Neural Evolution Strategy for
Black-box Pareto Set Learning

Chengyu Lu'-2, Zhenhua Li*>**, Xi Lin!-2, Ji Cheng!-2, Qingfu Zhang!>*
L City University of Hong Kong, ? City University of Hong Kong Shenzhen Research Institute
3 Nanjing University of Aeronautics and Astronautics
4 MIIT Key Laboratory of Pattern Analysis and Machine Intelligence
{chengyulu3-c, xi.lin, J.Chengl}@my.cityu.edu.hk, zhenhua.li@nuaa.edu.cn
qingfu.zhang@cityu.edu.hk

Abstract

Multi-objective optimization problems (MOPs) are prevalent in numerous real-
world applications. Recently, Pareto Set Learning (PSL) has emerged as a powerful
paradigm for solving MOPs. PSL can produce a neural network for modeling
the set of all Pareto optimal solutions. However, applying PSL to black-box
objectives, particularly those exhibiting non-separability, high dimensionality,
and/or other complex properties, remains very challenging. To address this issue,
we propose leveraging evolution strategies (ESs), a class of specialized black-
box optimization algorithms, within the PSL paradigm. Traditional ESs capture
the complex dimensional dependencies less efficiently, which can significantly
hinder their performance in PSL. To tackle this issue, we suggest encapsulating the
dependencies within a neural network, which is then trained using a novel gradient
estimation method. The proposed method, termed Neural-ES, is evaluated using a
bespoke benchmark suite for black-box PSL. Experimental comparisons with other
methods demonstrate the efficiency of Neural-ES, underscoring its ability to learn
the Pareto sets of challenging black-box MOPs.

1 Introduction

Many real-life applications need to consider multiple conflicting objectives simultaneously [[1H3].
Since these objectives can rarely be optimized by a single solution simultaneously, a commonly used
approach is to find the Pareto set (PS) [4], which contains all solutions with different optimal trade-
offs among the objectives. Traditional methods [SH8]] approximate the PS using only a finite number
of solutions, risking not aligning with users’ trade-off preferences determined after optimization.

Recently, a novel paradigm called Pareto Set Learning (PSL) has attracted increasing attention [9-
15]. PSL formulates a multi-objective optimization problem (MOP) [4] as a set learning task by
decomposing the problem into an infinite number of single-objective subproblems and resolving the
optimal solutions for all of them. In this process, a set model, typically a neural network, learns the
mapping from an input preference to its corresponding Pareto optimal solution. Consequently, the
Pareto set is recovered in both the objective and solution spaces. Unlike traditional multi-objective
methods, which only accommodate a limited number of predefined user preferences [16. 5], a trained
PSL model can provide a tailored optimal solution for any valid decision-maker preference trade-off
without requiring re-optimization from scratch.

Despite the rapid development of PSL, it remains largely unclear how to apply this paradigm to a
black-box MOP where both the analytic expression and derivatives of the objectives are unknown. On

*Correspondence to: Qingfu Zhang and Zhenhua Li

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

one hand, black-box objectives are prevalent in practice [17} 18} [7], making it imperative to develop
novel approaches for effectively tackling black-box MOPs. On the other hand, when exhibiting
common properties such as non-separability and high dimensionality, black-box objectives can
become highly challenging, rendering their resolution an open question. Moreover, since PSL
involves solving numerous subproblems that may themselves be black boxes, jointly optimizing
them poses a significantly greater challenge than solving a single black-box optimization problem.
Lin et al. [9] proposed integrating a Gaussian process model into PSL for solving expensive MOPs.
However, Gaussian process models scale poorly with problem dimensions and increased evaluation
budgets, which may be less suited for more general black-box MOPs.

Evolution Strategy (ES) has remained one of the most successful black-box optimization algorithms
for decades [19-H21]]. An ES algorithm utilizes a distribution model, typically a multivariate Gaussian
distribution, to search in complex fitness landscapes. Key elements that govern a competitive ES
algorithm include an adaptive covariance matrix, the resemblance to gradient search, and sophisticated
adaptation strategies. Compared to other zeroth-order optimization methods that sample solutions
from isotropic distributions [22| 23|], ESs excel at dealing with variables’ complex dimensional
dependencies, a prevalent feature as well as a significant challenge in real-world optimization prob-
lems [24H26]. It is natural to integrate PSL with ES for black-box multi-objective optimization. On
one hand, PSL decomposes an MOP into single-objective subproblems, aligning perfectly with the
strengths of ES. On the other hand, ES’s search efficiency paves the way for dealing with challenging
black-box objectives. However, traditional ES algorithms experience high computational complex-
ity [27, 28] and rely heavily on adaptation strategies [29-31]. These limitations are particularly
crucial and evident within PSL, as they can lead to failures in decoupling dimensional dependencies
and significantly hinder the performance of ES.

To enhance the PSL paradigm for solving black-box MOPs, we propose a novel method called Neural-
ES, which acts as the back-end of the set model. To effectively handle dimensional dependencies, we
propose rethinking the way ES algorithms decouple such dependencies. Rather than leveraging a
covariance matrix, Neural-ES encapsulates the dependencies within a neural network. To be more
specific, we partition the high-dimensional design variable of a black-box objective into lower-
dimensional segments. Each segment follows a distinct multivariate Gaussian distribution. The
network, which also acts as the set model, parameterizes the distribution conditioned on all previously
sampled segments. To train the network, we estimate the gradient in a novel way closely related to
the natural gradient [32]. Neural-ES is well-suited for black-box tasks involving neural networks,
with PSL serving as a typical example. We summarize our contributions in threefold:

* We propose Neural-ES, a novel algorithm that utilizes a neural network to capture complex
dimensional dependencies effectively, which enhances the versatility of the ES repertoire.

* We establish a novel PSL formulation for black-box MOPs, which enables the use of efficient
derivative-free optimization algorithms to address the problem efficiently.

* We conduct extensive experiments using a novel benchmark suite designed for evaluating
black-box PSL problems. Results demonstrate that Neural-ES effectively addresses non-
separable MOPs. To the best of our knowledge, we are the first to scale the PSL paradigm
to over 1,000 dimensions in black-box scenarios.

2 Preliminaries & related works

2.1 Multi-objective optimization
A continuous MOP (MOP) [4] is defined as:

migier/réizeF(w) = (f1(=), ...7fM($))T7 (1

where F : X — RM consists of M objectives f; : X — Rforalli = 1, ..., M. In many cases, the
objectives conflict with each other, and a single solution cannot optimizes all of them simultaneously.
An alternative is to pursue the Pareto set, which consists of optimal solutions under all possible
trade-offs among the objectives. Collectively, these solutions exclude any opportunity to improve one
objective without compromising at least one other. We provide formal definitions of the fundamentals
of MOPs in the following:

Definition 1 (Pareto dominance). Let x, x € X be two solutions to , x is said to dominate ,
denoted by =’ < x, if fi(a:') < fi(x),Vi=1,..., M, and fj(a:/) < fi(®),35=1,.... M.

Definition 2 (Pareto optimality). A solution & € X is Pareto optimal if z” £ @, V&' € X.

Definition 3 (Pareto set & front). The set of all the Pareto optimal solutions is called the Pareto set,

denoted by PS = {x € X|flz’, 2" < x}; the image of PSS in the objective space is called the Pareto
front, denoted by PF' = {F(z)|x € PS}.

Multi-objective evolutionary algorithms (MOEAs) MOEAs have developed as one of the key
methodologies for solving MOPs [16} 15, 16]]. Compared to other methodologies [33) [7], MOEAs
approximate the PS by a population of diverse non-dominated solutions, without collapsing into
a single point. Several highly efficient MOEA variants have been developed [6, 34, 35]. How-
ever, MOEAs encounter longstanding issues, including inefficient Pareto ranking, misalignment
with decision-makers’ preferences, poor scalability in relation to population size, and ineffective
information sharing among subproblems.

2.2 Pareto set learning

PSL formulates an MOP as follows. First, given a preference vector a = (ay, ..., anr)? € Ay
where Ay; = {o € RY [1T a0 = 1} is the (M — 1)-dimensional simplex, and an aggregation function
g : RM — R conditioned on «, (1)) can be aggregated into a single-objective subproblem. Under
some mild conditions, solving every possible subproblem conditioned on all possible o recovers the
entire Pareto set. Then, an MOP in @) can be formulated as:

minimize Eq /() [9(2; @), where z = o(a), 2

where © is the parameter space, U (A) denotes a probability distribution (in this work, it is set as a
uniform distribution) over Ay, and g : Ay — X is called a set model parameterized by 6. In the
ideal case, g () = argming¢ v g(x; @), Yo € Apy, which means ¢ maps each preference to its
corresponding Pareto optimal solution that minimizes g(-; o).

Recent developments Since its inception, PSL [9]] has been rapidly applied to various problem
types, including expensive [13}[11]], combinatorial [36]], and smooth MOPs [37]]. However, these
methods face challenges with general black-box MOPs, particularly when the objectives are high-
dimensional and exhibit complex dimensional dependencies. Lin ef al. [[15] contributed a primary
work called evolutionary-PSL (EPSL), where a finite difference approach is employed to train the
set model. However, due to the absence of a comprehensive distribution model, most existing
derivative-free PSL algorithms have been validated only on low-dimensional toy problems, leaving
their performance on challenging problems uncertain.

2.3 Evolution strategy

ES is a prominent class of derivative-free optimization algorithms. Popular algorithms include
natural evolution strategy (NES) [28] 20]], the state-of-the-art covariance matrix adaptation (CMA-
ES) [19,27], and the also competitive but more time-efficient matrix adaptation evolution strategy
(MA-ES) [38]. An ES algorithm first formulates a general black-box optimization problem in question
as:

minimize flx) = maximize —Er@ip) [f(@)], 3

where X C R" is the search space, 7(x;) is the probability density function, p.d.f., of a smooth
distribution @ ~ 7(¢) parameterized by ¢, and ® is the parameter space of . At each z € X, only
its f function value f(z) is available. Most commonly, 7(¢) = A (m, C) is a multivariate Gaussian
distribution where ¢ consists of the distribution mean m € R™ and the covariance matrix C' € S7
(where S} | denotes the space of n-dimensional symmetric and positive definite matrices). In brief,
an ES optimizes f by 1) sampling random samples from () and 2) effectively updating ¢.

Covariance matrix and dimensional dependencies It is widely acknowledged that the covariance
matrix plays a vital role in the performance of an ES algorithm. Hansen et al. [24]] systematically

showed that CMA-ES, aided by an adaptive covariance matrix, effectively decouples the interacting
problem dimensions. Beyer [26] showed that the covariance matrix decouples the dimensional
dependencies by effectively converging to the inverse of a convex objective’s Hessian. Both Aki-
moto et al. [39]] and Glasmarchers et al. [28] demonstrated that the rank-y of CMA-ES amounts
to the natural gradient ascent method. The ability to decouple dimensional dependencies positions
NES and CMA-ES as second-order quasi-Newton methods rather than merely being zeroth-order
finite-difference methods.

Adaptation strategies In addition to natural gradient, refined adaptation strategies also contribute
to the competitiveness of ESs, as exemplified by cumulative step-length control and evolution
paths [1940]. An evolution path accumulates the movement trajectories of the distribution over
time, thereby exploiting a promising search direction. Evidence suggests that ESs leveraging both
natural gradient and adaptation strategies significantly outperform those that rely solely on natural
gradient [28, 29].

3 Black-box Pareto set learning

Preference@ =) Setmodel @g(a) =) Distribution (x;) ==) Solutionspace X == Objective space

a @
- - & .

Sampling x ~ 7e(:; @) 92 (x;@) = Dy + pD,
3J 99
Update 8 < 0 +r]a¢ %

Figure 1: Black-box PSL formulation. The blue arrows indicate the forward process, and the
indicates the gradient back-propagation; the is where an ES participates and is
referred to as the back-end of the set model.

3.1 Problem formulation

A black-box MOP refers to those F in (1) that provide no information beyond the objective values of
a solution. In this case, we formulate @) through the reparameterization trick:

maximize 7 (60) = Eaw(5) Brasgy | -9(;)] whete ¢ = (). @

The above formulation (@) distinguishes itself from (2)) in the nested expectation. Instead of outputting
@ directly, the set model g () first maps a preference vector « to a distribution 7 () parameterized
by ¢ = g (), and then samples solutions from the distribution. To train the set model, an ES is
employed to sample solutions and estimate gradients. When @ is perfectly learned, regarding an
arbitrary «, a random & ~ (g ()) converges in probability to the minimum of g(-;).

To further illustrate this process, we outline the paradigm of black-box PSL in Fig.[I] First, a random
preference vector o« ~ U(A) is sampled and inputted into the set model g. The set model
subsequently outputs a parameter vector ¢ € P, which parameterizes a distribution 7 (x;). A
random solution & ~ m(¢) is then sampled from this distribution and evaluated on the specific
g(-;). Here, we use the PBI aggregation function g%bl [8] as an example. When we have sampled
enough as, and for each « there have been several samples s, we can estimate the gradient and
back-propagate it to 8 through the chain rule.

3.2 Key challenges

The formulation (4)) introduces several challenges for ES. First, the high computational complexity of
the covariance matrix significantly impedes an ES’s performance. It takes ©(n?) space complexity of
the set model to generate a covariance matrix, and ©(n*) time complexity or even more to compute
the gradient, which will soon become prohibitive as n increases. Even worse, since each distribution ¢
corresponds to a different cx, as can be seen from Fig.|l| the large number of decomposed subproblems

in PSL necessitates an equally large number of covariance matrices, which drastically increases the
learning burden of the set model.

Second, it is difficult, if not impossible, to apply sophisticated adaptation strategies in PSL problems.
These strategies are known to accelerate convergence by counteracting the slow-changing rate
suppressed by the Kullback-Leibler (KL)-divergence [26]. Despite some recent findings [41], the
connection between these strategies and gradient search remains unclear, which limits their use
in training the set model. Furthermore, as there are numerous decomposed subproblems in a PSL
problem, it is infeasible to track a different evolution path for each subproblem.

The above characteristics of a black-box PSL problem make the direct integration of ESs rarely yield
competitive performance, posing new challenges for ESs to learn in a typical adaptation-free scenario.

4 Neural evolution strategy

4.1 Basicidea

Consider a general single-objective problem: maximizeg Ja(0) = Er(a:p)[f ()], where ¢ =
wo (), v is a problem specific parameter, and & € R™. Assuming n = p X d where p and d are
positive integers, & can be partitioned into p segments each of length d, as follows:

T
T = (Xh ceoy Xdy ey X(i=1)d+15 o0y Xidy -+ Xn—d+1, --~7Xn) (5)
N——

T T
] w:f z,

By conditional probability, m(x; o) = 7(x; pe(ax)) can be decomposed into the product of a chain

of p.d.f:s each concerning a dlfferent x;, and conditioned on all the previous xg, 1, ..., ;—1:
m(x; po(a HNB x| X0, T1,y .oy Tio1) = HN(-’Bi;we(wo:iq))- (6)
—_— -
i=1 L0o:i—1 i=1

With a slight abuse of symbols, we redefine

o : U, R" — R? x S, hereafter, which
means g maps variable-length inputs to the pa-
rameters of a d-dimensional Gaussian. More
specifically, an input xg.;_; consists of all
the segments xg, x1..., ;1 preceding x;, and
the output g (xo.;—1) consists of the mean
mg(xo;_1) € R? and the covariance matrix
Co(xo.i—1) € S%,. xo is just an alias of a,
for notation consistency. (6) directly models
the dependency of x; on x(.;_; as the mapping
e In practice, g is a neural network. Fig.[2]
illustrates the idea.

Figure 2: An illustration of using (6)) to sample a
random solution & ~ 7(pg(ax)).

As the Gaussian is smooth w.r.t. ¢, the network

0 can be trained by gradient ascent. A conceptual algorithm is inspired, which iteratively 1) sample
A solutions {7 }3\:1 from g (-; o) independently, and 2) estimate the gradient using these samples
and back-propagate to € until convergence.

4.2 Implementation

4.2.1 Designing the covariance matrix

For any i € [p], a full covariance matrix Cg(x¢.;—1) of ©(d?) degrees of freedom necessitates ©(d?)
output neurons to generate it and ©(d?) time complexity to sample solutions as well as to estimate its
gradient. To reduce the overall complexity to ©(n), the above must be reduced to O(d).

As is a common trick in ES variants for high-dimensional tasks [42} 29, [30]], we can replace a full
covariance matrix by a rank-one model. More specifically, we define a step-size og(@.;—1) > 0 and
a component vg(Zo.;_1) € R?, then Cg(xo.;_1) can be parameterized by:

Co(xo.i-1) = 0g(z0:i—1) (I +ve(®0.i-1)ve(To:i-1)") - @)

Of the above, og controls the isotropic variance of the samples, and vy is expected to identify a
promising search direction. Although the number of free parameters in Cg(x(.;—1) decreases, 7 ()
suffices to decouple complex dimensional dependencies when p is large enough. By this means, the
space complexity of 8’s output layer is reduced to ©(d).

Following (7), a solution is practically generated by:

x; = me(To:i—1) + 0o(x0:-1)(2 + rve(To:i-1)), (8)
where z ~ N(0,1), z € R% and r ~ N(0,1). After p iterations, an ~ 7g(-; @) is recovered by
stacking the @1, ..., x,. The time complexity of (8] is ©(d)

4.2.2 Revising the gradient

The gradient of 8 can be derived as

8 Ol N (z;; po(o:i—1))
Vja ZE‘N(E i) |: 80 (8(,09(1:0_171) >:|) ®

However, the partial denvatlve AN (z;; 00(xo.i-1))/Ope(xo.i—1) rarely yields stable conver-
gence behaviors of the mean mg(x¢.;—1), because the shrinking of Cg(x.;—1) in turns stretches
the gradient of mg(x.;—1), preventing it from staying in stationary points. See [20} [26] as well as
Section [B.2] for more details.

To regulate the gradient, a remedy is to multiply each partial derivative in (9) by the inverse of the
Fisher information matrix (a.k.a. the “Fisher”) of ¢; = g(x¢.;—1), which yields:

0 (-1 9N (@i pa(T0:i-1))
Vja Z]E‘fr(m ®) |: 39 (‘7:(90) 8900(330:1'—1) >:| ’ (10)

where F(p;) = En(alion) [V, MN (5 0;) Ve, NN (;; p;)T]. The interpretation is that the
Fisher penalizes drastic changes of the search distribution, counteracts the effect of the shrinking
covariance, and thus guarantees stable convergence. More intrinsically, the following connects (10) to
the natural gradient, which incorporates second-order information and is the steepest ascent direction
on Riemannian manifolds [32]].

Lemma 1. Consider a distribution 7w(p) with fixed parameters p = (o7, ..., gog)T and a ran-
dom sample x ~ 7(p). The partial derivative Y %_ | [F(p;) ' 0In N (x;; ;) /O] in @) is an
unbiased estimator for the natural gradient of the log-likelihood In 7w(x;) regarding .

Furthermore, empirical and theoretical evidence [20} 25| [26] have shown that unscaled objective
values often lead to degenerated search distributions and premature convergence, due to the irregularity
of f. ES algorithms alleviate this issue by replacing f(x) with rank-dependent weight values.
Specifically, consider a set of objective values {f(x’)}3\=1 arranged in descending order, which
means f(z!) > ... > f(x*), we replace each f(x) by w; where wy > ... > wy. In this paper, we
definew; =In(|3] + 1) —Inj.

According to Akimoto et al. [39], the Fisher F(¢p;) can be absorbed into the gradient without

explicitly computing its inverse. Eventually, the gradient estimator based on a set of solutions
{a7}7_, can be derived as:

\ J(sz)T(mg —m;)+
1 J 80’i'
~ 3 ZZ 1200l l? + (059)* = 0% (d + 2oy [* + llog) Zgh+| - AD
or;d (vig) T (Vi) yis + lyii [P0 — 207 (1 + [Jvi;]*)vi)

where m,; = mg(xf,_,), 045 = 00(h,;_y), vij = ve(h,_1), Ysj = @] — myj, J(-) computes
the d x |@| dimensional Jacobian matrix of an input vector w.r.t. 8, and || - || computes the ¢5-norm.
We leave the tedious derivation steps in Section[B.4] Each term irrelevant to € (i.e., those except
J(myj), 00;;/00 and J (v;;)) yields ©(d) time complexity.

4.3 The algorithm

We present Neural-ES in Alg. [During
each epoch, i.e., lines 2 to 8, the algorithm
optimizes N randomly sampled subproblems
g(;a¥), k € [N]. For each subproblem,?
lines 4 to 6 sample A random solutions from 3
7(pg(a¥)), and line 7 computes the gradient

regarding this subproblem. Lines 4 to 7 cor-4
respond to an iteration of a typical ES algo-5
rithm. Line 8 estimates the gradient w.xt. the ¢

Algorithm 1: Neural-ES for black-box PSL

Input :A black-box MOP F'(x)
Output : A set model ¢y

1 while The termination is not triggered do

for k=1t0 N do
Sample a preference o ~ U(Ayy),
set xg = ak;
for j =1to Ado
fori: =110 pdo
L L Construct w{ based on ;

PSL problem in , which reads V.7(8) =
= 7 N &~ 7
]EOU"Z/[(AIM) [v:-,]a’“ (0)] % Zk:l vja’“ (0)
Eventually, V.7(0) is back-propagated to 0,
where 1 denotes the learning rate. 8

Compute @jak (0) based on ,
where £() = —g(1ab);

| 00+ 250 VT (0);

~
~

S Experiments

5.1 Configurations

Black-Box Pareto Set Learning (BBO-PSL) suite To evaluate the performance of PSL algorithms,
a test problem should meet a few fundamental requirements, including 1) closed-form PF and PS,
2) a complex shape of the PS manifold, 3) scalability to arbitrarily high dimensions, and 4) non-
separability with a wide spectrum of the Hessian. However, most existing problem suites [43-46]]
either implement only a few of these requirements or include other interfering features that fall
outside the scope of this paper. To this end, we present the novel BBO-PSL suite, which comprises
eight instances (F1 to F8) and satisfies all the aforementioned requirements. Among them, F1 to F4
are bi-objective instances, and F5 to F8 are tri-objective.

Compared algorithms We compare Neural-ES to the state-of-the-art and canonical EPSL [15]],
and configure Neural-ES by d = |n/16], N = |5n/16], and A = 2 + [1.5lnn]. Additionally,
as MOEAs are widely recognized as one of the most effective methodologies for obtaining a
set of non-dominated solutions, we consider two state-of-the-art MOEAs specifically designed
for high-dimensional MOPs, namely LMO-CSO [34] and IM-MOEA/D [35]. Among the many
MOEAs, LMO-CSO is favored for its superior handling of dimensional dependencies in complex
and high-dimensional landscapes, while IM-MOEA/D makes a notable effort to elevate the canonical
MOEA/D [8]] to high dimensions by incorporating the popular inverse modeling technique [47].
Compared to most others, they are more lightweight with lower computational overhead, indicating
better scalability to larger population sizes. Moreover, we synthesize an algorithm called EPSL-R1,
by setting p = 1 in Neural-ES, which represents the simplest way to integrate PSL with an ES.

Metrics The Inverted Generational Distance NG
(IGD) [48]] is used as the performance metric, N
. . . . QS
with a smaller value indicating better perfor- v
mance. Each algorithm is repeated 21 times 3 oA
on each BBO-PSL instance using different ran- < %
dom seeds. For the three PSL algorithms, we % - EpsL
evaluate their testing performance. To do so, 2 ¢ EPSLRI
. . n’ | <@~ Neural-ES
we input a large number of preferences into a i
» 0 2 4 6 8 10 12 14

trained set model, which yields the same num-
ber of distributions; from each distribution, we
randomly sample a solution, the collection of
which form the testing solution set; finally, we
measure the IGD value of the set and refer it as
the testing IGD value. Meanwhile, we track the convergence of the PSL algorithms during training,
in terms of the IGD values acquired by the best solutions so far. The MOEAs directly optimize the

generations (x100)

Figure 3: Convergence of the PSL algorithms on
F1-128D.

The implementation of both Neural-ES and the BBO-PSL suite is available in https://github. com/
chandler09/Neural-Evolution-Strategy.

https://github.com/chandler09/Neural-Evolution-Strategy
https://github.com/chandler09/Neural-Evolution-Strategy

same number of solutions, and the IGD value of the final population is measured. To examine the
scalability of the algorithms with increasing dimensions, we vary n from 32 to 1024.

5.2 Results and discussions

\
]
In(IGD)

NRPRRA S

Sanes

10 7 s 6 7 8 9 10
logz(n) logz(n) loga(n) logz(n)

(a) F1 (b) F2 (c) F3 (d) F4

Q -
S -
v v
S
bl
7 8 9 10

5 6 7 B 9 10 5 6 7 8 9 10 s 6 7 8 9 10
log;(n) loga(n) log(n) logz(n)

In(/IGD)
SPIRRRRHs

In(IGD)

SPPPRLAA

In(/GD)
2526242525056

I(1GD)
Vo s R0 s 2o

In(IGD)
UsV02520 50
%

(e) F5 (f) F6 (g) F7 (h) F8

Figure 4: Average testing IGD values w.r.¢. problem dimensions, where the red curve with circles
refers to Neural-ES (ours), the blue curve with diamonds refers to EPSL-R1, the green curve with
squares refers to EPSL, the orange curve with upside-down triangles refers to , and
finally the black curve with triangles refers to IM-MOEA/D. Their detailed values, along with the
Mann-Whitney U test, can be found in Table E}

According to Fig. @] Neural-ES outperforms all the other algorithms in all eight instances by a large
margin. Although the MOEAs are specialized for high-dimensional MOPs, they struggle to scale
efficiently when users require numerous trade-offs among objectives. This drawback arises from
their substantial demand on evaluation budgets and limited generalization ability. In contrast, the
PSL paradigm performs well during surges in user demand, especially when demands shift or new
ones emerge after optimization begins. The PSL algorithms, and Neural-ES in particular, are more
robust against increasing problem dimensions. All these are attributed to the efficiency of evolution
strategies and the generalization ability of the set model.

m PS m PS
A EPSL A EPSL
® EPSL-R1 ® EPSLR1 '
@® Neural-ES @® Neural-ES %\\ A EPSL {\\ A EPSL
B EPSLRI1 B EPSLR1
. \\‘. @® Neural-ES \\‘x @® Neural-ES
\ m PF . \\ s PF
\m\.; e
(a) Pareto sets of F1 (b) Pareto sets of F2 (c) Pareto fronts of F1 (d) Pareto fronts of F2

Figure 5: Testing solution sets of the algorithms, on F1-512D and F2-512D.

Compared to EPSL and EPSL-R1, Neural-ES reduces the IGD values by effectively decoupling
the dimensional dependencies. Although EPSL-R1 also handles the dependencies, it performs
slightly better than EPSL in just a few cases, yet remains similar overall. And its advantage over
EPSL dissipates as n increases. This verifies that simply plugging an ES algorithm into adaptation-
free scenarios, such as black-box PSL, does not yield a competitive algorithm. In contrast, the
novel treatment of dimensional dependencies positions Neural-ES as a highly efficient alternative in
adaptation-free scenarios.

In the remainder, we limit our focus to the PSL paradigm and utilize the limited space for in-depth
discussions. In addition to the testing performance, we plot in Fig. [3|the training-time convergence
of the three PSL algorithms. Neural-ES establishes a performance lead over EPSL and EPSL-R1

= PS
@® Neural-ES g

(a) Pareto set by EPSL (b) Pareto set by EPSL-R1 (c) Pareto set by Neural-ES (d) Pareto fronts

Figure 6: Testing solution sets of the algorithms, on F5-128D. For the ease of visualization, we only
demonstrate the non-dominated solutions in[6(d)] Therefore, the results of EPSL-R1 are unreported
because none of its solutions are in [0, 1]3.

during the early stages, and subsequently extends the performance gap throughout the search process.
The results suggest that Neural-ES efficiently learns the complex dimensional dependencies from the
outset and exploits this advantage to significantly reduce the optimization difficulty.

The ability to approximate Pareto manifolds during testing is a unique feature of PSL as well as its
primary priority. We plot in Figs. [5|and [some example approximation results. For the bi-objective
F1 and F2, in Figs. 5(a) and |3Z_55F|the approximate PSs by Neural-ES align more closely with the
ground-truth and spread much wider than EPSL and EPSL-R1. It turns out that the approximate PFs
by Neural-ES dominate those by the other two almost everywhere, as seen in Figs. [5(c)]and 5(d)}

Figs. [6(a)] to [6(c)] depict the approximate PSs in the first three dimensions of the search space (i.e., the
r1 — T2 — x3 subspace of the x-space). In these figures, the gray surface represents the ground-truth
PS, while the colored points indicate the sampled solutions obtained by different algorithms during
testing. In Fig. [6(a)] solutions sampled by EPSL appear scattered and poorly aligned with preference
vectors, because 1) the finite difference approach does not minimize the uncertainty of a distribution,
and 2) EPSL does not learn the dimensional dependencies. Fig.[6(d)] depicts the ground-truth PF
(i.e., surface with gray contours) and the algorithm approximations in the objective space (i.e., the
F'-space), which provides a more rigorous performance assessment because it directly evaluates
solution quality in the objective space and reveals dominance relationships that are not apparent in
the x-space. While Neural-ES and EPSL-R1 appear similar in decision space (Figs. [6(a)] to [6(c)),
Neural-ES clearly outperforms in objective space, with most EPSL-R1 solutions being dominated by
Neural-ES solutions.

5.3 Real-world applications

Trajectory planning We consider a tri-objective trajec-
tory planning task modified from the popular rover prob-

lem [49, [33]]. The goal is to determine a trajectory that “,,.? u Egst L
minimizes 1) the cost during navigation, e.g., collisions o 2 : Neir;l_Es
with obstacles, 2) the distance from the endpoint to an R ATELY o

intended target location, and 3) the total trajectory length,
e.g., for saving energy. The objectives conflict with each
other because, for instance, minimizing the distance may
lead to increased frequency of collisions. We plan the tra-
jectory by designing a total of 50 (x,y) coordinates, which
means n. = 100. Their approximate PFs are depicted in
Fig. m Measured at a reference point of (5,2,1.5), Neural-
ES, EPSL-R1, and EPSL achieve an average hypervolume
of 8.314+0.215, 5.144+0.622, and 4.186£0.709, respec-
tively, with higher values indicating better performance.
Additionally, for each algorithm, we collect the optimal
solutions for 300 evenly distributed subproblems. 299 Fjgure 7: Approximate PFs of the trajec-
out of 300 solutions from EPSL were dominated by those o1y planning problem.

from Neural-ES, while 194 from EPSL-R1 were also dom-

inated by those from Neural-ES. The results demonstrate
the superiority of Neural-ES in balancing the cost, distance, and total length of the trajectories.

Multi-objective Unmanned Aerial

Vehicle (MO-UAV) Navigation We o
consider a set of real-world multi- Table 1: Average HV values and standard deviations, on the

objective MO-UAV navigation prob- MO-UAV problems, with larger values the better.

lems, which are featured in the Meta- Case n EPSL EPSL-R1 Neural-ES
BBO-v2 library [50] ﬂ This problem Easy 30 | 2.47+0.36 1.58+0.15 3.40+o0.28
consists of three Competing Objectives: Moderate 60 2.40+0.37 1.52+0.27 3.4440.45
1) the distance from the UAV’s final Hard 120 | 0.72+0.20 0.84+0.14 2.44+1.14

location to the destination, penalized

by the trajectory’s non-smoothness, 2) the risk of collision with threats, such as ground-to-air missiles,
and 3) an altitude penalty to maintain safe and cost-efficient flight. By varying the control parameters
of the terrain, we have developed three instances: easy, moderate, and hard, which require a UAV
trajectory of 10, 20, and 40 waypoints, respectively. Because each point comprises z, y, and z
coordinates, the overall problem dimensions are 30, 60, and 120, respectively. Complex dimensional
dependencies arise from the spatial and temporal correlations between waypoints, making navigation
highly challenging. After 21 independent runs, we report the brief results in Table |l Neural-ES
demonstrates its superiority in practice with the highest HV values across all difficulty levels.

6 Conclusion, limitation, and future work

Conclusions In this work, we have made an initial effort to solve a novel yet important problem:
black-box Pareto set learning (PSL). The goal is to learn the entire Pareto set of a black-box multi-
objective function. We have developed a novel formulation, which facilitates the use of powerful
black-box optimization algorithms, particularly evolution strategies. To address the challenges posed
by black-box PSL, we have developed a novel mechanism to decouple the complex dimensional
dependencies of the objectives. The proposed Neural-ES excels at learning challenging Pareto sets,
successfully scaling the PSL paradigm to over 1000 dimensions with competitive performance.

Limitation and future work While this work focuses on unconstrained MOPs, constraints often
significantly increase optimization difficulties, making constrained MOPs a critical area to address in
PSL. Developing novel and advanced methods to extend PSL to constrained MOPs is a promising
yet challenging direction for future research. Besides, Ye et al. [7] recently suggest that when
reparameterizing an aggregation function g(x; a) as Er(s;,,)[g9(;)], the optimization may only
guarantee an approximate Pareto stationary point to be found, rather than an exact one, regardless of
the specific distribution 7. It is very interesting to further investigate what led to such a mismatch.
Nonetheless, we believe that the formulation in () remains one of the best options available, and
Ye et al. have also employed this reparameterization.

Acknowledgments

The work described in this paper was supported by the Research Grants Council of the Hong Kong
Special Administrative Region, China [GRF Project No. CityU-11215723] and the Natural Science
Foundation of China (Project No: 62276223). Zhenhua Li is supported in part by the Fundamental
Research Funds for the Central Universities under No.NJ2024031.

*https://github.com/MetaEvo/MetaBox

10

https://github.com/MetaEvo/MetaBox

References

(1]

(2]

(3]

[4
(5]

—_

[6

—_

(71

[8

—_—

[9

—

(10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

K. M. Jablonka, G. M. Jothiappan, S. Wang, B. Smit, and B. Yoo, “Bias free multiobjective active learning
for materials design and discovery,” Nature communications, vol. 12, no. 1, p. 2312, 2021.

0. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” Advances in neural informa-
tion processing systems, vol. 31, 2018.

G. P. Rangaiah, Multi-objective optimization: techniques and applications in chemical engineering, vol. 5.
world scientific, 2016.

K. Miettinen, Nonlinear multiobjective optimization, vol. 12. Springer Science & Business Media, 1999.

K. Li, “A survey of multi-objective evolutionary algorithm based on decomposition: Past and future,” IEEE
Transactions on Evolutionary Computation, 2024.

T. Huang, S. Wang, and K. Li, “Direct preference-based evolutionary multi-objective optimization with
dueling bandits,” Advances in Neural Information Processing Systems, vol. 37, pp. 122206-122258, 2024.

F. Ye, Y. Lyu, X. Wang, Y. Zhang, and 1. Tsang, “Adaptive stochastic gradient algorithm for black-box
multi-objective learning,” in The Twelfth International Conference on Learning Representations, 2024.

Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE
Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 712-731, 2007.

X. Lin, Z. Yang, X. Zhang, and Q. Zhang, “Pareto set learning for expensive multi-objective optimization,”
in Advances in neural information processing systems, vol. 35, pp. 19231-19247, 2022.

E. Liu, Y.-C. Wu, X. Huang, C. Gao, R.-J. Wang, K. Xue, and C. Qian, “Pareto set learning for multi-
objective reinforcement learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2025.

Y. Lu, B. Li, and A. Zhou, “Are you concerned about limited function evaluations: Data-augmented
pareto set learning for expensive multi-objective optimization,” in Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 14202-14210, 2024.

R. Ye, L. Chen, J. Zhang, and H. Ishibuchi, “Evolutionary preference sampling for pareto set learning,” in
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 630-638, 2024.

M.-D. Nguyen, P. M. Dinh, Q.-H. Nguyen, L. P. Hoang, and D. D. Le, “Improving pareto set learning for
expensive multi-objective optimization via stein variational hypernetworks,” in Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 19677-19685, 2025.

Y. Liu, J. Yang, X. Ren, Z. Xinyi, Y. Liu, B. Song, X. Zeng, and H. Ishibuchi, “Multi-objective molecular
design through learning latent pareto set,” in Proceedings of the AAAI Conference on Artificial Intelligence,
pp- 19006-19014, 2025.

X. Lin, X. Zhang, Z. Yang, and Q. Zhang, “Dealing with structure constraints in evolutionary pareto set
learning,” IEEE Transactions on Evolutionary Computation, 2025.

G. Larraga and K. Miettinen, “Survey of interactive evolutionary decomposition-based multiobjective
optimization methods,” Evolutionary Computation, pp. 1-39, 2025.

Y. Shi, K. Xue, S. Lei, and C. Qian, “Macro placement by wire-mask-guided black-box optimization,”
Advances in Neural Information Processing Systems, vol. 36, pp. 6825-6843, 2023.

P. N. Williams and K. Li, “Black-box sparse adversarial attack via multi-objective optimisation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12291-12301,
2023.

N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evol.
Comput., vol. 9, no. 2, pp. 159-195, 2001.

D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber, “Natural evolution strategies,”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 949-980, 2014.

R. T. Lange, T. Schaul, Y. Chen, T. Zahavy, V. Dalibard, C. Lu, S. Singh, and S. Flennerhag, “Discovering
evolution strategies via meta-black-box optimization,” in The Eleventh International Conference on
Learning Representations, 2023.

11

[22]

(23]

(24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

O. Li, J. Harrison, J. Sohl-Dickstein, V. Smith, and L. Metz, “Variance-reduced gradient estimation via
noise-reuse in online evolution strategies,” Advances in Neural Information Processing Systems, vol. 36,

pp. 4548945501, 2023.

P. Vicol, L. Metz, and J. Sohl-Dickstein, “Unbiased gradient estimation in unrolled computation graphs
with persistent evolution strategies,” in International Conference on Machine Learning, pp. 10553-10563,
PMLR, 2021.

N. Hansen, R. Ros, N. Mauny, M. Schoenauer, and A. Auger, “Impacts of invariance in search: When
CMA-ES and PSO face ill-conditioned and non-separable problems,” Applied Soft Computing, vol. 11,
no. 8, pp. 5755-5769, 2011.

Y. Ollivier, L. Arnold, A. Auger, and N. Hansen, “Information-geometric optimization algorithms: A
unifying picture via invariance principles,” Journal of Machine Learning Research, vol. 18, no. 18, pp. 1-65,
2017.

H.-G. Beyer, “Convergence analysis of evolutionary algorithms that are based on the paradigm of informa-
tion geometry,” Evolutionary Computation, vol. 22, no. 4, pp. 679-709, 2014.

N. Hansen, S. D. Miiller, and P. Koumoutsakos, “Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation (CMA-ES),” Evolutionary computation, vol. 11, no. 1,
pp. 1-18, 2003.

T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J. Schmidhuber, “Exponential natural evolution
strategies,” in Proceedings of the 12th annual conference on Genetic and evolutionary computation,

pp. 393-400, 2010.

Y. Akimoto, A. Auger, and N. Hansen, “Comparison-based natural gradient optimization in high dimension,”
in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 373-380,
2014.

Z. Li and Q. Zhang, “A simple yet efficient evolution strategy for large-scale black-box optimization,”
IEEE Transactions on Evolutionary Computation, vol. 22, no. 5, pp. 637-646, 2017.

L. Loshchilov, T. Glasmachers, and H.-G. Beyer, “Large scale black-box optimization by limited-memory
matrix adaptation,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 2, pp. 353-358, 2018.

J. Martens, “New insights and perspectives on the natural gradient method,” Journal of Machine Learning
Research, vol. 21, no. 146, pp. 1-76, 2020.

S. Daulton, D. Eriksson, M. Balandat, and E. Bakshy, “Multi-objective bayesian optimization over high-
dimensional search spaces,” in Uncertainty in Artificial Intelligence, pp. 507-517, PMLR, 2022.

Y. Tian, X. Zheng, X. Zhang, and Y. Jin, “Efficient large-scale multiobjective optimization based on a
competitive swarm optimizer,” IEEE Transactions on Cybernetics, vol. 50, no. 8, pp. 3696-3708, 2020.

L. R. Farias and A. F. Aragjo, “Im-moea/d: An inverse modeling multi-objective evolutionary algorithm
based on decomposition,” in 2021 ieee international conference on systems, man, and cybernetics (SMC),
pp. 462-467, IEEE, 2021.

X. Lin, Z. Yang, and Q. Zhang, “Pareto set learning for neural multi-objective combinatorial optimization,”
in International Conference on Learning Representation, 2022.

X. Zhang, X. Lin, B. Xue, Y. Chen, and Q. Zhang, “Hypervolume maximization: A geometric view of
pareto set learning,” Advances in Neural Information Processing Systems, vol. 36, pp. 38902-38929, 2023.

H.-G. Beyer and B. Sendhoff, “Simplify your covariance matrix adaptation evolution strategy,” IEEE
Transactions on Evolutionary Computation, vol. 21, no. 5, pp. 746-759, 2017.

Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi, “Bidirectional relation between cma evolution strategies
and natural evolution strategies,” in Parallel Problem Solving from Nature, PPSN XI: 11th International
Conference, Krakow, Poland, September 11-15, 2010, Proceedings, Part I 11, pp. 154-163, Springer, 2010.

N. Hansen and A. Auger, “Principled design of continuous stochastic search: From theory to practice,” in
Theory and principled methods for the design of metaheuristics, pp. 145-180, Springer, 2013.

R. Hamano, S. Shirakawa, and M. Nomura, “Natural gradient interpretation of rank-one update in CMA-ES,”
in International Conference on Parallel Problem Solving from Nature, pp. 252-267, Springer, 2024.

12

[42]

[43]

[44]

[45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

(561

(571

(58]

[59]

(60]

[61]
[62]

[63]

Y. Sun, T. Schaul, F. Gomez, and J. Schmidhuber, “A linear time natural evolution strategy for non-
separable functions,” in Proceedings of the 15th annual conference companion on Genetic and evolutionary

computation, pp. 61-62, 2013.

Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, S. Tiwari, ef al., “Multiobjective optimization test
instances for the cec 2009 special session and competition,” tech. rep., Colchester, UK, 2008.

D. Brockhoff, A. Auger, N. Hansen, and T. TusSar, “Using well-understood single-objective functions in
multiobjective black-box optimization test suites,” Evolutionary Computation, vol. 30, no. 2, pp. 165-193,
2022.

R. Cheng, Y. Jin, M. Olhofer, et al., “Test problems for large-scale multiobjective and many-objective
optimization,” IEEE transactions on cybernetics, vol. 47, no. 12, pp. 4108—4121, 2016.

S. Zapotecas-Martinez, C. A. C. Coello, H. E. Aguirre, and K. Tanaka, “Challenging test problems for
multi-and many-objective optimization,” Swarm and Evolutionary Computation, vol. 81, p. 101350, 2023.

R. Cheng, Y. Jin, K. Narukawa, and B. Sendhoff, “A multiobjective evolutionary algorithm using gaussian
process-based inverse modeling,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 6, pp. 838—
856, 2015.

J. G. Falc6n-Cardona and C. A. C. Coello, “Indicator-based multi-objective evolutionary algorithms: A
comprehensive survey,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp. 1-35, 2020.

Z. Wang, C. Gehring, P. Kohli, and S. Jegelka, “Batched large-scale bayesian optimization in high-
dimensional spaces,” in International Conference on Artificial Intelligence and Statistics, pp. 745-754,
PMLR, 2018.

Z.Ma, Y.-J. Gong, H. Guo, W. Qiu, S. Ma, H. Lian, J. Zhan, K. Chen, C. Wang, Z. Huang, et al., “Metabox-
v2: A unified benchmark platform for meta-black-box optimization,” arXiv preprint arXiv:2505.17745,
2025.

K. Gao and O. Sener, “Generalizing gaussian smoothing for random search,” in International Conference
on Machine Learning, pp. 7077-7101, PMLR, 2022.

K. Choromanski, M. Rowland, V. Sindhwani, R. Turner, and A. Weller, “Structured evolution with
compact architectures for scalable policy optimization,” in International Conference on Machine Learning,
pp- 970-978, PMLR, 2018.

S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

S. Yi, D. Wierstra, T. Schaul, and J. Schmidhuber, “Stochastic search using the natural gradient,” in
Proceedings of the 26th annual international conference on machine learning, pp. 1161-1168, 2009.

Z. Li and Q. Zhang, “What does the evolution path learn in cma-es?,” in International Conference on
Parallel Problem Solving from Nature, pp. 751-760, Springer, 2016.

Y. Akimoto and N. Hansen, “Diagonal acceleration for covariance matrix adaptation evolution strategies,”
Evolutionary computation, vol. 28, no. 3, pp. 405-435, 2020.

Y. Akimoto and N. Hansen, “Projection-based restricted covariance matrix adaptation for high dimension,”
in Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 197-204, 2016.

Y. Lyu and I. W. Tsang, “Black-box optimizer with stochastic implicit natural gradient,” in Joint European
conference on machine learning and knowledge discovery in databases, pp. 217-232, Springer, 2021.

Y. Lyu, “Fast rank-1 lattice targeted sampling for black-box optimization,” Advances in Neural Information
Processing Systems, vol. 36, pp. 10494-10515, 2023.

B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary algorithms: A survey,” ACM Computing
Surveys (CSUR), vol. 48, no. 1, pp. 1-35, 2015.

D. A. Harville, “Matrix algebra from a statistician’s perspective,” 1998.

S.-1. Amari, “Natural gradient works efficiently in learning,” Neural computation, vol. 10, no. 2, pp. 251—
276, 1998.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems for evolutionary multiobjective
optimization,” in Evolutionary multiobjective optimization: theoretical advances and applications, pp. 105—
145, Springer, 2005.

13

[64] H. Liand Q. Zhang, “Multiobjective optimization problems with complicated pareto sets, moea/d and
nsga-ii,” IEEE transactions on evolutionary computation, vol. 13, no. 2, pp. 284-302, 2008.

[65] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB platform for evolutionary multi-objective
optimization,” IEEE Computational Intelligence Magazine, vol. 12, no. 4, pp. 73-87, 2017.

14

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims, including the contributions made
and limitations. We carefully exclude any over-claim of our contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

» The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

This paper discusses constrained multiobjective optimization problems, a prevalent area that remains
unsolved.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate "Limitations" section in their paper.

» The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

We provide detailed proofs and derivations in the supplementary materials. All theorems, formulas,
and proofs in the paper are numbered and cross-referenced. All assumptions are clearly stated or
referenced in the statement of any theorems.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

15

 All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

» All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The steps of our proposed algorithms are described step by step. The code will be
open-sourced upon article acceptance for reproducibility of experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: The code will be open-sourced upon article acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The vital experimental settings are presented in the core of the paper, Section 5. And the
full details can be referenced in the supplementary document.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiment results are accompanied by statistical significance tests, i.e., the Mann-
Whitney U test.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

¢ The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of errors is
not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: We record the information on the computer resources in the supplementary document.

Guidelines:

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

9.

10.

11.

* The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors make sure to preserve anonymity.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: This paper is foundational research and not tied to particular applications, let alone
deployments.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks
Guidelines:

¢ The answer NA means that the paper poses no such risks.

18

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the paper, are
properly credited and are the license and terms of use explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

» The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

19

paperswithcode.com/datasets

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is not involved other than writing, editing, or formatting purposes of this paper.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Additional related works

A.1 Evolution strategies

ES [20} 25} 21] is a prominent class of second-order black-box optimization methods. Compared to zeroth-
order methods that leverage probability distribution models in their simplest forms and usually amount to
finite-difference approaches [S1,152], ES is considered second-order because they are closely related to the quasi-
Newton method [53]: they typically learn a covariance matrix that converges to the inverse of the objective’s
Hessian.

Wierstra et al. [20] proposed the Natural Evolution Strategy (NES), which amounts to a stochastic natural
gradient ascent. Since its publication, several NES variants have emerged [54} 28| |42]], addressing the issue
with the Fisher information matrix using different parameterization strategies. Both Akimoto et al. [39] and
Glasmachers et al. [28] derived the rank-p update of CMA-ES from natural gradient, bridging gradient search
and state-of-the-art ES. The primary difference between CMA-ES and NES, which makes the former superior,
is that CMA-ES leverages two evolution paths that act as the momentum term in gradient search [35], one for
updating the covariance matrix, while the other for tuning the isotropic mutation strength.

The covariance matrix of the Gaussian distribution is one of the most contributing parameters of ES. Through
extensive experiments, Hansen et al. [24] showed that with the help of an adaptive covariance matrix, CMA-ES
is not affected by coordinate system rotations, and is more resistant to the increase of the condition number.
Beyer [26] proved that the covariance matrix gets asymptotically proportional to the inverse of the objective’s
Hessian, which is preferable as it counteracts the degeneration tendencies of the search distribution into a
subspace.

The ©(n?) space and time complexities regarding the covariance matrix hinder the application of ES to large-
scale problems. Several methods have been proposed to remedy the issue. These methods agree on simplifying
the covariance matrix, while differing in the details of designing and updating the matrix. Sun et al. [42] proposed
R1-NES, where a rank-one model is adopted as the covariance matrix, and the update is completely derived from
natural gradient ascent. Akimoto et al. [29] proposed VD-CMA, where the covariance matrix is parameterized
by the multiplication of a rank-one model, and a diagonal matrix that captures the scaling of each dimension.
They derived the update from natural gradient and, in the meantime, incorporated the cumulation techniques
of evolution paths from CMA-ES. The experiments demonstrated that VD-CMA significantly outperformed
R1-NES. The multiplicative model in VD-CMA is further pursued in dd-CMA [56]], a recent method that can
well adapt to both separable and non-separable scenarios. A straightforward extension to the rank-one model is
to apply more than one component to capture multiple promising search directions simultaneously, which yields
much more efficient algorithms [57, [30L 31].

Although some recently proposed ESs are versatile across various tasks [23} 22]), it may be more appropriate to
classify them as zeroth-order methods, considering that they mainly focus on reducing the variance of the finite
difference without utilizing second-order information. On the other hand, while some other methods do not
explicitly identify as ESs [58,159], they are to some extent inspired by ESs and share many common principles.
Notably, Lyu and Tsang [58]] proposed a black-box optimization algorithm called Implicit Natural Gradient
Optimization (INGO). To avoid explicitly inverting the Fisher, they formulated a surrogate objective where the
KL-divergence is attached as a penalty term and can be explicitly derived. The authors showed that the gradient
with respect to the expectation of the sufficient statistics amounts to the natural gradient of the natural parameter
of an exponential-family distribution. Since the Hessian of an objective primarily characterizes the dimensional
dependencies, we focus exclusively on second-order methods.

A.2 Black-box multi-objective optimization

Multi-objective optimization (MOO) has consistently garnered significant attention [33} 7} 133]]. In black-box
MOO, multi-objective evolutionary algorithms (MOEAs) remain among the most dominant methodologies [6}
8L 160]. This is because MOEAs excel in maintaining a large population of solutions, and can thus approach
the underlying Pareto Front (PF) from all directions. Recently, dedicated efforts have been made to extend
MOEAs to high-dimensional, or in other words, large-scale MOPs. For instance, IM-MOEA/D [335] integrates
the canonical MOEA/D [5] with an inverse model [47] which directly samples in the objective space using
Gaussian process models, and then maps into the decision space. Focusing on the complex landscapes in
high-dimensional MOPs, LMO-CSO [34] proposes addressing the dimensional dependencies using an efficient
particle swarm optimization (PSO) algorithm. Among the three mainstream MOEAs, those based on Pareto
dominance and performance indicators fall short of aligning with decision-makers’ preferences and scale poorly
with the number of solutions [60], due to the high computational overhead associated with non-dominated
sorting and hypervolume contribution. Meanwhile, decomposition-based MOEAs [5]] struggle with only a
limited number of pre-established preferences, generalize poorly to the entire Pareto manifold, and encounter
difficulties in sharing information across subproblems.

21

B More details about Neural-ES

This section is arranged as follows:

. Section shows that random samples generated by (8) are in-distribution of 7(+; ¢), where ¢ =
po(a);

Section provides derivation for the vanilla gradient V 7, (8) in (EI), and analyzes its major
drawback, that is, it potentially leads to divergent behaviors of the search distribution.

Section[B3]justifies the use of the Fisher from the perspective of natural gradient, and derives (T0).

Section [B-4] further transforms the gradient (T0) to the practical update rule (TT) used in the algorithm.

Sections [B-3]and [B-6] provide more details on the weight values and the set model.

Section[B-7]derives the space and time complexity of Neural-ES, demonstrating its time efficiency.

B.1 Proof of Equation (8)

Proposition 1. A solution generated by (@follows the distribution t(+; @), where ¢ = po(cx).

Proof. Consider the solution € = (@1, ..., ®p) where ©; = mg(xo.i—1) + do(0:i—1)(2z + rve(20:—-1)) for
alli € [p], z ~ N(0,I), and r ~ N(0,1). To prove & ~ 7(¢) is equivalent to proving that (@1, ..., €p)
follows the joint distribution [T?_, Mg (:|ao, @1, ..., ©i—1) where o = .

Note that for an arbitrary ¢ € [p], the expectation of @; is given by:

Elz;] = mo(xo.i-1) + 0o(x0:i—1) I\E;[;’JJ]“!‘E[L}UB(‘DO%—I) = meg(To:i—1),

and the covariance matrix is given by:

E [(:IJ1 —me(xo.i-1))(wi — me(mozi—l))T}

= 09(1150:1'71)2 E[ZZT] +ve (mO:i71)E[TZ]T + E[TZ]Ue(wo:iA)T +]E[TZ] Vo (wO:ifl)ve(wO:ifl)T
=1 =1

= Ue(ivo;i—l)2 (I + 'Ue($0:i—1)’ve(mo:i—1)T) = Co(x0:i—1),
which is because E[rz] = E[r]E[z] = 0, as r and z are independent from each other. Therefore, for all ¢ € [p],
x; ~ N(meg(xo:i—1), Co(xo:i—1)), and N (me(xo:i—1), Co(x0:i—1)) = No(-|xo, @1, ..., Tiz1).
By the definition of joint distribution, we have:

(z1,x2) ~ No(-|zo)Na(|0, 1),
(z1, 2, @3) ~ No(-|xo)Ne (|0, Z1)Ne(|T0, 21, @2),

P

(:El,mz, ...,mp) ~ 1_[./\/'(|:1307 ...,:Ei_l).

i=1

O

By this means, we show that the reparameterization trick €; = me(®o.i—1) + oo (®o:i—1)(z + rve(xo:i—1))
in (@) correctly generate in-distribution samples © ~ ().

B.2 Issue with (9): a divergent gaussian mean

Deriving @) Recall that @) presents the vanilla gradient of Ja(6) = Er (a4 [f ()] w.rt. 6, which is
expressed as:

VJal(0) = iZP;Em;«p) {f("’)(% (%:uw))} ’

22

where ¢; = @o(xo:i—1). We are going to derive the term

%j“‘m. Notice that the partial derivative of

m(x; @) = [10_, N(xs; i) wrt. o can be derived as:
dlnm(x;p) 1 On(z;) P OImN (xi; @i) or(x;) P OInN (i; ;)
= = , = = m(z; — vy
dp m(x o) Op ; D £ (@:) ; D

_ (12)
Using the above, we can derive the partial derivatives 0.7 / O

8111./\/ ml,(pl aln./\/'(mi;cpi)
o e)]

13)

Bcpz
Eventually, the gradient w.i;. @ can be derived by directly applying the chain rule, which recovers (9).

The issue. Regarding a random sample ; € R?, we refer to 9 In N (x;; @; / Ow; in (13)) as the vanilla
gradient of the log-likelihood of N (xi; ;). The biggest issue is perhaps that it poten 1ally hinders the
convergence of m;, which explains why 1) vanilla gradient is not popular and 2) some so-called ES variants
proposed recently [23]122] either update the distribution mean only or update the covariance matrix using gradient-
free strategies. For an arbitrary A (z;; ;) where 7 = (m],vec(C;)T), and vec - is the vectorization operator
that stacks all the columns of an input matrix [61]. With a slight abuse of symbols, we consider in this and
the next subsections that the mean m; and covariance matrix C; are constant parameters. The vanilla gradient
regarding a random sample x; can be derived as [39]:

N (x; 1) (W) B (C; (i — my)

By = BlnNT(raL:li;cpi) 1 vec (Cil(w- — i) (s — _)Tc—l . Cil)> . (14)
Pi “avee(Cy) 2 i i — Pi){Li — Pi i i

By eigenvalue decomposition, C; = QAAQ”, where A is a diagonal matrix whose main diagonal consists of
the square roots of C;’s eigenvalues, and @ is an orthonormal matrix satisfying Q7 = Q~'. x; can thus be
reparameterized by x; = m,; + QAz; where z; ~ N(0, I). Consequently, we can rewrite

=c;! s =Q =1
I M) G TAATQ (it @Az -m) =@ T AT ATQ QA = QA
m;
15)
whose variance is:
-0 =I =1
Aln N (z;; ;) ST 1T 1 d 1 1
Var (T =E[(zi —E[z:]) A7 Q" QA" (zi — E[zi])] 2 17 Tr(C;),
_ (16)
where z; = (21, ..., 2a) ¥, vi is the i-th largest eigenvalue of C;, E[2?] = 1 for all j € [d] is due to the mean of

the chi-squared distribution, and Tr(-) denotes the trace of a matrix. Intuitively, during the search process, the
entropy of the search distribution, i.e., the (log-)determinant of C;, usually decreases, which is likely to increase
Tr(C; 1), and therefore prevents my; from staying in a stationary point. The phenomenon has been observed
in [20] and rigorously discussed in [26].

B.3 Proof of Lemma|[I] & interpretation of (10)

Define m(x;) = [/, N(2:; i) and p; = (m],vec C;7)". Note that we treat m; and C; as constant
parameters instead of mappings from xo.;—1. We introduce the definition of natural gradient and its geometric

interpretation:

Definition 4 (Natural gradient [62]). Consider a distribution 7(+;) that is differentiable w.r1. its parameters
@, with the p.d.f. w(x; ¢). The natural gradient of any differentiable function h(p) w.r.t. ¢ is given by

Vh(p) = F(p) ' Vh(p), (17)

where and F () = Er(q:) [V In7(x;)V In7(2;) "] is referred to as the Fisher information matrix w.r..
®.
Proposition 2 (Geometric interpretation of natural gradient [25]). The natural gradient @h((p) points in the
direction § that yields the greatest improvement of h, for a given distance between 7 (-; @) and w(p +) in
Kullback-Leibler divergence. More precisely, let ¢ € ® be a point where H@h(cp)” > 0, then

5 — @h((p) .1 € .

_ argmax hi¢ +98),s. . KL N (n(p)) | N(m(p +6))) <

— 18
ISh(@)] o+ € 5 Y

23

Of the above, definition [d] provides the form of a natural gradient, and propoesition 2] suggests that a natural
gradient identities the steepest ascent direction on Riemannian manifolds, and in the meanwhile, guarantees
steady changes of 7.

We prove Lemmal[T]as follows:

Proof. First, the gradient of In 7(x; ¢) is:
Olnm(z;p) _ (81HN(901;901)T 3lnN(wp;sop)T)

dp 1 T dpp
According to the definition of the Fisher,

T

Vinn(x;p) =

ln N (z1501) O N (z1i0) T dInN(z1501) OInN (zpiep) T
91 91 ’ ’ 91 9pp
F(p) = Ex(zp) : . : . (19
AN (zp;ep) dInN(21;01) T AIn N (xpipp) N (zpipp) T
Opp Oy ’ ’ Opp Opp

Denoted by F;; = Eﬂ(w;¢)[6'“%f:1 i) OIHAQE:JJ i)] the block entry of F(¢) on the i-th row and j-th

column in (19), where 7 # j, then
OIN (@s; i) OIn N (w55 05) "

Fij= [n(z;9) o Do, dx
@x 7 J
P
Oln N (zi; i) Oln N (5
/HN Tk; Pk) = 85; i) O1n 8(4:] @) " da
k=1 z J
2 T
O N (zi; OlnN(z;;¢;
=/ 11 N(w’“§‘Pk)N(wﬁ‘Pi)%N(mj;‘Pj)W da
T k=1,k#i#£] L J
’ —ON(@iie) _ON(mjie))
-0 =%
L T (20)
ON (x5 i) ON (x5 ¢
:/ / H N(@; @x) gc “P) (8£BJ.‘PJ) da, - de,
@1 Tp k=1 ki) i ©j —
f 143
=1 -1
0 o T
= H / N (@ (/ N(wi§§0i)dmi> 87(/ N(a:j;cpj)dacj>
k=1,k#i#j . Tk LPZ x; Pj B
=! =Vvi=0 =v1T =0T

:0’

which means all the off-diagonal block entries are zero, and F(¢) turns out to be a block-diagonal matrix.
[alnN(ww%) alnN(wmm

Furthermore, notice that F(¢;) = Er(z:4)] for all ¢ € [p], which implies:

dp; 9
F(p1)™', 0, 0
Vinm(z; @) = F(e) ' Vinn(x; @) = 0 0 Vinn(z;)
0, 0, Flep)™" @
P
— (91n./\/ i, P;
ZZ}-(LPi)l (‘P)
i=1 Opi
As x follows 7(:;¢p), it is trivially unbiased. Therefore, we have shown that Vinw(xz;¢) =
?:1]:((Pi)flaln/\g‘(‘;i;w). O

Interpretion of . We can plug into and apply Monte-Carlo approximation to V 7x (), which
yields:

TIa(0) = Ertaie | @) 3 (Tun(eie) | = iz 2 (Ymr@aieh). @

where @7 = (o1}, ..., 7)) and ;5 = we(x),;). Intuitively, the right-hand side of the above works as
follows: first, sample a bunch of distributions ("), ..., 7(¢P); then, for each of these distributions, sample a

24

random solution @’ ~ 7(?); in the meanwhile, 6 satisfies that o;; = @e ()., ,); eventually, estimate the

natural gradient of In w(wj; 74) w.rt. 7 using 7. In brief, amounts to aggregating the natural gradient
of a set of sampled distributions T("), ..., m(@P), and then back-propagating the gradient to @ through the
chain rule.

B.4 Deriving the update rule (I1)

cannot be directly used in implementing the algorithm, as it 1) involves computing F(¢;) ™!, which is
inefficient, and 2) does not specify how the gradient is back-propagated to @ through the chain rule. To this end,
we first introduce Equation (24) of Akimoto ez al. [39], which avoids the computation of F(¢;) ™ *:

Proposition 3 (Natural gradient of a Gaussian). Consider a Gaussian random sample © ~ N'(¢p) where
pi = (mT,vec(C;)T)T, the natural gradient of the log-likelihood In N (z; ;) is

_10InN (i 0:) T, —m;
T(‘Pz) 61,07; - <V€C ((wl _ ml)(m _ mi)T _ Cz)) . (23)

Define m; = mo(x0.i-1), C; = 07(I +vv}), 0; = 0e(®0:i—1), v; = ve(x0.i-1), and y; = x; — M.
According to the chain rule:

—(om; /00)T
1 Py —— iT
- (f(m*ia ot >) = TmT (@i—ma) + PG e (@0 - m (@ - m)” - C)
. T do; dvec C, 1 OvecC; 7 .
=J(m;) yi + (80 Do, + J(vy) 5o, vec (ylyi Cz) ,
—(vec C; [00)T
(24)
where J : R? — R?¥19! s the Jacobian matrix. In the following, we will expand the above terms one by one:
1 Ovec Cl T T T
— iy, — Ci) = vee(I +vivi)” - iY; — Ci
%0, oo vec (y y C) vec(I + v;v;)" - vec(y:y C;)
=C;
—_—~
=Tr ((I+ viv?)yiy?) —Tr (I +viv])oi(I+wviv])) (25)
=Tr (ylle) + Tr (viviTyiy,-T) — ol Tr ((I + viviT)2)
= lyill* + (v y:)? — o7 (d + 2[|vi|* + [lvi]|*);
and 5 c
vec U T)
oo, v (vl -)

=vee(y;y])

—
=oi(Iovi+v o) (Y @y, —vecCy)

(26)

:aiz vec(I+v,]viT):vec(Ci)

=0l (I@vi+v,; @) (yi Qyi) —o; (I Q@i +v; @ I) o} (vec(I) + v; @ v;)

= of (ol yys + lyil*v) =208 (1+ [oi]*) v,
where ® denotes the Kronecker product [61]. Plugging (23] and (26) into (24) yields:
@H) =T (mi) "y
2 T, \2 2 2 4\ 9o

+ 201 (Ilyall> + @]) = oZ @+ 2loil]* + i) S @

02 ()" (T yiys + il v — 207 (14 0i]*) v)

Consider a sample 7, define m;; = mo(x? .), 0i; = oo(xh.), vij = ve(xd,), andyi; = ! —m;.
Eventually, for each j € [A] substituting (27) into yields .

B.5 More on the weight values

The rank-dependent weights are also known as the use of utility [26} 25]] or fitness shaping [20]. The rationale
behind the weights in this paper, i.e., w1 > ... > wx and w; = In([3 + 1]) — Inj, is that they decrease

25

sub-linearly with the ranks: solutions before the median will be assigned positive weights, while those after
(including the median itself) will be assigned negative weights, and no one will be assigned a zero weight.
Separating the weights into positive and negative values is equivalent to using a reward baseline in many practical
reinforcement learning methods. Note that in most CMA-ES variants [27} 291 [56]), the second half of {x’ }§:1
is discarded by default, especially when updating the Gaussian mean. This is because using inferior solutions
implicitly imposes too strong a regularity assumption on a black-box objective, which may not be true. A
counterexample is XNES, which uses the inferior solutions but normalizes their weights to —1/A. However, we
adopt all solutions to estimate due to the well-known data-hungry nature of neural networks.

B.6 Design of the set model

We use a feed-forward neural network as the set model. There are four hidden layers, each with a size of 1024.
In order to input @o.;—1 into the model, we construct

—.T
P01 (p—i+1)d nils (i—1)d 1s (p—i+1)d Os
T T T <. . —YTN T
(xi,@2,...,@;_y, nil,..,nil ,1,..,1, 0,...,0 ,x0), (28)

where nil is a placeholder, 1 on the (n 4 j)-th (1 < j < n) dimension indicates that the j-th input is not nil, and
vice versa. Consequently, the size of the input layer is 2n 4+ M. The output layer, which outputs ('rnf7 oi,vF)T
is of size 2d + 1. We use the leaky ReLU function as the activation in the hidden layers, which is defined as
f"(w) = max(w, 0) + 0.01 min(0,w). In order to generate m;, v; € R, no activation is used in the output
layer. To guarantee o; > 0, we take the absolute value of the (d + 1)-th output dimension. The set model is
trained using Adam, with a learning rate of 7 = 1073, Compared to SGD (stochastic gradient ascent), the
adaptive momentum of Adam accumulates historical gradient information, enabling more accurate gradient
estimation and significantly reducing the number of samples required.

5

B.7 Overall computational complexity

Consider a set model, i.e., a feed-forward neural network, with ¢ hidden layers, and the sizes of the input,
output, and hidden layers are 2n + M, 2d + 1, and s, respectively. One can derive the space complexity of the
network, as well as the time complexities of the feed-forward and back-propagation processes, which are all
O(ts®> + (n+ M + d)s). Since we are only interested in 7 and d, we can further simplify the complexity as
O(n + d). We can easily imply that the space complexity of Neural-ES is ©(n + d) as well, as the entire search
distribution is compressed into the model.

The time complexity of Neural-ES stems from two sources: 1) sampling and 2) updating 8. To sample a
component &;, it takes O(n + d) time to generate a ; = o (Xo::—1), which corresponds to the feed-forward
process, and ©(d) time to generate an ; according to @i To generate a complete & = (x7 , ..., wg)T, needs
to be performed p times. Therefore, the overall time complexity for sampling a @ ~ 7 is pO(n +d) + pO(d) =
O(pn), asn = pd.

To update 6, we need to compute . Within the equation, the computation of J(m;), % and J(v;) takes a
total of ©(n + d) time, which corresponds to the back-propagation process; every matrix-vector multiplication
takes ©(n + d) * ©(d) = ©(nd + d?) time; in addition, the computation of ||y;||?, v{ y; and ||v;||? takes
O(d) time. To sum up, the time complexity of is O(n + d) + O(nd + d*) + ©(d) = O(nd + d*).
In addition, needs to be performed p times regarding a complete € = (z7, ..., mg)T, which takes
pO(nd+ d?) = O(n? +nd) = O(n?) time. Note that ©(n?) also represents the time complexity in the update

Tog

55 achieves
-]

of EPSL [15]. @(n2) is indeed a near-optimum one can expect when updating 0, because g—‘g
©(n?) time only when both @ and 0 scale linearly with n.

A typical counterexample is the application of other existing ES variants, such as xNES, to solve the black-box
PSL problem. In this case, the space complexity will increase to ©(n?), the time complexity of sampling
will increase to ©(n?), the time complexity of computing the partial derivative 07« (0)/0¢ will increase to

O(n?), and eventually computing the gradient V.7 () as well as updating 6 will cost ©(n?) time or higher. In
contrast, Neural-ES achieves ©(n) space complexity, ©(pn) time complexity of sampling a solution, and ©(n?)
time complexity of updating 0. Therefore, we can conclude that Neural-ES is a time-efficient approach.

C More details on the experiments

C.1 Proposed BBO-PSL benchmark suite

A test problem for assessing the PSL algorithms should satisfy the following two requirements:

26

* Non-separability, which means argmin,, f;(x) # (argmin,, fi(z1,...),...,argmin, il)T

for all ¢ € [m]. This is a conditio sine qua non, because separable problems, which are rarely the
practical case, cannot assess the ability to handle complex dimension dependency.

* Analytical PFs and complex PSs: where the former means that the ground-truth PF and PS should be
expressed in closed forms, and the latter suggests that the Pareto optimal solutions should not be, e.g.,
linearly distributed.

Surprisingly, few of the existing benchmark suites have satisfied both requirements. For example, the popular
DTLZ problems [63] satisty neither of them: they are separable, with simple PSs located on the boundary of
the search space. Despite their complex PS shapes, the UF [43] and LZ [64] instances are separable. Though
providing non-separable instances, the bi-objective BBOB problems [44] lack analytical PFs & PSs. The
LS-MOP [435]] focusing on large-scale multiobjective problems does not feature complex PSs, and most of its
instances are separable or partially separable. An exception would be the recently proposed ZCAT suite [46],
which, however, features non-simplex-like PFs and falls beyond the scope of this paper.

For these reasons, we design a novel benchmark suite based on the following theorem, which is also the design
principle of the popular UF and LZ problems:

Theorem 1 (Li & Zhang [64]). Consider a MOP in where

fil@) = f(@r) + " (@i — 7 (1)), (29)
i=1,.,M x5 = (x1,..,XM-1), T11 = (XM, ., Xn), T €X X = [1_i[a;,b5] € R™ 7 :
H?i;l[aj,bj} — R, f7 H;\il[a‘j7bj] — Ri_M'H, and {9 ;l;lhl+1[aj,bj} — Ry. Assume 1)

F reaches the minimal of 0 at 0, which means f* (x) > f%(0) = 0, V& € R", and 2) the following MOP
has a PF and PS, which are denoted by PF™* and PS™,

minimize (f7(x1), ..., f2 (x1))". (30)
erell;Ly [aibil

Then, 1) the PF of F(x) is PF*, and 2) the PS of F (x) is { (x1, @11)" |x1r = f(x1), 21 € PS*}.

Of the above, ff f, I, and fdis are referred to as the PF, PS, and distance functions, as they determine the
shapes of the PF and PS manifolds as well as the difficulty of optimizing F'(x), respectively. With Theorem
analytical PFs and complex PSs can be implemented by designing proper f7 "and 7, and non-separability can
be implemented by introducing non-separable functions that achieve the minimum of zero at © = 0.

We design instances in the proposed benchmark suite as follows. All the instances employ the rotated ellipsoidal
function as the distance function, which, considering an input @7, is expressed as:

frEI(mII;R) = :B?I'RART:BU, (31)

where R is a (n — M + 1)-dimensional orthonormal matrix, and A is a (n — M + 1)-dimensional diagonal

matrix whose i-th diagonal entry is CTLLTIW. Particularly, c is called the condition number [53]], which denotes the
ratio between the largest and smallest eigenvalues of a Hessian, and typically controls the optimization difficulty;
a larger c yields a more difficult optimization problem. R can be constructed by applying the Gram-Schmidt
process to a random square matrix with standard normally distributed entries. All the bi-objective instances take
the following form:

F(z) = { L SR (32)

Vo) + e = PR
where the PF function is f*(x1) = (21,1 — /Z1)”. All the tri-objective instances take the following form:

(@1, m2) + 2 — (21, 22)R I (@1, x2) = cos(0.5mx1) cos(0.5mx2)
F(z) = { (21, 22) + e — (z1,32)R ., where F¥(x1, x2) = cos(0.5mx1) sin(0.5mx2)
(w1, w2) + frr — f (w1, 22) R f5 (w1, 22) = sin(0.57z1)
(33)
and R, R and R” denote three different rotation matrices.

Eventually, eight instances, F1 to F8, are listed in Table[2} F1 to F4 are bi-objective problems, while F5 to F8 are
tri-objective. The search space for the bi-objective instances is [0, 1] x [~1,1]""!, and is [0, 1)* x [-2,2]" "2
for the tri-objective ones. The condition number c is 100 in F1 to F4, and is 2 in F5 to F8. Their PS manifolds in
the (x1 — x2 — x3) subspace are displayed in Fig. (8 In short, the proposed suite features non-separable and
anisotropic distance functions, covering diverse nonlinear PS manifolds.

27

Table 2: The proposed BBO-PSL benchmark suite.

D [M i
F1 PP @) = 0.75(1 —) * cos(2mxy), if i is even,
DA K sin(27x1), otherwise
2 e
i — 1)(2% — 221 + 0.5), if 4 is even
2 PS — (¢L . 1 s)
Ji (@) {xiﬂm — 0.5, otherwise
F4 fzps(xl) — 2$(1)-0+1-510i -1
F5 fr(enes) = & (011 — a2) + (1 — 2f)az — 3)
F6 3 ffb(xbmz) = 0.5¢; (:05(77””1;””2) cos(m|zy - xa|)
F7 I (1,02) = 0.5 (w21 = 23) + (1 = 22) 5 — 0.5)
F8 ffs(iﬂlamz) =28 (z1 —xo)(x1 + 29— 1)
fP(-) denotes the i-th output of fP*, ¢; = =L and & = 24

PS PS PS PS

10 10 10 10 10 10 10 10

(e) F5 () F6 () F7 (h) F8

Figure 8: Ground-truth PS manifolds of the proposed problem instances.

C.2 More about the configurations

Compared algorithms. The two MOEAs used in the experiments, namely LMO-CSO and IM-MOEA/D,
are implemented in the open-source PlatEMO library [65] El Their hyperparameters are configured to their default
values. The set models of EPSL and EPSL-R1 use the same hidden-layer structure as Neural-ES. Bernoulli
smoothing, antithetic sampling, and smooth Tchebycheff of EPSL are deactivated for a fair comparison. The most
dominating hyperparameters of Neural-ES are p, N, and \. While A = 4 + |31nn] is a typical setup for most
ES algorithms [[19} 28], we reduce it to a half due to the large number of sampled subproblems {g(-; a*)}i_,.
We will discuss p and N in Section[C.4] We use the popular Penalty-based Boundary Intersection (PBI) [§] as
the aggregation function:

D1 = 1&lltu— F)7a

P(F;a) = D1 + pDo, where
Gu ()) 1 pL2, D2:||F—u—|—D1a||,
F is a point in the objective space, u € R™ is a reference point satisfying w < (inf fi (), ..., inf fas ()7,
D, is the distance from w to the projection of F' onto c, and D is the distance from F' to oc. More specifically,
by minimizing D1, one approaches the underlying PF, while minimizing D2, which serves as a penalty, aligns

*https://github.com/BIMK/PlatEMO

28

with the preference balpha. The parameter p > 0 trades off Dy and D-. Although the Tchebycheff function [8]
is also widely used, we have not considered it because we observe that its use can decrease solution diversity
when solving tri-objective MOPs, which further leads to premature convergence of the set model.

Performance metrics. The Inverted Generational Distance (IGD) [48] is used for assessing the algorithms’

performance, with a smaller value indicating better performance. Denoted by PF and PF a subset of the
ground-truth PF, and PF’ an approximation by an algorithm, the IGD of PF is defined as the total distance from

every point in PF' to]/31\7, and can be expressed as:

IGD(PF,PF) = > min [|[F— F*.

< _FEPF

1
|PF|
F*ePF

Intuitively, IGD measures the distance from each point F'* in the ideal set PF, to the closest F in the
approximation set PF'. When imposing ideal properties on PF’, the IGD is minimized only when P F' spreads

widely and evenly. Otherwise, there will always be some F* € PF that remains distant from PF, resulting in a
large IGD.

Additionally, hypervolume (HV) is also used to evaluate algorithms in Section [5.3] where IGD values are
unavailable. It measures the volume of a specific region in the objective space, which is between a solution set
and a reference point, with a larger value indicating better performance. It is given by:

HVy(S) =Vol{y|3x € S, F(z) < y < u}

where S is a solution set, u is a reference point in the F-space, Vol computes the volume of a set, and < denotes
Pareto dominance. The volume always increases when the solution set approaches the ground truth PF more
closely or spreads more widely across the PF, as both cases stretch the region.

Experiment configurations. We limit the size of PF to be 300 and 900 for the bi- and tri-objective
instances, respectively. Each algorithm repeatedly solves each BBO-PSL instance 21 times, using a different
random seed each time. For the three PSL algorithms, we evaluate their testing performance. Specifically, we
input a large number of preferences into a trained set model, which yields the same number of distributions; from
each distribution, we randomly sample a solution, the collection of which form the testing solution set; finally,
we measure the IGD value of the set and refer it as the testing IGD value. The number of input preferences,
i.e., the size of the testing solution set, is 900 and 4950 for the bi- and tri-objective instances, respectively. The
MOEAs directly optimize the same number of solutions, and the IGD value of the final population is measured.
Meanwhile, we track the convergence of the PSL algorithms during training, in terms of the IGD values of
the training solution set. The training solution set at a certain iteration comprises the best solutions found so
far for a set of evenly distributed subproblems. In light of the computational efficiency, its capacity is slightly
smaller than the testing solution set, which is 100 and 300 for the bi- and tri-objective instances, respectively. To
examine the scalability of the algorithms with increasing dimensions, we vary n from 32 to 1024. The evaluation
budget is 4000 and 2000n for bi- and tri-objective instances. The bi-objective instances are given a larger
budget because their condition numbers are higher, which implies greater difficulties.

C.3 More experiment results

Numerical results. The numerical results for Fig. 4] are listed in Table[3] The Mann-Whitney U test at
a 95% confidence level is applied to statistically compare the algorithms. Neural-ES performs the best in all
the instances, ranging from n = 64 to 1024. The results conform to those in Fig.[d] Note that the results of
LMO-CMO and IM-MOEA/D are obtained through directly optimizing the problems, while the results of the
three PSL algorithms represent their test-time generalization outcomes. This indicates that even the testing
performance of Neural-ES surpasses that of the MOEAS in terms of optimization results.

Approximate PF manifolds. Fig.[9]demonstrates the approximate PF manifolds by all five algorithms,
on all the BBO-PSL instances. In all cases, the PFs approximated by Neural-ES dominate most areas of those
approximated by the other algorithms, which conforms to Fig. 5] It appears that F3 and F4 are more challenging
than F1 and F2, and F8 is more demanding than F5 to F7, indicating that the shape of the PS manifolds
significantly influences the optimization difficulty. It can be observed that Neural-ES closely approximates
the ground-truth PFs of all bi-objective instances, which highlights the learning capability of black-box PSL
algorithms, particularly Neural-ES. However, the approximation results are inferior in the bi-objective instances,
due to their significantly higher condition number. This confirms that the condition number of the distance
function notably impacts optimization difficulty, which existing benchmark suites have neglected. Once again,
the approximate PFs of Neural-ES and the other two PSL algorithms are produced during testing time, while
those of LMO-CSO and IM-MOEA/D are direct optimization results. This suggests that the generalization
ability of Neural-ES surpasses that of some state-of-the-art MOEAs.

29

4 IM-MOEAD
v LMOCSO

= EPSL

» EPSLRL
Neural-ES
e —— PF

IM-MOEA/D | 4 IM-MOEAD A 4 IM-MOEAD
oot AN\ \ M= I\ Cn e
EPSL-R1 .. 4 EPSL-R1 . + EPSL-R1
N Es || S Newmes | o] N CGY s N
= 2

— PF

“»

W EPSL . pr\ﬁ{V5 08 W EPSL . PR | o

10 10 10 10

(8) F7 (h) F8

Figure 9: Testing-time PFs approximated by the algorithms, with n = 256. For better visualization,
only non-dominated solutions are presented for F5 to F8.

PS

EPSL
EPSL-R1
Neural-ES

PS

EPSL
EPSL-R1
Neural-ES

PS

EPSL
EPSL-R1
Neural-ES

PS

EPSL
EPSL-R1
Neural-ES

n
A
[]
[]

[X N]

n
A
[]
[]

075
100 10

(a) F1 (b) F2 (c) F3 (d) F4

100 10

Figure 10: Testing-time PSs approximated by the PSL algorithms, on F1 to F4, with n = 512.

Approximate PS manifolds. We focus on the PSL algorithms’ ability to learn the PS manifolds. LMO-CSO
and IM-MOEA/D are excluded as they do not possess such ability. The approximate PSs on the bi-objective
F1 to F4 are plotted in Fig.[T0] Neural-ES generates the most accurate PSs in all four cases, as the red curves
align the closest to the ground-truth. It can be observed that F3 and F4 are more challenging than F1 and F2,
as they have higher levels of non-linearity. The approximate PSs on the tri-objective F5 to F8 are plotted in
Figs.[IT]to[T4 Neural-ES and EPSL-R1 generate closer and more uniform approximations than EPSL in all four
cases. Although Neural-ES only slightly outperforms EPSL-R1 in the solution space, their performance gap is
significant, because most solutions of Neural-ES dominate those of EPSL-R1 in the objective space, as shown in
Fig.p

Convergence. Fig.demonstrates the convergence trajectories of the three PSL algorithms. LMO-CSO
and IM-MOEA/D are not involved due to their differing sample sizes during each iteration. The results conform
to Fig. 3] Noticeably, EPSL-R1 converges slightly faster than EPSL in F1 to F4; however, instances F5 to F8
do not reflect its advantage. This is because F1 to F4 have a much higher condition number of 100, than F5
to F8, which have a condition number of 2. Evidently, dealing with the dimensional dependencies becomes
more challenging as the condition number increases. Once again, existing benchmark suites overlook this issue,
necessitating the proposal of the BBO-PSL suite. In all the instances, Neural-ES establishes a performance lead
over EPSL and EPSL-R1 during the early stages, extending the performance gap throughout the search process,
underscoring its superiority in handling dimensional dependencies.

30

PS
EPSL-R1

10 1.0 10 1.0 10 10

(a) F5, EPSL (b) F5, EPSL-R1 (c) F5, Neural-ES

Figure 11: Testing-time PSs approximated by the PSL algorithms, on F5, with n = 128.

m PS m PS m PS
A EPSL ® EPSLRI1 ® Neural-ES

10 10 10 10 10 10

(a) F6, EPSL (b) F6, EPSL-R1 (c) F6, Neural-ES

Figure 12: Testing-time PSs approximated by the PSL algorithms, on F6, with n = 128.

C.4 Sensitivity analyses

Intuitively, the number of partitions, p, and the number of sampled subproblems, NN, are closely linked to the
performance of Neural-ES. To determine their optimal setups as well as to observe how they vary with the
increasing problem dimension n, we conducted the following two independent experiments:

o Investigating p: we apply p € {64,32,16,8,4} to solve F4 and F6, and meanwhile, fix N =
|5n/16].

* Investigating N: we apply N € {10, 20,40, 80, 160, 320} to solve F4 and F6, and meanwhile, fix
p = 16.

In the experiments, the dimensions of F4 and F6 range from 64 to 512. The two selected instances serve as
the representative bi- and tri-objective BBO-PSL instances, which are expected to provide the most neutral
observations. The experiment results, in terms of the final IGD values, are recorded in Fig.[T¢]

We can make the following observations:

* Regarding Figs. [T6(a)] and [T6(b)} the number of partitions p positively correlates to the problem
dimension n. This is reasonable as a larger p yields more decomposed Gaussians, and therefore a
stronger ability to handle dimensional dependencies. The results validate the efficacy of the novel
dependency handling technique presented in this paper (i.e., Equation (6)).

 Regarding Figs. and[T6(d)} the highlighted main diagonals of the figures indicate the trade-offs
between IV and Neural-ES: either too large or too small a sample size worsens the performance. This
is reasonable because, on the one hand, a too large N consumes a significant portion of the evaluation
budget; on the other hand, a too small IV results in inaccurate gradient estimates.

To balance computational efficiency and performance, we adopt p = 16. It can be observed from Figs.

and [16(d)| that the optimal N is roughly [5n/16]. To date, we have justified the hyperparameter settings
presented in this paper.

31

m PS m PS m PS
A EPSL ® EPSL-R1 ® Neural-ES

10 1.0 10 1.0 10 10

(a) F7, EPSL (b) F7, EPSL-R1 (c) F7, Neural-ES

Figure 13: Testing-time PSs approximated by the PSL algorithms, on F7, with n = 128.

s PS s PS
® EPSL-R1 @® Neural-ES

10 1.0 10 10 10 10

(a) F8, EPSL (b) F8, EPSL-R1 (c) F8, Neural-ES

Figure 14: Testing-time PSs approximated by the PSL algorithms, on F8, with n = 128.

C.5 Runtime analyses

‘We have conducted an extensive evaluation of computational efficiency across all compared algorithms using
two 1024-dimensional instances (F1 and F5) from our BBO-PSL suite. The evaluation budget remained the
same as before, at 4,000n for F1 and 2, 000n for F5. The results are reported in Table@

Comparing the PSL algorithms with the
traditional MOEAS, we can observe that

the former run faster, or at least as fast, as Table 4: Wall-clock time (in minutes).

the latter. This is because most MOEAs LMO- IM- EPSL EPSL- Neural-
require advanced techniques to maintain CSO MOEA/D R1 ES
population diversity and address slow con- F1 16.9 17.4 7.8 12.2 17.4
vergence, such as the RVEA-based en- F5 239 15.2 5.1 7.4 9.5

vironmental selection in LMO-CSO and

the Gaussian process modeling in IM-

MOEA/D. Most, if not all, of these techniques come with high overhead and scale poorly with increasing
population sizes. In contrast, the PSL paradigm does not rely on any of these techniques. Despite introducing
neural networks, the PSL algorithms turn out to run surprisingly faster, or at least equally fast, when compared
to traditional MOEAs.

While Neural-ES shows a marginally higher runtime compared to the other two PSL algorithms, due to its
more complex search distribution, it achieves much faster convergence in terms of the number of generations
required. The faster convergence likely offsets its marginally higher computational cost per generation, making
it advantageous for practical applications.

32

niGD)
9y 25 2 Ls Up O

~ | Ml EPsL - Ep
| - EPSLR1 | = EPSLRI —4- EPsLRI
| @ Neural-ES S @ Newral-ES \.\’_ ~@- Neural-ES
20 2 a 6 8 10 12 7% 2 a 6 8 10 12 () 2 i 6 8 10 12 0 2 i 6 8 o 12
senerons (x100) senerions (x100) senerons (x100) senerons (x100)
(a) F1 (b) F2 (c) F3 (d) F4
o s
v N %,
Y v %
- - %
£ S0 &
~ |4 Ep ~ | - epst % |
| - EpsLRI 2| 4 EPSLRI X{4-E
2 ~@- Neural-ES ‘o | =@~ Neural-ES }a @ @~ Neural-ES
0 i 3 3) 5 3 7o i 3 3 a 5 6 0 i 3 3 4 3 v i 3 5 a 3
gencrions (x100) sencraions (x100) senerions (x100) gencraions (x100)
(e) F5 (f) F6 (2) F7 (h) F8

Figure 15: Convergence curves regarding the logarithm of the IGD values on the training solution
sets, with n = 256.

‘g. g 5.08 6.29 g (cv
o) [s) 5.40 6.86 <) 10.6 23.8 ey
N N Y e
© 6.00 8.32 11.3 © 5.72 7.90 [*¥ 7.50 6.97 6.45 6.00 6.75 14.6 ©
v v v v
1:7;\, 5.58 7.46 10.3 14.5 ‘;’:’\, 55051 6.45 8.71 ‘gf'\, 8.73 9.04 8.39 8.07 7.46 7.52 J);\,
64 32 16 8 4 64 32 16 8 4 10 20 40 80 160 320 10 20 40 80 160 320
P P s s
(a) p versus n, on F4 (b) p versus n, on F6 (c) N versus n, on F4 (d) N versus n, on F6

Figure 16: The acquired IGD values (x 10~2) in sensitivity analyses.

33

Table 3: Average training & testing IGD values (x 10~?) and standard deviations (x 1072 in paren-
theses).

L n L LSO-CMO L IM-MOEA/D l EPSL L EPSL-R1 L Neural-ES
25 12.45 4708y — | 5.141 (16.66) 7.202 @4.887) — | 6.946 a1.16) — | 6.099 8.028) =
26 15.77 (a1.37) — 5.570 19.31y = | 7.187 a.208) — | 8.216 8.306) — | 4.797 8.051)
Fl 27 | 20.38 so.18) — | 7.168 21.02) — | 8.252 (4.220) — | 9.453 8.892) — | 3.997 (5.794)
28 22.11 (22.86) — 7.231 a7.35y — | 9.758 4.906) — | 12.10 (7.956) — | 3.967 (5.890)
29 | 24.05 ©.8200 — | 8.082 a2.90 — | 11.04 3.509) — | 14.74 6.150) — | 3.997 @.171)
210 1 96.62 (5.969) — 10.69 9.372) — 12.71 3.838) — | 16.88 (6.946) — | 5.336 (9.748)
25 | 4.993 4741 = | 6.526 10.80) — | 7.016 s.088) — | 4.588 (12.11) 5.457 (16.46) =
26 6.739 19.71) — | 7.863 a.81) — | 7.449 (7.552) — | 6.588 (15.80) — | 3.883 (11.72)
1) 27 | 8.445 1483 — | 8.726 12.9m — | 8.773 a.078) — | 7.581 12.42) — | 3.004 3.696)
28 10.54 (12.55 — 9.788 (10.0m) — 11.79 (7.aa7y — | 11.95 17.83) — | 3.489 (5.859)
29 | 15.13 @181 — | 13.20 425 — | 13.59 (a7s5) — | 15.13 as.on — | 3.727 (5.935
210 | 17.65 (16.18) — 13.20 (15.28) — 17.05 6.887) — | 19.12 12.049) — | 4.889 (5.704)
25 7.497 12.54) — 13.52 9.551 — | 9.410 (7.694) — | 6.629 (7.717) 6.692 (11.23) =
26 | 9.351 5.085) — | 14.30 4552 — | 9.486 (7.203) — | 7.477 0139 — | 5.771 s.698
F3 27 11.83 (5.836) — 16.12 (a.709) — 10.63 (5.437) — | 8.397 (7.823) — | 5.986 (9.637)
28 | 14.24 6.441) — | 16.61 @133 — | 11.68 5.749) — | 10.13 8.249) — | 5.863 (6.778)
29 16.61 s.691) — 16.66 2.910) — 12.32 5.782) — | 12.81 (7.739) — | 6.078 (4.259)
210 1 19.13 (5.408) — 16.76 (1.821) — 14.22 (5.943) — | 15.81 (9.210) — | 6.654 (6.296)
25 | 4.647 39.09) 20.90 as.96) — | 15.85 as.3m — | 12.23 a3.2m) — | 6.561 az2.06) =
26 8.420 (28.84) — 21.74 ai.5m) — 14.44 14.62) — | 12.67 18.099 — | 5.685 (9.287)
F4 27 17.70 (33.43) — 23.77 6.853) — 21.53 9.10m — | 15.71 @23.61) — | 6.558 (10.62)
28 | 23.87 as.02 — | 24.73 6.5289 — | 23.66 (7.163 — | 19.13 a2.0m — | 7.275 s.371)
29 27.69 (7.691) — 25.25 4.206) — 24.64 4.299) — | 22.88 15.45) — | 8.728 8.730)
210 1 29.15 @2.736) — | 25.42 (7100 — | 26.29 5.36m7 — | 26.65 (11.38) — | 10.65 (10.97)
25 1 4.190 2751 — | 12.31 a262 — | 7.233 6.933) — | 5.494 6.135 — | 3.261 (5.537)
26 5.815 4.487m) — 19.31 a5.53) — | 8.065 9.451) — | 6.052 6.118) — | 3.090 (5.485)
E5 27 | 8.869 (r.198) — | 24.87 as.05 — | 7.806 6.459 — | 7.234 7.670) — | 2.793 1.118)
28 12.22 (17.98) — 32.98 27.000 — | 8.830 6.493) — | 7.982 6.154) — | 3.147 3.708)
29 14.39 (6.78) — 36.49 21.15 — | 8.976 6.300) — | 9.016 11.79) — | 3.370 (4.695)
210 1 16.79 162 — | 39.58 @5.23 — | 9.383 6.579) — | 9.764 (7.775) — | 3.937 (a.777)
25 4.528 2.817) — 13.23 (13.22) — 7.454 10.100 — | 5.991 6.928) — | 2.752 (3.492)
26 6.351 (5.353) — 20.27 ae.66) — | 8.500 8.668) — | 7.368 6.723) — | 2.764 (3.685)
F6 27 | 9.792 13.22) — | 33.81 a20.79) — | 8.930 5.306) — | 8.382 8.728) — | 2.635 (4.445
28 14.04 (23.30) — 32.74 a8.43) — | 9.503 4.951) — | 9.297 6.3901) — | 2.917 3.655)
29 | 18.06 @24.40) — | 37.48 18.25 — | 10.10 5.686) — | 10.33 6.855 — | 3.261 3.124)
210 190,92 (a1.97) — 39.94 (11.84) — 10.32 (a.974) — | 11.31 13.02) — | 4.041 (a.753)
25 4.633 (3.024) — 13.38 (17.32) — 7.998 6.516) — | 5.918 4.893) — | 4.026 6.118)
26 | 6.498 s.846) — | 18.77 16.75 — | 8.120 (7.420) — | 6.694 a.773) — | 4.166 (3.573)
F7 27 | 9.592 13.000 — | 28.54 s0.67) — | 8.581 (a.237 — | 7.147 .047) — | 4.213 3.333)
28 12.69 (17.88) — 31.79 ar.96) — | 9.277 (7.330) — | 8.386 (7.671) — | 4.330 (2.266)
29 17.31 @7.69) — | 34.64 a2.73 — | 9.585 6.458) — | 9.084 (7.185) — | 4.523 (2.586)
210 1 921.01 23.59) — 37.25 ar.oe) — | 9.726 5.192) — | 9.935 8.296) — | 4.833 (1.760)
25 4.833 (3.210 12.41 (22.01) — 7.790 (7.609) — | 6.726 (7.825) — | 5.105 5.517) =
26 | 6.765 .986) — | 18.51 12.09) — | 8.413 0.989) — | 6.936 5.334 — | 4.472 (4.858
F8 27 9.127 8.242) — 25.61 22.68) — | 8.663 (r.09m — | 7.340 5.793) — | 4.220 (3.594)
28 | 12.44 aa13 — | 30.38 a5.30) — | 9.471 (r.00m) — | 8.243 (6.328) — | 4.347 (3.694)
29 16.69 22.96) — | 34.29 ae6.2ny — | 9.076 5.806) — | 8.655 5.327) — | 4.477 2.702)
210 1 19.06 (2.91) — 36.74 a7.06) — | 9.462 4.698) — | 9.316 5.610) — | 4.939 3.172)

34

	Introduction
	Preliminaries & related works
	Multi-objective optimization
	Pareto set learning
	Evolution strategy

	Black-box Pareto set learning
	Problem formulation
	Key challenges

	Neural evolution strategy
	Basic idea
	Implementation
	Designing the covariance matrix
	Revising the gradient

	The algorithm

	Experiments
	Configurations
	Results and discussions
	Real-world applications

	Conclusion, limitation, and future work
	Additional related works
	Evolution strategies
	Black-box multi-objective optimization

	More details about Neural-ES
	Proof of Equation (8)
	Issue with (9): a divergent gaussian mean
	Proof of Lemma 1 & interpretation of (10)
	Deriving the update rule (11)
	More on the weight values
	Design of the set model
	Overall computational complexity

	More details on the experiments
	Proposed BBO-PSL benchmark suite
	More about the configurations
	More experiment results
	Sensitivity analyses
	Runtime analyses

