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ABSTRACT

The automated machine learning (AutoML) pipeline comprises several crucial
components such as automated data augmentation (DA), neural architecture
search (NAS) and hyper-parameter optimization (HPO). Although many strategies
have been developed for automating each component in separation, joint optimiza-
tion of these components remains challenging due to the largely increased search
dimension and different input types required for each component. While conduct-
ing these components in sequence is usually adopted as a workaround, it often re-
quires careful coordination by human experts and may lead to sub-optimal results.
In parallel to this, the common practice of searching for the optimal architecture
first and then retraining it before deployment in NAS often suffers from architec-
ture performance difference in the search and retraining stages. An end-to-end
solution that integrates the two stages and returns a ready-to-use model at the end
of the search is desirable. In view of these, we propose a differentiable joint op-
timization solution for efficient end-to-end AutoML (DiffAutoML). Our method
performs co-optimization of the neural architectures, training hyper-parameters
and data augmentation policies in an end-to-end fashion without the need of model
retraining. Experiments show that DiffAutoML achieves state-of-the-art results on
ImageNet compared with end-to-end AutoML algorithms, and achieves superior
performance compared with multi-stage AutoML algorithms with higher compu-
tational efficiency. To the best of our knowledge, we are the first to jointly opti-
mize automated DA, NAS and HPO in an en-to-end manner without retraining.

1 INTRODUCTION

While deep learning has achieved remarkable progress in various tasks such as computer vision and
natural language processing, it usually requires tremendous human involvement to design and train a
satisfactory deep model for one task (He et al., 2016; Sandler et al., 2018). To alleviate such burden
on human users, a dozen of AutoML algorithms are proposed in recent years to enable training a
model from data automatically without human experiences, including automated data augmentation
(DA), neural architecture search (NAS), and hyper-parameter optimization (HPO) (e.g., Chen et al.,
2019; Cubuk et al., 2018; Mittal et al., 2020). These AutoML components are usually developed
independently. However, implementing these AutoML components for a specific task in separate
stages not only suffers from low efficiency but also leads to sub-optimal results (Dai et al., 2020;
Dong et al., 2020). How to achieve full-pipeline “from data to model” automation efficiently and
effectively is still a challenging problem.

One main difficulty for achieving automated “from data to model” is how to combine different Au-
toML components (e.g., NAS and HPO) appropriately for a specific task. Optimizing these compo-
nents in a joint manner is an intuitive solution but usually suffers from the enormous and impractical
search space. Dai et al. (2020) and Wang et al. (2020) introduced pre-trained predictors to achieve
the joint optimization of NAS and HPO, and the joint optimization of NAS and automated model
compression, respectively. For a new coming task, however, it is usually burdensome to pre-train
such a predictor. On the other hand, Dong et al. (2020) investigated the joint optimization between
NAS and HPO via differentiable architecture and hyper-parameter search spaces. Automated DA is
seldom considered in the joint optimization of AutoML components. Nevertheless, our experimental
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results showed that different data augmentation protocols may result in different optimal architec-
tures (see Sec. 4.3 for more details). Based on these considerations, it is worthy to investigating the
joint optimization among automated DA, NAS and HPO.

Another main challenge to achieve automated “from data to model” is the end-to-end searching and
training of models without parameter retraining. Even considering only one AutoML component,
many NAS algorithms require two stages including searching and retraining (e.g., Liu et al., 2018;
Xie et al., 2019). Automated DA methods such as Lim et al. (2019) also needed to retrain the model
parameters when the DA policies were searched. In these cases, whether the searched architectures
or DA policies would perform well after retraining is questionable, due to the inevitable difference
of training setup between the searching and retraining stages. Recently, Hu et al. (2020) developed
a differentiable NAS methods to provide direct NAS without parameter retraining. Other AutoML
components, including HPO and automated DA, are seldom considered in the task-specific end-to-
end AutoML algorithms.

Considering the above challenges, we propose DiffAutoML, a differentiable joint optimization so-
lution for efficient end-to-end AutoML. In DiffAutoML, end-to-end NAS optimization is realized
in a differentiable one-level manner with the help of stochastic architecture search and the approx-
imation for the gradient of architecture parameters. Meanwhile, the DA and HPO are regarded as
dynamic schedulers, which adapt themselves to the update of network parameters and network ar-
chitecture. Specifically, Differentiable relaxation is used in DA optimization in an one-level way
while the hyper-gradient is used to in HPO in a two-level way. With this differentiable method, Dif-
fAutoML can effectively deal with the huge search space and the low optimization efficiency caused
by this joint optimization problem. To summarize, our main contributions are as follows:

o We propose a well-defined AutoML problem, i.e., task-specific end-to-end AutoML frame-
work, which aims to achieve automated “from data to model” without human involvement.

e We first jointly optimize three different AutoML components, including automated DA,
NAS and HPO, in a differentiable search space with high efficiency.

e Experiment results show that, compared with optimizing modules in sequence, one-stage
DiffAutoML can effectively realize the co-optimization of different modules.

e Extensive experiments also reveal mutual influence among different AutoML components,
i.e., the change of settings for one module may greatly influence the optimal results of
another module, justifying the necessity of end-to-end joint optimization.

2 RELATED WORKS

In this section, we briefly introduce some related AutoML algorithms, including automated DA,
NAS and HPO. A more detailed introduction is provided in Appendix D.

Automated Data Augmentation Data augmentation is commonly used to increase the data diversity
and thus to improve the generalization performance of deep learning models (DeVries & Taylor,
2017; Zhang et al., 2017; Yun et al., 2019). Several prior works have been proposed to automate the
search of data augmentation policies, using methods ranging from reinforcement learning (Cubuk
et al., 2018; Zhang et al., 2020), evolutionary algorithm (Ho et al., 2019), Bayesian optimization
(Lim et al., 2019), gradient-based approaches (Lin et al., 2019) to simple grid search (Cubuk et al.,
2020). Cubuk et al. (2020) point out that the optimal data augmentation policy depends on the model
size. This indicates that fixing an augmentation policy when searching for neural architectures may
lead to sub-optimal solutions, thus motivating joint optimization.

Neural Architecture Search Recent advances in NAS have demonstrated state-of-the-art perfor-
mance outperforming human experts’ design on a variety of tasks (Zoph & Le, 2017; Cai et al.,
2018; Liu et al., 2018; Kandasamy et al., 2018; Pham et al., 2018; Real et al., 2018; Zoph et al.,
2018; Ru et al., 2020b). Especially the development of gradient-based one-shot methods (Liu et al.,
2018; Chen et al., 2019; Guo et al., 2019; Xie et al., 2019; Hu et al., 2020) have significantly re-
duced the computational costs of NAS. To further improve the search efficiency, most NAS methods
search architectures in a low-fidelity set-up (e.g., fewer training epochs, smaller architectures) and
retrain the optimal architecture using the full set-up before deployment. This separation of search
and evaluation, however, usually suffer from sub-optimal results (Hu et al., 2020). End-to-end NAS
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Figure 1: An overview of DiffAutoML. We first sample the DA operations for each sample based
on the data transformation parameters 7. Then, a child network is sampled based on the architecture
parameters o, which will be used to process transformed mini-batch. Training loss is calculated to
update the neural network parameter € by an optimizer with the hyper-parameters 7). Parameters 7
and o« are updated based on the training loss, while 7} is updated with the validation loss to achieve
differentiable end-to-end joint optimization of automated DA, NAS and HPO.

strategies (Xie et al., 2019; Hu et al., 2020) are thereby developed to return read-to-deploy networks
at the end of the search. Our work also proposes an end-to-end solution.

Hyper-parameter Optimization Tuning hyper-parameters for deep learning models has also at-
tracted lots of research attention. Current HPO methods address various set-ups involving multi-
fidelity evaluations, parallel computation, transfer-learning (Mittal et al., 2020) or a mixed variable
types (Ru et al., 2020a). Although many HPO strategies have been adapted to form NAS strategies,
methods that jointly optimize both architectures and hyper-parameters are rarely seen except the
ones discussed below.

Joint Optimization of AutoML Components. Conventional neural architecture search methods
perform search under a fixed set of training hyper-parameters and apply or search for a separate set
of hyper-parameters when retraining the best architecture found. Such search protocol may lead
to sub-optimal results (Zela et al., 2018; Dong et al., 2020) as it neglects the influence of training
hyper-parameters on architecture performance and ignores superior architectures under alternative
hyper-parameter values (Dai et al., 2020). In view of this, several works have been proposed to
jointly optimise architecture structure and training hyper-parameters (Dai et al., 2020; Wang et al.,
2020; Dong et al., 2020). Zela et al. (2018) introduces the use of multi-fidelity Bayesian optimiza-
tion to search over both the architecture structure and training hyper-parameters. Dai et al. (2020)
trains an accuracy predictor to estimate the network performance based on both the architecture
and training hyper-parameters, and then uses evolutionary algorithm to perform the search. Both
these methods are sample-based and requires a relatively large number of architecture and hyper-
parameter evaluations to finetune predictor or obtain good recommendations. A more related work is
AutoHAS (Dong et al., 2020), which introduces a differentiable approach in conjunction with weight
sharing for the co-optimization task. Dong et al. (2020) demonstrates empirically that such differ-
entiable one-shot approach achieve superior efficiency over sampled-based methods. Our proposed
method differs from AutoHAS in mainly two aspects: first, AutoHAS updates the entire supernet-
work at each optimization step while our method trains only a subnetwork. Thus, our method is
much more memory efficient than AutoHAS. Second, we further extend the co-optimization scope
from NAS and training hyper-parameters to also include data augmentation hyper-parameters. To
the best of our knowledge, we are the first to jointly optimize all three aspects and we demonstrate
the advantage of such practice in Sec. 4.
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3 METHODOLOGY

Consider a dataset D = {(z;,v:)}Y,, where N is the size of this dataset, and y; is the label of
the input sample ;. We aim to train a neural network f(-), which can achieve the best accuracy
on the test dataset D*¢s¢, Multiple AutoML components are considered, including automated DA,
NAS, and HPO. Let 7, ¢, m;, and 0 represent the data augmentation parameters, the architecture
parameters, the hyper-parameters, and the objective neural network parameters, respectively. This
problem can be formulated as

argmin L(T, a,n, 0; D)

T,,m,0 (l)

st. cila) <Cii=1,..,7,

where L(-) represents the loss function; D denotes the input data; ¢;(-) and ~y refer to the formula and
count of resource constraints C;, such as storage cost and computational cost. We adopt different
loss functions to optimize the corresponding parameters, which will be introduced in the following
subsections. Considering the huge search space, it is challenging to achieve the co-optimization of
T, a, 1M, and @ within one-stage without parameter retraining. In this work, we propose to use the
differentiable method to provide a computationally efficient solution. See Fig. 1 as an illustration.

3.1 OPTIMIZATION OF DATA AUGMENTATION PARAMETERS

For every mini-batch of training data B™ = {(z,yx)}7-, with batch size n'", we conduct data
augmentation to increase the diversity of the training data. We consider K data augmentation op-
erations, and each training sample is augmented by a transformation consisting of two successive
operations (Cubuk et al., 2018; Lim et al., 2019). Each operation is associated with a magnitude that
is uniformly sampled from [0, 10]. The data augmentation parameter T represents a probability dis-
tribution over the augmentation transformations. For ¢-th iteration, we sample n’” transformations
according to 7* with Gumbel-Softmax reparameterization (Maddison et al., 2016) and to generate
the corresponding augmented samples in the batch. Given a sampled architecture (see details in
Sec. 3.2), the loss function for each augmented sample is denoted by L ( f(at, 6%; Ti(zx))), where
T represents the selected transformation. In order to relax 7 to be differentiable, we regard py (Tt),
the probability of sampling the transformation 7y, as an importance weight for the loss function
L (f(at, 0% Tr(zk))). The objective of data augmentation is to minimize the following loss func-
tion:

LPATY) == pr(r) L (f(a!, 0% Ta(xr))), )
k=1

With this loss function, DiffAutoML intends to increase the sampling probability of those trans-
formations that can generate samples with high training losses. By sampling such transformations,
DiffAutoML can pay more attention to relatively “hard” samples and increase model robustness
against difficult samples. Instead of training a controller to generate adversarial augmentation poli-
cies via reinforcement learning (Zhang et al., 2020), we search for the probability distribution of
augmentation transformations directly via gradient-based optimization. In this way, the optimiza-
tion of data augmentation is very efficient and hardly increases the computing cost.

3.2 OPTIMIZATION OF ARCHITECTURE PARAMETERS

With the augmented data in Sec. 3.1, we achieve optimization of the architecture parameter o
through end-to-end NAS, motivated by SNAS (Xie et al., 2019) and DSNAS (Hu et al., 2020). Fol-
lowing Liu et al. (2018), we denote the neural architecture search space as a single directed acyclic
graph (DAG). Node m; refers to the feature map in DAG and edge (m;, m;) refers to the informa-
tion flow between m; and m;. In addition, O; ; and c; ; respectively refer to possible operations
and the architecture parameters between m; and m;, and o consists of all possible «; ; in the DAG.
During the forward process, an ont-hot random variable Z;_; is sampled from a distribution defined
by the architecture parameters «; ;. Then, the sampled operation O; ; can be calculated by multiply
Z; ; to O; ;. Thus, the intermediate node m; can be expressed as:

mj = Z O;; = Z z!,0;,;. 3)

i<j i<j
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Instead of using validation loss, the architecture parameters is optimized using the training loss.
In that way, architecture parameter o and parameter € can be trained with the same loss function.
SNAS relaxes Z; ; to a continuous random variable Z; ; with the Gumble-Softmax. Thus gradient
of o under training loss can be formulated as:

oL oLt 1
5aF; ~ auy CramIOW =b) = 202 @
7/.] 7J

where a 4 is the k-th element in o ;; Z 19 the k-th element in Z; ;; A is the temperature in the
Gumbel-Softmax. As \ is the denomlnator in the gradient, it cannot be zero, which prevents SNAS
from realizing the architecture search and the network parameter tuning in an end-to-end manner.
In order to realize the one-stage optimization, we adopt the following Eqn. 5 to approximate its
gradient:

&Ctr
0Z3 ’

aﬁtr
O k

where Z7 ; is the s-th element in the one-hot vector Z; ; where s-th element is equal to one.

&)

=Ezp(2) lvaf’j log p(Z;,5)

3.3 OPTIMIZATION OF HYPER-PARAMETERS

As shown in Fig. 1, given the batch of augmented training data {(7%(zx), yk)}Z; and the sam-
pled child network, we need to optimize the differentiable hyper-parameters 7, such as learn-
ing rate and L2 regularization. At the training stage, we alternatively update 6 and n. In t-
th iteration we can update 6% based on the gradient of the training loss L£!"(f(at,0%; B")) =

nt’ Zk . L (f(at, 0% Tr(xx))), which can be written as:
0! = OP(0', 1", VoL (f(a!, 0% B"))), ©)

where OP(-) is the optimizer. To update the hyper-parameters 77, we regard 81 as a function of i
and compute the validation loss £ (f(at, *F1(n?); BY*)) with network parameters 8! (n?) on
a mini-batch of validation data B°%'. Then, i’ is updated with V,, L (f(a, 671 (n); Bv')) by
gradient descent:

nt+1 _ nt _ ﬁV,,L”“l(f(at, 0t+1(nt); Bval))’ (7)

where 3 is a learning rate. Even @' can also be deployed to 8*~! whose calculation also involves 1,
we take an approximation method in this equation and regard 0* here as a variable independent of

n.
3.4 DIFFAUTOML

Based on above analysis of each AutoML module, DiffAutoML realizes end-to-end co-optimization
of automated data augmentation parameters 7, architecture parameters ¢, and hyper-parameters 7.
The DiffAutoML algorithm is summarized in Algorithm 1. One-level optimization is applied to o
and 7 as in Line 5 and Line 6, while bi-level optimization is applied to i as in Line 8.

4 EXPERIMENTS

Experiments are conducted to verify the performance of the proposed DiffAutoML. In Sec. 4.2,
we compare the performance of DiffAutoML with end-to-end NAS and multi-stage NAS in terms
of final accuracy and the computational efficiency to show the advantages of end-to-end joint op-
timization. In Sec. 4.3, we conduct ablation studies for DiffAutoML. First, given neural network
architectures, we verify the effectiveness of the automated DA and HPO modules provided by Dif-
fAutoML. Second, we investigate the mutual influence among different AutoML components.

4.1 EXPERIMENT SETTING

Dataset All our experiments are conducted on the ImageNet dataset (Russakovsky et al., 2015)
for the classification task. This dataset consists of around 1.28 x 106 training images and 5 x 10*
validation images.
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Algorithm 1 DiffAutoML

Initialization: Architecture Parameters o, Data Transformation Parameters 7, Hyper-parameters
7 and Network Parameters 6
Input: Training Set D", Validation Set D, Optimizer, Parameters 7, o, 17, 0, and the iteration
number T’
Return: 7, ¢, 1, 0
1: whilet < T do
Separately sample a mini-batch B*" and a mini-batch B*® from D'" and D%,
For each sample in B?", sample a transformation according to 7¢;
Based on o, sample a child network from super network;
Compute the weighted loss function as Eqn. (2) and update 71 accordingly;
Use normal loss function to update a!*! with Eqn. (5);
Calculate 8! with Eqn. (6);
Compute the loss function with 8**1 on DV and update n**! with Eqn. (7);
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Figure 2: Comparison of validation accuracy of DSNAS and DiffAutoML over (a) the training
epochs and (b) the run time. NAS optimization in DiffAutoML can be divided into searching stage
where « is optimized with others, and tuning stage where « is fixed while other modules are still
updated.

Search Space Automated DA. Following Ho et al. (2019), we consider 14 different operations for
data augmentation, including AutoContrast, Equalize, Rotate, Posterize, Solarize, Color, Contrast,
Brightness, Sharpness, Shear X/Y, Translate X/Y, and Identity. The magnitude of each operation
is randomly sampled from the uniform distribution. NAS. Following Hu et al. (2020), we consider
four candidates for each choice block in the parent network, i.e., choice_1, choice_2, choice_3, and
choice_4. These candidates differ in kernel size and the number of depthwise convolutions (see
Appendix B for the detailed network architectures). The resulting search space consists of 420
single path models. HPOQ. For illustration purpose, we consider the L2 regularization (i.e., weight
decay) in the experiments.

4.2  JOINT OPTIMIZATION OF AUTOML COMPONENTS

We first compare our DiffAutoML against several types of baseline methods: memory-efficient
manual designed networks such as MobileNet V2 (1.0x) (Sandler et al., 2018) and ShuffleNet V2
(1.5) (Ma et al., 2018), conventional two-stage NAS methods like Proxyless-R (mobile) (Cai et al.,
2019) and Single Path One-Shot (Guo et al., 2019), which optimize the architectures during a search
stage and then retrain the best architecture before deployment, and finally the recently proposed
end-to-end NAS approach, DSNAS (Hu et al., 2020). Detailed experimental settings are provided
in Appendix A.

The results of this set of experiments are summarized in Table 1. First, it is evident that all NAS
methods including our DiffAutoML clearly outperform the manually designed networks both in
terms of accuracy performance as well as FLOPS required; this verifies the effectiveness of per-
forming architecture search. Second, if we take into account the total time taken for obtaining a
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ready-to-deploy network ', the end-to-end NAS approaches (DSNAS and DiffAutoML) consumes
less time than two-stage NAS approaches (Proxyless-R and Single Path One-Shot) to achieve better
or comparable performance. Specifically, DiffAutoML exceeds Proxyless-R by 0.9% in terms of
accuracy without retraining but takes 42% less time. Note for end-to-end NAS methods, the ac-
curacy performance of the network found with and without training are almost identical. Finally,
the performance gain of our DiffAutoML over DSNAS shows the advantage of doing joint opti-
mization of automated DA, NAS and HPO in comparison with doing NAS alone. In addition, we
compare the validation accuracy of DiffAutoML and DSNAS over epoch numbers (Fig. 2(a)) and
training time (Fig. 2(b)). As can be seen, DiffAutoML achieves higher validation accuracy with
much fewer epochs. Although optimizing more AutoML components requires slightly longer time
for each epoch, DiffAutoML results in less total searching time due to the fast convergence com-
pared to DSNAS (see Fig. 2(b)). This indicates that appropriate automated DA and HPO could help
to accelerate and stabilize the NAS process, and also shows the efficiency of our differentiable joint
optimization framework even with a much larger search dimension.

Table 1: Top-1 Accuracy (%) and Top-5 Accuracy (%) of architecture search algorithms in the
ImageNet dataset. Here, * indicates our application, I represents the accuracy of the search set, and
§ refers to a conversion from V100 GPU hours with a ratio of 1 : 1.5.

Model FLOPS Search Retrain Time (GPU hour)
Top-1 Top-5 Top-1 Top-5 .
Acc(%) | Acc(%) | Acc(%) | Acc(%) Search | Retrain
MobileNet V2 (1.0x) 564M Manual 72.0 91.0 Manual
ShuffleNet V2 (1.5x) | 564M Manual 72.6 90.6 Manual
Proxyless-R (mobile) | 320M 62.5% 84.8* 74.6 92.2 3008 >384
Single Path One-Shot | 319M 68.7¢ - 74.3 - 250 384
DSNAS 324M | 744 +0.2 91.5 743 +£0.3 91.9 420
DiffAutoML [ 31BM | 755 [ 927 | 755 | 92.5 | 394

4.3 ABLATION STUDIES AND DISCUSSION

4.3.1 DIFFAUTOML GIVEN NETWORK ARCHITECTURES

We conduct this set of experiments to demonstrate the effectiveness of DA and HPO modules in
DiffAutoML, as well as the advantages of conducting optimization of AutoML modules jointly over
sequentially.

We first apply the joint optimization of automated DA and HPO (see Sec. 3.1 and 3.3) in the retrain-
ing phases of the baseline NAS algorithms including DARTS and DSNAS. This is to simulate the
common practice of optimizing different components of AutoML separately in sequence. The results
in the top two rows of Table 2 show that performance gain can be obtained by doing such additional
optimization on HP and DA policies, justifying the need of applying multiple AutoML components
for a single task. It also shows that the DA and HPO optimization modules in our method remain
performant even when being used in separation from our NAS approach. Finally, compared with
the performance reported in Table 1, the superior performance of doing co-optimization of all the
components (i.e., automated DA, NAS and HPO) over doing optimization in sequence shows the
clear advantage of joint optimization.

We also apply joint optimization of automated DA and HPO provided by DiffAutoML to manual
design networks such as ResNet-50. There is one thing worth mentioning that in this experiment,
the HPO optimizes both learning rate and L2 regularization. The results are compared with recent
automated DA algorithms including Fast Autoaugment (FAA) (Lim et al., 2019), Population-Based
Augment (PBA) (Ho et al., 2019) and Adversarial Autoaugment (AdvAA), as summarized in the last
seven rows of Table 2. As can be seen, without delicate hyper-parameter tuning with burdensome
human involvement, our DiffAutoML shows very competitive results, outperforming the current
baselines in most cases on a variety of image classification tasks.

!'The sum of search and retrain time for two-stage NSA methods and the search time along for the end-to-end
NAS method.
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Table 2: Top-1 / Top-5 Accuracy (%) of different DA algorithms and the NAS algorithms on Ima-
geNet. Top-1 Accuracy (%) of different DA algorithms on CIFAR-10 and CIFAR-100.

Dataset Model Baseline FAA PBA AdvAA DiffAutoML
ImageNet DARTS (DA+HPO) 73.1/91.0 — — — 73.8/91.5
DSNAS (DA+HPO) 74.3/91.9 — — — 75.0/92.5
ImageNet ResNet-50 76.3/93.1 77.6/93.7 — 79.4/94.5 79.0/94.3
ResNet-200 78.5/94.2  80.6/95.3 — 81.3/95.3 81.5/95.5
CIFAR-10 Wide-ResNet-28-10 96.1 97.3 97.4 98.1 98.0 £ 0.1
Wide-ResNet-40-2 94.7 96.4 — — 96.8 + 0.0
PyramidNet+ShakeDrop 97.3 98.3 98.5 98.6 98.6 + 0.1
CIFAR-100 Wide-ResNet-28-10 81.2 82.9 83.3 84.5 84.0+0.2
Wide-ResNet-40-2 74.0 79.3 — — 80.6 +£ 0.0

HHEH HHHHE

(a) DSNAS (b) DiffAutoML

Figure 3: Searched architectures with different AutoML components. The network architecture is

(c) DiffAutoML (NAS + 14 DA w/o HPO) (d) DiffAutoML (NAS + 4 DA w/o HPO)
divided into four components shown in the above figure with the help of the dotted line. The first
block of each component has the stride number of 2 and the rest blocks have the stride number of 1.
Detailed architectures of different choices are provided in Appendix B.

4.3.2 MUTUAL INFLUENCE AMONG AUTOML COMPONENTS

In this experiment, we investigate the mutual inference among different AutoML components by
comparing the searched architectures and the final accuracy. We first pay attention to the resulting
architectures of DSNAS and DiffAutoML in Sec. 4.2. For comparison purpose, we also consider
different DA strategies in NAS without HPO when using DiffAutoML. Specifically, we separately
conduct DiffAutoML with all DA operations introduced in Sec. 4.1 and four DA operations only.
The four DA operations are Shear X/Y and Translate X/Y.

The resulting architectures are provided in Fig. 3, and the corresponding final accuracy is provided in
Appendix C. As can be seen, the resulting optimal architectures are quite different in terms of choices
of basic building blocks. This indicates mutual influences among different AutoML components,
thus justifying the need for co-optimization of AutoML components instead of optimizing them
separately.

5 CONCLUSION

Previous AutoML algorithms usually focus on one or two components only, which ignore the cou-
pling relationships among different AutoML components. DiffAutoML takes the co-optimization
of the data augmentation, the architecture search, and the hyper-parameters into consideration,
adapts the differentiable method to well treat this large search space, and realizes the end-to-end
co-optimization. With less computation complexity, Diff AutoML achieves better results than alter-
native one-stage NAS and comparable results with two-stage NAS.
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Figure 4: Choice blocks in search space. From left to right are Choice_1, Choice_2, Choice_3, and
Choice_4.

A DETAILED EXPERIMENTAL SETTINGS

This experiments are run on 8*NVIDIA V100 under PyTorch-1.3.0 and python3.6. Hyper-parameter
7 is optimized by the Adam optimizer with the learning rate 1 x 10~3. The data transformation
parameter 7 and the architecture parameter 77 are optimized by the SGD optimizer separately with
the learning rate 1 x 107° and 1 x 1076, Their L2 weight decay is set to be 5 x 10~* and their
momentum is set to be 0.9. SGD optimizer is used to optimize 8. Cosine learning scheduler is
used to gradually change the learning rate with the initial learning rate 0.5 and the moment of SGD
optimizer is set to 0.9.

As to the optimization of 7 and 7 with given architectures, we use the same optimizer and hyper-
parameter as in Sec. 4.2. For the retraining of the architecture found by DSNAS, the SGD optimizer
is used with the basic learning rate 0.5 and the L2 weight decay 4 x 107°. The learning rate is
also gradually modified by the cosine learning scheduler. The retraining of DARTS shares almost
the same5 setting as that DSNAS, while its initial learning rate is set to 0.1 with the weight decay
3 x 107>,

B DETAILS ABOUT THE ARCHITECTURES

Following Hu et al. (2020), we consider four candidates for each choice block in the parent network,
i.e., Choice_1, Choice_2, Choice_3, and Choice_4. These candidates differ in kernel size and the
number of depthwise convolutions. Detailed network architectures are provided in Fig. 4.

C MUTUAL INFLUENCE AMONG AUTOML COMPONENTS

In this experiment, we investigate the mutual inference among different AutoML components by
comparing the searched architectures and the final accuracy. For comparison purpose, we consider
different DA strategies in NAS without HPO when using DiffAutoML. Specifically, we conduct
DiffAutoML with all DA operations introduced in Sec. 4.1 and four DA operations only, separately.
The four DA operations are Shear X/Y and Translate X/Y. The resulting accuracy in ImageNet is
reported in Table 3.

Table 3: The Top-1 Accuracy (%) and Top-5 Accuracy (%) in the ImageNet dataset achieved by
DiffAutoML trained under different DA settings.

Top-1 Acc(%) Top-5 Acc(%)

Method LN NG FLOPS
Co-optimization ~ Co-optimization

DiffAutoML (NAS + 4 DA) 74.8 92.2 323M

DiffAutoML (NAS + 14 DA) 75.1 92.7 318M
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D RELATED WORK IN DETAILS

D.1 NEURAL ARCHITECTURE SEARCH

NAS is an important subfield of AutoML that automates the design of neural networks for various
tasks. It has attracted growing attention over the recent years and discovered architectures with
better performance over those designed by human experts (Zoph & Le, 2017; Cai et al., 2018; Liu
etal., 2018; Kandasamy et al., 2018; Pham et al., 2018; Real et al., 2018; Zoph et al., 2018; Ru et al.,
2020b). The rich collection of NAS literature can be divided into two categories: the query-based
methods and the gradient-based ones. The former includes powerful optimization strategies such as
reinforcement learning (Zoph & Le, 2017; Pham et al., 2018), Bayesian optimization (Kandasamy
etal., 2018; Ru et al., 2020b) and evolutionary algorithms (Elsken et al., 2019; Lu et al., 2019). The
latter enables the use of gradients in updating both architecture parameters and network weights,
and significantly reduces the computation costs of NAS via weight sharing. Since the seminal work
DARTS (Liu et al., 2018), many follow-up works (Chen et al., 2019; Xie et al., 2019; Hu et al.,
2020) have been proposed to improve the performance and efficiency of gradient-based approaches.
To achieve cost efficiency, most NAS methods search architectures in a low-fidelity set-up (e.g.fewer
training epochs, smaller architectures) and retrain the optimal architecture using the full set-up be-
fore deployment. This separation of search and evaluation is sub-optimal (I cannot find the exact
drawbacks of this except something like poor performance ranking correlation between the architec-
tures at the end of searched and after retraining) (Hu et al., 2020) and motivates the development of
end-to-end NAS strategies (Xie et al., 2019; Hu et al., 2020) which return read-to-deploy networks
at the end of the search. Our work also proposes an end-to-end solution.

D.2 DATA AUGMENTATION

Data augmentation is one of the commonly used techniques in deep learning to increase the diver-
sity of data and thus to improve the generalization ability of deep learning models. Elaborately de-
signed augmentation methods have effectively improved the performance of deep models (DeVries
& Taylor, 2017; Zhang et al., 2017; Yun et al., 2019). However, the effectiveness of these manu-
ally designed ones varies among datasets. As automated machine learning has achieved impressive
success in quite a lot scenarios, learning data augmentation policies directly from a target dataset
has become a trend. AutoAugment (Cubuk et al., 2018) and Adversarial AutoAugment (Zhang
et al., 2020) adopt reinforcement learning to train a controller to generate policies, while OHL-
Auto-Aug (Lin et al., 2019) formulates augmentation policy as a probability distribution and adopts
REINFORCE (Williams, 1992) to optimize the distribution parameters along with network train-
ing. PBA (Ho et al., 2019) and FAA (Lim et al., 2019) use population-based training method and
Bayesian optimization respectively to reduce the computing cost of learning policies. Cubuk et al.
(2020) argue that the search space of policies used by these works can be reduced greatly and simple
grid search can achieve competitive performance. They also point out that the optimal data augmen-
tation policy depends on the model size, which indicates that fixing an augmentation policy when
searching for neural architectures may lead to sub-optimal solutions.

D.3 HYPER-PARAMETER OPTIMIZATION

The performance of neural networks heavily depends on the appropriate choices of hyper-
parameters. Various black-box optimization approaches have been developed to address hyper-
parameter tuning tasks involving multiple tasks (Mittal et al., 2020) or a mixed variable types
(Ru et al., 2020a). Meanwhile, techniques like multi-fidelity evaluations, parallel computation and
transfer learning are also employed to further enhance the query efficiency of the hyper-parameter
optimization. Although many hyper-parameter optimization strategies have been adapted to form
query-based NAS strategies, methods that jointly optimize both architectures and hyper-parameters
are rarely seen except the ones discussed below.

D.4 Co-OPTIMIZATION
Conventional neural architecture search methods perform search under a fixed set of training hyper-

parameters and apply or search for a separate set of hyper-parameters when retraining the best ar-
chitecture found. Such search protocol leads to sub-optimal results (Zela et al., 2018; Dong et al.,

12



Under review as a conference paper at ICLR 2021

2020) as it overlooks the influence of training hyper-parameters on architecture performance and
ignores superior architectures under alternative hyper-parameter values (Dai et al., 2020). In view of
this, several works have been proposed to jointly optimize architecture structure and training hyper-
parameters (Dai et al., 2020; Wang et al., 2020; Dong et al., 2020). Zela et al. (2018) introduces
the use of multi-fidelity Bayesian optimization to search over both the architecture structure and
training hyper-parameters. Dai et al. (2020) trains an accuracy predictor to estimate the network
performance given its architecture and training hyper-parameters and then uses the predictor with
evolutionary algorithm to perform the search. Both these methods are sample-based and requires
a relatively large number of architecture-hyperparameter evaluations to finetune predictor or obtain
good recommendations. A more related work is AutoHAS (Dong et al., 2020), which introduces
a differentiable approach in conjunction with weight sharing for the co-optimization task. Dong
et al. (2020) demonstrates empirically that such differentiable one-shot approach achieve superior
efficiency over sampled-based methods. Our proposed method differs from AutoHAS in mainly
two aspects: first, AutoHAS updates the entire supernetwork at each optimization step while our
method trains only a subnetwork. Thus, our method is much more memory efficient than AutoHAS.
Second, we further extend the co-optimization scope from NAS and training hyper-parameters to
also include data augmentation hyper-parameters. To the best of our knowledge, we are the first to
jointly optimise all three aspects and we demonstrate the advantage of such practice in Sec. 4.
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