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ABSTRACT

Byzantine-resilient distributed machine learning seeks to achieve robust learning
performance in the presence of misbehaving or adversarial workers. While state-
of-the-art (SOTA) robust distributed gradient descent (Robust-DGD) methods
were proven theoretically optimal, their empirical success has often relied on pre-
aggregation gradient clipping. However, the currently considered static clipping
strategy exhibits mixed results: improving robustness against some attacks while
being ineffective or detrimental against others. We address this gap by proposing a
principled adaptive clipping strategy, termed Adaptive Robust Clipping (ARC). We
show that ARC consistently enhances the empirical robustness of SOTA Robust-
DGD methods, while preserving the theoretical robustness guarantees. Our analysis
shows that ARC provably improves the asymptotic convergence guarantee of
Robust-DGD in the case when the model is well-initialized. We validate this
theoretical insight through an exhaustive set of experiments on benchmark image
classification tasks. We observe that the improvement induced by ARC is more
pronounced in highly heterogeneous and adversarial settings.

1 INTRODUCTION

Distributed machine learning, a.k.a. federated learning, has emerged as a dominant paradigm to cope
with the increasing computational cost of learning tasks, mainly due to growing model sizes and
datasets (Kairouz et al., 2021). Worker machines, holding each a fraction of the training dataset,
collaborate over a network to learn an optimal common model over the collection of their datasets.
Workers typically collaborate with the help of a central coordinator, that we call server (McMahan
et al., 2017). Besides scalability, distributed learning is also helpful in preserving data ownership and
sovereignty, since the workers do not have to share their local datasets during the learning.

Conventional distributed learning algorithms are known to be vulnerable to misbehaving workers
that could behave unpredictably (Blanchard et al., 2017; Kairouz et al., 2021; Guerraoui et al., 2023).
Misbehavior may result from software and hardware bugs, data poisoning, or malicious players
controlling part of the network. In the parlance of distributed computing, misbehaving workers are
referred to as Byzantine (Lamport et al., 1982). Due to the growing influence of distributed learning
in critical public-domain applications such as healthcare (Nguyen et al., 2022) and finance (Long
et al., 2020), the problem of robustness to misbehaving workers, a.k.a. robust distributed learning,
has received significant attention (Blanchard et al., 2017; Yin et al., 2018; Farhadkhani et al., 2022;
Karimireddy et al., 2022; Gorbunov et al., 2023; Allouah et al., 2023a; Farhadkhani et al., 2023).

Robust distributed learning algorithms primarily rely on robust aggregation, such as coordinate-
wise trimmed mean (CWTM) (Yin et al., 2018), geometric median (GM) (Chen et al., 2017) and
multi-Krum (MK) (Blanchard et al., 2017). Specifically, in robust distributed gradient descent (Robust-
DGD), the server aggregates the workers’ local gradients using a robust aggregation method, instead
of simply averaging them. This protects the learning procedure from erroneous gradients sent by
misbehaving workers. Recent work has made significant improvements over these aggregation rules
by incorporating a pre-aggregation step such as bucketing (Karimireddy et al., 2022; Gorbunov et al.,
2023) and nearest-neighbor mixing (NNM) (Allouah et al., 2023a), to tackle gradient dissimilarity
resulting from data heterogeneity. The learning guarantee of the resulting Robust-DGD has been
proven to be optimal (Allouah et al., 2023b), i.e., it cannot be improved without additional assumptions
under the standard heterogeneity model of (G,B)-gradient dissimilarity (Karimireddy et al., 2020).
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Despite its theoretical tightness, the empirical success of Robust-DGD has unknowingly relied on
pre-aggregation gradient clipping (Mhamdi et al., 2021; Farhadkhani et al., 2022; Allouah et al.,
2023a). Specifically, clipping the gradients of the workers prior to aggregation has been observed to
sometimes enhance the algorithm’s empirical performance in the presence of adversarial workers,
as evidenced in Figure 1a. Yet, this improvement lacks a concrete explanation, raising the question
of whether the observed benefits of clipping are merely anecdotal. This leads to the natural inquiry:
Why, and when, does pre-aggregation clipping improve robustness?
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(a) Sign-flipping (SF) (Allen-Zhu et al., 2020)
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(b) Label-flipping (LF) (Allen-Zhu et al., 2020)

Figure 1: Impact of pre-aggregation clipping, specifically static clipping with C = 2 and our adaptive
clipping algorithm ARC, on Robust-DGD with aggregation scheme CWTM ◦ NNM, under the SF
and LF adversarial attacks. We consider the MNIST (Deng, 2012) dataset distributed amongst 10
honest (non-adversarial) workers with extreme heterogeneity, and there are three adversarial workers.

In particular, using a constant clipping threshold, referred to as static clipping, has exhibited mixed
results. Figure 1 shows that while static clipping effectively mitigates sign-flipping (SF) attacks,
it completely fails under label-flipping (LF). This indicates an inherent fragility of static clipping.
Indeed, we prove in our work that static clipping breaks the standard (f, κ)-robustness property of an
aggregation method (Allouah et al., 2023a). This highlights a key shortcoming of existing empirical
results that rely on static clipping (Mhamdi et al., 2021; Farhadkhani et al., 2022; Allouah et al.,
2023a). To overcome the limitations of static clipping but preserve its empirical benefits at the same
time, we introduce a novel adaptive clipping scheme, termed Adaptive Robust Clipping (ARC).

ARC dynamically adjusts the clipping threshold as per the gradients sent by the workers and the
fraction of adversarial workers to be tolerated. We demonstrate that integrating ARC into Robust-
DGD consistently improves its empirical performance (see Figures 1 and 2a), while also preserving
the convergence guarantee of the original Robust-DGD algorithm. Moreover, we show that when the
model initialization is good, ARC provably improves the robustness of Robust-DGD. The benefits
of ARC are more pronounced as the fraction of misbehaving workers approaches the system’s
breakdown point1 and when the data across the workers is highly heterogeneous. Our key results are
summarized below. Critical comparisons to prior work are deferred to Section 6.

Main results & contributions. We consider a system comprising n workers and a server. The goal
is to tolerate up to f adversarial workers.

(1) Adaptive robust clipping (ARC). We propose ARC, wherein prior to aggregating the gradients,
the server clips the largest k := ⌊2(f/n)(n− f)⌋ gradients using a clipping parameter given by the
(Euclidean) norm of the (k + 1)-th largest gradient. It is important to note that in contrast to existing
adaptive clipping schemes (Diakonikolas et al., 2020; Abdalla & Zhivotovskiy, 2024), ARC does not
require additional a priori information on honest workers’ gradients. We prove that ARC preserves
the robustness guarantee of the original robust aggregation method.

(2) Improved empirical robustness. We conduct experiments on MNIST (Deng, 2012), Fashion-
MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al., 2014), across various data heterogeneity
settings and adversarial regimes. Our results demonstrate that ARC significantly enhances the
performance of state-of-the-art Robust-DGD methods, particularly in scenarios with high data
heterogeneity (Figure 2a) and a large number of adversarial workers (Figure 4b).

(3) Improved learning guarantee. We demonstrate that ARC possesses an additional property,
we call Bounded Aggregation Output, that is not satisfied by classical robust aggregation methods.

1Breakdown point refers the minimum fraction of adversarial workers that can break the system, making it
impossible to guarantee a bound on the learning error Allouah et al. (2023b).
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Specifically, ARC constrains the norm of an adversarial gradient by that of an honest (non-adversarial)
gradient. Leveraging this property, we show that the lower bound established under data heterogeneity
in Allouah et al. (2023b) can be circumvented using ARC, provided the honest workers’ gradients are
bounded at model initialization. An empirical validation of this insight is shown in Figure 2b. Such
model initialization is often satisfiable in practice (Glorot & Bengio, 2010), highlighting the practical
relevance of ARC. When the model is arbitrarily initialized, ARC recovers the original convergence
guarantee of Robust-DGD in the worst case (see Figure 2b).
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(a) Improved robustness
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(b) Influence of model initialization

Figure 2: Worst-case maximal accuracies of Robust-DSGD, with and without ARC, across several
types of misbehavior for distributed MNIST with 10 honest workers and under extreme heterogeneity.
On the left, we vary the number of adversarial workers. On the right, we vary the initialization
conditions by scaling a well-chosen set of initial parameters (CWTM ◦ NNM is used, and f = 1).
More details on the experimental setup can be found in Sections 4 and 5.2, and Appendix D.

2 PROBLEM STATEMENT AND RELEVANT BACKGROUND

We consider the problem of distributed learning in the server-based architecture. The system com-
prises n workers represented by w1, . . . , wn, that collaborate with the help of a trusted server. The
workers hold local datasets D1, . . . ,Dn respectively, each composed of m data points from an input
space Z . Specifically, for any i ∈ [n], Di := {z(i)1 , . . . , z

(i)
m } ⊂ Zm. For a given model parameter-

ized by vector θ ∈ Rd, d being the number of trainable parameters in the model, each worker wi

incurs a loss given by the loss function Li(θ) :=
1
m

∑m
k=1 ℓ(θ, z

(i)
k ) , where ℓ : Rd ×Z → R is the

point-wise loss. We make the following standard assumptions (Bottou et al., 2018): (i) the point-wise
loss function ℓ is differentiable with respect to θ. (ii) For all i ∈ [n], Li is L-Lipschitz smooth, i.e.,
there exists L ∈ R+ such that all θ, θ′ ∈ Rd, ∥∇Li(θ)−∇Li(θ

′)∥ ≤ L ∥θ − θ′∥, where ∥ · ∥ refers
to the Euclidean norm. In the ideal setting where all workers are assumed to be honest, i.e., follow
the prescribed algorithm correctly, the server aims to minimize the global average loss function given
by L(θ) := 1

n

∑n
i=1 Li(θ). However, this objective is rendered vacuous when some workers could

be adversarial, described in the following.

A robust distributed learning algorithm aims to output a good model despite the presence of adversarial
(a.k.a., Byzantine (Lamport et al., 1982)) workers in the system (Su & Vaidya, 2016; Yin et al., 2018;
Allouah et al., 2023a). Specifically, the goal is to design a distributed learning algorithm that can
tolerate up to f adversarial workers, of a priori unknown identity, out of n workers. Adversarial
workers need not follow a prescribed algorithm, and can send arbitrary information to the server. In
the context of distributed gradient descent, adversarial workers can send incorrect gradients to the
server (Baruch et al., 2019; Allen-Zhu et al., 2020; Xie et al., 2020; Karimireddy et al., 2022). We let
H ⊆ [n], with |H| = n− f , denote the set of honest workers that do not deviate from the algorithm.
The objective of the server is to minimize the average loss function of honest workers given by

LH(θ) :=
1

|H|
∑
i∈H

Li(θ), ∀θ ∈ Rd.
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While we can find a minimum of LH(θ) when LH is convex, in general however the loss function is
non-convex, and the optimization problem is NP-hard (Boyd & Vandenberghe, 2004). Therefore, we
aim to find a stationary point of LH instead, i.e., θ∗ such that ∥∇LH(θ∗)∥ = 0. Formally, we define
robustness to adversarial workers by (f, ϵ)-resilience (Allouah et al., 2023a).

Definition 2.1. A distributed learning algorithm A is said to be (f, ε)-resilient if, despite the presence

of f adversarial workers, A enables the server to output a model θ̂ such that E
[∥∥∥∇LH

(
θ̂
)∥∥∥2] ≤ ε,

where the expectation E [·] is over the randomness of the algorithm.

If a distributed learning algorithm A is (f, ε)-resilient then it can tolerate up to f adversarial workers.
It is standard in robust distributed learning to design robust algorithms using f as a parameter (Su
& Vaidya, 2016; Blanchard et al., 2017; Yin et al., 2018; Karimireddy et al., 2022; Gorbunov et al.,
2023; Allouah et al., 2023a), f being the maximum tolerable number of adversarial workers.

In the context of distributed learning, data heterogeneity is characterized by the following standard no-
tion of (G,B)-gradient dissimilarity (Vaswani et al., 2019; Karimireddy et al., 2020; 2022; Gorbunov
et al., 2023; Allouah et al., 2023b).

Definition 2.2. Loss functions Li, i ∈ H, are said to satisfy (G,B)-gradient dissimilarity if,

1

|H|
∑
i∈H

∥∇Li(θ)−∇LH(θ)∥2 ≤ G2 +B2 ∥∇LH(θ)∥2 , ∀θ ∈ Rd.

General limitations on robustness. Note that (f, ε)-resilience is impossible (for any ε) when
f/n ≥ 1/2 (Gupta & Vaidya, 2020). Moreover, even for f/n < 1/2, it is generally impossible
to achieve (f, ε)-resilience for arbitrarily small ε due to the disparity amongst the local datasets
Di, i ∈ H (a.k.a., data heterogeneity) (Liu et al., 2021). Henceforth, we assume that n > 2f . Under
(G,B)-gradient dissimilarity, we have the following lower bound on the achievable resilience.

Lemma 2.3 (Non-convex extension of Theorem 1 Allouah et al.). Under (G,B)-gradient dissimilar-
ity, a distributed learning algorithm is (f, ε)-resilient only if f

n < 1
2+B2 and ε ≥ 1

4 · f
n−(2+B2)fG

2.

For a given distributed learning problem, the minimum fraction of adversarial workers that renders
any distributed learning algorithm ineffective is called the breakdown point (Guerraoui et al., 2023;
Allouah et al., 2023b). Thus, according to Lemma 2.3, there exists a distributed learning problem
satisfying (G,B)-gradient dissimilarity whose breakdown point is given by 1/(2 +B2).

Robust distributed gradient descent. To tolerate adversarial workers, we replace the averaging
operation in the classic distributed gradient descent (DGD) method with a robust aggregation, e.g.,
coordinate-wise trimmed mean (CWTM) and median (CWMed) (Yin et al., 2018), geometric median
(GM) (Chen et al., 2017), and multi-Krum (MK) (Blanchard et al., 2017). This yields Robust-DGD,
presented in Algorithm 1, where robust aggregation protects the learning from incorrect gradients
sent by the adversarial workers. The robustness of an aggregation method can be quantified by the
following property of (f, κ)-robustness, proposed by Allouah et al. (2023a).

Algorithm 1 Robust Distributed Gradient Descent (Robust-DGD)

Initialization: Server chooses a model θ1 ∈ Rd, a learning rate γ ∈ R+ and a robust aggregation
method F : Rn×d → Rd.
for t = 1 to T do

Server broadcasts θt to all workers.
for each honest worker wi in parallel do

Compute local gradient g(i)t := ∇Li(θt), and send g
(i)
t to Server.

// An adversarial worker wj can send an arbitrary vector in Rd for g(j)t
end for
Server computes Rt := F

(
g
(1)
t , . . . , g

(n)
t

)
.

Server computes the updated model θt+1 := θt − γ Rt .
end for
Output: Server outputs θ̂ chosen uniformly at random from {θ1, . . . , θT }.

4
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Definition 2.4. F : Rn×d → Rd is said to be (f, κ)-robust if there exists a robustness coefficient
κ ∈ R such that for all x1, . . . , xn ∈ Rd and any set S ⊆ [n], |S| = n− f , the following holds:

∥F(x1, . . . , xn)− xS∥2 ≤ κ

|S|
∑
i∈S

∥xi − xS∥2 , where xS =
1

|S|
∑
i∈S

xi.

(f, κ)-robustness2 encompasses several robust aggregations, including the ones mentioned above
and more (e.g., see Allouah et al. (2023a)). It has been shown that an aggregation method is (f, κ)-
robust only if κ ≥ f

n−2f (Allouah et al., 2023a). Importantly, the asymptotic error of Robust-DGD
with (f, κ)-robust aggregation, where κ ∈ O(f/(n − 2f)), matches the lower bound (recalled in
Lemma 2.3) (Allouah et al., 2023b). Note that the aforementioned aggregation methods (CWTM,
CWMed, GM and MK) attain optimal robustness when composed with the pre-aggregation scheme:
nearest neighbor mixing (NNM) (Allouah et al., 2023a).3 Specifically, we recall the following result.
Lemma 2.5 (Lemma 1 in Allouah et al. (2023a)). For F ∈ {CWTM,CWMed,GM,MK}, the
composition F ◦NNM is (f, κ)-robust with

κ ≤ 8f

n− f

(
1 +

(
1 +

f

n− 2f

)2
)
.

Thus, if n ≥ (2+δ)f for δ > 0, then F◦NNM is (f, κ)-robust with κ ≤ 16f
n−f

(
δ+1
δ

)2 ∈ O
(

f
n−2f

)
.

Convergence of Robust-DGD. Lastly, we recall the convergence result for Robust-DGD with an
(f, κ)-robust aggregation F. We let L∗

H denote the minimum value of LH(θ).
Lemma 2.6 (Theorem 2 in Allouah et al. (2023b)). Consider Algorithm 1 with γ ≤ 1/L. Let
∆o ∈ R+ such that LH(θ1)− L∗

H ≤ ∆o. If F is (f, κ)-robust with κB2 < 1, then
1

T

T∑
t=1

∥∇LH(θt)∥
2 ≤ 2∆o

(1− κB2)γT
+

κG2

1− κB2
.

Thus, when κ ∈ O (f/(n− 2f)) (and smaller than 1/B2), Robust-DGD is optimal, i.e., its error
matches the lower bound recalled in Lemma 2.3, as soon as T ≥ ∆o/γκG

2.4

3 ADAPTIVE ROBUST CLIPPING (ARC) AND ITS PROPERTIES

In this section, we first present a preliminary observation on the fragility of static clipping, and then
introduce adaptive robust clipping (i.e., ARC) along with its robustness guarantees.

For a clipping parameter C ∈ R+ and a vector x ∈ Rd, we denote clipC(x) := min
(
1, C

∥x∥

)
x. For

a set of n vectors x1, . . . , xn ∈ Rd, we denote ClipC(x1, . . . , xn) := (clipC(x1), . . . , clipC(xn)) .

Let F be an (f, κ)-robust aggregation. Given a set of n vectors x1, . . . , xn, let F ◦
ClipC(x1, . . . , xn) := F (ClipC(x1, . . . , xn)). We make the following observation.
Lemma 3.1. For any fixed C ∈ R+ and κ′ ≥ 0, F ◦ClipC is not (f, κ′)-robust.
Thus, if the clipping threshold is fixed, i.e., independent from the input vectors, pre-aggregation
clipping does not preserve the robustness of the original aggregation. This fragility of such static
clipping is also apparent in practice, as shown by our experimental study in Appendix F (and Figure 1).

Description of ARC. ARC is an adaptive clipping scheme that only makes use of the standard
robustness parameter f/n, i.e., the tolerable fraction of adversarial workers. ARC is adaptive in the
sense that the clipping threshold C is not fixed but depends on the input vectors. Specifically, ARC
clips the largest k = ⌊2(f/n)(n− f)⌋ vectors using a clipping parameter given by the norm of
the (k + 1)-th largest input vector. The overall scheme is formally presented in Algorithm 2, and
its computational complexity is O(nd + n log(n)) (see Appendix A). Thus, pre-composing more
computationally expensive schemes like NNM and multi-Krum, which have a complexity of O(dn2),
with ARC does not introduce a significant overhead.

Robustness Guarantee. We present below the preservation of robustness guaranteed by ARC. Let F
be an (f, κ)-robust aggregation rule and F ◦ARC(x1, . . . , xn) := F(ARC(x1, . . . , xn)) .

2Unifies (δmax, c)-robustness (Karimireddy et al., 2021) and (f, λ)-resilience (Farhadkhani et al., 2022).
3CWTM has been shown to be optimal even without NNM.
4For f = 0, Lemma 2.3 recovers the convergence of DGD, provided that κ is tight, i.e., κ ∈ O(f/(n−2f)).
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Algorithm 2 Adaptive Robust Clipping (ARC)

Input: f and x1, . . . , xn ∈ Rd.
Find a permutation π : [n] → [n] such that

∥∥xπ(1)

∥∥ ≥
∥∥xπ(2)

∥∥ . . . ≥ ∥∥xπ(n)

∥∥.

Set k =
⌊
2 f
n (n− f)

⌋
and C =

∥∥xπ(k+1)

∥∥.
Output: ClipC(x1, . . . , xn) .

Theorem 3.2. If F is (f, κ)-robust, then F ◦ARC is
(
f, κ+ 2f

n−2f

)
-robust.

Proofs for the results presented in this section are deferred to Appendix B. Since κ ≥ f
n−2f (recalled

in Section 2), Theorem 3.2 implies that F ◦ARC is (f, 3κ)-robust. In other words, ARC preserves
the robustness of the original aggregation scheme. Therefore, a convergence result for Robust-DGD
with ARC follows verbatim from Lemma 2.6, replacing κ with 3κ. Despite this multiplicative factor
of 3, we observe in the next section that incorporating ARC consistently improves the empirical
performance of classical aggregation methods. A more detailed theoretical explanation will be
provided later in Section 5.1.

4 EMPIRICAL EVALUATION

In this section, we delve into the practical performance of ARC when incorporated in Robust-DSGD
(Algorithm 3 in Appendix D), an order-optimal stochastic variant of Robust-DGD (Allouah et al.,
2023a). We conduct experiments on standard image classification tasks, covering different adversarial
scenarios. We empirically test four aggregation methods when pre-composed with ARC. We also
contrast these outcomes against the performance of Robust-DSGD when no gradient clipping is
used. Our findings underscore that clipping workers’ gradients using ARC prior to the aggregation is
crucial to ensure the robustness of existing algorithms, especially in extreme scenarios, i.e., when
either the data heterogeneity is high or the fraction of adversarial workers is large.
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(c) extreme heterogeneity
Figure 3: Performance of Robust-DSGD when using ARC and without clipping on MNIST. There
are 10 honest workers and f = 1 adversarial worker executing FOE (Xie et al., 2020).

We show in Table 1, and Figures 2a and 4, the metric of worst-case maximal accuracy. For each of
the five Byzantine attacks executed (see Appendix D.3), we record the maximal accuracy achieved by
Robust-DSGD during the learning procedure under that attack. The worst-case maximal accuracy
is thus the smallest maximal accuracy reached across the five attacks. As the attack cannot be
known in advance, this metric is critical to accurately evaluate the robustness of aggregation methods,
since it provides an estimate of the potential worst-case performance of the algorithm. Furthermore,
we use the Dirichlet (Hsu et al., 2019a) distribution of parameter α to simulate data heterogeneity.
The comprehensive experimental setup can be found in Appendix D. In this section, we focus on
presenting our results for the CWTM and GM aggregation methods applied to MNIST and CIFAR-10.
Results for Fashion-MNIST, as well as for the CWMed and MK aggregations, are provided in
Appendix E. All aggregation methods in our experiments are pre-composed with NNM (Allouah
et al., 2023a), but we omit explicit mention of NNM in their names throughout the text for simplicity.

ARC boosts robustness in high heterogeneity. Figure 3 shows the performance of Robust-DSGD
against the FOE attack when using ARC opposed to no clipping. In low heterogeneity (i.e., α = 0.5,
see Figure 7), the performances of ARC and no clipping are comparable for both aggregations.
When the heterogeneity increases (α = 0.1), the benefits of using ARC are more visible. CWTM
and GM significantly struggle to learn (with a very large variance), while the same aggregations
composed with ARC almost match the accuracy of DSGD towards the end of the training. In extreme
heterogeneity, the improvement induced by our method is the most pronounced, as ARC enables both
aggregations to reach a final accuracy close to 90%. Contrastingly, the same aggregations without
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(b) α = 0.5

Figure 4: Worst-case maximal accuracies achieved by Robust-DSGD, with and without ARC, on
heterogeneously-distributed MNIST with 10 honest workers. Left: f = 1 adversarial worker among
n = 11 for varying levels of heterogeneity. Right: α = 0.5 for varying f .

clipping stagnate at around 10% throughout the training. Interestingly, only f = 1 adversarial worker
among n = 11 (i.e., less than 10%) suffices to completely deteriorate the learning when no clipping
is applied, highlighting the necessity of ARC in extreme heterogeneity.

Varying heterogeneity for fixed f . Figure 4a compares the worst-case maximal accuracies achieved
by Robust-DSGD when f = 1, with ARC and without, for varying levels of heterogeneity. While
CWTM and GM yield comparable accuracies with ARC in low heterogeneity (α ≥ 0.5), their
performance significantly degrades when α drops below that threshold. Indeed, when α = 0.1, their
accuracies drop below 65%, while ARC enables the same aggregations to maintain their accuracy
at just below 98%. In extreme heterogeneity, the performance of the aggregations without clipping
completely deteriorates with accuracies close to 15%. Contrastingly, ARC efficiently mitigates the
Byzantine attacks, resulting in accuracies above 85% in the worst case for both aggregations. Similar
plots for f = 3, 5, 7 convey similar observations (see Appendix E.1). Essentially, in low heterogeneity
or when the fraction of adversarial workers is small, no clipping yields good empirical results and
ARC performs at least as well as no clipping. However, ARC induces a significant improvement near
the breakdown point of SOTA robust aggregation schemes (e.g., high heterogeneity or large f ).

ARC increases the breakdown point in adverse settings. Figure 2a of Section 1 shows that for
f ∈ {1, ..., 5}, Robust-DSGD with CWTM and GM completely fails to learn, consistently yielding
worst-case maximal accuracies close to 15%. This suggests that f = 1 constitutes the breakdown
point for these aggregations in extreme heterogeneity. However, composing them with ARC increases
the breakdown point of these aggregations to f = 3. Indeed, for f = 1 and 2, ARC enables
Robust-DSGD to achieve accuracies greater than 85% in the worst case. However, when f ≥ 3,
the performance degrades, although CWTM with ARC is still able to reach a satisfactory accuracy
close to 70%. Moreover, even when the heterogeneity is not large, ARC still produces a significant
improvement when the fraction of adversarial workers increases in the system. Indeed, in Figure 4b ,
the performances of ARC and no clipping are comparable for f ≤ 3. However, the improvement
induced by ARC is much more visible when f ≥ 5. Particularly when f = 7, ARC enables CWTM
and GM to reach accuracies greater than 80% in the worst case, whereas the same aggregations yield
accuracies below 40% without clipping . This observation indicates the raise of the breakdown point
due to ARC in practice. Plots for α = 0.1 and 1 convey the same observations in Appendix E.1.
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Figure 5: FOE on heterogeneous CIFAR-10 with
α = 0.075. f = 1 among n = 17.

Improved robustness on CIFAR-10. We also
conduct experiments on the more challenging
CIFAR-10 task with n = 17 and f = 1. Ta-
ble 2 shows the worst-case maximal accuracies
achieved by ARC and no clipping for four ro-
bust aggregations. For α = 0.2, ARC consis-
tently outputs accuracies greater than 67% for
all aggregations, while the same aggregations
without clipping yield lower accuracies (with a
larger variance across seeds). For instance, GM
achieves 41.2% on average, i.e., 26% less than
its counterpart with ARC. In the more heterogeneous setting α = 0.075, ARC enables all aggregations
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to reach worst-case maximal accuracies close to 60% (with a small variance). However, executing
the same methods without clipping significantly deteriorates the performance of Robust-DSGD, with
GM and CWMed achieving 16% and 13.7% in worst-case accuracy, respectively. This can also be
seen in Figure 5, where FOE completely degrades the learning when ARC is not used.

α = 0.2 α = 0.075
Aggregation No Clipping ARC No Clipping ARC

CWTM 51.6 ± 5.1 67.8 ± 0.9 40.7 ± 0.5 60.5 ± 1.2
GM 41.2 ± 3.5 67.0 ± 1.0 16.0 ± 2.3 60.0 ± 2.0

CWMed 43.4 ± 4.2 69.4 ± 0.8 13.7 ± 12.1 62.7 ± 1.2
MK 50.9 ± 5.1 68.7 ± 0.5 40.5 ± 0.7 59.9 ± 1.9

Table 1: Worst-case maximal accuracies (%) achieved by Robust-DSGD on heterogeneously-
distributed CIFAR-10 with ARC and without. There is f = 1 adversarial worker among n = 17. As
a baseline, DSGD (f = 0) reaches 76.5% and 70% when α = 0.2 and 0.075, respectively.

5 IMPROVED GUARANTEE OF ROBUST-DGD WITH ARC

In Section 4, we empirically demonstrated that ARC outperforms SOTA aggregation methods without
clipping, despite these methods being theoretically proven to be optimal. This naturally raises the
question: why does ARC, which shares similar convergence guarantees, significantly outperform
plain Robust-DSGD? To address this, we now focus on the influence of model initialization on the
robustness of aggregation methods, considering both theoretical results and empirical insights.

5.1 IMPROVEMENT OF CONVERGENCE GUARANTEES

In this section, we characterize the improvement of Robust-DGD with ARC over the lower bound
recalled in Lemma 2.3. Specifically, we consider Algorithm 1 with aggregation F ◦ARC, i.e., in
each learning step t, Rt := F ◦ ARC

(
g
(1)
t , . . . , g

(n)
t

)
. First, we establish in Lemma 5.1 a key

property of ARC, which is crucial for deriving the improved stationarity error of Robust-DGD with
ARC in Theorem 5.2.
Lemma 5.1 (Bounded Aggregation Output). Let F be an (f, κ)-robust aggregation method. For
any vectors x1, . . . , xn ∈ Rd and set S ⊂ [n] such that |S| = n− f , the following holds true:

∥F ◦ARC(x1, . . . , xn)∥ ≤ max
i∈S

∥xi∥ (1)

This result indicates that incorporating ARC bounds the norm of the aggregated output by the largest
norm of the honest gradients, i.e., maxi∈H ∥xi∥. In Appendix C, we provide the proof of Lemma 5.1
and further demonstrate in Lemma C.1 that this property is specific to ARC, i.e., classic (f, κ)-robust
aggregation methods do not inherently exhibit this behavior. This property enables us to obtain the
following improvement on the asymptotic convergence guarantee of Robust-DGD with ARC.

In the following, we show that when the local gradients of the honest workers at the initial model θ1
are sufficiently small, then Robust-DGD with ARC overcomes the lower bound recalled in 2.3. For
ease of presentation, we denote BP := 1

2+B2 , let

εo :=
1

4
· G2(f/n)

1− (2 +B2)(f/n)
, and Ψ(G,B, ρ) := 640

(
1 +

1

B2

)2(
1 +

B2ρ2

G2

)
,

where ρ denotes a real value. Recall from Lemma 2.3 that BP and εo are the breakdown point
and the lower bound on the stationarity error when f/n < BP, respectively, under (G,B)-gradient
dissimilarity. We obtain the following theorem for Robust-DGD with ARC. Let ∆o be a real value
such that LH(θ1)− L∗

H ≤ ∆o. The proof of Theorem 5.2 is deferred to Appendix C.
Theorem 5.2. Suppose B > 0 and there exists ζ ∈ R+ such that maxi∈H ∥∇Li(θ1)∥ ≤ ζ.
Let F ∈ {CWTM,CWMed,GM,MK} ◦ NNM , γ = min

{(
∆o

κG2

)
1
T ,

1
L

}
and T ≥ ∆oL

κG2 .

Consider an arbitrary real value ξo ∈ (0, 1). Let ρ := exp
(

(2+B2)∆o

(1−ξo)G2 L
)
ζ. For any υ ∈ (0, 1), if

f
n
:= (1− ξ)BP, where 0 < ξ ≤ min

{
υ

Ψ(G,B,ρ) , ξo

}
, then E

[∥∥∥∇LH

(
θ̂
)∥∥∥2] ≤ υ εo.
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Theorem 5.2 demonstrates that Robust-DGD with ARC improves over the lower bound εo when the
ratio f/n is sufficiently close to the breakdown point (BP), provided the local gradients at model
initialization are bounded. This, in turn, leads to an improvement over the original learning guarantee
of Robust-DGD (as stated in Lemma 2.6), which applies for arbitrary model initialization.

Influence of model initialization and data heterogeneity. Note that the smaller the bound on the
initial gradients (i.e., the better the model initialization), the greater the improvement induced by
ARC. Specifically, a decrease in ζ leads to a reduction in ρ, which subsequently lowers Ψ(G,B, ρ).
As a result, for a fixed value of ξ (i.e., for a fixed ratio of adversarial workers), the condition
ξ ≤ υ/Ψ(G,B, ρ) is satisfied for a smaller υ, thereby yielding a lower stationarity error. This
theoretical deduction is empirically validated in Section 5.2. A similar improvement occurs when
increasing data heterogeneity, while keeping all other factors unchanged. Specifically, as G increases,
Ψ(G,B, ρ) decreases, allowing for a smaller reduction factor υ and thus a larger improvement in
performance. This trend is also validated empirically in Figures 3 and 4a.

Influence of f/n. Additionally, for a fixed model initialization, an increase of f/n towards the BP
(i.e., as ξ → 0) allows the reduction factor υ to become smaller, leading to a greater improvement,
as evidenced in Figures 2a and 4b. Indeed, we show in Theorem C.4 (a more complete version
of Theorem 5.2) that ARC effectively increases the BP of (f, κ)-robust methods from 1

2+B2 to 1
2 ,

provided the initial honest gradients are bounded in norm. Lastly, we would like to recall that when
the workers’ gradients at model initialization are arbitrarily large, the convergence guarantee of
Robust-DGD with ARC reduces to that of classic Robust-DGD (see Section 3). In other words, there
is no downside to incorporating ARC.

5.2 INFLUENCE OF MODEL INITIALIZATION ON EMPIRICAL ROBUSTNESS
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Figure 6: Worst-case maximal accuracies achieved
by Robust-DSGD with CWTM, both with and
without ARC, on MNIST with α = 0.1, 10 honest
worker, and f = 1 Byzantine worker. The x-axis
represents settings with progressively worse model
initialization. This figure complements Figure 2b.

Figures 2b and 6 illustrate the effect of model ini-
tialization on the performance of Robust-DSGD
with and without ARC, evaluated on MNIST
with 10 honest workers. We investigate two
regimes of heterogeneity: extreme heterogene-
ity and α = 0.1, and consider f = 1 adversarial
worker. The experiment proceeds as follows:
we begin with the default model parameters ini-
tialized by PyTorch (i.e., the same ones used
in Section 4), which represent a well-chosen
set of initial parameters. These parameters are
then scaled multiplicatively by a factor µ where
larger values of µ correspond to progressively
worse initialization, and vary µ ∈ {1, ..., 5}.
The results show that, under well-initialized con-
ditions (µ = 1), ARC significantly enhances
the performance of Robust-DSGD, achieving
a substantial improvement in worst-case maxi-
mal accuracy, particularly under extreme hetero-
geneity. In this regime, ARC boosts accuracy
by about 70% compared to plain Robust-DSGD
(Figure 2b). This (µ = 1) corresponds to the initialization conditions of the empirical results presented
in Section 4. As µ increases (i.e., the initialization worsens), the performance of ARC-enhanced
Robust-DSGD gradually declines, with noticeable degradation starting from µ = 4. Nevertheless,
even at this point, ARC still offers a performance advantage over Robust-DSGD without clipping. By
µ = 5, the performance of Robust-DSGD with ARC converges to that of plain Robust-DSGD, both
achieving an accuracy of around 10%. Another key observation from Figures 2b and 6 is that the
behavior of Robust-DSGD with ARC closely mirrors that of Byzantine-free DSGD. Both exhibit
similarly poor performance when µ = 5, and their accuracies are comparable when µ ≤ 3, especially
when α = 0.1. This suggests that ARC is particularly effective at exploiting good model initializa-
tion, similar to the performance of DSGD in the absence of Byzantine workers. In contrast, plain
Robust-DSGD struggles to fully leverage well-initialized models, as evidenced by its consistently
lower accuracy (around 20%) in Figure 2b. These findings highlight the important influence of model
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initialization on the robustness of aggregation methods, and empirically validate our theoretical
findings in Section 5.1.

6 RELATED WORK

Gradient clipping is a well-known technique for tackling exploding gradients in deep learning (Good-
fellow et al., 2016). It has been extensively analyzed in the centralized setting (Zhang et al., 2020b;a;
Koloskova et al., 2023), with applications to differential privacy (Pichapati et al., 2019). Moreover,
we would like to note that gradient clipping has also been shown useful to obtain tighter convergence
guarantees for stochastic gradient-descent methods in the case where the gradients have heavy-tailed
noise Gorbunov et al. (2020; 2022); Danilova (2023). The considered proof techniques, however, do
not apply directly to our adversarial distributed learning setting. A similar study on the impact of
clipping also exists for distributed settings (Zhang et al., 2022; Khirirat et al., 2023).

In the context of robust distributed learning, prior work has proposed iterative clipping for robust
aggregation (Karimireddy et al., 2021). The clipping scheme, however, has not been shown to induce
any improvement over other SOTA robustness schemes. Recent work (Malinovsky et al., 2023) has
proposed pre-aggregation clipping using temporal gradient differences, in conjunction with variance
reduction, to tackle partial worker participation when adversarial workers can form a majority. We,
however, propose and study pre-aggregation clipping as a tool to improve the robustness obtained by
a general class of aggregation rules. Other prior work (Mhamdi et al., 2021; Farhadkhani et al., 2022;
Allouah et al., 2023a) that used static pre-aggregation clipping to enhance the empirical robustness of
Robust-DGD, did not provide any formal explanation.

While adaptive clipping schemes, similar to ARC, have been proposed and studied in the context
of robust aggregation (Gupta & Vaidya, 2020; Liu et al., 2021; Diakonikolas et al., 2020; Abdalla
& Zhivotovskiy, 2024), critical differences should be noted. The robustness guarantees in (Gupta
& Vaidya, 2020; Liu et al., 2021) only apply to strongly convex loss functions, under a specific
redundancy condition (namely, 2f -redundancy). We consider non-convex loss functions, as well as a
generic heterogeneous setting of (G,B)-gradient dissimilarity. In contrast to the clipping scheme
proposed in Diakonikolas et al. (2020); Abdalla & Zhivotovskiy (2024), ARC only uses the f/n
parameter to tune the clipping threshold and does not rely on any additional a priori knowledge of the
distribution of honest workers’ gradients. Moreover, we prove a deterministic robustness property of
ARC (see Theorem 3.2), whereas Diakonikolas et al. (2020); Abdalla & Zhivotovskiy (2024) only
provide probability guarantees assuming the non-adversarial inputs to be i.i.d. with the distribution
satisfying certain special properties.

7 CONCLUSION & DISCUSSION

We introduced Adaptive Robust Clipping (ARC), a pre-aggregation clipping scheme designed to
harness the empirical benefits of gradient clipping, while preserving the worst-case optimal conver-
gence guarantees of Robust-DGD. Unlike existing adaptive clipping schemes, ARC does not require
additional tuning since it only relies on the standard robustness parameter, i.e., the tolerable fraction
of adversarial workers. Through theoretical analysis, we explained ARC’s ability to enhance the
robustness of Robust-DGD, particularly when the model is well-initialized. This phenomenon was
validated through comprehensive experiments on standard image classification datasets. In short, our
experiments showed that ARC consistently boosts the performance of Robust-DGD, especially in
scenarios with high heterogeneity and large fraction of adversarial workers.

Future direction. Our work also reveals a gap between theory and practice in Byzantine machine
learning (ML). While Robust-DGD and ARC-enhanced Robust-DGD share the same worst-case con-
vergence guarantees, their empirical performances are drastically different. In fact, and unsurprisingly,
Byzantine ML theory focuses on worst-case guarantees, which, although essential, may not fully
capture the practical realities of many learning settings. In practice, we often operate under favorable
conditions (e.g., well-initialized models), where worst-case guarantees have limited relevance. This
gap opens the door for future work that prioritizes practically-driven research in Byzantine ML,
under conditions that are realizable in real-world scenarios. It encourages the development of robust
distributed learning methods, like ARC, that can take full advantage of favorable practical conditions,
thereby yielding relevant theoretical guarantees and superior empirical performance.
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A COMPUTATIONAL COMPLEXITY OF ARC.

The algorithm starts by computing the norms of all input vectors, which takes O(nd) time. Note that
this step is also required for static clipping. The sorting operation of the norms takes O(n log(n))
time. Note that if n is large compared to k = ⌊2(f/n)(n− f)⌋, one can use more efficient algorithms
for finding the (k + 1)-th largest element, such as quick-select Hoare (1961) which has an average-
case complexity of O(n). Finally, clipping the vectors requires O(nd) time. Therefore, the total
complexity of ARC is O(nd+ n log(n)). Overall, the complexity is comparable to static clipping,
given that the sorting (or search) is crucially dimension independent.

B PROOFS FOR RESULTS IN SECTION 3

Proofs for Lemma 3.1 and Theorem 3.2 are presented in B.1 and B.2, respectively.

Notation Let n ∈ N∗. Given vectors x1, . . . , xn ∈ Rd and a set S ⊆ [n], we denote by xS the mean
of the vectors in S xS = 1

|S|
∑

i∈S xi. Given a clipping parameter C ≥ 0, let

yi := clipC(xi) = min

(
1,

C

∥xi∥

)
xi,

and

yS :=
1

|S|
∑
i∈S

yi.

We denote by Sc the set of clipped vectors in S,

Sc := {i ∈ S, ∥xi∥ > C}. (2)

Recall that we denote by ClipC be the operator such that, for x1, . . . , xn ∈ Rd

ClipC(x1, . . . , xn) := (clipC(x1), . . . , clipC(xn)) .

Further, let F : Rn×d → Rd. We denote by F ◦ClipC the aggregation rule that first clips the input
vectors using parameter C, and then aggregates them using F

F ◦ClipC(x1, . . . , xn) := F(ClipC(x1, . . . , xn)) .

B.1 PROOF OF LEMMA 3.1

Lemma 3.1. For any fixed C ∈ R+ and κ′ ≥ 0, F ◦ClipC is not (f, κ′)-robust.
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Proof. We use reasoning by contradiction to prove the lemma.

We first consider the case when C > 0. Let S := {1, . . . , n − f}. Consider an arbitrary set of n
vectors x1, . . . , xn in Rd such that x1 = . . . = xn−f = xS and ∥xS∥ = 2C. We assume that that
F ◦ClipC is (f, κ′)-robust for some κ′ ≥ 0. This assumption implies that

∥F ◦ClipC(x1, . . . , xn)− xS∥2 ≤ κ′

|S|
∑
i∈S

∥xi − xS∥2 = 0. (3)

Therefore,
F ◦ClipC(x1, . . . , xn) = xS .

However, the clipping operation results in clipC(x1) = . . . = clipC(xn−f ) =
1
2xS . Therefore, by

(f, κ)-robustness of F,

F ◦ClipC(x1, . . . , xn) = F

(
1

2
xS , . . . ,

1

2
xS , clipC(xn−f+1), . . . , clipC(xn)

)
=

1

2
xS .

This contradicts (3). As this contradiction holds for any value of κ′, F ◦ClipC cannot be (f, κ′)-
robust for any κ′.

The proof for the case when C = 0 is similar to the above, where we choose x1 = . . . = xn−f = xS

such that xS is any vector with strictly positive norm.

B.2 PROOF OF THEOREM 3.2

Our proof relies on the following lemma, proof of which is deferred to B.2.1.
Lemma B.1. Let C ∈ R+ and F be an (f, κ)-robust aggregation rule. Consider an arbitrary set of
n vectors x1, x2, . . . , xn ∈ Rd and an arbitrary S ⊆ [n] with |S| = n− f . Let Sc denote the set of
indices of clipped vectors in S, i.e., Sc := {i ∈ S, ∥xi∥ > C}. If |S \ Sc| ≥ 1, then

∥F ◦ClipC(x1, . . . , xn)− xS∥2 ≤ κ̃

|S|
∑
i∈S

∥xi − xS∥2 ,

where κ̃ = κ+ |Sc|
|S\Sc| .

Lemma B.1 shows that F ◦ClipC is (f, κ̃)-robust, provided that |S \ Sc| ≥ 1 for all subsets S of
size n− f . Note that this condition is impossible to guarantee when using a fixed clipping threshold
that does not depend on the input vectors. In order to ensure that |S \ Sc| ≥ 1 for all subsets S of
size n− f , the clipping threshold C should be large enough such that less than n− f input vectors
are clipped. By construction, ARC satisfies the condition of Lemma B.1. This brings us to the proof
of Theorem 3.2, which we recall below for convenience.

Theorem 3.2. If F is (f, κ)-robust, then F ◦ARC is
(
f, κ+ 2f

n−2f

)
-robust.

Proof. Since we clip the largest ⌊2(f/n)(n− f)⌋ gradients, for a given S ⊆ [n] with |S| = n− f
we have

|Sc| ≤ ⌊2(f/n)(n− f)⌋ ≤ 2(f/n)(n− f).

Therefore,

|S \ Sc| = |S| − |Sc| ≥ (n− f)− 2f

n
(n− f) = (n− f)

n− 2f

n
.

Since it is assumed that f < n/2, we have

|S \ Sc| >
(
n− n

2

) n− n

n
= 0.

Thus, the condition |S \ Sc| ≥ 1 is always verified. Hence, from Lemma B.1 we obtain that F◦ARC

is
(
f,
(
κ+ |Sc|

|S\Sc|

))
-robust where

|Sc|
|S \ Sc|

≤ 2(f/n)(n− f)

(n− f)n−2f
n

=
2f

n− 2f
.

This concludes the proof.
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B.2.1 PROOF OF LEMMA B.1

We start by giving bounds on the variance (Lemma B.2) and the bias (Lemma B.3 and Lemma B.4)
due to the clipping operation. We combine these bounds to prove the theorem.

VARIANCE REDUCTION DUE TO CLIPPING

We start by giving a bound on the variance of the clipped vectors. Recall from (2) that Sc := {i ∈
S, ∥xi∥ > C}.

Lemma B.2. Let C ≥ 0, n > 0 and f < n
2 . For all S ⊆ [n] with |S| = n− f , the following holds

true:

1. If ∥xS∥ ≤ C then

1

|S|
∑
i∈S

∥yi − yS∥
2 ≤ 1

|S|
∑
i∈S

∥xi − xS∥2 −
1

|S|
∑
i∈Sc

(∥xi∥ − C)2.

2. If ∥xS∥ > C then

1

|S|
∑
i∈S

∥yi − yS∥
2 ≤ 1

|S|
∑
i∈S

∥xi − xS∥2 −
|S \ Sc|
|S|

(∥xS∥ − C)2 − 1

|S|
∑
i∈Sc

(∥xi∥ − ∥xS∥)2.

Proof. Note that

1

|S|
∑
i∈S

∥yi − yS∥
2
=

1

|S|
∑
i∈S

∥yi − xS + xS − yS∥
2

=
1

|S|
∑
i∈S

(
∥yi − xS∥2 + ∥xS − yS∥

2
+ 2⟨yi − xS , xS − yS⟩

)
=

1

|S|
∑
i∈S

∥yi − xS∥2 + ∥xS − yS∥
2
+ 2

〈
1

|S|
∑
i∈S

yi︸ ︷︷ ︸
yS

−xS , xS − yS

〉

=
1

|S|
∑
i∈S

∥yi − xS∥2 + ∥xS − yS∥
2 − 2 ⟨xS − yS , xS − yS⟩

=
1

|S|
∑
i∈S

∥yi − xS∥2 − ∥xS − yS∥
2
. (4)

By the definition of Sc (in (2)), for all i ∈ S \ Sc, yi = xi. Therefore,

1

|S|
∑
i∈S

∥yi − xS∥2 =
1

|S|
∑

i∈S\Sc

∥yi − xS∥2 +
1

|S|
∑
i∈Sc

∥yi − xS∥2

=
1

|S|
∑

i∈S\Sc

∥xi − xS∥2 +
1

|S|
∑
i∈Sc

∥yi − xS∥2 .

The above can be written as

1

|S|
∑
i∈S

∥yi − xS∥2 =
1

|S|
∑
i∈S

∥xi − xS∥2 +
1

|S|
∑
i∈Sc

(∥yi − xS∥2 − ∥xi − xS∥2). (5)
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For i ∈ Sc, we have yi =
C

∥xi∥xi. Thus, for all i ∈ Sc, we obtain that

∥yi − xS∥2 − ∥xi − xS∥2 = ∥yi∥2︸ ︷︷ ︸
=C2

+ ∥xS∥2 − 2⟨yi, xS⟩ − ∥xi∥2 − ∥xS∥2 + 2⟨xi, xS⟩

= C2 − ∥xi∥2 + 2

(
1− C

∥xi∥

)
⟨xi, xS⟩

= −(∥xi∥ − C)(∥xi∥+ C) + 2(∥xi∥ − C)
⟨xi, xS⟩
∥xi∥

= (∥xi∥ − C)

(
2
⟨xi, xS⟩
∥xi∥

− ∥xi∥ − C

)
.

By Cauchy-Schwarz inequality, we have ⟨xi, xS⟩ ≤ ∥xi∥ ∥xS∥ Therefore,

∥yi − xS∥2 − ∥xi − xS∥2 ≤ (∥xi∥ − C) (2 ∥xS∥ − ∥xi∥ − C) .

Substituting from the above in (5), we obtain that

1

|S|
∑
i∈S

∥yi − xS∥2 ≤ 1

|S|
∑
i∈S

∥xi − xS∥2 +
1

|S|
∑
i∈Sc

(∥xi∥ − C) (2 ∥xS∥ − ∥xi∥ − C) .

Substituting from the above in (4), we obtain that

1

|S|
∑
i∈S

∥yi − yS∥
2 ≤ 1

|S|
∑
i∈S

∥xi − xS∥2 +
1

|S|
∑
i∈Sc

(∥xi∥ − C) (2 ∥xS∥ − ∥xi∥ − C)− ∥xS − yS∥
2
.

(6)

We now consider below the two cases: ∥xS∥ ≤ C and ∥xS∥ > C.

In the first case, i.e,. when ∥xS∥ ≤ C, we have

1

|S|
∑
i∈Sc

(∥xi∥ − C) (2 ∥xS∥ − ∥xi∥ − C) ≤ 1

|S|
∑
i∈Sc

(∥xi∥ − C) (2C − ∥xi∥ − C)

≤ − 1

|S|
∑
i∈Sc

(∥xi∥ − C)2.

Substituting from the above in (6) yields the following

1

|S|
∑
i∈S

∥yi − yS∥
2 ≤ 1

|S|
∑
i∈S

∥xi − xS∥2 −
1

|S|
∑
i∈Sc

(∥xi∥ − C)2 − ∥xS − yS∥
2

≤ 1

|S|
∑
i∈S

∥xi − xS∥2 −
1

|S|
∑
i∈Sc

(∥xi∥ − C)2.

This proves the first part of the lemma.

Consider the second case, i.e., ∥xS∥ > C. Note that

1

|S|
∑
i∈Sc

(∥xi∥ − C) (2 ∥xS∥ − ∥xi∥ − C) =
1

|S|
∑
i∈Sc

(
(∥xS∥ − C)2 − (∥xi∥ − ∥xS∥)2

)
=

|Sc|
|S|

(∥xS∥ − C)2 − 1

|S|
∑
i∈Sc

(∥xi∥ − ∥xS∥)2. (7)

Since ∥xS∥ > C, and ∥yS∥ ≤ C, we have ∥xS∥ − ∥yS∥ ≥ ∥xS∥ − C ≥ 0 . This, in conjunction
with the reverse triangle inequality, implies that

∥xS − yS∥
2 ≥ (∥xS∥ − ∥yS∥)

2 ≥ (∥xS∥ − C)2. (8)
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Substituting from (7) and (8) in (6) yields the following:

1

|S|
∑
i∈S

∥yi − yS∥
2 ≤ 1

|S|
∑
i∈S

∥xi − xS∥2 +
|Sc|
|S|

(∥xS∥ − C)2 − 1

|S|
∑
i∈Sc

(∥xi∥ − ∥xS∥)2 − (∥xS∥ − C)2

≤ 1

|S|
∑
i∈S

∥xi − xS∥2 +
(
|Sc|
|S|

− 1

)
(∥xS∥ − C)2 − 1

|S|
∑
i∈Sc

(∥xi∥ − ∥xS∥)2

=
1

|S|
∑
i∈S

∥xi − xS∥2 −
|S \ Sc|
|S|

(∥xS∥ − C)2 − 1

|S|
∑
i∈Sc

(∥xi∥ − ∥xS∥)2.

This proves the second part, which concludes the proof of the lemma.

BIAS DUE TO CLIPPING

We now bound the bias induced by clipping the input vectors.
Lemma B.3. Let C ≥ 0, n > 0, f < n

2 , and S ⊆ [n], |S| = n− f . Then,

∥xS − yS∥
2 ≤ |Sc|

|S|2
∑
i∈Sc

(∥xi∥ − C)2.

Proof. Note that

∥xS − yS∥
2
=

∥∥∥∥∥ 1

|S|
∑
i∈S

xi −
1

|S|
∑
i∈S

yi

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

|S|
∑
i∈S

(xi − yi)

∥∥∥∥∥
2

.

As xi = yi for all i ∈ S \ Sc, we have

∥xS − yS∥
2
=

1

|S|2

∥∥∥∥∥∑
i∈Sc

(xi − yi)

∥∥∥∥∥
2

.

Due to Jensen’s inequality,

∥xS − yS∥
2
=

|Sc|2

|S|2

∥∥∥∥∥ 1

|Sc|
∑
i∈Sc

(xi − yi)

∥∥∥∥∥
2

≤ |Sc|
|S|2

∑
i∈Sc

∥xi − yi∥2 .

As yi = C
∥xi∥xi for all i ∈ Sc, substituting this in the above proves the lemma.

We now show that the bias is upper bounded by a multiplicative factor of the variance of the input
vectors, as long as there is at least one unclipped honest vector.
Lemma B.4 (Bias due to clipping). C ≥ 0, n > 0, f < n/2, and S ⊆ [n], |S| = n − f , if
|S \ Sc| ≥ 1 then

∥xS − yS∥
2 ≤ |Sc|

|S \ Sc|
1

|S|
∑
i∈S

∥xi − xS∥2 .

Proof. We assume throughout the proof that |Sc| > 0. Otherwise, if |Sc| = 0, the bias is 0 and the
statement is trivially true.

By Lemma B.3, we have

∥xS − yS∥
2 ≤ |Sc|

|S|2
∑
i∈Sc

(∥xi∥ − C)2. (9)

We distinguish two cases: ∥xS∥ ≤ C and ∥xS∥ > C. In the first case we have that

0 ≤ ∥xi∥ − C ≤ ∥xi∥ − ∥xS∥ .
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Substituting the above in (9), we find

∥xS − yS∥
2 ≤ |Sc|

|S|2
∑
i∈Sc

(∥xi∥ − ∥xS∥)2 ≤ |Sc|
|S|2

∑
i∈S

(∥xi∥ − ∥xS∥)2.

Using the reverse triangle inequality, we have that (∥xi∥ − ∥xS∥)2 ≤ ∥xi − xS∥2. This implies that

∥xS − yS∥
2 ≤ |Sc|

|S|2
∑
i∈S

(∥xi∥ − ∥xS∥)2 ≤ |Sc|
|S \ Sc|

1

|S|
∑
i∈S

∥xi − xS∥2 .

This proves the result for the first case.

Consider now the second case, i.e ∥xS∥ > C. Noting that we assume that |S \ Sc| ≥ 1 and using
Young’s inequality with c = |Sc|

|S\Sc| , we find, for any i ∈ Sc,

(∥xi∥ − C)2 = (∥xi∥ − ∥xS∥+ ∥xS∥ − C)2

≤ (1 + c)(∥xi∥ − ∥xS∥)2 + (1 + 1/c)(∥xS∥ − C)2)

=
|Sc|+ |S \ Sc|

|S \ Sc|
(∥xi∥ − ∥xS∥)2 +

|Sc|+ |S \ Sc|
|Sc|

(∥xS∥ − C)2.

Recall from (2) that Sc := {i ∈ S, ∥xi∥ > C}. This implies that |Sc|+ |S \ Sc| = |S|. Therefore

(∥xi∥ − C)2 ≤ |S|
(

1

|S \ Sc|
(∥xi∥ − ∥xS∥)2 +

1

|Sc|
(∥xS∥ − C)2

)
. (10)

Substituting (10) in (9), we find

∥xS − yS∥
2 ≤ |Sc|

|S|2
∑
i∈Sc

|S|
(

1

|S \ Sc|
(∥xi∥ − ∥xS∥)2 +

1

|Sc|
(∥xS∥ − C)2

)

=
|Sc|
|S|

(
1

|S \ Sc|
∑
i∈Sc

(∥xi∥ − ∥xS∥)2 + (∥xS∥ − C)2

)
. (11)

Since ∥xS∥ > C, we have for any i ∈ S \ Sc

0 ≤ ∥xS∥ − C ≤ ∥xS∥ − ∥xi∥ .

Therefore

|S \ Sc| (∥xS∥ − C)2 ≤
∑

i∈S\Sc

(∥xS∥ − ∥xi∥)2

Which gives the bound

(∥xS∥ − C)2 ≤ 1

|S \ Sc|
∑

i∈S\Sc

(∥xS∥ − ∥xi∥)2. (12)

Substituting (12) in (11), we find

∥xS − yS∥
2 ≤ |Sc|

|S|

 1

|S \ Sc|
∑
i∈Sc

(∥xi∥ − ∥xS∥)2 +
1

|S \ Sc|
∑

i∈S\Sc

(∥xi∥ − ∥xS∥)2


=
|Sc|

|S \ Sc|
1

|S|
∑
i∈S

(∥xi∥ − ∥xS∥)2 ≤ |Sc|
|S \ Sc|

1

|S|
∑
i∈S

∥xi − xS∥2 .

This proves the result for the second case and concludes the proof.
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PROOF OF LEMMA B.1

Let us recall the lemma below.
Lemma B.1. Let C ∈ R+ and F be an (f, κ)-robust aggregation rule. Consider an arbitrary set of
n vectors x1, x2, . . . , xn ∈ Rd and an arbitrary S ⊆ [n] with |S| = n− f . Let Sc denote the set of
indices of clipped vectors in S, i.e., Sc := {i ∈ S, ∥xi∥ > C}. If |S \ Sc| ≥ 1, then

∥F ◦ClipC(x1, . . . , xn)− xS∥2 ≤ κ̃

|S|
∑
i∈S

∥xi − xS∥2 ,

where κ̃ = κ+ |Sc|
|S\Sc| .

Proof. We assume throughout the proof that |Sc| > 0. Otherwise, the statement is trivially true
by (f, κ)-robustness of F and the fact that the vectors in S remain unchanged after the clipping
operation.

Consider first the case κ = 0. Since κ ≥ f
n−2f

5, we have that f = 0. Recall that we denote
yi := clipC(xi) and yS := 1

|S|
∑

i∈S yi. Since κ = 0, the output of F will correspond to the average
of its input, which implies that

∥F ◦ClipC(x1, . . . , xn)− yS∥
2
= ∥F(y1, . . . , yn)− yS∥

2
= 0.

Therefore

F ◦ClipC(x1, . . . , xn) = yS .

We find then

∥F ◦ClipC(x1, . . . , xn)− xS∥2 = ∥yS − xS∥2 .

The result for the case κ = 0 follows from lemma B.4.

Suppose now that κ > 0. Using Young’s inequality with c = |Sc|
κ|S\Sc| we find

∥F ◦ClipC(x1, . . . , xn)− xS∥2 = ∥F ◦ClipC(x1, . . . , xn)− yS + yS − xS∥2

≤ (1 + c) ∥F ◦ClipC(x1, . . . , xn)− yS∥
2
+

(
1 +

1

c

)
∥xS − yS∥

2
.

(13)

On the one hand, by (f, κ)-robustness of F, we have

(1 + c) ∥F ◦ClipC(x1, . . . , xn)− yS∥
2
= (1 + c) ∥F(y1, . . . , yn)− yS∥

2

≤ (1 + c)
κ

|S|
∑
i∈S

∥yi − yS∥
2

=

(
κ+

|Sc|
|S \ Sc|

)
1

|S|
∑
i∈S

∥yi − yS∥
2
. (14)

On the other hand, we have

(1 + 1/c) ∥xS − yS∥
2
=

(
1 +

κ |S \ Sc|
|Sc|

)
∥xS − yS∥

2
=

(
κ+

|Sc|
|S \ Sc|

)
|S \ Sc|
|Sc|

∥xS − yS∥
2
.

(15)

Substituting (14) and (15) in (13) we obtain that

∥F ◦ClipC(x1, . . . , xn)− xS∥2 ≤
(
κ+

|Sc|
|S \ Sc|

)(
1

|S|
∑
i∈S

∥yi − yS∥
2
+

|S \ Sc|
|Sc|

∥xS − yS∥
2

)
.

(16)

5Proposition 6, Allouah et al. (2023a)
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We consider below the two cases ∥xS∥ ≤ C and ∥xS∥ > C separately.

In the first case, we use the the first part of lemma B.2 and lemma B.3 to obtain that

1

|S|
∑
i∈S

∥yi − yS∥
2
+

|S \ Sc|
|S|

∥xS − yS∥
2

≤ 1

|S|
∑
i∈S

∥xi − xS∥2 −
1

|S|
∑
i∈Sc

(∥xi∥ − C)2 +
|S \ Sc|
|S|

1

|S|
∑
i∈Sc

(∥xi∥ − C)2

=
1

|S|
∑
i∈S

∥xi − xS∥2 −
|Sc|
|S|

1

|S|
∑
i∈S

(∥xi∥ − C)2 ≤ 1

|S|
∑
i∈S

∥xi − xS∥2 .

This proves the result for this case.

Consider the second case, i.e ∥xS∥ > C. Following the proof of corollary B.4 until (11) we have

∥xS − yS∥
2 ≤ |Sc|

|S|

(
1

|S \ Sc|
∑
i∈Sc

(∥xi∥ − ∥xS∥)2 + (∥xS∥ − C)2

)
.

Therefore,

|S \ Sc|
|Sc|

∥xS − yS∥
2 ≤ |S \ Sc|

|S|

(
1

|S \ Sc|
∑
i∈Sc

(∥xi∥ − ∥xS∥)2 + (∥xS∥ − C)2

)

≤ 1

|S|
∑
i∈Sc

(∥xi∥ − ∥xS∥)2 +
|S \ Sc|
|S|

(∥xS∥ − C)2.

Using the above in conjunction with lemma B.2 for the case ∥xS∥ > C in (16) proves the result for
the second case, which concludes the proof.

C PROOFS OF THE RESULTS IN SECTION 5

In this section, we first prove the Bounded Aggregation Output property of ARC in Lemma 5.1,
and show that the other SOTA aggregation rules do not satisfy it in Lemma C.1. Then, to prove
Theorem 5.2, we first prove Lemma C.2. We assume throughout this appendix that for any set of
vectors x1, . . . , xn ∈ Rd, ∥F (x1, . . . , xn)∥ ≤ maxi∈[n] ∥xi∥. This assumption can be made without
loss of generality, see Appendix C.1.
Lemma 5.1 (Bounded Aggregation Output). Let F be an (f, κ)-robust aggregation method. For
any vectors x1, . . . , xn ∈ Rd and set S ⊂ [n] such that |S| = n− f , the following holds true:

∥F ◦ARC(x1, . . . , xn)∥ ≤ max
i∈S

∥xi∥ (1)

Proof. Without loss of generality and for the sake of simplicity, let us suppose that the vec-
tors x1, . . . , xn are indexed such that ∥x1∥ ≥ ∥x2∥ ≥ · · · ≥ ∥xn∥. Let (x̃1, . . . , x̃n) =
ARC(x1, . . . , xn) be the clipped version of these vectors after applying ARC.

Case 1: When f = 0, S = [n] and we clip all the vectors by ∥x1∥ = maxi∈S ∥xi∥, hence
for any j, ∥x̃j∥ ≤ maxi∈S ∥xi∥. Using the fact that for any set of vectors x1, . . . , xn ∈ Rd,
∥F (x1, . . . , xn)∥ ≤ maxi∈[n] ∥xi∥, we have

∥F ◦ARC(x1, . . . , xn)∥ = ∥F(x̃1, . . . , x̃n)∥ ≤ max
j∈[n]

∥x̃j∥ ≤ max
i∈S

∥xi∥ . (17)

Case 2: When 0 < f < n
2 , as presented in Algorithm 2, ARC clips all the vectors x1, . . . , xn to

∥xk+1∥ where k = ⌊2 f
n (n− f)⌋. Hence, for any j ∈ [n],

∥x̃j∥ ≤ ∥xk+1∥ . (18)
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We have that k + 1 = ⌊2 f
n (n− f)⌋+ 1 ≥ 2 f

n (n− f).

One can show that

2f

n
(n− f)− f = f(1− 2f

n
)

> 0, ∀f ∈
]
0,

n

2

[
(19)

Hence, 2f
n (n− f) > f , which gives k+1 > f , and since k+1 is an integer, we have k+1 ≥ f +1.

Hence we know that at least f + 1 vectors have their norm greater or equal to the clipping threshold
C = ∥xk+1∥,

∥x1∥ ≤ · · · ≤ ∥xk+1∥︸ ︷︷ ︸
at least f + 1 vectors

≤ ∥xk+2∥ ≤ · · · ≤ ∥xn∥︸ ︷︷ ︸
at most n − f − 1 vectors

Hence, at most n− f − 1 vectors will not be clipped. For any subset of S ⊂ [n] of size n− f , at
least one of the vectors has its norm equal to the clipping threshold (i.e. maxi∈S ∥xi∥ = ∥xk+1∥) or
will be clipped (i.e. maxi∈S ∥xi∥ > ∥xk+1∥). Hence, we have that

max
i∈S

∥xi∥ ≥ ∥xk+1∥ . (20)

Combining (18) and (20), we have that for all j ∈ [n],

∥x̃j∥ ≤ max
i∈S

∥xi∥ .

Using the fact that for any set of vectors x1, . . . , xn ∈ Rd, ∥F (x1, . . . , xn)∥ ≤ maxi∈[n] ∥xi∥, we
have

∥F ◦ARC(x1, . . . , xn)∥ = ∥F(x̃1, . . . , x̃n)∥ ≤ max
j∈[n]

∥x̃j∥ ≤ max
i∈S

∥xi∥ . (21)

Lemma C.1. For any aggregation rule F ∈ {CWTM,CWMed,GM,MK,CWTM◦NNM,
CWMed◦NNM,GM◦NNM,MK◦NNM}, there exists f ∈ [0, n

2 ), a set of vectors x1, . . . , xn

and a subset S ⊂ [n], |S| = n− f such that

F(x1, . . . , xn) ≰ max
i∈S

∥xi∥ (22)

Proof. Let us consider (x1, x2, x3) = ((0, 1), (1, 0), (1, 1)), and S = {x1, x2},

For F ∈ {CWTM,CWMed,GM}, we have ∥F(x1, x2, x3)∥ = ∥(1, 1)∥ =
√
2 >

maxi∈S ∥xi∥ = ∥x1∥ = 1.

For F ∈ {MK,CWTM ◦NNM,CWMed ◦NNM,GM ◦NNM,MK ◦NNM}, we have
∥F(x1, x2, x3)∥ = ∥(0.5, 1)∥ =

√
1.25 > maxi∈S ∥xi∥ = ∥x1∥ = 1.

Lemma C.2. Let F be (f, κ)-robust. Let ∆o and ρ be real values such that LH(θ1) − L∗
H ≤ ∆o

and maxi∈H ∥∇Li(θ1)∥ ≤ exp
(
− ∆o

κG2L
)
ρ. If γ = min

{(
∆o

κG2

)
1
T ,

1
L

}
, then

1

T

T∑
t=1

∥∇LH(θt)∥
2 ≤ 2∆oL

T
+ 5κ

(
G2 +B2ρ2

)
.

Our proof for Lemma C.2 relies on the following sub-result.

Lemma C.3. For all t ∈ [T ], we obtain that

max
i∈H

∥∇Li(θt)∥ ≤ exp (γLT ) max
i∈H

∥∇Li(θ1)∥ .
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Proof. Consider an arbitrary t ∈ [T ]. Let (x1, . . . , xn) := ARC
(
g
(1)
t , . . . , g

(n)
t

)
. As n > 2f and

|H| = n− f , the clipping threshold C used in ARC (see Algorithm 2) is bounded by maxi∈H

∥∥∥g(i)t

∥∥∥
(see (20) in Lemma 5.1). Therefore,

max
i∈[n]

∥xi∥ ≤ max
i∈H

∥∥∥g(i)t

∥∥∥ = max
i∈H

∥∇Li(θt)∥ . (23)

Since for any set of n vectors z1, . . . , zn ∈ Rd, ∥F (z1, . . . , zn)∥ ≤ maxi∈[n] ∥zi∥, from (23) we
obtain that

∥Rt∥ =
∥∥∥F ◦ARC

(
g
(1)
t , . . . , g

(n)
t

)∥∥∥ ≤ max
i∈[n]

∥xi∥ ≤ max
i∈H

∥∇Li(θt)∥ .

Recall that θt+1 := θt − γRt. Thus, from above we obtain that∥∥θt+1 − θt
∥∥ ≤ γ max

i∈H
∥∇Li(θt)∥ . (24)

Due to L-Lipschitz smoothness of Li(θ) for all i ∈ H, the above implies that∥∥∇Li(θt+1)−∇Li(θt)
∥∥ ≤ γL max

i∈H
∥∇Li(θt)∥ , ∀i ∈ H.

This, in conjunction with the triangle inequality, implies that∥∥∇Li(θt+1)
∥∥ ≤ ∥∇Li(θt)∥+ γL max

i∈H
∥∇Li(θt)∥ , ∀i ∈ H.

Therefore,

max
i∈H

∥∥∇Li(θt+1)
∥∥ ≤ max

i∈H
∥∇Li(θt)∥+ γLmax

i∈H
∥∇Li(θt)∥ = (1 + γL)max

i∈H
∥∇Li(θt)∥ .

As t was chosen arbitrarily from [T ], the above holds true for all t ∈ [T ]. For an arbitrary τ ∈ [T ],
using the inequality recursively for t = τ, . . . , 1 we obtain that

max
i∈H

∥∥∇Li(θτ+1)
∥∥ ≤ (1 + γL)

τ
max
i∈H

∥∇Li(θ1)∥ ≤ (1 + γL)
T
max
i∈H

∥∇Li(θ1)∥ .

Since (1 + γL)
T ≤ exp (γLT ), the above concludes the proof.

We are now ready to present our proof of Lemma C.2.

Proof of Lemma C.2. For simplicity, we write LH as L throughout the proof.

Consider an arbitrary t ∈ [T ]. Due to L-Lipschitz smoothness of L(θ), we obtain that

L(θt+1) ≤ L(θt) +
〈
θt+1 − θt, ∇L(θt)

〉
+

L

2

∥∥θt+1 − θt
∥∥2 .

Substituting θt+1 = θt − γRt, and using the identity: 2 ⟨a, b⟩ = ∥a∥2 + ∥b∥2 −∥a− b∥2, we obtain
that

L(θt+1) ≤ L(θt)−
γ

2
∥∇L(θt)∥

2
+

γ

2
∥Rt −∇L(θt)∥

2 − γ

2
(1− γL) ∥Rt∥2 .

Since γ ≤ 1
L , (1− γL) ≥ 0. Therefore, from above we obtain that

L(θt+1) ≤ L(θt)−
γ

2
∥∇L(θt)∥

2
+

γ

2
∥Rt −∇L(θt)∥

2
.

Recall that t is chosen arbitrarily from [T ]. Thus, the above holds true for all t ∈ [T ]. Taking
summation on both sides from t = 1 to t = T we obtain that

γ

2

T∑
t=1

∥∇L(θt)∥
2 ≤ L(θt)− L(θT+1) +

γ

2

T∑
t=1

∥Rt −∇L(θt)∥
2
.
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Multiplying both sides by 2/(γT ) we obtain that

1

T

T∑
t=1

∥∇L(θt)∥
2 ≤

2
(
L(θ1)− L(θT+1)

)
γT

+
1

T

T∑
t=1

∥Rt −∇L(θt)∥
2
.

Note that L(θ1) − L(θT+1) = L(θ1) − L∗ −
(
L(θT+1)− L∗) ≤ L(θ1) − L∗ ≤ ∆o. Using this

above we obtain that

1

T

T∑
t=1

∥∇L(θt)∥
2 ≤ 2∆o

γT
+

1

T

T∑
t=1

∥Rt −∇L(θt)∥
2
.

Recall, by Theorem 3.2, that F ◦ ARC is (f, 3κ)-robust. Therefore, by Definition 2.4,
∥Rt −∇L(θt)∥

2 ≤ 3κ
|H|
∑

i∈H ∥∇Li(θt)−∇L(θt)∥
2 for all t. Using this above we obtain that

1

T

T∑
t=1

∥∇L(θt)∥
2 ≤ 2∆o

γT
+

3κ

T

T∑
t=1

1

|H|
∥∇Li(θt)−∇L(θt)∥

2
. (25)

Note that, since γ ≤ ∆o

κG2T and ∥∇Li(θ1)∥ ≤ exp
(
−∆oL

κG2

)
ρ, by Lemma C.3 we have

max
i∈H

∥∇Li(θt)∥ ≤ exp

(
∆oL

κG2

)
max
i∈H

∥∇Li(θ1)∥ ≤ ρ, ∀t ∈ [T ].

This, in conjunction with triangle inequality, implies that

∥∇L(θt)∥ ≤ 1

|H|
∑
i∈H

∥∇Li(θt)∥ ≤ ρ, ∀t ∈ [T ].

Therefore, under (G,B)-gradient dissimilarity, for all t ∈ [T ],

1

|H|
∥∇Li(θt)−∇L(θt)∥

2 ≤ G2 +B2 ρ2.

Using this in (25) we obtain that

1

T

T∑
t=1

∥∇L(θt)∥
2 ≤ 2∆o

γT
+ 3κ

(
G2 +B2ρ2

)
. (26)

Consider the two cases: (i) T ≥ ∆oL
κG2 and (ii) T < ∆oL

κG2 . In case (i), γ = ∆o

κG2T . Using this in (26)
implies that

1

T

T∑
t=1

∥∇L(θt)∥
2 ≤ 2κG2 + 3κ

(
G2 +B2ρ2

)
≤ 5κ

(
G2 +B2ρ2

)
. (27)

In case (ii), γ = 1
L . Using this in (26) implies that

1

T

T∑
t=1

∥∇L(θt)∥
2 ≤ 2∆oL

T
+ 3κ

(
G2 +B2ρ2

)
. (28)

Combining (27) and (28) concludes the proof.

We now prove Theorem C.4, stated below, which immediately implies Theorem 5.2. Specifically,
Theorem 5.2 follows immediately from Part 1 of Theorem C.4, upon substituting ξ ≤ 1

Ψ(G,B,ρ)υ.

Theorem C.4. Suppose B > 0 and there exists ζ ∈ R+ such that maxi∈H ∥∇Li(θ1)∥ ≤ ζ. Let
F ∈ {CWTM,CWMed,GM,MK}, γ = min

{(
∆o

κG2

)
1
T ,

1
L

}
and T ≥ ∆oL

κG2 . Consider an

arbitrary real value ξo ∈ (0, 1). Let ρ := exp
(

(2+B2)∆o

(1−ξo)G2 L
)
ζ. Then, the following holds true:

1. If f
n
:= (1− ξ)BP, where ξ ∈ (0, ξo], then, E

[∥∥∥∇LH

(
θ̂
)∥∥∥2] ≤ ξΨ(G,B, ρ) εo.
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2. If BP ≤ f/n < 1/2, then E
[∥∥∥∇LH

(
θ̂
)∥∥∥2] ≤ Ψ(G,B, ρ) · G2

8 .

In order to prove Theorem C.4, we first obtain the following corollary of Lemma C.2 and Lemma 2.6.

Corollary C.5. For the parameters given in Lemma C.2, if T ≥ ∆oL
κG2 , then Robust-DGD ◦ ARC

achieves

E
[∥∥∥∇LH

(
θ̂
)∥∥∥2] ≤ 5κ min

{
G2 +B2ρ2,

G2

max{(1− κB2), 0}

}
,

where E [·] denotes the expectation over the choice of θ̂ .

Proof of Corollary C.5. For simplicity, we write LH as L throughout the proof.

Since T ≥ ∆oL
κG2 , γ = ∆o

κG2T ≤ 1
L . Therefore, from Lemma C.2 we obtain that

1

T

T∑
t=1

∥∇L(θt)∥
2 ≤ 5κ

(
G2 +B2ρ2

)
. (29)

In the specific case when κB2 < 1, as γ = ∆o

κG2T , from Lemma 2.6 we obtain that

1

T

T∑
t=1

∥∇L(θt)∥
2 ≤ 2∆o

(1− κB2)γT
+

κG2

1− κB2
=

3κG2

1− κB2
. (30)

Combining (29) and (30) we obtain that

1

T

T∑
t=1

∥∇L(θt)∥
2 ≤ 5κmin

{
G2 +B2ρ2,

G2

1− κB2

}
.

Since E
[
∥∇L(θt)∥

2
]
= 1

T

∑T
t=1 ∥∇L(θt)∥

2 (see Algorithm 1), the above concludes the proof.

We are now ready to prove Theorem C.4. Recall that

BP :=
1

2 +B2
, εo :=

1

4
· G2(f/n)

1− (2 +B2)(f/n)
, and

Ψ(G,B, ρ) := 640

(
1 +

1

B2

)2(
1 +

B2ρ2

G2

)
.

Proof of Theorem C.4. For simplicity, we write LH as L throughout the proof.

In the proof, we substitute BP = 1
2+B2 .

We first consider the case when f
n = 1−ξ

2+B2 . In this particular case,

n =

(
2

1− ξ
+

B2

1− ξ

)
f ≥

(
2 +

B2

1− ξ

)
f.

Therefore, thanks to Lemma 2.5, F is (f, κ)-robust with

κ ≤ 16f

n− f

(
1 +

1− ξ

B2

)2

=
16(1− ξ)

1 +B2 + ξ

(
1 +

1− ξ

B2

)2

≤ 16(1− ξ)

1 +B2

(
1 +

1

B2

)2

≤ κo(1− ξ),

where κo := 16
1+B2

(
1 + 1

B2

)2
. Also, recall from the limitations of (f, κ)-robustness in Section 2 that

κ ≥ f

n− 2f
≥ f

n
≥ 1− ξo

2 +B2
.
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Summarizing from above, we have

1− ξo
2 +B2

≤ κ ≤ κo(1− ξ). (31)

This implies that

ρ := exp

(
(2 +B2)∆o

(1− ξo)G2
L

)
ζ ≥ exp

(
∆o

κG2
L

)
ζ.

Therefore, since ∥∇Li(θ1)∥ ≤ ζ for all i ∈ H, the condition: maxi∈H ∥∇Li(θ1)∥ ≤
exp

(
− ∆o

κG2L
)
ρ in Lemma C.2 is satisfied. Thus, by Corollary C.5 and (31) we obtain that

E
[
∥∇L(θt)∥

2
]
≤ 5κo(1− ξ)(G2 +B2ρ2) =

5κo(1− ξ)(G2 +B2ρ2)
fG2

n−(2+B2)f

fG2

n− (2 +B2)f
. (32)

Since f
n = 1−ξ

2+B2 , we obtain that

5κo(1− ξ)(G2 +B2ρ2)
fG2

n−(2+B2)f

= 5κo(1− ξ)(G2 +B2ρ2)
ξ(2 +B2)

G2(1− ξ)
= 5κo

(
1 +

B2ρ2

G2

)(
2 +B2

)
ξ.

Substituting κo from above, we obtain that

5κo(1− ξ)(G2 +B2ρ2)
fG2

n−(2+B2)f

= 80

(
2 +B2

1 +B2

)(
1 +

1

B2

)2(
1 +

B2ρ2

G2

)
ξ

≤ 160

(
1 +

1

B2

)2(
1 +

B2ρ2

G2

)
ξ.

Substituting from above in (32) concludes the proof for the first part of Theorem C.4.

The second part of Theorem C.4 follows immediately from the first inequality in (32), using the fact
that κo(1− ξ) ≤ κo. This concludes the proof.

C.1 ASSUMING ∥F (x1, . . . , xn)∥ ≤ maxi∈[n] ∥xi∥ IS WITHOUT LOSS OF GENERALITY

Recall that we assume ∥F (x1, . . . , xn)∥ ≤ maxi∈[n] ∥xi∥ for all set of n vectors x1, . . . , xn ∈ Rd.
In case this is not true, we can instead use the aggregation rule F† given by

F† (x1, . . . , xn) := clipC (F (x1, . . . , xn)) , where C = max
i∈[n]

∥xi∥ .

This modification to the aggregation rule does not affect the learning guarantee. Specifically, due to
the non-expansion property of clipC(·), for any non-empty set S ⊆ [n], we have∥∥F† (x1, . . . , xn)− xS

∥∥ ≤ ∥F (x1, . . . , xn)− xS∥ ,

where xS := 1
|S|
∑
i∈S

xi. Thus, if F is (f, κ)-robust, then F† is also (f, κ)-robust. Hence, we can

make the above assumption on ∥F (x1, . . . , xn)∥ without loss of generality.

D COMPREHENSIVE EXPERIMENTAL SETUP

In this section, we present the comprehensive experimental setup considered in our paper.

D.1 DATASETS AND HETEROGENEITY

In our experiments, we consider three standard image classification datasets, namely MNIST Deng
(2012), Fashion-MNIST Xiao et al. (2017), and CIFAR-10 Krizhevsky et al. (2014). To simulate
data heterogeneity in our experiments, we make the honest workers sample from the datasets
using a Dirichlet Hsu et al. (2019a) distribution of parameter α, as done in Hsu et al. (2019b);
Allouah et al. (2023a); Farhadkhani et al. (2023). The smaller the α, the more heterogeneous
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the setting. In our empirical evaluation, we set α ∈ {0.1, 0.5, 1} on (Fashion-)MNIST and α ∈
{0.05, 0.075, 0.1, 0.2, 0.5} on CIFAR-10 (refer to Figure 7). Furthermore, on MNIST and Fashion-
MNIST, we also consider an extreme heterogeneity setting where the datapoints are sorted by
increasing labels (0 to 9) and sequentially split equally among the honest workers.

The input images of MNIST are normalized with mean 0.1307 and standard deviation 0.3081, while
the images of Fashion-MNIST are horizontally flipped. Moreover, CIFAR-10 is expanded with
horizontally flipped images, followed by a per channel normalization with means 0.4914, 0.4822,
0.4465 and standard deviations 0.2023, 0.1994, 0.2010.
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(d) α = 0.075
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(e) α = 0.2

Figure 7: Distribution of labels across honest workers on MNIST (row 1) and CIFAR-10 (row 2).

D.2 ALGORITHM, DISTRIBUTED SYSTEM, ML MODELS, AND HYPERPARAMETERS

We perform our experiments using Robust-DSGD (see Algorithm 3), which is known to be an
order-optimal robust variant of Robust-DGD Allouah et al. (2023a). On MNIST and Fashion-MNIST,
we execute Robust-DSGD in a distributed system composed of n − f = 10 honest workers, and
f ∈ {1, 2, 3, 4, 5, 7, 9} adversarial workers. Furthermore, we train a convolutional neural network
(CNN) of 431,080 parameters with batch size b = 25, T = 1000, γ = 0.1, and momentum
parameter β = 0.9. Moreover, the negative log likelihood (NLL) loss function is used, along with
an ℓ2-regularization of 10−4. On CIFAR-10, we execute Robust-DSGD using a CNN of 1,310,922
parameters, in a distributed system comprising n− f = 16 honest workers and f = 1 adversarial
worker. We set b = 50, T = 2000, β = 0.9, and γ = 0.05 decaying once at step 1500. Finally, we
use the NLL loss function with an ℓ2 regularization of 10−2.

In order to present the architectures of the ML models used in our experiments, we adopt the following
compact terminology introduced in Allouah et al. (2023a).

L(#outputs) represents a fully-connected linear layer, R stands for ReLU activation, S stands
for log-softmax, C(#channels) represents a fully-connected 2D-convolutional layer (kernel size 5,
padding 0, stride 1), M stands for 2D-maxpool (kernel size 2), B stands for batch-normalization,
and D represents dropout (with fixed probability 0.25).
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Algorithm 3 Robust Distributed Stochastic Gradient Descent (Robust-DSGD)

Input: Server chooses an initial model θ1 ∈ Rd, learning rate γ ∈ R+, robust aggregation
F : Rn×d → Rd, momentum parameter β ∈ R+. Each honest worker wi sets an initial
momentum m

(i)
0 = 0 ∈ Rd.

for t = 1 to T do
Server broadcasts θt to all workers.
for each honest worker wi in parallel do

Sample a random data point z(i) uniformly from Di.
Compute stochastic gradient g(i)t := ∇ℓ(θt, z

(i)).
Update momentum: m(i)

t := (1− β)g
(i)
t + βm

(i)
t−1.

Send m
(i)
t to Server.

// An adversarial worker wj can send an arbitrary vector in Rd for m(j)
t

end for
Server computes Rt := F

(
m

(1)
t , . . . , m

(n)
t

)
.

Server updates the model: θt+1 := θt − γ Rt .
end for
Output: Server outputs θ̂ chosen uniformly at random from {θ1, . . . , θT }.

The comprehensive experimental setup, as well as the architecture of the models, are presented in
Table 2.

Dataset (Fashion-)MNIST CIFAR-10

Data heterogeneity α ∈ {0.1, 0.5, 1} and
extreme

α ∈ {0.05, 0.075, 0.1, 0.2, 0.5}

Model type CNN CNN

Model architecture C(20)-R-M-C(20)-R-M-
L(500)-R-L(10)-S

(3,32×32)-C(64)-R-B-C(64)-R-B-M-
D-C(128)-R-B-C(128)-R-B-M-D-

L(128)-R-D-L(10)-S

Number of parameters 431,080 1,310,922

Loss NLL NLL

ℓ2-regularization 10−4 10−2

Number of steps T = 1000 T = 2000

Learning rate γ = 0.1

γt =

{
0.05 t ≤ 1500

0.00082 1500 < t ≤ 2000

Momentum parameter β = 0.9 β = 0.9

Batch size b = 25 b = 50

Honest workers n− f = 10 n− f = 16

Adversarial workers f ∈ {1, 2, 3, 4, 5, 7, 9} f = 1

Table 2: Experimental setup on (Fashion-)MNIST and CIFAR-10
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D.3 BYZANTINE ATTACKS

In our experiments, the adversarial workers execute five state-of-the-art adversarial attacks from the
Byzantine ML literature, namely sign-flipping (SF) Allen-Zhu et al. (2020), label-flipping (LF) Allen-
Zhu et al. (2020), mimic Karimireddy et al. (2022), fall of empires (FOE) Xie et al. (2020), and a
little is enough (ALIE) Baruch et al. (2019).

The exact functionality of the attacks is detailed below. In every step t, let mt be an estimation of the
true honest momentum at step t. In our experiments, we estimate mt by averaging the momentums
sent by the honest workers in step t of Robust-DSHB. In other words, mt =

1
|H|

∑
i∈H

m
(i)
t , where

m
(i)
t is the momentum computed by honest worker wi in step t.

• SF: the adversarial workers send the vector −mt to the server.
• LF: the adversarial workers compute their gradients on flipped labels, and send the flipped

gradients to the server. Since the original labels l for (Fashion-)MNIST and CIFAR-10 are in
{0, ..., 9}, the adversarial workers execute a label flip/rotation by computing their gradients
on the modified labels l′ = 9− l.

• Mimic: the adversarial workers mimic a certain honest worker by sending its gradient to
the server. In order to determine the optimal honest worker for the adversarial workers to
mimic, we use the heuristic in Karimireddy et al. (2022).

• FOE: the adversarial workers send (1− τ)mt in step t to the server, where τ ≥ 0 is a fixed
real number representing the attack factor. When τ = 2, this attack is equivalent to SF.

• ALIE: the adversarial workers send mt + τσt in step t to the server, where τ ≥ 0 is a fixed
real number representing the attack factor, and σt is the coordinate-wise standard deviation
of mt.

Since the FOE and ALIE attacks have τ as parameter, we implement in our experiments enhanced
and adaptive versions of these attacks, where the attack factor is not constant and may be different in
every iteration. In every step t, we determine the optimal attack factor τt through a grid search over
a predefined range of values. More specifically, in every step t, τt takes the value that maximizes
the damage inflicted by the adversarial workers, i.e., that maximizes the l2 norm of the difference
between the average of the honest momentums mt and the output of the aggregation Rt at the server.

D.4 BENCHMARKING AND REPRODUCIBILITY

We evaluate the performance of ARC compared to no clipping within the context of Robust-DSGD.
Accordingly, we choose F◦ NNM as aggregator in Algorithm 1, where F ∈ {CWTM, GM, CWMed,
MK} is an aggregation rule proved to be (f, κ)-robust Allouah et al. (2023a). Composing these
aggregation rules with NNM provides them with optimal (f, κ)-robustness Allouah et al. (2023a). As
benchmark, we also execute the standard DSGD algorithm in the same setting, but in the absence of
adversarial workers (i.e., without attack and f = 0). We plot in Table 1 and Figures 2a and 4 the metric
of worst-case maximal accuracy. In other words, for each of the aforementioned five Byzantine
attacks, we record the maximal accuracy achieved by Robust-DSGD during the learning under that
attack. The worst-case maximal accuracy is thus the smallest maximal accuracy encountered across
the five attacks. As the attack executed by adversarial workers cannot be known in advance in a
practical system, this metric is critical to accurately evaluate the robustness of aggregation methods,
as it gives us an estimate of the potential worst-case performance of the algorithm. Finally, all our
experiments are run with seeds 1 to 5 for reproducibility purposes. We provide standard deviation
measurements for all our results (across the five seeds). In Appendix E, we show the performance
of our algorithm (compared to no clipping) in worst-case maximal accuracy, when varying the
heterogeneity level or the number of adversarial workers f . We also show some plots showing
the evolution of the learning with time under specific attacks (e.g., Figures 10, 11, 12, and 16 in
Appendix E), but the totality of these plots can be found in the supplementary material (attached in a
folder per dataset).
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E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we complete the experimental results that could not be placed in the main paper.

E.1 MNIST
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(f) α = 1

Figure 8: Worst-case maximal accuracies achieved by Robust-DSGD when using ARC compared to
no clipping, on heterogeneously-distributed MNIST with 10 honest workers. We fix the heterogeneity
level, and vary the the number of Byzantine workers f .
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(e) f = 5

Figure 9: Worst-case maximal accuracies achieved by Robust-DSGD when using ARC compared to
no clipping, on heterogeneously-distributed MNIST with 10 honest workers. We fix the number of
Byzantine workers f , and vary the heterogeneity level.
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Figure 10: Performance of Robust-DSGD when using ARC compared to no clipping, on
heterogeneously-distributed MNIST (extreme heterogeneity) with 10 honest workers and f = 1,
under several attacks. This complements Figure 3c of the main paper.
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Figure 11: Performance of Robust-DSGD when using ARC compared to no clipping, on
heterogeneously-distributed MNIST (α = 0.1) with 10 honest workers and f = 3, under sev-
eral attacks.
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Figure 12: Performance of Robust-DSGD under the LF attack when using ARC compared to no
clipping, on heterogeneously-distributed MNIST (α = 0.1) with 10 honest workers and varying
number of adversarial workers f .
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Figure 13: Worst-case maximal accuracies achieved by Robust-DSGD when using ARC compared
to no clipping, on heterogeneously-distributed Fashion-MNIST with 10 honest workers. We fix the
heterogeneity level and vary the number of adversarial workers f .
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Figure 14: Worst-case maximal accuracies achieved by Robust-DSGD when using ARC compared
to no clipping, on heterogeneously-distributed Fashion-MNIST with 10 honest workers. We fix the
number of adversarial workers f and vary the heterogeneity level.
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Figure 15: Worst-case maximal accuracies achieved by Robust-DSGD when using ARC compared to
no clipping, on heterogeneously-distributed CIFAR-10 with 16 honest workers. We fix the number of
adversarial workers f = 1 and vary the heterogeneity level.
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Figure 16: Worst-case maximal accuracies achieved by Robust-DSGD when using ARC compared
to no clipping, on heterogeneously-distributed CIFAR-10 (α = 0.075) with 16 honest workers and
f = 1 executing ALIE and FOE. This figure complements Figure 5 in the main paper.

F STATIC CLIPPING VS ARC

In this section, we present empirical results on static clipping when used as a pre-aggregation
technique in Robust-DSGD, and compare its performance to our proposed adaptive algorithm ARC.

F.1 LIMITATIONS OF STATIC CLIPPING

We perform our experiments using Robust-DSGD (see Algorithm 3) on (Fashion-)MNIST and
CIFAR-10. We consider three different levels of heterogeneity, that we call moderate (corresponding
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to sampling from a Dirichlet distribution of parameter α = 1), high (α = 0, 1), and extreme (as
explained in Appendix D). On MNIST and Fashion-MNIST, we execute Robust-DSGD in a distributed
system composed of n = 15 workers, among which f ∈ {3, 4} are Byzantine. Furthermore, we train
a convolutional neural network of 431,080 parameters with batch size b = 25, T = 1000, γ = 0.1,
and momentum parameter β = 0.9. Moreover, the negative log likelihood loss function is used, along
with an ℓ2-regularization of 10−4. On CIFAR-10, we execute Robust-DSGD on ResNet-18 He et al.
(2015), in a distributed system comprising n = 9 workers among which f ∈ {1, 2} are Byzantine.
We set b = 128, T = 2000, β = 0.9, and γ = 0.1 decaying once by 10× at step 1500. Finally, we
use the cross-entropy loss function with an ℓ2 regularization of 5× 10−4.

In our experiments, we examine a wide range of static clipping parameters. Specifically, we choose
C ∈ {0.02, 0.2, 2, 20} on MNIST.
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Figure 17: Impact of the clipping strategy and heterogeneity level on the worst-case maximal
accuracy achieved by Robust-DSGD against five Byzantine attacks on heterogeneous MNIST with
n = 15 workers. CWTM ◦ NNM is used as aggregation. DSGD reaches at least 98.5% in accuracy
in all heterogeneity regimes.

Unreliability due to the attack. First, the efficacy of static clipping is significantly influenced by the
type of Byzantine attack executed during the learning process. To illustrate, while C = 2 exhibits
the best performance under the SF attack Allen-Zhu et al. (2020), depicted in Figure 1, it leads to a
complete collapse of learning under LF Allen-Zhu et al. (2020). Consequently, identifying a static
clipping threshold C that consistently performs well in practice against any attack is difficult (if
not impossible). This highlights the fragility of static clipping, as the unpredictable nature of the
Byzantine attack, a parameter that cannot be a priori known, can significantly degrade the performance
of the chosen static clipping approach.

Unreliability due to the heterogeneity model. Second, the robustness under static clipping is
notably influenced by the level of heterogeneity present across the datasets of honest workers. To
illustrate this impact, we present in Figure 17 the performances of Robust-DSGD for different levels
of heterogeneity (moderate, high, and extreme) and different values of C. In the left plot of Figure 17,
C = 2 emerges as the best static clipping threshold when the heterogeneity is high whereas C = 20
appears to be sub-optimal. On the other hand, under extreme heterogeneity, the accuracy associated
to C = 2 diminishes drastically while C = 20 becomes a better choice. Intuitively, in heterogeneous
scenarios, honest gradients become large in l2-norm, due to the increasingly detrimental effect of
Byzantine attacks. Consequently, we must increase the static clipping threshold. Failing to do so
could introduce a significant bias. More details on this observation can be found in Figure 18. This
highlights the intricate dependence of the performance of static clipping on data heterogeneity, and
emphasizes the necessity to fine-tune static clipping strategies prior to the learning.

Unreliability due to the number of Byzantine workers. Last but not least, the number of Byzantine
workers f also affects the efficacy of static clipping. As seen in Figure 17, C = 2 leads to the highest
accuracy among static clipping strategies when f = 3 in high heterogeneity, but cannot be used when
f = 4 as its corresponding accuracy drops below 50% (see right plot of Figure 17).
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Figure 18: Distribution of the norms of honest gradients during the learning on heterogeneous MNIST.
There are f = 3 Byzantine workers (among n = 15) executing the LF attack. CWTM ◦ NNM is
used as aggregation method.

Overall, our empirical findings reveal that there is no single value of C for which static clipping
consistently delivers satisfactory performance across the various settings. We have also shown that
the performance of static clipping is greatly influenced on typically uncontrollable parameters, such
as data heterogeneity and the nature of the Byzantine attack. Indeed, it should be noted that explicitly
estimating these parameters is challenging (if not impossible) in a distributed setting. First, since the
server does not have direct access to the data, it cannot estimate the degree of heterogeneity. Second,
as (by definition) a Byzantine worker can behave in an unpredictable manner, we cannot adjust C
to the attack(s) being executed by the Byzantine workers. This highlights the necessity for a robust
clipping alternative that can naturally adapt to the setting in which it is deployed.

F.2 EMPIRICAL BENEFITS OF ARC

In contrast to static clipping, ARC is adaptive, delivering consistent performance across diverse levels
of heterogeneity, Byzantine attacks, and number of Byzantine workers.

Adaptiveness. ARC dynamically adjusts its clipping parameter Ct based on the norms of honest
momentums at step t, avoiding static over-clipping or under-clipping. This adaptability is evident in
Figure 19, where Ct consistently decreases with time under all attacks, an expected behavior when
reaching convergence. Moreover, Figure 19 also illustrates that any surge in the norm of the honest
mean corresponds to a direct increase in Ct, highlighting the adaptive nature of ARC.

Robust performance across heterogeneity regimes. The efficacy of our solution is illustrated
in Figure 17, showcasing a consistently robust performance for all considered heterogeneity levels.
Specifically, in scenarios of moderate heterogeneity where clipping may not be essential, ARC
matches the performance of No clipping as well as static strategies C = 2 and C = 20. Conversely,
the left plot of Figure 17 shows that under high and extreme heterogeneity, ARC surpasses the best
static clipping strategy in terms of accuracy, highlighting the effectiveness of our approach.

Robust performance across Byzantine regimes. ARC exhibits robust performance across diverse
Byzantine scenarios, encompassing variations in both the type of Byzantine attack and the number of
Byzantine workers f . As depicted in Figures 1 and 17, ARC consistently yields robust performance,
regardless of the Byzantine attack. In extreme heterogeneity with f = 3, ARC maintains an accuracy
of 75%, while C = 2 demonstrates a subpar worst-case accuracy of 25% (also refer to the right plot
of Figure 1). Furthermore, despite the increase in the number of Byzantine workers to f = 4, ARC
remains the top-performing clipping approach among all considered strategies.

This analysis underscores the empirical superiority of ARC over static clipping methods, eliminating
the reliance on data heterogeneity and the specific Byzantine regime. Similar trends are also observed
in Figure 20, when executing Robust-DSGD using other aggregation methods such as CWMed ◦
NNM, GM ◦ NNM, and Multi-Krum ◦ NNM.
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Figure 19: Evolution of the adaptive clipping parameter Ct of ARC compared to the norm of the
honest mean during the learning on heterogeneous MNIST (α = 1). There are f = 3 Byzantine
workers among n = 15. CWTM ◦ NNM is used as aggregation. ARC dynamically adjusts its clipping
parameter Ct based on the norms of honest momentums at step t, avoiding static over-clipping or
under-clipping. This adaptability is evident in under all attacks, where Ct consistently decreases with
time, an expected behavior when reaching convergence.
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(b) GM ◦ NNM
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Figure 20: Impact of the clipping strategy on the worst-case maximal accuracy achieved during the
learning against five Byzantine attacks on heterogeneous MNIST, with f = 3 and n = 15.
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G ADDITIONAL EXPERIMENTS (REBUTTAL)

G.1 EXPERIMENTS ON LARGE SYSTEMS - 30 HONEST WORKERS

We consider training on the MNIST dataset in a larger system comprised of n − f = 30 honest
workers, and f ∈ {3, 6, 9} Byzantine workers.
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(d) FOE

Figure 21: Performance of Robust-DSGD when using ARC and without clipping on distributed
MNIST under extreme heterogeneity. There are f = 3 adversarial workers executing 4 attacks.
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Figure 22: Performance of Robust-DSGD when using ARC and without clipping on heterogeneously-
distributed MNIST with α = 0.1. There are f = 9 adversarial workers executing 4 attacks.
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Figure 23: Worst-case maximal accuracies achieved by Robust-DSGD, with and without ARC, on
heterogeneously-distributed MNIST with 30 honest workers. We consider a heterogeneous data
distribution with α = 0.1 (left) and extreme heterogeneity (right), and vary f ∈ {3, 6, 9}.
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G.2 EXPERIMENTS ON CIFAR-10 WITH LARGER f

We also run experiments on CIFAR-10, with n− f = 16 honest workers, and f ∈ {2, 3} Byzantine
workers. We consider heterogeneity regimes of α = 0.2 and 0.5, when f = 2 and 3, respectively
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(a) f = 2, α = 0.2
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(b) f = 3, α = 0.5

Figure 24: Performance of Robust-DSGD when using ARC and without clipping on CIFAR-10.
There are 16 honest workers and f = 2, 3 adversarial workers executing the FOE attack. The
aggregations used are CWTM ◦ NNM and GM ◦ NNM
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(a) f = 2, α = 0.2
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Figure 25: Performance of Robust-DSGD when using ARC and without clipping on CIFAR-10.
There are 16 honest workers and f = 2, 3 adversarial workers executing the FOE attack. The
aggregations used are CWMED ◦ NNM and MK ◦ NNM

f = 2, α = 0.2 f = 3, α = 0.5
Aggregation No Clipping ARC No Clipping ARC

CWTM ◦ NNM 44.3 ± 5.2 53.0 ± 4.7 52.0 ± 1.3 55.4 ± 1.1
GM ◦ NNM 33.8 ± 6.7 50.2 ± 3.3 50.9 ± 2.5 49.6 ± 1.4

CWMed ◦ NNM 32.6 ± 9.8 49.7 ± 2.7 48.7 ± 2.4 62.7 ± 0.9
MK ◦ NNM 45.0 ± 4.2 51.9 ± 2.1 50.3 ± 1.4 50.2 ± 2.4

Table 3: Worst-case maximal accuracies (%) achieved by Robust-DSGD on heterogeneously-
distributed CIFAR-10 with ARC and without. There are f ∈ {2, 3} adversarial workers with
n− f = 16 honest workers.
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G.3 COMPARISON WITH STATIC CLIPPING ON FASHION-MNIST AND CIFAR-10

We consider three different levels of heterogeneity, that we call moderate (corresponding to sampling
from a Dirichlet distribution of parameter α = 1), high (α = 0, 1), and extreme (as explained in
Appendix D). These results confirm the observations made in Appendix F.

G.3.1 FASHION-MNIST

On Fashion-MNIST, we execute Robust-DSGD in a distributed system composed of n = 15 workers,
among which f ∈ {3, 4} are Byzantine. Furthermore, we train a convolutional neural network of
431,080 parameters with batch size b = 25, T = 1000, γ = 0.1, and momentum parameter β = 0.9.
Moreover, the negative log likelihood loss function is used, along with an ℓ2-regularization of 10−4.
See Figure 26.
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Figure 26: Impact of the clipping strategy and heterogeneity level on the worst-case maximal accuracy
achieved during the learning against five Byzantine attacks on heterogeneous Fashion-MNIST. f = 3
and n = 15, and the heterogeneity levels considered are extreme, high (α = 0.1), and moderate
(α = 1). Aggregation rules used: CWTM ◦ NNM (row 1, left), CWMED ◦ NNM (row 1, right), GM
◦ NNM (row 2, left), and Multi-Krum ◦ NNM (row 2, right). DSGD reaches accuracies 84.966%,
84.376%, 84.886% under the extreme regime, when α = 0.1, and 1, respectively.

G.3.2 CIFAR-10

On CIFAR-10, we execute Robust-DSGD on ResNet-18 He et al. (2015), in a distributed system
comprising n = 9 workers among which f ∈ {1, 2} are Byzantine. We set b = 128, T = 2000,
β = 0.9, and γ = 0.1 decaying once by 10× at step 1500. Finally, we use the cross-entropy loss
function with an ℓ2 regularization of 5× 10−4. See Tables 4 and 5.
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Attack C = 0.05 C = 0.5 C = 5 C = 50 No clipping ARC

FOE 26.4 ± 1.2 52.6 ± 2.0 76.4 ± 5.4 47.0 ± 8.0 43.0 ± 6.2 79.1± 1.6

ALIE 34.6 ± 1.3 43.3 ± 1.1 47.2 ± 3.4 47.2 ± 4.2 47.2 ± 4.2 51.8± 3.5

LF 33.7 ± 1.5 58.4 ± 1.8 83.6 ± 1.2 85.7± 0.5 85.9± 0.4 81.5 ± 1.4
SF 32.3 ± 1.4 57.9 ± 1.2 77.2 ± 4.6 68.6 ± 8.5 66.4 ± 9.0 82.0± 1.1

Mimic 38.2 ± 1.6 68.3 ± 1.4 85.6± 0.42 85.7± 0.4 85.7± 0.4 85.4± 0.5

Worst-case 26.4 ± 1.2 43.3 ± 1.1 47.2 ± 3.4 47.0 ± 8.0 43.0 ± 6.2 51.8± 3.5

Table 4: Maximum accuracy (%) achieved by CWTM ◦ NNM on CIFAR-10 under moderate
heterogeneity, for various clipping strategies and attacks. There are f = 2 Byzantine workers among
n = 9. We highlight in blue the highest accuracy achieved per attack (i.e., per row). See Appendix D
for the full experimental setup.

Attack C = 0.05 C = 0.5 C = 5 C = 50 No clipping ARC

FOE 28.9 ± 1.7 56.8 ± 1.9 75.6± 2.8 35.5 ± 11.6 34.9 ± 12.2 75.9± 3.0

ALIE 34.9 ± 1.3 43.4 ± 1.0 47.4 ± 4.1 44.9 ± 3.8 44.9 ± 3.8 54.6± 3.6

LF 33.7 ± 1.4 58.4 ± 1.8 77.4 ± 12.9 85.8± 0.6 85.6± 0.7 80.5 ± 1.8
SF 32.5 ± 1.4 57.5 ± 1.4 77.7 ± 5.0 63.0 ± 12.0 55.4 ± 18.9 82.5± 0.3

Mimic 38.1 ± 1.3 68.5 ± 1.4 85.5± 0.5 85.9± 0.5 85.9± 0.5 85.4± 0.2

Worst-case 28.9 ± 1.7 43.4 ± 1.0 47.4 ± 4.1 35.5 ± 11.6 34.9 ± 12.2 54.6± 3.6

Table 5: Maximum accuracy (%) achieved by CWMED ◦ NNM on heterogeneous CIFAR-10 (α = 1),
for various clipping strategies and Byzantine attacks. There are f = 2 Byzantine workers among
n = 9. We highlight in blue the highest accuracy achieved per Byzantine attack (i.e., per row).
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