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Abstract

Lexico-semantic networks represent words as
nodes and their semantic relatedness as edges.
While such networks are traditionally con-
structed using embeddings from encoder-based
models or static vectors, embeddings from
decoder-only large language models (LLMs)
remain underexplored. Unlike encoder models,
LLMs are trained with a next-token prediction
objective, which does not directly encode the
meaning of the current token. In this paper, we
construct lexico-semantic networks from the
input embeddings of LLMs with varying pa-
rameter scales and conduct a comparative anal-
ysis of their global and local structures. Our
results show that these networks exhibit small-
world properties, characterized by high cluster-
ing and short path lengths. Moreover, larger
LLMs yield more intricate networks with less
small-world effects and longer paths, reflecting
richer semantic structures and relations. We
further validate our approach through analyses
of common conceptual pairs, structured lexical
relations derived from WordNet, and a cross-
lingual semantic network for qualitative words.

1 Introduction

What does the meaning of a word come from?
According to the distributional hypothesis (Harris,
1954; Firth, 1957; Boleda, 2020), it arises from the
relationships of the word with other words. These
relationships - whether syntagmatic (co-occurrence
within the same context) or paradigmatic (shar-
ing similar neighboring words) - can be mod-
eled as a network connecting different but related
words. This distributional perspective on mean-
ing, along with network-based representations, has
been widely explored in areas such as semantic lex-
icons (e.g., WordNet-inspired resources) (Miller,
1995), language typology (e.g., semantic map mod-
els) (Haspelmath, 2003) and cognitive science (e.g.,
conceptual space framework) (Gérdenfors, 2000).

Lexico-semantic networks can be built man-
ually based on conceptual spaces (Girdenfors,

2000) or induced from cross-linguistic correspon-
dences (Croft, 2001), but both face scalability chal-
lenges. Word embeddings offer a scalable alter-
native, capturing semantic relations like analogy
and similarity (Mikolov et al., 2013; Vulié et al.,
2020). However, prior work often relies on static
or encoder-based models (e.g., word2vec (Mikolov
etal., 2013), BERT (Devlin et al., 2019)), overlook-
ing decoder-only LLMs and the global structure
encoded in their full vocabulary space.

These considerations lead to an intriguing ques-
tion: what do the semantic networks induced from
the new LLM world look like? It is “new” in the
sense that input embeddings from LLMs remain
relatively underexplored, as their next-token predic-
tion objective does not directly encode the meaning
of the current token (Liu et al., 2024). Itis a “world”
because we aim to construct networks over the en-
tire vocabulary, offering a global perspective on
the internal structure of LLMs. Furthermore, how
do such networks differ across LLMs that share the
same architecture but vary in computational scale?
Given the general trend, established by the scal-
ing law (Kaplan et al., 2020), that larger models
tend to perform better, we ask: is this also reflected
in the structure of their induced lexico-semantic
networks?

We construct a lexico-semantic network from in-
put embeddings of large language models (LLMs),
treating vocabulary embeddings as nodes and defin-
ing edge weights via similarity metrics. Starting
from a fully connected graph, we prune weak edges
based on the connectivity hypothesis from semantic
map models (Haspelmath, 2003; Liu et al., 2025),
preserving overall connectivity. We analyze the
resulting networks across LLMs of different scales,
finding small-world structures characterized by
high clustering and short path lengths, with larger
models exhibiting denser and more complex pat-
terns. To assess practical utility, we examine local
subgraphs in three scenarios—common conceptual



domains, WordNet-based lexical relations, and a
cross-lingual case study—showing strong align-
ment with human-annotated resources and validat-
ing the effectiveness of our approach.

In conclusion, our main contributions are as fol-
lows:

* We construct a lexico-semantic network using
the input embeddings of the entire vocabu-
lary from large language models (LLMs), and
show that these networks exhibit the small-
world property, indicating strong local cluster-
ing and efficient word-to-word connectivity.

* We conduct a comparative analysis of lexico-
semantic networks derived from LLMs of dif-
ferent parameter scales, grounded in the con-
nectivity hypothesis. Our results reveal that
larger-scale models display a weaker small-
world effect, characterized by longer average
path lengths and more complex community
structures.

* We design three evaluation scenarios to ana-
lyze the lexico-semantic networks from both
global and local perspectives: (1) common
conceptual domains, (2) WordNet-based lexi-
cal relations, and (3) a cross-lingual case study
on evaluative words. In all cases, larger-scale
LLM:s consistently yield networks with longer
semantic paths, reflecting greater relational
richness and more nuanced concept structures.

2 Related Work
2.1 Word Embedding and Representation

Contemporary language models represent words
or subtokens using continuous vectors based on
distributed semantics (Boleda, 2020). These
high-dimensional vectors can be static (Mikolov
et al., 2013; Bojanowski et al., 2017) or context-
sensitive (Devlin et al., 2019). While effective,
they lack the interpretability of semantic feature-
based representations (Petersen and Potts, 2023).
Word embeddings exhibit elegant linear relation-
ships (Mikolov et al., 2013), high similarity with
human judgments (Vuli¢ et al., 2020), and mean-
ingful representations (Turney and Pantel, 2010).
Static embeddings are particularly suitable for of-
fline, context-free words, especially monosemous
ones. These embeddings are used in the input and
output layers of LLMs. Previous research has ex-
plored their linear properties (Han et al., 2024),

conceptual space construction (Moullec and Dou-
ven, 2025), similarity distributions on the tasks of
word-pair similarity and analogy (Freestone and
Santu, 2024) and other aspects. They focus on
several instances rather than the network structure
built by the whole vocabulary. In this paper, we ex-
plore the lexico-semantic network via LLM input
embeddings, offering a more global and systematic
evaluation.

2.2 Lexico-semantic Network Representations

A prominent meaning-driven approach to construct-
ing lexico-semantic networks is the conceptual
space framework (CSF), widely applied in cog-
nitive science (Gardenfors, 2000, 2014; Nosofsky,
1986) and neuroscience (Caglar, 2021). CSF mod-
els concepts as points or regions in a continuous
multidimensional space. For example, the color
domain is structured by hue, saturation, and bright-
ness, with color terms corresponding to convex re-
gions (Gérdenfors, 2000). Similar structures have
been proposed for other domains, such as body
parts and kinship (Zwarts, 2010).

A data-driven alternative is semantic map mod-
eling (SMM), which builds networks from cross-
linguistic co-expression patterns found in con-
tent words (Guo, 2012; Petersen and Potts, 2023;
Dellert, 2024), function words (Zhang, 2017), or
constructions (Malchukov et al., 2007). Nodes typ-
ically represent grammatical or conceptual mean-
ings.

Networks can be built via bottom-up or top-
down strategies. The bottom-up method relies on
the connectivity hypothesis (Haspelmath, 2003),
linking concepts co-expressed by a single form.
The top-down approach (Liu et al., 2025) begins
with a complete graph weighted by semantic simi-
larity, then prunes it to retain informative edges.

In this paper, we adopt a data-driven, top-down
approach to lexico-semantic network construction,
using LLM input embeddings and treating embed-
ding similarity as a proxy for semantic relatedness.

3 Approach

In this section, we first introduce the basic notions
and construct a complete graph connecting all con-
ceptual nodes. We then sparsify the graph based
on the revised connectivity hypothesis. Finally,
we define global and local metrics to evaluate the
lexico-semantic network. The overall pipeline is
illustrated in Figure 1.
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Figure 1: Outline of our lexico-semantic network construction. First, we extract the input word embeddings (&)
for the LLM vocabulary (V). Next, we build a complete graph C by calculating the cosine similarity between all
embedding pairs. Finally, we retain edges based on similarity, from highest to lowest, until the graph G is connected.
We then focus on specific connected subgraphs G’ representing certain domains at a local level.

3.1 Basic Notions

We define a lexico-semantic network G = {V, E'},
where V' and I are sets of nodes and edges, respec-
tively. Each node v € V represents a word or a
token !. Each edge e(u,v) € E connects a pair of
nodes (u, v), reflecting their semantic relatedness.
If a path p(u, v) exists between nodes u and v, they
are connected, with path length L defined as the
number of edges along the path. If no path exists,
L = co. We use L of the shortest path to indicate
the topological distance between two nodes. The
network G is considered connected if every pair of
nodes is connected.

A subgraph G’ = {V’/, E’}, where V' C V and
E' C E, reflects the local topology of G and typi-
cally represents a specific semantic domain, such
as adverbs (Zhang, 2017), color adjectives (Gér-
denfors, 2014), or qualitative words (Perrin, 2010).
Similarly, a subgraph is connected if every pair of
nodes has a path. Note that G’ may not connected
as a whole.

We define a metric M on G to measure the re-
latedness or similarity between nodes. A com-
mon metric is cosine similarity , widely applied
in similarity-related tasks. Accordingly, we also
utilize the cosine distance D between nodes, which
is one minus cosine similarity 2.

3.2 Complete Graph

We use an LLM to extract input embeddings £
for all tokens in its vocabulary V, treating each
token (the minimal computational unit) as a node

'In LLMs, a token, typically a subword, is the minimal
computational unit.

“While cosine distance violates the triangle inequality re-
quired by strict distances, we relax this constraint due to its
simplicity and widespread use.

in the lexico-semantic network. After obtaining
the vectorized embeddings, we compute the cosine
distance between every pair of nodes to define edge
weights. Additionally, we apply centering by sub-
tracting the average vector from each embedding to
address anisotropy (?). This results in a complete
graph C, where every pair of words is connected.

3.3 Lexico-semantic Space

We derive a sparsified graph, denoted as the lexico-
semantic space G, from the complete graph C. We
propose a minimum connectivity hypothesis, which
states that G must remain connected while using
the fewest edges possible. The “connectivity” en-
sures that every pair of words is connected, form-
ing a valid space. The “minimum” condition favors
sparse connections, inspired by the top-down con-
struction of semantic map models, which even use
trees (with the least number of edges) to maintain
connectivity (Liu et al., 2025). To achieve this spar-
sity, we rank edges by weight defined on the metric
M and retain the top K ratio of edges, as higher
weights indicate more important connections.

A well-defined G is also a discrete topological
space {G, T}, where T is the collection of all sub-
sets. We define a subgraph G’ as a subset of G and
it is considered an open set. This is because the
intersection and union of any two subgraphs G 4
and Gz still belong to 7

YGa, G €T, GanNGpeT, GaUGeT. (1)

This is ensured by the “connectivity” condition,
while a “minimum” topological space is required
for the conceptual structure.



3.4 Evaluation

We evaluate the lexico-semantic network from both
global and local perspectives.

Globally, we compute network statistics to ana-
lyze basic properties, connectivity, and small-world
characteristics of the spaces built by two mod-
els. Small-world characteristics are indicated by a
higher clustering coefficient and a shorter shortest
path, which are described in detail in Section 5.1.

Locally, we analyze a subgraph G’ of the con-
ceptual space G in three scenarios. Scenario 1 ex-
amines common concepts across ten semantic cate-
gories, each containing monosemous words, com-
paring shortest paths within and between groups.
Scenario 2 explores shortest-path connections for
various WordNet relations. Scenario 3 evaluates a
lexico-semantic network of qualitative words, com-
paring it to the corresponding LLLM subgraph. Be-
yond topology and connectivity, we assess node
degree correlations and measure recall and preci-
sion against the ground truth.

4 Experimental Design

4.1 Large Language Models

We adopt the Llama series as our LLMs, includ-
ing Llama2-7B and Llama2-70B (Touvron et al.,
2023). The dimension of the input embedding is
4096 and 8192, for Llama2-7B and Llama2-70B re-
spectively. Also, they share the vocabulary for both
models, with the size of vocabulary 32,000. The
tokens in the vocabulary are obtained by Byte Pair
Encoding (Sennrich et al., 2016), merging the bi-
gram with the most frequent co-occurrence. Thus,
many tokens are part of a whole word. Besides, to-
kens at the beginning of a word are different from
those in other places, i.e., the end part of a word.
For example, “man” in “policeman” and “man” are
different units in the vocabulary. We identify the
token appearing the end part of a word by add “#”
at the beginning of the token, such as “#man”.

4.2 Scenario 1: Common Concepts

We construct nine semantic groups represent-
ing common concepts, each containing ten fre-
quent words: NUMBER, NAME, MONTH, COLOR,
CIiTY, NATION, PLACE, HUMAN, and FURNI-
TURE. Some of these groups, such as NUMBER,
NAME, and MONTH, naturally exhibit sequential
structures. Additionally, we include a RANDOM
group as a control. All words in these groups are

monosemous and consist of a single token, en-
suring that they appear directly in the vocabulary
and have well-defined type-level meanings. A full
list of the concepts is provided in Table 4 in Ap-
pendix A.1. This scenario investigates how well
the embedding-based network captures conceptual
similarity, as reflected by the length of shortest
paths within and across semantic groups.

4.3 Scenario 2: WordNet Relations

In Scenario 2, we examine a subgraph of Word-
Net (Miller, 1995) to assess how structural lexical
relations are reflected in the embedding-based net-
work. We use a filtered subset of the public WN18
dataset (Bordes et al., 2013), comprising 40,943
WordNet synsets and 18 relation types. The filter-
ing process follows these criteria: (1) after mapping
synsets to their corresponding words, only those
present in the LLaMA vocabulary are retained; (2)
only the first sense of each synset is kept to rep-
resent its prototypical meaning; (3) only relation
types involving at least 10 valid word pairs are
included; (4) symmetric relation types, such as hy-
pernym and hyponym, are merged.

We also introduce two additional wordform-
based relation types: tokenization variant, which
captures differences between tokens with and with-
out a leading underscore (e.g., “man” vs. “#man”),
and uppercase variant, which differentiates capital-
ized from lowercase forms (e.g., “red” vs. “Red”).
In total, we include eight relation types, summa-
rized in Table 1. This scenario investigates whether
and how these structured lexical relations are pre-
served in the topology of the embedding-based se-
mantic network.

Index Relation Type Count
A Member of Domain Topic 51
B Verb Group 10
C Hypernym 464
D Has Part 22
E Also See 95
F Derivationally Related Form 388
G Tokenization Variant 1685
H Uppercase Variant 1788

Table 1: WordNet Relations and Instance Counts

4.4 Scenario 3: SMM of Qualitative Words

In Scenario 3, we leverage a cross-linguistic seman-
tic map of adjectives and qualitative terms (Perrin,



2010), which encompasses 22 African languages
along with French and English. In this resource,
polysemous words within each language are linked
to reflect conceptual proximity, forming a semantic
map that encodes a universal network of mean-
ings. This map captures cross-linguistic regulari-
ties in polysemy patterns, serving as an invariant
conceptual structure underlying diverse lexical re-
alizations. The semantic domains covered include
dimension, age, value, and color, with concepts rep-
resented by capitalized English words (e.g., BIG,
SMALL, LONG, SHORT, WIDE, DEEP for the di-
mension domain).

We filter out words not present in the LLaMA
vocabulary, resulting in a final set of 75 concepts
from the original 110. The full list of concepts
and the human-annotated semantic graph are pro-
vided in Appendix A.2. This scenario evaluates
how well the embedding-induced lexico-semantic
network aligns with a cross-linguistically grounded
conceptual structure.

5 Results and Analysis

In this section, we first construct the lexico-
semantic network based on the minimum connec-
tivity approach described in Section 3.3. We then
evaluate the space in three distinct scenarios.

5.1 Graph Construction

Choice of K. To ensure the graph is minimally
connected, we extract the top K ratio of edges,
where the edge weights are determined by cosine
similarity. We incrementally increase the value of
K while monitoring the number of connected com-
ponents (CC), as shown in Figure 2. The graph first
becomes connected when the log of the number of
CC reaches zero. In our experiments, we selected
K = 0.002, at which point both models become
connected. This choice ensures that the same num-
ber of edges are used for both models, making the
comparison fair.

Global Statistics. We present the statistics of
the lexico-semantic networks for both models in
Table 2, divided into three parts. The Basic sec-
tion includes the number of nodes (#Nodes), edges
(#Edges), and the average (Avg. Degree) and stan-
dard deviation (Std. Degree) of degrees. The
Weighted section calculates the average and stan-
dard deviation of weighted degrees (also called
Strength or Traffic), along with the equivalent
threshold—the minimum weight value in the final

R —o— Llama2-7B
Llama2-70B
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Figure 2: Logarithm of the number of connected com-
ponents as the top K ratio increases for Llama2-7B and
Llama2-70B. A value of zero indicates a fully connected
network, while the dotted line marks the first ratio at
which both models become connected.

Statistics Llama2-7B Llama2-70B
Basic
#Nodes 32,000 32,000
#Edges 1,024,000 1,024,000
Avg. Degree 64 64
Std. Degree 68.39 58.96
Weighted
Avg. Degree_ W 8.76* 12.23*
Std. Degree_ W 13.78 14.02
Threshold 0.095 0.147
Small-world
GCC (D) 0.325 0.215
ALCC (1) 0.183* 0.174*
Diameter ({.) 6 6

Table 2: Statistics for Llama2-7B and Llama2-70B.
GCC refers to global clustering coefficient, ALCC to av-
erage local clustering coefficient, and Diameter refers to
the longest path length. A star (*) indicates high statisti-
cal significance between the two models for that metric.
Metrics without a star are not tested for significance,
typically because they are fixed by design (e.g., #Nodes,
#Edges) or not applicable for statistical comparison.

graph G. The last section focuses on Small-world
effects. The global clustering coefficient (GCC)
measures graph transitivity—the fraction of actual
triangles among all possible triangles in G. The
local clustering coefficient (ALCC) is calculated as
the average of actual connections within neighbors
for all nodes. The network diameter is the longest
path between any two nodes. Smaller diameters
and larger GCC/ALCC values indicate stronger
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Figure 3: Shortest path lengths among semantic groups for Llama2-7B (left) and Llama2-70B (right).

small-world effects. We also calculate the statisti-
cal difference of t-test and mark it by a star (*) for
a high difference (with a p value less than 0.05).

Llama2-7B and Llama2-70B share similar graph
structures, both using the same number of edges.
The average degree is 64, but 7B has a flatter de-
gree distribution with a larger standard deviation.
In the weighted version, 7B’s degree distribution
is more concentrated. As shown in Figure 9 (Ap-
pendix A.3), 7B exhibits a long-tailed distribution,
indicating fewer high-degree (central) nodes.

Both models exhibit pronounced small-world
characteristics, reflected in their high global clus-
tering coefficients (GCC), average local clustering
coefficients (ALCC), and short diameters. In con-
trast, random networks with the same number of
edges show substantially lower GCC (0.0032) and
ALCC (0.0020). Notably, the observed diameter
of 6 corresponds with the Six Degrees of Separa-
tion theory (Milgram, 1967), a phenomenon com-
monly observed in social networks (Watts and Stro-
gatz, 1998) and web graphs (Albert et al., 1999).
Compared to the smaller model, the 70B model
displays a somewhat weaker small-world effect,
evidenced by higher GCC and ALCC values, sug-
gesting longer and more complex node interactions.
Our subsequent local analyses provide further sup-
port for these observations through concrete exam-
ples.

5.2 Scenario 1

In this scenario, we evaluate the lexico-semantic
networks of both models by calculating the short-
est path length between any pair of nodes within
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Figure 4: Shortest Path Length Difference (Llama2-
70B Minus Llama2-7B) Across Semantic Groups. The
number of stars indicate the degree of the significance
level of the difference.

and between semantic groups. The shortest path is
computed using Dijkstra’s algorithm from the Net-
workX package 3 with the cosine distance between
any two nodes. The average lengths for Llama2-7B
and Llama2-70B are shown in Figure 3. Figure 4
presents the difference heatmap, where the differ-
ence is computed as the average length of Llama2-
70B minus that of Llama2-7B. The significance of
the differences is indicated by the number of stars
(one, two, or three), corresponding to p-values of
0.05, 0.01, and 0.001 in the t-test, respectively.
Our results indicate that Llama2-70B generally
exhibits longer path lengths than Llama2-7B, both
within and across semantic groups, suggesting that

https://networkx.org/documentation/stable/
reference/algorithms/shortest_paths.html
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Llama2-70B uncovers relationships through more
complex pathways. Figures 6a and 6b illustrate the
six shortest paths between “bar” and “library.” The
shortest path (highlighted in red) in Llama2-70B
shows greater variation in word forms and conju-
gations. Moreover, alternative paths involve multi-
lingual links and diverse connections that assist in
disambiguation—for instance, differentiating the
building “library” from its software-related sense.
This richer semantic representation may account
for the superior performance of larger-scale mod-
els.

When analyzing per group, both models show
shorter paths within the same group, and the trends
are similar for different group pairs. Among the
groups, COLOR shows the shortest paths, while
FURNITURE exhibits the longest. This may be
due to polysemy in FURNITURE, where terms
like “chair” refer to both furniture and a human
(e.g., a person referred to as a “chair”). This is
further supported by the longer paths when com-
paring FURNITURE to other groups. Conversely,
NATION and CITY tend to have shorter paths.

5.3 Scenario 2

In the second scenario, we evaluate the network for
word pairs from different relation types, as shown
in Table 1. For each pair, we compute the shortest
path and display the length for both models. The
significance of the differences is indicated by the
number of stars. The results are shown in Figure 5.

The results mirror those of Scenario 1: Llama2-
70B generally exhibits longer paths than Llama?2-
7B. For most relation types, the path lengths in

70B are significantly greater, except for word
form-related relations where both models main-
tain direct edges between word pairs. Longer paths
are observed in relations such as member of do-
main topic, verb group, and hypernym, reflecting
more complex connection chains. For instance, in
the hypernym relation between “set” and “collec-
tion,” Llama2-70B demonstrates a more nuanced
path, gradually linking the singular “set” to the
plural “collection” with conjugation correlations,
as illustrated in Figures 7a and 7b. This suggests
that larger-scale models capture more logical and
intricate conceptual relations.

5.4 Scenario3

In Scenario 3, we construct a lexico-semantic net-
work for qualitative words, with a reference (GT)
from cross-lingual research. The statistics for
the spaces built by Llama2-7B (7B), Llama2-70B
(70B), and GT are shown in Table 3.

Statistics 7B 70B  GT
Basic
#Nodes 75 75 75
#Edges 293 130 37
Avg. Degree 7.813 3.467 0.987
Std. Degree 5.724 3.021 0.959
Weighted

Avg. Degree_ W 0.963 0.611 -

Std. Degree W 0.736 0.546 -
Avg. Weight 0.123 0.176 -
Connectivity
#Component () 8 17 39
#Single ({) 7 16 26
Reference with GT
Correlation (1) 0.466 0.449 1
Recall (1) 0.568 0.378 -
Precision (1) 0.072 0.108 -

Table 3: Statistics for Llama2-7B, Llama2-70B, and
GT across four dimensions. “#Component” represents
the number of connected components, and “#Single”
indicates the number of nodes with zero degree. In the
bottom section, we report degree correlation, recall, and
precision.

Overall, the model-constructed networks con-
tain more edges and fewer connected components
and isolated nodes than those built by human ex-
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Figure 6: Shortest paths between “bar” and “library” in Llama2-7B and Llama2-70B. Edge width indicates weight;
red highlights mark the shortest path. The 70B model shows a more complex structure involving similar forms,

multilingual links, and disambiguation clusters.
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Figure 7: Shortest paths between “collection” and “set” in Llama2 models. Red highlights indicate the shortest path.
The 70B model shows a more logical semantic transition from singular to plural concepts.

perts. Expert-constructed graphs are based on cor-
pus co-occurrence across at least three languages,
a process especially difficult for low-resource lan-
guages. In contrast, model embeddings produce
much denser graphs. Notably, Llama2-70B yields a
sparser network than Llama2-7B. Compared to the
ground truth (GT), the automatic networks show
moderate correlation and coverage (recall), indi-
cating that the lexico-semantic network partially
captures universal cross-linguistic patterns of se-
mantic relatedness in polysemy. However, preci-
sion is lower due to the larger number of edges,
suggesting embeddings can serve as a preliminary
space for linguists to further refine.

6 Conclusion

This paper investigates the construction of lexico-
semantic networks using input embeddings from
large language models (LLMs). We analyze and
compare the network properties of LLMs with dif-
ferent scales across three scenarios. Our findings
show that the lexico-semantic network can be effec-
tively constructed from embeddings, which exhibit
a small-world clustering effect. Additionally, mod-
els with more parameters tend to explore longer and
more complex paths between concepts, partially
supporting the “scaling law” (Kaplan et al., 2020).
This study also provides an efficient approach to
constructing conceptual spaces, potentially benefit-
ing fields such as language typology and cognitive
science.



7 Limitations

We acknowledge several limitations in our work.
First, we mainly concentrate on the monosemous
words. However, words can be ambiguous, par-
ticularly for homonyms that encompass multiple
unrelated meanings. Second, our evaluation is lim-
ited to two models, Llama2-7B and Llama2-70B.
Results may differ with models of different archi-
tectures or parameter scales. Additionally, we fo-
cus only on input embeddings and do not explore
the properties of output embeddings, which may
also capture individual word representations. Fi-
nally, the length of the shortest path in the lexico-
semantic network is not a definitive metric for em-
bedding quality, and we plan to explore more so-
phisticated metrics to better reflect the characteris-
tics of these spaces.

8 Ethics Statement

We do not foresee immediate ethical concerns
arising from our research. However, there may
be unintended biases in the connections between
concepts, such as those involving gender and job
ranks. These biases may stem from biased embed-
dings (Bordes et al., 2013; Bolukbasi et al., 2016).
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A Appendix

A.1 Common Concepts in Scenario 1

Table 4 lists specific concepts from different seman-
tic groups, with each group containing ten common
concepts.

A.2 Conceptual Spaces in Scenario 3

Scenario 3 presents a human-annotated conceptual
space for qualitative words, as shown in Figure 8.
Each concept is represented by an English word.
Nodes are connected if a pair of concepts co-occur
as a polysemous word in at least three languages.
Nodes marked in red represent federative words,
indicating a shared concept with a higher degree.

A.3 Degree Distribution

We show the distribution of node degrees for spaces
generated by two models, Llama2-7B and Llama2-
70B. Figure 9(a) displays the unweighted degree
distribution, while (b) shows the weighted distribu-
tion. The results indicate that the 70B model has a
less pronounced long-tail distribution, with more
nodes having relatively larger degrees.
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Figure 8: A semantic map for the domain of qualitative words, with federative notions which have a higher degree
highlighted in red.

—— Llama2-7B —— Llama2-7B
500 —— Llama2-70B 4000 —— Llama2-70B
400 3000
1000
A _J 0 A A
100 200 300

w
o
o

Frequency
Frequency
N
o
]

N
o
o

fun
o
o

o

0 400 500 600 700 0 25 50 75 100 125 150 175
Degree Degree
(a) (b)

Figure 9: Comparison of the degree distribution for both models: (a) unweighted degree and (b) weighted degree.

12



Semantic Group

Words

NUMBER
NAME
MONTH
COLOR
CITY
NATION
PLACE
HUMAN
FURNITURE
RANDOM

one, two, three, four, five, six, seven, eight, nine, ten
Alice, Bob, Carol, Dave, Francis, Grace, Hans, Ivan, Zach, Mike
January, February, March, April, May, June, July, August, September, October
red, orange, yellow, green, blue, brown, black, white, grey, gray
Taiwan, York, Cambridge, Oxford, Berlin, Paris, Washington, Rome, Tokyo, Toronto
China, America, England, UK, Germany, France, USA, Italy, Japan, Spain
factory, concert, museum, library, bar, zoo, park, theater, hospital, church
female, male, man, woman, human, boy, girl, elder, gentleman, guys
chair, desk, table, bed, cabinet, computer, lamp, mirror, house, room
conscious, distance, measure, almost, paste, sun, friend, other, waste, tongue

Table 4: Specific words from different semantic groups.
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