
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE PROBABILITY SIMPLEX IS COMPATIBLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Training modern AI models has become increasingly expensive, and updating
these base models can significantly alter the behavior of applications or services
built on them, due to changes to internal feature representations. In retrieval
systems, this involves re-extracting feature vectors for all gallery data. This process
can be computationally expensive and time-consuming, especially for large-scale
gallery sets. To address this issue, backward compatible learning was introduced,
allowing direct comparison between the representations of the base model and the
updated ones. Existing backward compatible methods introduce additional losses
or specific network architecture changes, which require the availability of base
models, thereby limiting compatibility with models trained independently. In this
paper, we show that any independently trained model can be made compatible with
any other by simply using features derived from softmax outputs. We leverage
the geometric properties of the softmax function, which projects vectors into the
Probability Simplex, preserving the alignment of softmax outputs across model
updates and verifying the definition of compatibility. A similar property is observed
when using a feature representation derived from logits. They distribute in a
simplex configuration, but with a wider spread in the feature distribution than
softmax outputs, leading to a more robust and transferable representation. Our
framework achieves state-of-the-art performance on standard benchmarks, where
either the number of training classes extends across multiple steps or the base
model is updated with advanced network architectures, showing that any publicly
available pretrained model are compatible without requiring any additional training
or adaptation. Our code will be made available upon acceptance.

1 INTRODUCTION

Training modern AI models has become increasingly expensive, limiting accessibility to a few
well-resourced organizations (Wolf et al., 2019; Radford et al., 2021; Dubey et al., 2024; Jiang et al.,
2023; Anthropic, 2024). Despite reductions in model parameters and computing costs (Dubey et al.,
2024), training from scratch, fine-tuning and inference (i.e., test time) (Wang et al., 2024; OpenAI,
2024) remain economically challenging, particularly for smaller teams. As a result, these models are
increasingly offered as services through APIs, a trend that is likely to continue due to persistent high
costs and the significant benefits of scaling laws (Kaplan et al., 2020). Offering models as services
not only simplifies the development of new applications but also enables their widespread use across
various fields. However, updating these base models can completely transform the behavior of the
applications or services built upon them (Raffel, 2023).

Several factors may drive updates to the base model (Raffel, 2023; Yadav et al., 2024), including
evolving training strategies (Biondi et al., 2024; Echterhoff et al., 2024; Shen et al., 2020), advance-
ments in architectures (Touvron et al., 2023), the availability of higher-quality datasets (Gunasekar
et al., 2023), the expansion of training classes, or extended training periods (Biderman et al., 2023;
Raffel, 2023). These advancements encapsulate rapid progress in a unified model, simplifying usage
as models, datasets, and computational infrastructures grow in size and complexity (Bommasani
et al., 2021; Sorscher et al., 2022).

A common scenario involves developers focusing on performance improvements in model updates,
potentially compromising compatibility with earlier model versions. Concurrently, end users, such
as drivers of semi-autonomous cars, often develop a mental model of the machine learning model’s
capabilities (Bansal et al., 2019a). As the software updates, these human-users must continually

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

adjust their mental model of its functionality and capabilities, a task that is not only challenging
and potentially dissatisfying but also unsafe (Bansal et al., 2019b). To minimize user adjustments,
both current and new software versions run in the background to compare decisions before the final
deployment (Templeton, 2019). Similarly, image retrieval services might experience unexpected
changes in image rankings following a model update, requiring users to adapt when previously
top-ranked retrieved images no longer appear first (Shen et al., 2020). In the same vein, recent
observations have shown similar issues with large language models (LLMs) (Echterhoff et al., 2024),
which directly raises concerns about AI safety and alignment. This is particularly critical when
decisions and textual outputs from these agents are translated into actions (Amodei et al., 2016; Ngo
et al., 2024).

This general issue of updating a base model seamlessly while ensuring compatibility has been
independently explored with research emphasis varying based on the type of compatibility required
with earlier models: 1) if through the ultimate layer, it targets the problem of “negative flips”— ensure
that the new model only mimics the old model when it is correct. (Milani Fard et al., 2016; Yan
et al., 2021); 2) if through the penultimate layer, it involves learning “backward-compatible” feature
representations that can be interchangeably used across models (Shen et al., 2020; Biondi et al.,
2023); and 3) if through the whole architecture it targets merging by averaging earlier models using
the concept of “linear mode connectivity” (Ainsworth et al., 2023; Wortsman et al., 2022; Matena &
Raffel, 2022; Frankle et al., 2020).

Although repositories of pre-trained foundation models are publicly available (Wolf et al., 2020),
merging large models still requires not only the same architecture but also access to weights behind
an API and substantial compute resources (Yadav et al., 2024). Backward compatibility, as defined
in (Shen et al., 2020) originally developed to avoid image re-indexing in retrieval, is crucial in
overcoming these challenges by ensuring models remain effective on targeted tasks and compatible
with established input and output (Raffel, 2023). However, most existing studies on backward
compatibility require the availability of previous or base models, thereby limiting compatibility with
models trained independently (Shen et al., 2020; Meng et al., 2021; Duggal et al., 2021). Recent
studies have begun to address this issue (Biondi et al., 2023; 2024). Although some theoretical results
support these methods, implementation requires agreement on using a specific fixed classifier among
parties before training the models (Pernici et al., 2021; Zhu et al., 2021). This agreement is often
challenging due to competition-related issue between organizations, and the fixed classifier requires
substantial pre-allocation for future classes.

In this paper, we demonstrate that any independently trained model can be made compatible with
any other, and can remain compatible when expanded with new classes. This is achieved by using
feature representations derived from softmax outputs. The softmax function projects the feature
space into the Probability Simplex, a geometric configuration in which the vertices—corresponding
to the standard unit vector of the feature space—are maximally equidistant. Although the Probability
Simplex evolves with the introduction of new classes, we show that a projection matrix can be defined
to preserve alignment across model updates, resulting in stationary representations that verify the
definition of compatibility in Shen et al. (2020). A similar property is observed when using feature
representations derived from logits. We demonstrate that, during training, they distribute in the same
simplex configuration of the softmax outputs. However, they present a wider spread in the feature
distribution than softmax outputs, leading to a more robust and transferable representation.

Our framework achieves state-of-the-art performance on standard benchmarks, where either the
number of training classes grows over multiple steps or the base model is upgraded with more
advanced architectures. This shows that any publicly available pretrained model can be seamlessly
made compatible without requiring additional training or adaptation.

Our main contributions are threefold:

1. We introduce a novel approach to model compatibility that requires no training and utilizes
independently trained models.

2. Theoretical support for the methodology is provided, confirming its validity and broad
applicability.

3. We demonstrate significant empirical improvements, particularly in scenarios with frequent
model updates.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

The aim of compatible training is to learn representations that can be used interchangeably when
updating a model, thereby avoiding the re-indexing of the gallery set in retrieval. This basic formu-
lation, originally proposed in Shen et al. (2020), is in principle a practical method for evaluating
model updates, even when the base or updated models are not explicitly used for retrieval but operate
as input-output black boxes. Backward Compatible Training (BCT) was introduced by Shen et al.
(2020), employing the previous classifier as a fixed reference during the training of the new model, so
that new feature vector can align to their old class prototypes. Following works introduced additional
regularization loss functions (Meng et al., 2021; Zhang et al., 2021; 2022; Pan et al., 2023) to align
the updated representation with the old one. In particular, in Meng et al. (2021) (LCE) a combination
of loss functions is used to align class means between different model upgrades and to achieve more
compact intra-class distributions while learning new data, directly optimizing one of the inequalities
in the definition of compatibility given by Shen et al. (2020). An adversarial learning discriminator
was introduced in BCT by Pan et al. (2023) (AdvBCT) to minimize the distribution disparity between
features from the old and new models.

Due to the regularization constraints imposed to achieve compatibility, the performance of the new
backward-compatible model often does not reach that of a newly independently trained model (Zhou
et al., 2023). To address this issue, other methods achieved compatibility between independently
trained models using mapping-based approaches (Chen et al., 2019; Wang et al., 2020; Meng et al.,
2021; Ramanujan et al., 2022; Jaeckle et al., 2023). However, learning these mapping functions on
top of the models introduces additional computational overhead, which can become infeasible with
large datasets, and involves the composition of these modules when the model is updated several
times. In a similar vein, in Zhou et al. (2023); Ricci et al. (2024), at each model update, the feature
space of the model is expanded to obtain compatibility with the previous model while learning the
new information in the expanded part of the feature space. Although these methods can leverage the
discriminative power of a newly independently trained model, their implementations require specific
network architecture changes.

The solution proposed by Biondi et al. (2023) (CoReS) to achieve compatibility between indepen-
dently trained models involves learning according to a pre-allocated d-Simplex fixed classifier. This
approach learns stationary representations, with features remaining aligned with their fixed class
prototypes, while new classes are incorporated into pre-allocated regions of the feature space. Our
formulation leverages one-hot encoded label vectors as a fixed reference, implicitly supporting
stationarity in the alignment of features derived from softmax outputs. The implicit use of one-hot
encoded label vectors as a fixed reference obviates the need for a unified fixed classifier among parties
before training the models, given that the softmax function is inherently universal across these parties.

3 THE PROBABILITY SIMPLEX LEADS TO COMPATIBLE REPRESENTATIONS

3.1 PRELIMINARIES ON BACKWARD-COMPATIBLE REPRESENTATION LEARNING

Let G = {(xi, yi)}
Ng

i=1 be the gallery set composed of Ng images xi, each belonging to class yi

and a query set Q = {xi}
Nq

i=1 composed of Nq images xi. A base model indexes the gallery set by
extracting feature vectors for each image, which are then used to perform retrieval tasks with the
feature vectors from the query set.

At a given time step t, the base model can be updated to include new network architectures or
to increase the number of training classes. At this time step t, the training set, denoted Dt =

{(xi, yi)}N
t

i=1, comprises of N t labeled images xi, where each label yi corresponds to one of the
Ct classes. Specifically, when the number of classes increases, the base model is updated using the
dataset Dt = Dt−1 ∪ X t, where Dt−1 represents the existing data up to step t− 1, and X t includes
the new data for step t.

Backward compatibility between the updated model at time step t and the base model learned
at a previous step k is achieved if the features of the queries extracted by the current model,
Φt

Q = {ht
i ∈ Rd | ∀xi ∈ Q}, can be compared with the gallery features obtained by the old model

Φk
G = {hk

i ∈ Rd | ∀xi ∈ G}, while preserving the accuracy and avoiding the necessity of re-extracting

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the gallery features using the updated model. Here, ht
i ∈ Rd represents the feature vector of the

image xi extracted with the updated model at step t where d is the dimension of the feature space.

Following the outlined setup, the formal definition of backward-compatible representations by Shen
et al. (2020) specifies that:
Definition 1 (Compatibility). The representation of a base model learned at step k is compatible
with the representation of the updated model learned at step t, with k < t, if it holds that:

d
(
hk
i ,h

t
j

)
≤ d
(
hk
i ,h

k
j

)
, ∀(i, j) ∈ {(i, j)|yi = yj} (1a)

d
(
hk
i ,h

t
j

)
≥ d
(
ht
i,h

t
j

)
, ∀(i, j) ∈ {(i, j)|yi ̸= yj} (1b)

where d(·, ·) is a distance function and yi and yj are class labels associated to hi and hj , respectively.

The inequalities of Def. 1 specifies that the updated model representation performs at least as well as
the base model in separating images from different classes and grouping those from the same classes.

3.2 PROBABILITY SIMPLEX PROJECTIONS (PSP)

In this section, we demonstrate that the softmax output from independently trained models provides
compatible representations according to Def. 1. To this aim, we consider the geometric properties of
the softmax function. This function maps the vector space RC onto the standard (C − 1)-simplex,
resulting in a dimensional reduction of one, due to the linear constraint that requires all output values
to sum to 1. Consequently, this confines the output to reside in a (C − 1)-dimensional hyperplane
within the C-dimensional space. We demonstrate that this mapping inherently provides the basis for
defining a rigorous methodology where adding new classes to a base model not only preserves the
alignment of softmax vectors after a model update, but also meets the second criterion of compatibility
in Def. 1, recently shown to be not strictly feasible by Biondi et al. (2024).

Given a base model at the time step k, we consider the feature representation hk as the normalized
softmax output vector subjected to the projection Pk,k, given by the equation:

hk =
Pk,k σ(z

k)

∥Pk,k σ(zk)∥2
, hk ∈ RCk

, (2)

where σ(·) represents the softmax function, zk = Wk · ϕk(x) denotes the logit output, ϕk the base
model and Wk its classifier matrix. The projection Pk,k transforms the softmax output so that it is
centered at the origin of the axes, allowing its mapping onto the hypersphere through normalization.

Figure 1: Softmax outputs, represented as
colored points in the Probability Simplex,
are projected onto the hypersphere (shown
as colored points on the hypersphere). Each
class’s softmax features, approximated by
the von Mises-Fisher distribution, are cen-
tered on the class prototypes as defined in
Eq. 5 (illustrated with colored vectors).

Thus, Eq. 2 transforms softmax probability vectors into
hyperspherical feature representation vectors. Given a
reasonably low training error of a model, the probability
outputs of the softmax function are expected to cluster
near the vertices of the Probability Simplex. After pro-
jection with Pk,k, the normalization operation further
projects the softmax probability outputs onto the hyper-
sphere, forming a distribution that closely approximates
a von Mises-Fisher distribution —–the hyperspherical
analog of the Normal distribution. This approximation
enables us to derive a closed-form solution, which is
utilized in Theorem 1, to analytically determine the
expected distance required in Def. 1 to evaluate and
verify compatibility. Specifically, the projection Pk,k,
derived from the centering matrix as described in Mar-
den (1996), is defined by:

Pk,k = ICk − 1

Ck
JCk (3)

where ICk is the identity matrix for Ck classes, and
JCk is a Ck × Ck matrix entirely composed of ones.
The projection Pt,k can be then defined as:

Pt,k = [Pk,k | 0] (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Visualization of Probability Simplex Projections (PSP) across two model updates. From
left to right: a 1-simplex, a 2-simplex with a new orthogonal class prototype (green), and a 3-simplex
with a new orthogonal class prototype (yellow). Gray dashed lines show how class prototypes
(colored lines) are moved accordingly to form the new simplex structure, while black solid lines
demonstrate their alignment with the old class prototypes up to a projection Pt,k. This alignment
leads to compatible representations.

where 0 ∈ R(Ct−Ck)×Ck

is the zero matrix with Ct and Ck the number of classes of the updated
and base model, respectively. Prop. 2 demonstrates that Pt,k provides a simple yet surprisingly
beneficial capability, enabling the projection of softmax outputs from the representation space of the
updated model to that of the base model. This unifies the representation spaces prior to normalization
onto the hypersphere providing an analytical treatment of the expanding feature space, showing its
inherent compatibility as defined in Def. 1. Given these considerations we refer to our methodology
as Probability Simplex Projections (PSP). Before discussing the theorems central to our framework,
we review the definition of the Probability Simplex, which has been adapted to accommodate a
varying number of classes, denoted as Ck, present in the model at time k:

Definition 2 (Probability Simplex). Let ∆Ck−1 be the (Ck − 1)-dimensional simplex in RCk

. Its

vertices are the standard unit vectors e1, e2, . . . , eCk , and its center is ok = 1
Ck

∑Ck

i=1 ei. The

Probability Simplex is defined as: ∆Ck−1 = {u ∈ RCk |
∑Ck

i=1 ui = 1, ui ≥ 0 ∀i, 1 ≤ i ≤ Ck}.

In essence we aim to induce hyperspherical stationarity in the softmax layer. This is established by
considering the abstract simplex prototypes in the projection Pk,k of Eq. 3 as:

vk
y = ey − ok ∀y, 1 ≤ y ≤ Ck. (5)

According to Eq. 5, the one-hot encoded label vectors serve as a fixed reference for the class
prototypes. Despite vk

y subjected to the shift of ok with each update, we demonstrate that its
projection retains a fixed position, ensuring stationary references for representation in Eq. 2. The
projected vector vk

y operates as a fixed unified reference to which the normalized projected softmax
outputs align. Furthermore, the projection Pt,k of Eq. 4 transforms the softmax outputs of step t
and locate them around vk

y of Eq. 5, which can be interpreted as the mean direction of the von
Mises-Fisher distribution on the hypersphere. We present our framework through the following
propositions and a subsequent final theorem. The first proposition demonstrates the orthogonality
of new classes with respect to old ones by guaranteeing zero projection of the newly added class
prototypes relative to the previous ones. In the second proposition, we demonstrate that alignment
across expanded models can be achieved through a projection matrix. The final theorem shows
how compatibility can be achieved—verifying the compatibility requirements (including the second
constraint)— using this representation as they distribute in a unified simplex configuration with fixed
references provided by Eq. 5. Fig. 2 illustrates the basic geometry forming the basis of our theoretical
approach. The figure shows how the prototype vectors interact with the normalized softmax outputs,
providing a visualization of the fixed references to which the projected normalized softmax features
align.

The updating process of a base model results in an extension of the classifier to accommodate
additional outputs for new classes. This involves an orthogonal expansion of the one-hot encoded
labels corresponding to the vertices of the newly added classes, causing a change in the configuration
of the updated class prototypes of the old classes (as illustrated by the dashed lines in Fig. 2). This
concept is formalized in the following proposition:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proposition 1. Assuming an increase in the number of classes to Ct from Ck at a new step t, the
class prototypes of the newly added classes are orthogonal with respect to the prototypes from the
previous step k.

Proof. The proof of this proposition is provided in Appendix A.

As demonstrated in Prop. 1, the simplex’s symmetry ensures orthogonality of the representation of
the new added classes with the old ones. This implies that the new information introduced by these
classes is also orthogonal to the previous information, ensuring no interaction between them. This
allows us to formulate the following proposition:

Proposition 2. Let vt
y ∈ RCt

be the prototype vector for class y within the Probability Simplex

∆Ct−1. Define its projection as ut
y = Pt,kv

t
y , where Pt,k = [Vk|0] with Vk = [vk

y]C
k

y=1 ∈ RCk×Ck

and 0 ∈ R(Ct−Ck)×Ck

is a zero matrix. Then the resulting projected prototype ut
y is aligned with

the prototype vk
y within ∆Ck−1.

Proof. The proof of this proposition is provided in Appendix B.

As consequence, class prototypes can be projected according to Pt,k from the new feature space RCt

to the old feature space RCk

(as illustrated by the solid lines in Fig. 2), resulting aligned with the
old prototypes of the same classes. The section concludes with the compatibility theorem showing
that PSP features are inherently compatible. In the derivation of the following theorem, we base our
conclusions on several key assumptions: (1) The normalized projected softmax class features are
assumed to follow a von Mises-Fisher (vMF) distribution; (2) the variance of this vMF distribution
is assumed to decrease with each model update; and (3) our findings are established on average,
verifying that same-class features are closer and different-class features are farther apart using the
updated model. Further assumptions will be introduced in the proof to facilitate the progression of
the mathematical analysis.

Theorem 1 (Probability Simplex Compatibility Theorem). Assuming the number of classes changes
from Ck at step k to Ct at step t, where Ct ≥ Ck, the normalized softmax features of two models,
independently trained at these respective steps, are compatible as formulated in Def. 1.

Proof. The proof of this theorem is provided in Appendix C.

In particular, it results that compatibility requires an angle greater than π/2 between two different
classes to satisfy the second inequality in Def. 1. This requirement is always met by representations
arranged in simplex geometry, as described in Def. 2.

Appendix F (Alg. 1) provides pseudocode for computing PSP feature vectors, detailing the input
requirements, the construction of the projection matrix, and the normalization of the output.

3.3 LOGITS SIMPLEX PROJECTIONS

Figure 3: As softmax outputs converge to-
wards the vertices of the Probability Sim-
plex (in darker gray), logits configure in a
simplex configuration (in lighter gray).

In this section, we show that using representations de-
rived from logits exhibit similar properties as the nor-
malize softmax outputs, offering an alternative represen-
tation that achieve compatibility. Thus, our framework
as described in Sec. 3.2 is also valid when considering
logits as features, i.e.,

hk =
zk

∥zk∥2
, hk ∈ RCk

(6)

This representation is named Logit Simplex Projections
(LSP). Fig. 3 illustrates the configuration of softmax
outputs and logits in a ResNet18 model trained on three
CIFAR100 classes The figure illustrates the softmax
outputs within the Probability Simplex (shown in darker
gray) in R3, which tend to concentrate near the vertices
corresponding to the canonical basis vectors of R3. We demonstrate that as the softmax probabilities

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 100 200 300
Epoch

0

1

2

3

4

5

Training Loss

0 100 200 300
Epoch

10 2

10 1

100

101

102

103

104

NC1

0 100 200 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
NC2(Equinorm)

0 100 200 300
Epoch

0.0

0.1

0.2

0.3

NC2(Equidistance)

0 100 200 300
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

NC3

0 100 200 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

NC4
Softmax Outputs Logits Zero Error

Figure 4: Neural Collapse hypothesis evaluated using feature representation derived from softmax
outputs (blue lines) and logits (orange lines) on CIFAR100 with ResNet18.

converge towards these vertices, logits configure into a simplex defined by the “abstract” class
prototypes of Eq. 5. The following proposition formally establishes this result.

Proposition 3. As the softmax outputs approach the vertices of the Probability Simplex, the corre-
sponding logits vectors assume a simplex configuration, with class prototypes aligning to the vectors
specified in Eq. 5.

Proof. The proof of this proposition is provided in Appendix D.

From Prop. 3, it directly follows that logits exhibit the same geometrical properties as normalized
softmax outputs, as specified in Eq. 2, and thus benefit from the same results described in Theorem 1.
To empirically verify the theoretical results of Prop. 3, we utilize the Neural Collapse hypothesis
(NC) introduced by Papyan et al. (2020). This hypothesis provides a methodology for examining
how PSP/LSP features collapse to the abstract prototypes we have defined in Eq. 5. Specifically, NC
hypothesis evaluates: the within-class covariance of features (NC1); the formation of a simplex where
vertices have equal norm (NC2 equinorm hypothesis) and are at the maximum possible distance from
each other (NC2 equidistance hypothesis); the convergence of class means to class prototypes (NC3);
and the applicability of the nearest class-means rule for classifying features (NC4).

Fig. 4 displays training loss and the NC hypothesis values for softmax outputs (blue curves) and
logits (orange curves) of a ResNet18 network trained on CIFAR100. The NC2 equidistance and NC3
curves indicate that logits are less collapsed compared to the softmax outputs, suggesting reduced
alignment. Conversely, the NC1 values show that logits present a higher spread of feature distribution
than softmax outputs, as this metric assesses the extent of within-class covariance of features.
The higher spread of logits highlights an inherent trade-off between alignment and spread in the
feature distribution similar to that described in Chen et al. (2022), indicating that achieving both
simultaneously is challenging. Although alignment is beneficial for achieving compatible represen-
tations as demonstrated in Theorem 1, a wider spread is desirable to obtain a representation that
is transferable and robust (Wang & Isola, 2020). Using features derived from logits as in Eq. 6
provides a better balance between alignment and spread compared to the representation of Eq. 2.
In Appendix E, we show that this effect occurs in several neural network architectures (ResNet18,
ResNet50, and DenseNet) and datasets (CIFAR100 and TinyImageNet200).

As for PSP, Appendix F (Alg. 1) provides pseudocode for computing LSP feature vectors.

4 EXPERIMENTAL RESULTS

We conducted extensive experiments to demonstrate the performance of our framework, which uses
features derived from softmax outputs (PSP) or logits (LSP).

4.1 COMPATIBILITY METRICS

The definition of compatibility in Def. 1 requires evaluating every pair-wise distance between
datapoints in the dataset, which becomes computationally challenging as the dataset size increases.
According to this, the updated model learned at step t is said to be backward-compatible with the
base model learned at step k if the Empirical Compatibility Criterion Shen et al. (2020) holds

M
(
ΦQ

t ,Φ
G
k

)
> M

(
ΦQ

k ,Φ
G
k

)
with t > k, (7)

where M is a performance metric, M
(
ΦQ

t ,Φ
G
k

)
denotes the cross-test where gallery features are

obtained with the updated model of step t and query features with the base model of step k, and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

M
(
ΦQ

k ,Φ
G
k

)
the self-test where both gallery and query features are obtained with model of step k.

Given T models, the Compatibility Matrix C ∈ RT×T (Biondi et al., 2023) represents all the models
combinations across multiple T steps. C is defined as

Ct,k =

0 if t < k

M
(
ΦQ

k ,Φ
G
k

)
if t = k

M
(
ΦQ

t ,Φ
G
k

)
if t > k

. (8)

Self-tests are reported in the main diagonal, while cross-tests in the lower sub-diagonal values. To
effectively evaluate multiple updates of large compatibility matrices, we adopted the metrics from the
recent paper (Biondi et al., 2023). These metrics, reported below, “summarize” the performance in the
compatibility matrix by extracting a single number that represents overall performance, aiming for a
balance between being overly compatible and maintaining expressiveness, allowing the model to fully
leverage newly learned information without being constrained by the outdated, lower-performing
model. Based on these observations, the following scalar metrics are used to evaluate compatibility
and accuracy across T steps of compatible learning:

• Average Compatibility: AC = 2
T (T−1)

∑T
t=2

∑t−1
k=1 1

(
Ct,k > Ck,k

)
, being 1 is the indi-

cator function. It represents the normalized count of times compatibility is achieved over T
steps according to Eq. 7. AC shows how often compatibility is achieved across T model
updates.

• Average Accuracy: AA = 2
T (T+1)

∑T
t=1

∑t
k=1 Ct,k expressing the average accuracy (in

term of M) over T steps, considering all the self-tests and cross-tests.

• Average Compatibility Accuracy: ACA = 2
T (T−1)

∑T
t=2

∑t−1
k=1 Ct,k s.t. Ct,k > Ck,k

expressing the average accuracy (in term of M) of cross-tests that satisfy Eq. 7 over T steps.
This metric computes the average accuracy only when compatibility is achieved.

In our experiments, we use the Recall@1 as performance metric M according to the cosine similarity
between query features ΦQ

(·) and gallery features ΦG
(·).

4.2 COMPARATIVE RESULTS

We performed a comparative analysis of PSP and LSP under two distinct scenarios. In the first
scenario, we evaluated compatibility across standard benchmarks, where the number of training
classes is extended across multiple steps. In the second scenario, we assessed compatibility of
publicly available pretrained models with an advanced network expressiveness across multiple steps.
Extended Class Results. Tab. 1 presents the compatibility performance for learning scenarios in
which the base model is updated with an extended number of training classes for each new step.
In these experiments, we compared PSP and LSP with BCT (Shen et al., 2020), CoReS (Biondi
et al., 2023), LCE (Meng et al., 2021), AdvBCT (Pan et al., 2023), and with a baseline method
where features are derived from the encoder output of the base model. We have also compared with
two approaches where the classifier of the base model follows a fixed Equiangular Tight Frame
(ETF) (Papyan et al., 2020) configuration where classes are pre-allocated (Yang et al., 2022) and the
base models is trained under cross-entropy loss (ETF-CE) or the dot-regression loss (ETF-DR). All
experiments are conducted using the public implementations of the methods on a Nvidia Quadro
RTX A6000 with 24GB and two Nvidia A100 GPUs, each with 40GB.
In Tab. 1a, we report performance on the CIFAR100 (Krizhevsky, 2009) test set, with a ResNet18
network trained for 2, 5, 20, and 50 steps using the CIFAR100 training set. Tab. 1b shows compatibility
performance on the TinyImageNet200 (Le & Yang, 2015) test set, with a ResNet18 network trained
for 2, 5, 20, and 50 steps using the TinyImageNet200 training set. Tab. 1c presents performance on
the ImageNet1k and Google Landmark v2 (Weyand et al., 2020) test sets, where the ResNet50 and
ResNet18 networks are trained for 2 and 5 steps using the ImageNet1k and Google Landmark v2
training sets, respectively. Each dataset is divided into steps, each with an equal number of training
classes, i.e., |Xt| = C/T for t = 1, 2, . . . , T , where C represents the total number of classes in the
dataset. More info about datasets and implementation details are in Appendix G.

Overall, Tab. 1 shows that PSP and LSP achieve state-of-the-art results, confirming our theoretical
analysis. PSP and LSP outperform other approaches in terms of both AC and ACA, particularly in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Experimental results on CIFAR100, TinyImageNet, ImageNet, and Google Landmarks
datasets in the case of extended training classes at each model update, evaluated using the AC, AA,
and ACA metrics, with Recall@1 as the performance metric (M). Dark blue numbers indicate the
highest values, while light blue the second-highest values for each metric and at each step value.
“nan” indicates a training error with non-numeric values; “oom” means training requires extra GPU
memory; “×” denotes values cannot be computed due to method limitations.

(a) CIFAR100.

METHOD

2 steps 5 steps 20 steps 50 steps

AC AA ACA AC AA ACA AC AA ACA AC AA ACA

Baseline 0 29.63 0 0 13.60 0 0 04.22 0 0 02.29 0
BCT (Shen et al., 2020) 1 46.40 50.21 0.40 29.93 11.78 0.13 19.47 05.20 0.01 15.78 0.84
CoReS (Biondi et al., 2023) 0 38.75 0 0 29.63 0 0.07 24.06 00.26 ¡0.01 22.87 0.27
ETF-CE (Yang et al., 2022) 0 38.37 0 0 27.26 0 0 20.43 0 0 19.43 0
ETF-DR (Yang et al., 2022) 0 36.04 0 0 24.66 0 0 18.83 0 0 16.87 0
LCE (Meng et al., 2021) 1 43.48 40.71 0.10 32.63 04.63 0 20.95 00.25 0 13.81 0.03
AdvBCT (Pan et al., 2023) 0 35.32 0 0.40 26.13 11.67 0.02 19.79 00.19 0 14.70 0.03

PSP 1 36.31 29.05 0.90 26.04 21.76 0.52 20.56 12.99 0.39 19.42 10.76
LSP 1 41.14 36.38 0.70 30.36 21.91 0.44 24.11 13.26 0.36 22.68 11.25

(b) TinyImageNet200.

METHOD

2 steps 5 steps 20 steps 50 steps

AC AA ACA AC AA ACA AC AA ACA AC AA ACA

Baseline 0 21.72 0 0 09.61 0 0 02.86 0 0 01.43 0
BCT (Shen et al., 2020) 1 35.29 37.89 1 24.42 22.92 0.64 18.17 14.75 0.08 15.41 02.29
CoReS (Biondi et al., 2023) 0 27.60 0 0.60 21.55 12.69 0.62 17.82 09.99 0.55 17.06 09.79
ETF-CE (Yang et al., 2022) 0 29.46 0 0.20 21.66 05.66 0.12 17.22 03.68 0.03 16.14 01.01
ETF-DR (Yang et al., 2022) 0 29.90 0 0 21.34 0 0.04 16.58 01.47 0.05 15.66 01.81
LCE (Meng et al., 2021) 1 32.11 30.37 0.60 24.48 16.92 0.02 16.51 00.90 0 11.10 0
AdvBCT (Pan et al., 2023) 0 24.90 0 0.70 18.99 13.93 0.26 14.65 04.41 0 09.34 0

PSP 1 29.88 25.05 0.90 21.93 17.99 0.91 17.53 15.33 0.90 16.63 14.95
LSP 1 32.44 29.26 1 25.10 23.48 0.83 20.46 17.34 0.80 19.48 16.01

(c) Large scale datasets: ImageNet1k and Google Landmark v2.

METHOD

ImageNet1k Google Landmark v2

2 steps 5 steps 2 steps 5 steps

AC AA ACA AC AA ACA AC AA ACA AC AA ACA

Baseline 0 37.52 0 0 16.18 0 0 07.66 0 0 07.87 0
BCT (Shen et al., 2020) 1 57.53 58.10 0.20 34.96 5.28 1 10.98 09.12 0 08.46 0
CoReS (Biondi et al., 2023) 0 46.11 0 0 37.67 0 oom oom oom oom oom oom
ETF-CE (Yang et al., 2022) 0 48.67 0 0 33.52 0 × × × × × ×
ETF-DR (Yang et al., 2022) 0 46.35 0 0 31.27 0 × × × × × ×
LCE (Meng et al., 2021) 0 47.22 0 0 32.67 0 1 09.41 08.03 0.40 10.31 3.80
AdvBCT (Pan et al., 2023) nan nan nan nan nan nan 1 11.12 09.67 0 10.73 0

PSP 1 49.10 39.80 1 35.20 31.09 1 08.74 08.24 0.90 08.53 7.21
LSP 1 50.73 45.62 0.50 38.03 14.28 1 09.31 08.36 0.80 09.36 7.34

the challenging scenarios with a large number of model updates. Notably, using logits as features
(LSP) generally achieves higher AA than using features derived from softmax outputs (PSP), but with
lower AC values. This is attributed to the wider spread in the feature distribution of logits, which
yields higher open-set accuracy but less compatibility due to reduced alignment with the simplex
configuration. Consequently, LSP often achieves higher ACA values than PSP. In Appendix H, we
describe how the compatibility matrix facilitates a detailed, step-by-step examination of incremental
performance and trade-offs between compatibility and retrieval accuracy.
Other methods, while reporting comparable AC performance with PSP and LSP with small number
of model updates, exhibit a clear performance decay when the number of steps increases. This can be
due to the interaction that the updated models have with the old ones, observed in both the case of
regularization-based methods like BCT and mapping-based methods like LCE. In scenarios with a
small number of tasks, these methods report higher AA, likely due to the lower model expressiveness
of PSP and LSP due to their smaller representation spaces. Notably, the size of PSP and LSP
representations grows linearly with the number of classes. In Appendix K, we explore the impact of
dimensionality reduction on PSP and LSP representation sizes to mitigate this effect.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Experimental results on ImageNet1k, CIFAR100 and Places365 in the case of advanced
network architectures (AlexNet, ResNet50, RegNetX 3.2GF, ResNet152, and MaxViT T), evaluated
using the AC, AA, and ACA metrics, with Recall@1 as the performance metric (M). Models
are pretrained on ImageNet1k. Dark blue numbers indicate the highest values, while light blue the
second-highest values.

Features derived from

ImageNet1k CIFAR100 Places365

AC AA ACA AC AA ACA AC AA ACA

Encoder outputs 0 21.63 0 0 18.83 0 0 8.38 0
Softmax outputs (PSP) 1 74.34 76.12 0.9 37.62 33.24 0.9 15.92 14.08
Logits (LSP) 0.7 60.68 37.61 0.4 45.60 17.58 0.2 21.36 4.06

Advanced Network Architectures Results. Tab. 2 presents the compatibility performance of
various pretrained models on ImageNet1k (Russakovsky et al., 2015) to demonstrate that by simply
using features derived from softmax outputs and logits models result to be compatible. In this case,
we mimic a scenario in which a base model is updated five times every time with the same training
data (aka ImageNet1k) but with a more advanced network architecture. Specifically, we started with
AlexNet (Krizhevsky et al., 2012) than updated with ResNet50 (He et al., 2016), RegNetX 3.2GF
(Radosavovic et al., 2020), ResNet152, and MaxViT T (Tu et al., 2022). We evaluated how the
compatible performance on the ImageNet1k dataset (closed-set results), the CIFAR100 dataset (open-
set results) and Places365 (Zhou et al., 2017)(fine-grained open-set results) of PSP, LSP, and the
baseline approach, in which features are derived from the softmax outputs, the logits, and the encoder
outputs, respectively. In this case, none of the other compared methods can be applied as they require
to train the updated model in order to optimize some additional loss functions or some specific
modules, such as mapping functions or fixed classifiers.
In closed-set scenarios on ImageNet1k, softmax outputs (PSP) demonstrated the best compatibility
performance due to their high alignment with target labels, leading to high AC and AA. However,
this alignment poses challenges in open-set scenarios like CIFAR100 and Places365, as highlighted by
(Wang & Isola, 2020; Chen et al., 2022), where the alignment reduces transferability and overall open-
set accuracy AA. Conversely, LSP, while offering lower accuracy in open sets compared to closed
sets, achieves a higher overall accuracy, indicating a more robust and transferable representation.
Additional performance details can be observed in the compatibility matrices of Appendix I for both
the closed-set and open-set scenario. Appendix J presents the same experimental setup, focusing on
the more expressive ViT (Dosovitskiy et al., 2020) architectures.
This experiments highlights not only the compatibility performance of PSP and LSP, but also how our
methods can be applied directly to all the publicly available pretrained models without any additional
modifications or training but simply through direct inference.

Limitations. PSP and LSP require that the ordering of classes does not change across model
updates or, in the case of extended training classes, follows an extension within a nested dataset
structure that does not alter the original sequence. Although this condition may seem restrictive, it can
be mitigated if the permutations of the class order is known. A further limitation of our framework is
that the representation size increases linearly with the number of classes (as can be seen from Eq. 2
and Eq. 6), as in the case of other methods (Biondi et al., 2023; Yang et al., 2022; Biondi et al., 2024)
that leverage feature representations configured as Simplex. This results in feature vectors with high
dimensions, which may lead to increased memory requirements. Although the representation benefits
from top-k sparsification for dimensionality reduction, as empirically confirmed (Appendix K), this
promising and important aspect merits further investigation in future studies.

5 CONCLUSIONS

This paper showed that independently trained DNNs can be made compatible simply using feature
representations derived from softmax outputs and logits. We demonstrated that these representations,
configured as regular simplex, remain aligned across multiple model updates through projections. This
results into stationary representations, which satisfy both the criteria of the definition of compatibility,
recently shown to be not strictly feasible. Experiments confirmed the theoretical results, showing that
our framework achieves state-of-the-art compatibility performance, particularly in scenarios with
frequent model updates. Notably, our methodology achieves compatibility between publicly available
pretrained models without requiring any additional training or adaptation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=CQsmMYmlP5T.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 1, 2024.

Gagan Bansal, Besmira Nushi, Ece Kamar, Walter S Lasecki, Daniel S Weld, and Eric Horvitz.
Beyond accuracy: The role of mental models in human-ai team performance. In Proceedings of
the AAAI conference on human computation and crowdsourcing, volume 7, pp. 2–11, 2019a.

Gagan Bansal, Besmira Nushi, Ece Kamar, Daniel S Weld, Walter S Lasecki, and Eric Horvitz.
Updates in human-ai teams: Understanding and addressing the performance/compatibility tradeoff.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 2429–2437,
2019b.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Niccolo Biondi, Federico Pernici, Matteo Bruni, and Alberto Del Bimbo. Cores: Compatible
representations via stationarity. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

Niccolò Biondi, Federico Pernici, Simone Ricci, and Alberto Del Bimbo. Stationary representations:
Optimally approximating compatibility and implications for improved model replacements. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2024.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Ken Chen, Yichao Wu, Haoyu Qin, Ding Liang, Xuebo Liu, and Junjie Yan. R3 adversarial network
for cross model face recognition. In CVPR, pp. 9868–9876. Computer Vision Foundation / IEEE,
2019.

Mayee Chen, Daniel Y Fu, Avanika Narayan, Michael Zhang, Zhao Song, Kayvon Fatahalian, and
Christopher Ré. Perfectly balanced: Improving transfer and robustness of supervised contrastive
learning. In International Conference on Machine Learning, pp. 3090–3122. PMLR, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
ArXiv, abs/2010.11929, 2020. URL https://api.semanticscholar.org/CorpusID:
225039882.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Rahul Duggal, Hao Zhou, Shuo Yang, Yuanjun Xiong, Wei Xia, Zhuowen Tu, and Stefano Soatto.
Compatibility-aware heterogeneous visual search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10723–10732, 2021.

Jessica Echterhoff, Fartash Faghri, Raviteja Vemulapalli, Ting-Yao Hu, Chun-Liang Li, Oncel Tuzel,
and Hadi Pouransari. Muscle: A model update strategy for compatible llm evolution. arXiv
preprint arXiv:2407.09435, 2024.

11

https://openreview.net/forum?id=CQsmMYmlP5T
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:225039882

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via layer-peeled
model: Minority collapse in imbalanced training. Proceedings of the National Academy of Sciences,
118(43):e2103091118, 2021.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis, 2020.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are all
you need. arXiv preprint arXiv:2306.11644, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Florian Jaeckle, Fartash Faghri, Ali Farhadi, Oncel Tuzel, and Hadi Pouransari. Fastfill: Efficient
compatible model update. In The Eleventh International Conference on Learning Representations,
2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical report, Univ.
Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/
2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Maksim Lapin, Matthias Hein, and Bernt Schiele. Loss functions for top-k error: Analysis and
insights. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
1468–1477, 2016.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, pp. 3, 2015.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In International Conference on Learning
Representations, 2018.

John I Marden. Analyzing and modeling rank data. CRC Press, 1996.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–17716, 2022.

Qiang Meng, Chixiang Zhang, Xiaoqiang Xu, and Feng Zhou. Learning compatible embeddings.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9939–9948,
2021.

Mahdi Milani Fard, Quentin Cormier, Kevin Canini, and Maya Gupta. Launch and iterate: Reducing
prediction churn. Advances in Neural Information Processing Systems, 29, 2016.

Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.
Sampling Theory, Signal Processing, and Data Analysis, 20(2):1–13, 2022.

Richard Ngo, Lawrence Chan, and Sören Mindermann. The alignment problem from a deep learning
perspective. In The Twelfth International Conference on Learning Representations, ICLR, 2024.

12

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

OpenAI. Learning to reason with large language models. https://openai.com/index/
learning-to-reason-with-llms/, 2024. Accessed: 2024-09-12.

Tan Pan, Furong Xu, Xudong Yang, Sifeng He, Chen Jiang, Qingpei Guo, Feng Qian, Xiaobo Zhang,
Yuan Cheng, Lei Yang, et al. Boundary-aware backward-compatible representation via adversarial
learning in image retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15201–15210, 2023.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

Federico Pernici, Matteo Bruni, Claudio Baecchi, and Alberto Del Bimbo. Regular polytope networks.
IEEE Transactions on Neural Networks and Learning Systems, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428–10436, 2020.

Colin Raffel. Building machine learning models like open source software. Communications of the
ACM, 66(2):38–40, 2023.

Vivek Ramanujan, Pavan Kumar Anasosalu Vasu, Ali Farhadi, Oncel Tuzel, and Hadi Pouransari.
Forward compatible training for large-scale embedding retrieval systems. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19386–19395, 2022.

Simone Ricci, Niccolò Biondi, Federico Pernici, and Alberto Del Bimbo. Backward-compatible
aligned representations via an orthogonal transformation layer. arXiv preprint arXiv:2408.08793,
2024.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto. Towards backward-compatible repre-
sentation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6368–6377, 2020.

Mannat Singh, Laura Gustafson, Aaron Adcock, Vinicius de Freitas Reis, Bugra Gedik, Raj Prateek
Kosaraju, Dhruv Mahajan, Ross Girshick, Piotr Dollár, and Laurens Van Der Maaten. Revisiting
weakly supervised pre-training of visual perception models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 804–814, 2022.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. arXiv preprint arXiv:2206.14486, 2022.

Brad Templeton. Tesla’s ‘shadow’testing offers a useful advantage on the biggest problem in robocars.
Forbes, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxvit: Multi-axis vision transformer. In European conference on computer vision, pp.
459–479. Springer, 2022.

13

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chien-Yi Wang, Ya-Liang Chang, Shang-Ta Yang, Dong Chen, and Shang-Hong Lai. Unified
representation learning for cross model compatibility. In 31st British Machine Vision Conference
2020, BMVC 2020. BMVA Press, 2020.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm search
for code generation, 2024. URL https://arxiv.org/abs/2409.03733.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International conference on machine learning, pp.
9929–9939. PMLR, 2020.

Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2-a large-scale
benchmark for instance-level recognition and retrieval. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 2575–2584, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Prateek Yadav, Colin Raffel, Mohammed Muqeeth, Lucas Caccia, Haokun Liu, Tianlong Chen, Mohit
Bansal, Leshem Choshen, and Alessandro Sordoni. A survey on model moerging: Recycling and
routing among specialized experts for collaborative learning. arXiv preprint arXiv:2408.07057,
2024.

Sijie Yan, Yuanjun Xiong, Kaustav Kundu, Shuo Yang, Siqi Deng, Meng Wang, Wei Xia, and Stefano
Soatto. Positive-congruent training: Towards regression-free model updates. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14299–14308, 2021.

Yibo Yang, Shixiang Chen, Xiangtai Li, Liang Xie, Zhouchen Lin, and Dacheng Tao. Inducing neural
collapse in imbalanced learning: Do we really need a learnable classifier at the end of deep neural
network? Advances in Neural Information Processing Systems, 35:37991–38002, 2022.

Binjie Zhang, Yixiao Ge, Yantao Shen, Yu Li, Chun Yuan, XUYUAN XU, Yexin Wang, and Ying
Shan. Hot-refresh model upgrades with regression-free compatible training in image retrieval. In
International Conference on Learning Representations, 2021.

Binjie Zhang, Yixiao Ge, Yantao Shen, Shupeng Su, Chun Yuan, Xuyuan Xu, Yexin Wang, and
Ying Shan. Towards universal backward-compatible representation learning. arXiv preprint
arXiv:2203.01583, 2022.

Longfei Zheng, Yingting Liu, Xiaolong Xu, Chaochao Chen, Yuzhou Tang, Lei Wang, and Xiaolong
Hu. Fedpse: Personalized sparsification with element-wise aggregation for federated learning. In
Proceedings of the 32nd ACM International Conference on Information and Knowledge Manage-
ment, pp. 3514–3523, 2023.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017.

Yifei Zhou, Zilu Li, Abhinav Shrivastava, Hengshuang Zhao, Antonio Torralba, Taipeng Tian, and
Ser-Nam Lim. Btˆ 2: Backward-compatible training with basis transformation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 11229–11238, 2023.

14

https://arxiv.org/abs/2409.03733

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
geometric analysis of neural collapse with unconstrained features. Advances in Neural Information
Processing Systems, 34:29820–29834, 2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A PROOF FOR PROPOSITION 1

Proposition. Assuming an increase in the number of classes to Ct from Ck at a new step t, the class
prototypes of the newly added classes are orthogonal with respect to the prototypes from the previous
step k.

Proof. To simplify the notation in the following discussion, we will denote Ck by d. Without loss of
generality , we demonstrate this proposition for a step t with an increment of one class relative to the
previous step k, such that Ct = Ck +1 = d+1. This proof can be easily extended to model updates
where more than one class are introduced.

Given a generic prototypes vector vk
y of the Probability Simplex ∆d−1 in Rd, where d is the number

of classes at task k and y is a generic class, its vector is defined by the direction from the center
ok = 1

d

∑d
y=1 ey to the correspoding class vertex ey, i.e vk

y = ey − ok = ey − 1
d1. The j-th

component vk
y,j of vk

y is defined as follow:

vk
y,j =

{
− 1

d if j ̸= y

1− 1
d if j = y

When a new class is added to the training set, there is an orthogonal extension of the one-hot encoded
label for the new added class. This causes a shift of the class prototypes as the evolving center of the
new Probability Simplex ∆d in Rd+1 is defined as ot = 1

d+1

∑d+1
y=1 ey = ey − 1

d+11. The prototype
vector of the new added class d+ 1 is is then defined as vk

d+1 = ed+1 − ot.

To prove the orthogonality of the prototype of the new class with the class prototypes of the base
model at step k, let compute the dot product between vt

d+1 and a generic prototype vk
y ∈ Rd.

Let firstly compute the norm the two vectors. The norm of vk
y is:

∥vk
y∥ =

√√√√ d∑
j=1

(
vky,j
)2

=

√√√√√ d∑
j=1
j ̸=y

(
vky,j
)2

+
(
vky,y

)2
=

√√√√√ d∑
j=1
j ̸=y

1

d2
+

(d− 1)2

d2
=

=

√
d− 1

d2
+

(d− 1)2

d2
=

√
d− 1

d

Thus, the normalized vector is

vk
y

∥vk
y∥

=
ey − ok√

d−1
d

=
ey − 1

d1√
d−1
d

The norm of vt
d+1, the prototype vector of the new added class d+ 1, is

∥vt
d+1∥ =

√√√√d+1∑
j=1

(
vtd+1,j

)2
=

√√√√ d∑
j=1

(
vtd+1,j

)2
+
(
vtd+1,d+1

)2
=

=

√√√√ d∑
j=1

1

(d+ 1)2
+

d2

(d+ 1)2
=

√
d

(d+ 1)2
+

d2

(d+ 1)2
=

√
d

d+ 1

Thus, the normalized vector is

vt
d+1

∥vt
d+1∥

=
ed+1 − ot√

d
d+1

=
ed+1 − 1

d+11√
d

d+1

The dot product between the two normalized vectors is calculated by padding the smaller one with
one component of the vector with value equal to zero, to match their dimensions since vk

y is in Rd and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

vd+1 is in Rd+1. This padding operation does not impact the normalization of the vector. Therefore,
the padded vector vk

y is:

vk
y =

(
ey −

1

d
1, 0

)
Then the dot product is given by:

vk
y

∥vk
y∥
·

vt
d+1

∥vt
d+1∥

=

d∑
j=1
j ̸=y

vky,j
∥vk

y∥
vtd+1,j

∥vt
d+1∥

+
vky,y
∥vk

y∥
vtd+1,y

∥vt
d+1∥

+
vky,d+1

∥vk
y∥

vty,d+1

∥vt
d+1∥

(9)

As vky,d+1 = 0, Eq. 9 simplifies to

vk
y

∥vk
y∥
·

vt
d+1

∥vt
d+1∥

=
d− 1

d(d+ 1)
√

d−1
d

√
d

d+1

− d− 1

d(d+ 1)
√

d−1
d

√
d

d+1

= 0

It follows that, the dot product between a generic prototype vector vk
y from the Probability Simplex

∆d−1 and the prototype vector of the newly added class vt
d+1 from the Probability Simplex ∆d is:

vk
y · vt

d+1 = 0.

Thus, the two vectors are orthogonal.

B PROOF FOR PROPOSITION 2

Proposition. Let vt
y ∈ RCt

be the prototype vector for class y within the Probability Simplex ∆Ct−1.

Define its projection as ut
y = Pt,kv

t
y, where Pt,k = [Vk|0] with Vk = [vk

y]C
k

y=1 ∈ RCk×Ck

and

0 ∈ R(Ct−Ck)×Ck

is a zero matrix. Then the resulting projected prototype ut
y is aligned with the

prototype vk
y within ∆Ck−1.

Proof. To simplify the notation in the following discussion, we will denote Ck by d. Without loss of
generality , we demonstrate this proposition for a step t with an increment of one class relative to the
previous step k, such that Ct = Ck +1 = d+1. This proof can be easily extended to model updates
where more than one class are introduced.

Let vt
y = ey − ot the prototype vector in Rd+1 of y-th class following the direction from the center

ot = 1
d+1

∑d+1
y=1 ey of the Probability Simplex ∆d in Rd+1 to its y-th vertex ey . Let Pt,k ∈ Rd×(d+1)

be the projection matrix composed by Vk = [vk
y]dy=1 ∈ Rd×d, which is the matrix formed by the

prototype vectors vk
y as defined in Eq. 5 and the last column a zero vector, denoted as 0 ∈ Rd×1.

This matrix Pt,k projects a vector vt
y from Rd+1 down to ∆d−1 in Rd centered in the orgin of the

axes. The vector vt
y can be explicitly express through its components as

vt
y,j =

{
− 1

d+1 if j ̸= y

1− 1
d+1 if j = y

We define the projection of vt
y:

ut
y = Pt,k v

t
y

Since Pt,k = [Vk |0], when we apply the transformation Pt,k to vt
y, only the first d components

are considered (ignoring the (d+ 1)-th component) thanks to the vector of zeros 0. Therefore, the
projected vector ut

y ∈ Rd is obtained by multiply vt
y with Vk:

ut
y = Vkvt

y.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

This operation can be decomposed into two parts, corresponding to the components of the vector vt
y ,

which is the y-th component of ut. The first one is the y-th element of the vector relative to vertex ey:

ut
y,y = vk

y,yv
t
y,y +

d∑
j=1
j ̸=y

vk
y,jv

t
y,j =

d− 1

d
vt
y,y −

1

d

d∑
j=1
j ̸=y

vt
y,j

where vk
y are the columns of Vk. Substituting the value of vt

y in the equation, it can be simplified to

ut
y,y =

d− 1

d

d

d+ 1
− 1

d
(d− 1)

(
− 1

d+ 1

)
=

=
d− 1

d+ 1
+

d− 1

d(d+ 1)
= 1− 1

d
= vk

y,y.

The second part is relative to the components of vt
y where the value of ey is equal to 0:

ut
y,j = vk

y,jv
t
y,y + vk

y,yv
t
y,j +

d−1∑
j=1
j ̸=y

vk
y,jv

t
y,j = −

1

d
vt
y,y +

d− 1

d
vt
y,j −

1

d

d−1∑
j=1
j ̸=y

vt
y,j =

= −1

d

d

d+ 1
+

d− 1

d

(
− 1

d+ 1

)
− 1

d
(d− 2)

(
− 1

d+ 1

)
= −1

d
= vk

y,j .

Thus, each component of the projected vector ut
y and vk

y are equal, then the two vectors are equivalent:

ut
y = Pt,k v

t
y = vk

y .

It follows that ut
y ∈ Rd, the projection of vt

y ∈ Rd+1, is aligned with the prototype vector vk
y ∈ Rd

through a projection matrix Pt,k.

C PROOF FOR THEOREM 1

Theorem (Probability Simplex Compatibility Theorem). Assuming the number of classes changes
from Ck at step k to Ct at step t, where Ct ≥ Ck, the normalized softmax features of two models,
independently trained at these respective steps, are compatible as formulated in Def. 1.

Proof. In light of Proposition 2, the projected normalized softmax outputs of two independently
trained models, one with an increased or equal class count Ct, can be considered embedded within a
common hypersphere SCk−1.

To simplify the notation in the following discussion, we will denote the number of classes Ck

by d. Let now consider X,Y ∈ Sd−1 be two1 independent random vectors drawn from the von
Mises-Fisher (vMF) distributions with parameters (µ1, κ1) and (µ2, κ2), respectively. The vMF
distribution on the unit hypersphere Sd−1 is characterized by the mean direction µ ∈ Sd−1, a unit
vector indicating the direction around which the data is concentrated, and the concentration parameter
κ ≥ 0, a non-negative scalar that determines the concentration of the distribution around µ. Larger
values of κ correspond to higher concentration around the mean direction.

The probability density function (pdf) of the vMF distribution is given by:

f(x;µ, κ) = cd(κ) exp
(
κµ⊤x

)
, x ∈ Sd−1,

where cd(κ) is the normalization constant ensuring that the pdf integrates to one over the unit sphere.
The normalization constant is defined as:

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
,

1This assumption of two random vectors is because we focus only on a single pairwise class interaction,
since all other interactions are symmetrically similar due to the simplex symmetry and therefore do not change.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

and Iv(κ) is the modified Bessel function of the first kind of order v:

Iv(κ) =
(κ
2

)v ∞∑
j=0

(
κ2

4

)j
j! Γ(v + j + 1)

.

The goal is to compute the expected value of the cosine distance 1 − cos θ, where θ is the angle
between X and Y: θ = arccos

(
X⊤Y

)
. We aim to derive E[1− cos θ] as a function of the angle α

between µ1 and µ2, and the concentration parameters κ1 and κ2.

To compute E[1− cos θ], we start by observing that:

E[1− cos θ] = 1− E
[
X⊤Y

]
. (10)

Assuming X and Y independent2, the expectation of their inner product can be expressed as the
product of their expectations: E

[
X⊤Y

]
= E [X]

⊤ E [Y] . The expected values of X and Y are
given by:

E [X] = md (κ1)µ1,

E [Y] = md (κ2)µ2,

where the mean resultant length md(κ) is defined as:

md(κ) =
Id/2(κ)

Id/2−1(κ)
.

This quantity represents the expected value of the cosine of the angle between a random vector X
drawn from the vMF distribution and the mean direction µ:

E
[
µ⊤X

]
= md(κ).

Substituting the expressions for E [X] and E [Y], we obtain:

E
[
X⊤Y

]
= (md (κ1)µ1)

⊤
(md (κ2)µ2) = md (κ1)md (κ2)µ

⊤
1 µ2.

The inner product µ⊤
1 µ2 equals cosα, where α is the angle between the mean directions µ1 and µ2:

cosα = µ⊤
1 µ2.

Therefore, we have:
E
[
X⊤Y

]
= md (κ1)md (κ2) cosα.

Substituting back into Eq. 10, we find:

E[1− cos θ] = 1−md (κ1)md (κ2) cosα. (11)

This expression relates the expected value of the cosine distance to the angle α between the mean
directions and the concentration parameters κ1 and κ2. It is important to note that this computation
does not require any approximation, as we have directly calculated E[1− cos θ] using the properties
of the von Mises-Fisher distribution and the independence of X and Y.

Since the mean resultant length md(κ) is a strictly increasing function of κ for κ > 0, it follows that:

md(ηκ) > md(κ), ∀η > 1. (12)

This implies that higher concentration parameters result in random vectors that are more tightly
clustered around their mean directions, leading to higher values of md(κ).

2This assumption is based on the hypothesis that the deep neural network models show sufficient expres-
siveness to learn any tasks, as presented within the Unconstrained Feature Model and Layered Peeled Model
frameworks Mixon et al. (2022); Fang et al. (2021), respectively. The assumption is supported by the Neural
Collapse phenomenon Papyan et al. (2020), observed in different networks and datasets, including two-layer
neural networks with independent input feature. This equivalence supports the notion that typical neural network
architectures have sufficient capacity to learn features as statistically independent random variables.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
d

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

co
si

n
e

d
is

ta
n

ce
(D

)

E[Dk,k]

E[Dt,k]

(a) Same class

0 100 200 300 400 500
d

1.000

1.002

1.004

1.006

1.008

1.010

1.012

1.014

co
si

n
e

d
is

ta
n

ce
(D

)

E[Dk,k]

E[Dt,k]

(b) Different classes

Figure 5: Analytic expression of expected cosine distances between PSP feature representation from
two different random variables, each following a distinct von Mises-Fisher distribution, across various
dimensions of the representation space during two learning phases. These phases are identified by the
time step k to refer to the base model and t to refer to the updated model. Both E[Dt,k] and E[Dk,k]
are analyzed, where E[Dt,k] is the expected cosine distance between a more concentrated distribution
at step t respect to the distribution at step k. (a) In the case of the same class, the value of E[Dt,k]
remains consistently lower than E[Dk,k], which on average satisfies the condition of Eq. 1a. (b) In
the case of a different class, the value of E[Dt,k] remains consistently higher than E[Dk,k], which on
average satisfies the condition of Eq. 1b.

According to this analysis, an increase in concentration parameters leads to a decrease in E[1− cos θ]
when the mean directions are less than π/2 and an increase in E[1− cos θ] when they exceed π/2.
This observation highlights the influence of directional concentration and angular displacement on
distribution behavior.

We assume that after an update the newly learned information improves the model’s discrimination
capability. Consequently, this leads to a greater concentration in the von Mises-Fisher (vMF)
distribution of the updated model’s class features, consistent with the condition η > 1 as specified in
Eq. 12. According to this, the application of Eq. 11 between a base and an updated model consistently
verifies the compatibility as in Def. 1. Fig. 5 shows this behavior while varying the classes d. If
there is not new information to improves the model’s discrimination capability, this leads to equal
concentration in the von Mises-Fisher (vMF) distribution of the updated model’s class features,
corresponding to the condition η = 1. As the mean resultant length md(κ) does not change with the
model update, the inequalities of Def. 1 are satisfied (it correspond to the trivial solution discussed by
Shen et al. (2020)).

D PROOF FOR PROPOSITION 3

Proposition. As the softmax outputs approach the vertices of the Probability Simplex, the corre-
sponding logits vectors assume a simplex configuration, with class prototypes aligning to the vectors
specified in Eq. 5.

Proof. The cross-entropy loss function for a single sample x with class label y (one-hot encoded as
y) and its softmax probabilities σ(z) is:

L(σ(z),y) = − log(σ(z)y) = − log

(
ezy∑C
j=1 e

zj

)
where σ(z)y , zy indicates the y-th component of the softmax output and logits vector, being σ(·) the
softmax function. The gradient of the cross-entropy loss with respect to the j-th component of the
logits vector z is:

∂L
∂zj

= σ(z)j − yj =

{
σ(z)j − 1 if j = y

σ(z)j if j ̸= y

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

being yj the j-th component of the one-hot encoded labels y.

Using gradient descent, the update rule for the j-th component zj of the logits vector z is:

zj ← zj − η
∂L
∂zj

where η is the learning rate. Substituting the gradients, we get:

zj ← zj − η
(
σ(z)j − yj

)
=

{
zj − η(σ(z)j − 1) if j = y

zj − η σ(z)j if j ̸= y

Since σ(z)y is optimized to be 1 and σ(z)j with j ̸= y to be 0, the gradient updates increase the logit
value for the correct class label y while decreasing the logits for the other classes j ̸= y, pushing the
logits vector z towards the direction of the class prototype vector vy = y − o = ey − o.

If we reasonable to assume that, at the beginning of training, logits are distributed near the center of
the origin of the axes, doing a gradient step update, we get

zj =

{
0 + η (1− 1

C) = η vy if j = y

0 + η (− 1
C) = η vj if j ̸= y

being vy = [v1, v2, . . . , vy, . . . , vC].

This implies that, at each update, logits align towards the direction of respective class prototype.

E PSP AND LSP CONVERGENCE TO SIMPLEX CONFIGURATION

In this section, we leverage the Neural Collapse (NC) hypothesis (Papyan et al., 2020) to show that,
in the terminal phase of training, logits are configured in a simplex and present a wider spread in
feature distributions with respect to softmax outputs. This evidence holds for several datasets and
neural network architectures.

Let hi,y a feature extracted by a model in response to an image xi of class y, µy = avg{hi,y} the
feature class-mean and µG = avg{µy for y = 1, 2, . . . , C} the mean of class-means. It follows that:

(NC1) Variability collapse: The within-class covariance of features collapse to zero:

avg{hi,y − µy} → 0

(NC2) Equinorm and Equidistance of Features Class-means: The class means of features tend
to form a simplex. A simplex is a symmetric structure whose vertices lie on a hyper-sphere
(i.e., they have same norm) and are placed at the maximum possible distance from each
other. Being y′ ̸= y a generic other class, it holds that:∣∣∥µy − µG∥2 − ∥µy′ − µG∥2

∣∣→ 0 ∀ y, y′

⟨µ̃y, µ̃y′⟩ → C

C − 1
δy,y′ − 1

C − 1
∀ y, y′

(NC3) Convergence to self-duality: Class-means and classifiers weights converge to each other.∥∥∥∥ W⊤

∥W∥F
− M

∥M∥F

∥∥∥∥
F

→ 0

In the case of softmax outputs and logits, NC3 reduces to evaluate the distance of features
with respect to Vk = [vk

y]C
k

y=1 ∈ RCk×Ck

, that is the matrix obtained by stacking the
prototype vectors vk

y defined in Eq. 5 for each class y, i.e.,∥∥∥∥ Vk

∥Vk∥F
− M

∥M∥F

∥∥∥∥
F

→ 0

(NC4): Simplification to NCC: When a feature point h⋆ has to be classified, the decision rule
reduces to choose the nearest class-means.

argmax
y′

h⋆ → argmin
y′
∥h⋆ − µy′∥2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0

1

2

3

4

5
Re

sN
et

18

Training Loss

10 2

10 1

100

101

102

103

104

NC1

0.0

0.2

0.4

0.6

NC2(Equinorm)

0.0

0.1

0.2

0.3

NC2(Equidistance)

0.0

0.2

0.4

0.6

NC3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

NC4

0

10

20

30

40

Re
sN

et
50

10 1

101

103

105

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

D
en

se
N

et

0 100 200 300
Epoch

10 2

10 1

100

101

102

103

104

0 100 200 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300
Epoch

0.0

0.1

0.2

0.3

0 100 200 300
Epoch

0.0

0.2

0.4

0.6

0 100 200 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Softmax Outputs Logits Encoder Outputs Zero Error

(a) CIFAR100

0

1

2

3

4

5

6

Re
sN

et
18

Training Loss

10 1

100

101

102

103

104

105

NC1

0.0

0.2

0.4

0.6

NC2(Equinorm)

0.0

0.1

0.2

0.3

0.4
NC2(Equidistance)

0.0

0.2

0.4

0.6

0.8
NC3

0.0

0.2

0.4

0.6

NC4

0

5

10

15

Re
sN

et
50

10 1

100

101

102

103

104

105

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0 100 200 300
Epoch

0

2

4

6

8

10

D
en

se
N

et

0 100 200 300
Epoch

10 1

100

101

102

103

104

105

0 100 200 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300
Epoch

0.0

0.1

0.2

0.3

0 100 200 300
Epoch

0.0

0.2

0.4

0.6

0.8

0 100 200 300
Epoch

0.0

0.2

0.4

0.6

(b) TinyImageNet200

Figure 6: Neural Collapse hypothesis evaluated for softmax outputs (blue lines), logits (orange
lines), and encoder outputs (green lines) across different network architecture and datasets, showing
logits presenting a reduced alignment to the simplex configuration with a wider spread in feature
distribution. This can be beneficial for a robust and transferable representation.

where µ̃y = (µy −µG)/∥µy −µG∥2 are the renormalized the class-means, M = [µy −µG]
C
y=1 is

the matrix obtained by stacking the class-means into columns, W is the classifier weights matrix,
and δy,y′ is the Kronecker delta symbol.

Fig. 6 presents NC hypothesis plots for softmax outputs (blue), logits (orange), and encoder outputs
(green) across different network architectures (ResNet18, ResNet50, and DenseNet) and datasets
(CIFAR100 and TinyImageNet200). The figure shows consistent trends across various neural
networks and datasets for softmax outputs, logits, and encoder outputs. This behavior suggests that
logits may balance the trade-off between alignment and generalization better than softmax outputs
and encoder outputs, as described in Chen et al. (2022). The NC2 and NC3 curves show that logits are
the less collapsed onto the simplex vertices—indicating reduced alignment—with a broader spread
feature distribution—indicating better generalization, as evidenced by the NC1 values. This because
although logits present a spread comparable to the encoder outputs one, their alignment towards the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

fixed simplex reference Vk is more complex to obtain. This does not hold for softmax outputs as they
converge towards the vertices of the Probability Simplex every time the training loss approaches zero.

F PSEUDO-CODE

As shown in Alg. 1, the pseudocode outlines the computation of PSP or LSP feature vectors. It accepts
inputs of class counts from base and updated models, and the softmax or logit outputs from updated
model queries. The output is a normalized feature vector ht. The procedure “GetPSPFeatures”
constructs a transformation matrix used to transform and then normalize the feature vector.

Algorithm 1 Compute PSP (LSP) Feature Representation

1: Input: Number of classes Ck, Ct of the base and updated models respectively, and the softmax
(for PSP) or logits (for LSP) output vector f t of some query input data x obtained with the
updated model at step t.

2: Output: The PSP (LSP) feature representation vector denoted as ht.
3: procedure GETPSPFEATURES(f t, Ct, Ck)
4: Pk,k = ICk − 1

CkJCk

5: 0 = ZeroMatrix(Ct − Ck, Ck)
6: Pt,k = [Pk,k | 0]
7: ht = Pt,kf

t

8: ht = ht

∥ht∥
9: return ht

10: end procedure

G IMPLEMENTATION DETAILS

In the following we report the implementations details we used in our experiments. All the values
reported in Sec. 4 are obtained with the same training hyperparameters on a Nvidia Quadro A6000
GPU with 24GB and two Nvidia A100 GPUs, each with 40GB.

CIFAR100 (Krizhevsky, 2009). Images are 32×32. A ResNet18 architecture was used with the
following hyper-parameters for training: number of epochs 120; batch size 128; SGD optimizer with
learning rate that starts from 0.1 and is divided by 10 after 80 and 100 epochs. SGD momentum 0.9
and weight decay is set to 5 · 10−4. A temperature factor of 12 has been used in the cross-entropy
loss to scale logits vectors during training. Training images were subjected to random cropping,
horizontal flipping, and tensor normalization. CIFAR100 classes are divided to have at each step an
equal number of new classes, i.e., |Xt| = 100/T for t = 1, 2, . . . , T .

TinyImageNet200 (Le & Yang, 2015). Images are resized to 64×64. A ResNet18 architecture was
used with the following hyper-parameters for training: number of epochs 90; batch size 256; SGD
optimizer with learning rate that starts from 0.1 and is divided by 10 after 50 and 70 epochs. SGD
momentum 0.9 and weight decay is set to 5 · 10−4. A temperature factor of 12 has been used in the
cross-entropy loss to scale logits vectors during training. Training images were subjected to random
cropping, horizontal flipping, and tensor normalization. TinyImageNet200 classes are divided to have
at each step an equal number of new classes, i.e., |Xt| = 200/T for t = 1, 2, . . . , T .

ImageNet1K (Russakovsky et al., 2015). Images are resized to 224×224. A ResNet50 architecture
was used with the following hyper-parameters for training: number of epochs 90; batch size 1536;
SGD optimizer with learning rate that starts from 0.1 and is divided by 10 after 30 and 60 epochs.
SGD momentum 0.9 and weight decay is set to 1 · 10−4. Training images were subjected to random
cropping, horizontal flipping, color jitter, and tensor normalization. ImageNet1k classes are divided
to have at each step an equal number of new classes, i.e., |Xt| = 1000/T for t = 1, 2, . . . , T .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

22.77 0.00 0.00 0.00 0.00

1.01 33.52 0.00 0.00 0.00

1.42 1.19 40.26 0.00 0.00

1.53 0.91 0.86 46.33 0.00

0.98 0.80 1.00 0.68 50.86

(a) Baseline

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

22.77 0.00 0.00 0.00 0.00

22.31 25.74 0.00 0.00 0.00

22.93 21.52 35.38 0.00 0.00

23.53 19.66 32.95 43.03 0.00

25.45 21.55 33.79 45.98 52.47

(b) BCT

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

18.58 0.00 0.00 0.00 0.00

16.11 30.10 0.00 0.00 0.00

16.59 27.76 37.96 0.00 0.00

16.75 29.14 35.74 43.97 0.00

15.89 28.29 36.27 42.67 48.62

(c) CoReS

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

17.98 0.00 0.00 0.00 0.00

12.20 30.20 0.00 0.00 0.00

11.40 23.51 39.40 0.00 0.00

9.87 22.96 35.05 45.65 0.00

9.59 21.38 33.59 43.00 53.18

(d) ETF-CE

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

14.75 0.00 0.00 0.00 0.00

9.76 25.01 0.00 0.00 0.00

8.53 19.95 34.95 0.00 0.00

8.13 19.03 32.44 45.16 0.00

7.47 18.47 30.67 42.49 53.23

(e) ETF-DR

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

22.77 0.00 0.00 0.00 0.00

20.68 32.54 0.00 0.00 0.00

20.10 31.10 39.72 0.00 0.00

19.72 31.26 39.56 46.29 0.00

18.25 29.89 39.63 46.38 51.59

(f) LCE

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

18.87 0.00 0.00 0.00 0.00

16.88 25.83 0.00 0.00 0.00

15.32 25.99 30.98 0.00 0.00

14.39 26.22 32.41 36.45 0.00

15.07 25.72 32.09 36.23 39.62

(g) AdvBCT

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

11.32 0.00 0.00 0.00 0.00

11.37 22.06 0.00 0.00 0.00

10.82 22.52 33.16 0.00 0.00

11.35 23.66 33.89 42.91 0.00

11.38 25.28 34.40 43.78 52.73

(h) PSP

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

15.63 0.00 0.00 0.00 0.00

13.75 27.04 0.00 0.00 0.00

15.57 26.10 37.99 0.00 0.00

15.80 27.85 38.42 45.76 0.00

17.19 31.25 41.30 47.30 54.52

(i) LSP

Figure 7: Compatibility matrices for PSP, LSP, and all other methods for the CIFAR100 5-step update
setting, presented in Tab. 1a. The reported values are Recall@1 between query features ΦQ

(·) and

gallery features ΦG
(·). Entries that do not satisfy the compatibility condition (Eq. 7) are highlighted

with a light-red background.

Google Landmarks v2 (Weyand et al., 2020). Images are resized to 224×224. A ResNet18
architecture, pretrained with ImageNet1k, was used with the following hyper-parameters for training:
number of epochs 30; batch size 512; SGD optimizer with learning rate that starts from 0.1 and is
divided by 10 after 5, 10 and 20 epochs. SGD momentum 0.9 and weight decay is set to 5 · 10−4.
Training images were subjected to random cropping and tensor normalization. Initial step of Google
Landmarks v2 has 24393 classes, the others have same number of classes where the remaining classes
are divided to have at each step an equal number of new classes, i.e., |Xt| = (81313− 24393)/T for
t = 2, 3, . . . , T .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

27.26 0.00 0.00 0.00 0.00

0.06 66.33 0.00 0.00 0.00

0.08 0.10 73.68 0.00 0.00

0.12 0.04 0.17 75.38 0.00

0.09 0.11 0.10 0.10 80.86

(a) Baseline

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

49.22 0.00 0.00 0.00 0.00

69.22 70.55 0.00 0.00 0.00

73.15 74.62 76.51 0.00 0.00

75.51 76.53 78.56 78.31 0.00

76.65 77.83 79.73 79.42 79.35

(b) PSP

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

32.71 0.00 0.00 0.00 0.00

40.83 63.67 0.00 0.00 0.00

43.16 63.82 73.21 0.00 0.00

49.39 66.57 72.63 75.30 0.00

39.05 62.95 73.31 74.41 79.24

(c) LSP

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

39.08 0.00 0.00 0.00 0.00

1.17 52.82 0.00 0.00 0.00

1.35 1.55 54.69 0.00 0.00

0.82 0.98 1.44 63.76 0.00

1.42 0.71 0.98 0.82 60.88

(d) Baseline

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

23.71 0.00 0.00 0.00 0.00

26.29 32.19 0.00 0.00 0.00

30.58 34.59 38.31 0.00 0.00

35.80 42.26 44.12 47.57 0.00

34.72 41.22 42.88 44.09 46.04

(e) PSP

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

34.13 0.00 0.00 0.00 0.00

31.22 47.61 0.00 0.00 0.00

31.39 42.88 52.61 0.00 0.00

37.65 49.88 53.06 61.48 0.00

35.22 46.77 48.69 52.05 59.45

(f) LSP

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

15.36 0.00 0.00 0.00 0.00

0.39 25.36 0.00 0.00 0.00

0.30 0.19 26.42 0.00 0.00

0.38 0.35 0.34 28.53 0.00

0.22 0.26 0.30 0.18 27.25

(g) Baseline

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

11.93 0.00 0.00 0.00 0.00

14.06 14.95 0.00 0.00 0.00

14.57 15.33 17.03 0.00 0.00

15.11 15.99 17.26 18.24 0.00

14.90 16.10 17.54 17.57 18.22

(h) PSP

1 2 3 4 5
Gallery features by k

1

2

3

4

5

Qu
er

y
fe

at
ur

es
 b

y
t

16.29 0.00 0.00 0.00 0.00

15.31 23.22 0.00 0.00 0.00

14.49 20.57 26.01 0.00 0.00

15.66 23.43 24.74 27.81 0.00

17.21 19.74 23.67 24.32 27.94

(i) LSP

Figure 8: Compatibility Matrices of PSP, LSP, and baseline approach for 5 step in the case of
advanced network architectures (AlexNet, ResNet50, RegNetX 3.2GF, ResNet152, and MaxViT T).
All the models were pretrained on ImageNet1k. (a), (b), (c) report the closed-set Recall@1 on the
ImageNet1k dataset; (d), (e), (f) the open-set Recall@1 on the CIFAR100 dataset; (g), (h), (i) the
fine-grained open-set Recall@1 on the Places365 dataset. Entries that do not satisfy compatibility
Eq. 7 are highlighted with light-red background.

H EXTENDED CLASS: COMPATIBILITY MATRICES

To provide a more in depth insight of Tab. 1 into how performance varies across update steps for both
self-tests and cross-tests, Fig.7 presents the compatibility matrices for the CIFAR100 5-step update
scenario for each method. The main diagonals of the compatibility matrices (self-tests) capture
the performance improvements obtained by adding new classes in the training, as they evaluate the
Recall@1 of the model when both query and gallery features are extracted using the same model.
The off-diagonal values represent the cross-test values, namely the performance of using the newer
model as query-set feature extractor and the older one to obtain features of the gallery-set.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 3: Experimental results on ImageNet1k, CIFAR100 and Places365 in the case of advanced
network architectures (ViT-B-32, ViT-B-16, and ViT-L-16), evaluated using the AC, AA, and ACA
metrics, with Recall@1 as the performance metric (M). Models are pretrained on ImageNet1k. Dark
blue numbers indicate the highest values, while light blue the second-highest values.

Features derived from

ImageNet1k CIFAR100 Places365

AC AA ACA AC AA ACA AC AA ACA

Encoder outputs 0 38.62 0 0 34.94 0 0 15.10 0
Softmax outputs (PSP) 1 78.93 80.52 0.66 52.60 37.94 1 18.31 17.60
Logits (LSP) 0.66 71.82 45.90 0.23 61.78 20.29 0.23 25.70 7.988

I ADVANCED NETWORK ARCHITECTURES: COMPATIBILITY MATRICES

Fig. 8 presents the compatibility matrices for PSP, LSP, and the baseline approach over 5 steps
in the scenario of advanced network architectures. We utilized publicly available ImageNet1k
pretrained models3 to simulate a scenario where, starting from AlexNet as the base model, the
network architectures are sequentially updated to ones with increasing expressiveness (ResNet50,
RegNetX 3.2GF, ResNet152, and MaxViT T). The matrices show that using softmax outputs as
features (PSP) consistently achieves the highest number of compatible representations, both for
ImageNet1k (Fig. 8a, Fig. 8b, Fig. 8c), CIFAR100 (Fig. 8d, Fig. 8e, and Fig. 8f), and Places365
(Fig. 8g, Fig. 8h, and Fig. 8i). While LSP is less compatible than PSP, it reports comparable Recall@1
values in the closed-set (ImageNet1k) scenario and higher values in the open-set (CIFAR100 and
Places365) scenario. Notably, there is no significant drop in performance also compared to the
baseline approach, which uses the standard practice of extracting features from the output of the
encoder of the model. This confirm that LSP better manage the trade-off between alignment and
generalization than both PSP and the baseline approach, as demonstrated in Appendix E.

J ADVANCED NETWORK ARCHITECTURES WITH VIT

Tab. 3 summarizes the compatibility performance of our method using ViT (Dosovitskiy et al., 2020)
as the network architecture. The results demonstrate that features derived from softmax outputs (PSP)
and logits (LSP) improve the compatibility as ViT’s expressive power increases. These results align
with those discussed in Section 4 for other network architectures.
To provide a more detailed view of performance in this context, Fig. 9 shows the compatibility
matrices for PSP, LSP, and the baseline approach. We evaluate the compatibility of three ViT models:
first, ViT-B-32, trained from scratch on ImageNet1k; followed by ViT-B-16, also trained from scratch
on ImageNet1k; and finally, ViT-L-16, which was fine-tuned on ImageNet1k after pretraining via
self-supervised learning (Singh et al., 2022). The matrices reveal that PSP achieves the highest
compatibility score across datasets, in both the closed-set setting with ImageNet1k (Fig. 9a, Fig. 9b,
Fig. 9c) and in the open-set one with CIFAR100 (Fig. 9d, Fig. 9e, and Fig. 9f) and Places365 (Fig. 9g,
Fig. 9h, and Fig. 9i).

K DIMENSIONALITY REDUCTION WITH TOP-k SPARSIFICATION

The size of PSP and LSP representations increases linearly with the class count, which can be
challenging when using datasets with a large data diversity. This situation is similar to challenges
observed in other methods (Biondi et al., 2023; Yang et al., 2022; Biondi et al., 2024) that utilize
feature representations based on the regular simplex. However, in the case of PSP representations,
top-k sparsification (Lin et al., 2018; Zheng et al., 2023) can be employed for dimension reduction,
motivated by the established principles of softmax and top-k operations. Indeed, top-k can be justified
by how PSP can selectively ignores components of the softmax output vectors with minimal activation
(i.e., low probability outputs). Thus, in an open-set scenario, these top-k components might represent
the objects most similar to the input class, highlighted by those classes showing some activation in
the softmax outputs. From a theoretical perspective, Lapin et al. (2016) demonstrates that softmax

3https://pytorch.org/vision/stable/models.html

26

https://pytorch.org/vision/stable/models.html

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1 2 3
Gallery features by k

1

2

3Q
ue

ry
 fe

at
ur

es
 b

y
t 69.61 0.00 0.00

0.10 75.92 0.00

0.07 0.10 85.98

(a) Baseline

1 2 3
Gallery features by k

1

2

3Q
ue

ry
 fe

at
ur

es
 b

y
t 70.71 0.00 0.00

76.20 76.56 0.00

82.55 82.83 84.76

(b) PSP

1 2 3
Gallery features by k

1

2

3Q
ue

ry
 fe

at
ur

es
 b

y
t 65.38 0.00 0.00

68.52 72.90 0.00

69.20 69.94 85.00

(c) LSP

1 2 3
Gallery features by k

1

2

3Q
ue

ry
 fe

at
ur

es
 b

y
t 63.76 0.00 0.00

0.89 65.14 0.00

0.71 1.21 77.96

(d) Baseline

1 2 3
Gallery features by k

1

2

3Q
ue

ry
 fe

at
ur

es
 b

y
t 46.28 0.00 0.00

46.17 46.30 0.00

57.12 56.72 63.03

(e) PSP

1 2 3
Gallery features by k

1

2

3Q
ue

ry
 fe

at
ur

es
 b

y
t 59.15 0.00 0.00

55.79 61.45 0.00

60.89 59.40 74.00

(f) LSP

1 2 3
Gallery features by k

1

2

3Q
ue

ry
 fe

at
ur

es
 b

y
t 25.79 0.00 0.00

0.33 28.07 0.00

0.24 0.24 35.94

(g) Baseline

1 2 3
Gallery features by k

1

2

3Q
ue

ry
 fe

at
ur

es
 b

y
t 15.75 0.00 0.00

16.63 17.56 0.00

17.65 18.53 23.78

(h) PSP

1 2 3
Gallery features by k

1

2

3Q
ue

ry
 fe

at
ur

es
 b

y
t 23.84 0.00 0.00

23.12 26.39 0.00

23.96 22.20 34.72

(i) LSP

Figure 9: Compatibility Matrices of PSP, LSP, and baseline approach for 3 step in the case of advanced
ViT network architectures (ViT-B-32, ViT-B-16, and ViT-L-16). All the models were pretrained on
ImageNet1k. (a), (b), (c) report the closed-set Recall@1 on the ImageNet1k dataset; (d), (e), (f) the
open-set Recall@1 on the CIFAR100 dataset; (g), (h), (i) the open-set Recall@1 on the Places365
dataset. Entries that do not satisfy compatibility Eq. 7 are highlighted with light-red background.

loss yields competitive top-k performance for all values of k simultaneously. This indicates that it
preserves the ranking of the probabilities, which can contribute to keep the order of the activated
components across different dimensions when they are transformed by our PSP method. Accordingly,
top-k sparsification seems to be well-suited for dimensionality reduction by setting all entries of a
PSP feature representation vector to zero except for the top-k. Although LSP lacks similar theoretical
support because logits are not probabilistically normalized, our alignment proof with respect to PSP,
and the fact that both share similar hyperspherical geometry, suggests that they might behave similarly.
In Tab. 4, we report results for PSP and LSP, where top-k dimensional reduction has been applied to
reduce features to the top-128 dimensions. For BCT and LCE, the feature size is reduced to the same
128 dimensions via a fully-connected layer, facilitating a direct comparison of the two methods under
the same feature dimensions. These models were trained on the TinyImageNet200 training set and
evaluated on the TinyImageNet200 validation set using Recall@1 at 2, 5, 20, and 50 update steps.
Both PSP and LSP show slightly improved compatibility (AC) and accuracy (AA) performance in
all cases compared to the results in Tab. 1b, where no dimension reduction was applied. Conversely,
all compared methods exhibit a decrease in compatibility and accuracy due to the constrained feature
space. Specifically, for BCT and LCE, performance is comparable to that in Tab. 1b during infrequent
updates (2 and 5 steps) but declines significantly with more frequent updates.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 4: Comparison of Methods with Same Feature Length. Evaluation is performed on Tiny-
ImageNet200 using the Recall@1 metric (M) for AC, AA, and ACA. PSP and LSP employ a
top-k feature dimension reduction with k = 128 to limit feature sizes to 128 dimensions. Similarly,
Baseline, BCT, and LCE methods are configured with a feature dimension of 128.

METHOD

2 steps 5 steps 20 steps 50 steps

AC AA ACA AC AA ACA AC AA ACA AC AA ACA

Baseline128 0 24.45 0 0 10.43 0 0 3.02 0 0 1.51 0
BCT128 (Shen et al., 2020) 1 31.65 28.83 0.8 24.08 16.66 0.01 14.99 0.11 <0.01 8.32859 0.03
LCE128 (Meng et al., 2021) 1 31.61 29.84 0.6 22.67 14.90 0.01 11.97 0.12 0 6.01 0

PSP (Top-128) 1 29.89 25.09 0.9 21.95 18.01 0.92 17.53 15.44 0.9 16.64 14.89
LSP (Top-128) 1 32.84 29.26 1 25.26 23.59 0.83 20.57 17.75 0.81 19.59 15.90

28

	Introduction
	Related Works
	The Probability Simplex Leads to Compatible Representations
	Preliminaries on Backward-Compatible Representation Learning
	Probability Simplex Projections (PSP)
	Logits Simplex Projections

	Experimental Results
	Compatibility Metrics
	Comparative Results

	Conclusions
	Proof For Proposition 1
	Proof for Proposition 2
	Proof for Theorem 1
	Proof for Proposition 3
	PSP and LSP Convergence to Simplex Configuration
	Pseudo-Code
	Implementation Details
	Extended Class: Compatibility Matrices
	Advanced Network Architectures: Compatibility Matrices
	Advanced Network Architectures with ViT
	Dimensionality Reduction with Top-k Sparsification

