the virtual camera origin. This projection also
induces the following transformation on the covariance matrix Σ:

Σ
′
= JWΣW⊤J⊤ , (4)

where J is the Jacobian of the projection matrix W. We can then render both the color and the
visual features with the splatting algorithm:

{F̂, Ĉ} =
∑
i∈N

{fi, ci} · αi

i−1∏
j=1

(1− αj) , (5)

where αi is the opacity of the Gaussian conditioned on Σ
′

and the indices i ∈ N are in the ascending
order determined by their distance to the camera origin.

Following the convention [38], GraspSplats assumes that per-gaussian feature vector fi is isotropic.
The rendered depth, images, and features are then supervised using L2 loss. Note that all recent
works [38, 37, 39] follow a similar paradigm as Eq. 1.

B Implementation Details

We calibrate cameras using Colmap [49] with Aruco visual markers. For all settings, the in-wrist
camera obtains an initial scan of the scene by going in a tabletop Bezier curve. After which object-
part text queries are provided. Though GraspSplats conceptually supports multi-camera tracking,
we only use a single RGB-D camera in experiments. Manipulation success is defined as lifting the
object (optionally, by the parts specified) for at least 3 seconds without re-attempting.

C More Ablation Studies

Initialization from Depth. In Table. 5, we ablate the effect of geometric regularization by compar-
ing several variants to initialize geometry for Gaussian. In particular, while the original Gaussian
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Splatting [12] paper adopts sparse Colmap [49] initialization from RGB images (Colmap-S); some
recent works have found that dense Colmap reconstruction (Colmap-D) serves as a better initializa-
tion that results in faster convergence [48]. GraspSplats adopt geometric regularization and directly
initializes centers of Gaussians using depth inputs, which leads to much more efficient training.

Success Rate Breakdown. As shown in Table. 6, to more clearly demonstrate the comparison of
part-level segmentation capabilities, we tested the success rates of 27 object-part pairs in unclustered
scenes, which differs from Table. 1. It clearly shows that our approach has nearly a 100% success
rate on object-level grasping while maintaining a very high success rate on part-level grasping. This
is a benefit from both the feature-enhanced 3D Gaussians and part-level supervision from SAM.

D Part-level Features Determination

Given object-level bounding boxes, we crop and wrap images to square patches to obtain CLIP
features. After per-patch features are computed, we create a part-level feature map by aggregating
per-patch features using the inverse function of the cropping and wrapping process. For pixels that
are assigned with more than two feature vectors, the features are averaged. Pixels with no assigned
features are ignored during rendering-based feature distillation.

E Object-level CLIP Queries

Specifically, GraspSplats follows standard CLIP querying practices [1, 6, 2, 38] and takes a posi-
tive vocabulary with negative vocabularies. By default, the negative vocabularies include canonical
words (i.e., ‘objects’ and ‘things’), but can be optionally extended with user queries. To be specific,
given a language set L = {L−

0 , L
−
1 , . . . , L

−
n , L

+} containing n+1 words, where L+ is the positive
query and the remaining L− are negative queries. The CLIP model is used to encode each word Li

into a 768-dimensional feature vector Ftext,i ∈ R768:

Ftext,i = CLIP encode(Li), i = 0, 1, . . . , n

For each Gaussian primitive j, there is a 16-dimensional view-independent feature vector Flatent,j ∈
R16 This is decoded into a 768-dimensional CLIP feature representation FCLIP,j ∈ R768:

FCLIP,j = Decoder(Flatent,j)

Then, we calculate the cosine similarity between its CLIP feature representation FCLIP,j and each
query Li in the set L :

sim(FCLIP,j ,Ftext,i) =
FCLIP,j · Ftext,i

∥FCLIP,j∥∥Ftext,i∥

Then, we apply a softmax function to the similarities between it and all queries Li to enhance the
similarity for the positive query:

Sj = softmax({sim(FCLIP,j ,Ftext,i)}ni=0)

Here, Sj is the similarity vector for Gaussian primitive j. After applying a temperature softmax, the
similarity for the positive query L+ is selected:

simpositive,j = Sj [n]

The selecting Gaussians whose similarity to L+ passes a certain threshold τ = 0.6 will be regarded
as the grasping object. After Gaussians are selected, we apply the DBSCAN [45] clustering algo-
rithm to filter out outliers.

13



F Reference Feature Computation

Following [14], Dobj achieves high recall by intentionally including more false positives, which
ensures recall of objects. MobileSAMV2 [14] then uses Dobj as priors to generate object-level
segmentation masks {M}.

To generate object-level features, For a given object mask M, we use Masked Average Pooling
(MAP) to aggregate an object-level feature vector

wi = MAP(M,FC) =

∑
i∈FC

M(i) · FC(i)
||FC(i)||∑

i∈FC
M(i)

, (6)

where i is a pixel coordinate. We then construct Fobj by assigning w.

To generate part-level features, for a given bounding box, we crop and wrap the patches to (224,
224). The image patch is then processed by MaskCLIP to generate feature map of shape (28, 28,
768). We then interpolate the generated feature map to match the size of the original bounding box,
and paste it onto the part-level feature map. If a pixel is assigned more than one feature, we average
all assigned features.

G Grasp Sampling Algorithm

We define F (p) = [v3(p)v2(p)v1(p)] as the orthogonal reference frame at point p where
v1(p), v2(p), v3(p), correspond to the normal direction, the secondary direction, and the minimum
direction of M(p). We search a 2D grid G = Y ×Φ. For each (y, ϕ) ∈ G, we apply translations and
rotations relative to F (p), then push the gripper along the negative x-axis until a finger or the base
of the gripper contacts the point cloud. Let Tx,y,ϕ be the homogeneous transformation describing
translations in the x, y plane and rotation about the z-axis. The gripper hy,ϕ at grid cell y, ϕ contacts
the point cloud at: F (hy,ϕ) = F (p)Tx∗,y,ϕ, where x∗ is the minimum distance along the negative
x-axis at which the gripper contacts the point cloud. If the number of segmented objects Nobj within
the gripper’s closed region exceeds a set threshold Nth, i.e., Nobj > Nth, the gripper hy,ϕ is added
to the candidate grasp set H . Finally, we use a geometry-aware scoring model [17, 50] to rank the
grasps and select the grasp pose with the highest score.

H Limitations and Failure Cases

We present a comprehensive analysis of limitation, or failure modes, of the current implementation
of GraspSplats. We hope they will help inspire future research.

• General Deformation. The current scene deformation algorithm based on the Kabsch
algorithm assumes that objects undergo rigid transformation. While the Gaussian repre-
sentation is conceptually applicable to more general deformable objects (e.g., dough and
clay), this is not investigated in the current work.

• Tracking Failure. In addition, the tracking is sensitive to fast rotation and the resulting
visual occlusions and motion blurs, which could be potentially addressed as an optimiza-
tion problem using semantic and geometric priors fused in GraspSplats without assuming
consistent object views. We illustrate a failure example in Fig. 6, where GraspSplats is
tasked to track a yellow toy duck with texture-less body.

• Manipulation Policy. GraspSplats focuses on the grasping of the object parts via language
guidance. However, in reality, it can be interesting to incorporate a more complex manip-
ulation policy. For example, though GraspSplats supports the manipulation of articulated
object, such as cabinets, by heuristic policy to pull with respect to the normal of the sur-
face, it currently has the quasi-static assumption. Thus, it does not support more complex
manipulation. Future work may explore if it is possible to learn more complex manipula-
tion policies on top of the powerful representations of GraspSplats. In addition, though the
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Figure 5: Grasp execution error: The leftmost image is the captured image, the middle shows the
segmented grip of the pliers, and the rightmost image displays the generated grasp. The red grasp
has the highest score.

Figure 6: Tracking failure: The leftmost image shows the initially sampled feature points, with blue
indicating valid feature points and green indicating lost tracking points. The two images on the right
display the feature points’ status as the object moves, where valid feature points are continuously
lost.

semantic design provides a good boundary between foreground and background, it does
not differentiate between objects of the same types (illustrated in Fig. 5).

• Requirement for Scene Scanning. GraspSplats requires scanning of initial objects on the
tabletop, where the scanning poses are generated from pre-programmed poses. Future work
may include an active reconstruction policy to automate such a process.

I Hardware Configuration

We use the Franka Research robot (FR3) as the main experiment platform. In addition to one Intel
Realsense D435 cameras mounted on the end effector, we also use inputs from two third-person
view Intel Realsense D435 cameras to facilitate scene reconstruction. We use the UMI gripper [51]
as the end effector. The arm and cameras are connected to a desktop computer with a single RTX
4090 and an Intel i9-13900k CPU, on which GraspSplats is deployed.

J Multi-state Task Policy Rollout

The examples of complex tasks are designed to illustrate potential use cases rather than showcase
highly intricate operations. The tasks primarily focus on object manipulation, such as updating
an object’s position, grasping, resetting, and pick-and-place actions. For instance, in the toy car
experiment in the supplementary video, after grasping the car, the robot resets the car by placing it
back in its original position with the same orientation. During pick-and-place tasks, the placement
orientation is aligned with the grasping orientation, and the placement location is determined by
querying the center of another object.

These operations highlight the system’s capabilities in basic object manipulation. However, chal-
lenges arise in tasks that involve precise placement, especially when the object’s orientation shifts
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(a) RGB Image

(b) Regularized Depth (c) Regularized Normal

(d) Unregularized Depth (e) Unregularized Normal

Figure 7: Qualitative results of depth supervision. (a) Rendered RGB image, which is not noticeably
different with or without depth supervision. (b) Rendered depth image with depth supervision.
Notice the red circle surface is accurately rendered as flat. (c) Rendered normal image with depth
supervision. Notice that the object edges are smoother. (d) Unregularized depth, which contains
artifacts on flat patterns. (e) Unregularized normal, which is noisy near the object edge.

during grasping due to the inherent instability or rotation caused by the gripper’s contact. This issue
is particularly evident when the gripper obstructs the view of the object, complicating the perception
of the object’s orientation during placement. These challenges and potential failure cases are further
discussed in the supplementary material.

K Effect of Depth Supervision

We have provided quantitative evidence in the paper to validate the effectiveness of the depth ini-
tialization in training. For the other aspect of geometric regularization, depth supervision during the
training, we provide qualitative samples in Fig. 7.

L Text Query Comparison

The 2D response maps for the same text query generated by different algorithms are displayed
in Fig. 8. Grounded SAM[52] in TrackAnything[47] demonstrates effective segmentation at the
object level; however, it fails to distinguish parts of objects and sometimes does not respond at
all. Additionally, it tends to merge multiple closely positioned objects into one. LERF[6] similarly
exhibits weak responses at the part level, with very unclear segmentation between objects, making
it nearly impossible to separate similar objects that are close together. F3RM[1] provides higher-
quality features compared to LERF and can respond to some part-level queries, but it also struggles
with accurately distinguishing between similar, closely positioned objects. In contrast, our algorithm
exhibits near 2D segmentation capabilities and is highly sensitive to part-level queries, allowing for
precise differentiation of different parts within distinct objects.

M GraspNet vs Grasp Sampling

In our comparative analysis of grasp sampling methods, we employed GraspNet[32] with collision
detection as LERFTOGO[2], sampling viewpoints on a hemisphere defined by theta and phi pa-
rameters. Specifically, we tested configurations with 3x3, 5x5, and 10x10 viewpoints, effectively
running GraspNet 9, 25, and 100 times respectively. The resulting grasps for these configurations
are illustrated in the first three images as is shown in Fig. 9. Notably, the red circles highlight regions
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(a) Cup

(b) Cup (Rim)

(c) Headphone

(d) Headphone
(band)

(e) Plier

(f) Plier
(Handle)

TrackAnything LERF F3RM GraspSplats

Figure 8: From left to right are the responses of TrackAnything (Grounded SAM), LERF, F3RM,
and our algorithm to the same text query.

Method Query Time↓
GraspNet-100 10.3
GraspNet-25 3.2
GraspNet-9 1.2

Ours 0.5

Table 7: Time efficiency comparison of different grasp sampling methods including ours and GraspNet with
different number of executions.

where valid grasps were not generated. In contrast, for our sampling-based method, we configured
the system to sample 3000 points within the workspace, utilizing 16 threads of 12900K for parallel
processing. The outcome of this approach is depicted in the last image. We also compare the time
efficiency of the algorithms as is shown in Tab. 7

It is worth noting that while the GS grasps are directly generated with Gaussians, the point cloud
data (pcd) is used solely for visualization purposes. This comparison underscores the efficiency and
potential limitations of each method in terms of grasp generation and computational demands.
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(a) GraspNet - 9 (a) GraspNet - 25 (a) GraspNet - 100 (d) Ours

Figure 9: The first three images from left to right show the grasps obtained by running GraspNet
with 9, 25, and 100 different viewpoints, respectively. The last image shows the results obtained by
our method, which sampled 3000 points in the workspace.
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