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Abstract
Lexico-semantic networks represent words as001
nodes and their semantic relatedness as edges.002
While such networks are traditionally con-003
structed using embeddings from encoder-based004
models or static vectors, embeddings from005
decoder-only large language models (LLMs)006
remain underexplored. Unlike encoder models,007
LLMs are trained with a next-token prediction008
objective, which does not directly encode the009
meaning of the current token. In this paper, we010
construct lexico-semantic networks from the011
input embeddings of LLMs with varying pa-012
rameter scales and conduct a comparative anal-013
ysis of their global and local structures. Our014
results show that these networks exhibit small-015
world properties, characterized by high cluster-016
ing and short path lengths. Moreover, larger017
LLMs yield more intricate networks with less018
small-world effects and longer paths, reflecting019
richer semantic structures and relations. We020
further validate our approach through analyses021
of common conceptual pairs, structured lexical022
relations derived from WordNet, and a cross-023
lingual semantic network for qualitative words.024

1 Introduction025

What does the meaning of a word come from?026

According to the distributional hypothesis (Harris,027

1954; Firth, 1957; Boleda, 2020), it arises from the028

relationships of the word with other words. These029

relationships - whether syntagmatic (co-occurrence030

within the same context) or paradigmatic (shar-031

ing similar neighboring words) - can be mod-032

eled as a network connecting different but related033

words. This distributional perspective on mean-034

ing, along with network-based representations, has035

been widely explored in areas such as semantic lex-036

icons (e.g., WordNet-inspired resources) (Miller,037

1995), language typology (e.g., semantic map mod-038

els) (Haspelmath, 2003) and cognitive science (e.g.,039

conceptual space framework) (Gärdenfors, 2000).040

Lexico-semantic networks can be built man-041

ually based on conceptual spaces (Gärdenfors,042

2000) or induced from cross-linguistic correspon- 043

dences (Croft, 2001), but both face scalability chal- 044

lenges. Word embeddings offer a scalable alter- 045

native, capturing semantic relations like analogy 046

and similarity (Mikolov et al., 2013; Vulić et al., 047

2020). However, prior work often relies on static 048

or encoder-based models (e.g., word2vec (Mikolov 049

et al., 2013), BERT (Devlin et al., 2019)), overlook- 050

ing decoder-only LLMs and the global structure 051

encoded in their full vocabulary space. 052

These considerations lead to an intriguing ques- 053

tion: what do the semantic networks induced from 054

the new LLM world look like? It is “new” in the 055

sense that input embeddings from LLMs remain 056

relatively underexplored, as their next-token predic- 057

tion objective does not directly encode the meaning 058

of the current token (Liu et al., 2024). It is a “world” 059

because we aim to construct networks over the en- 060

tire vocabulary, offering a global perspective on 061

the internal structure of LLMs. Furthermore, how 062

do such networks differ across LLMs that share the 063

same architecture but vary in computational scale? 064

Given the general trend, established by the scal- 065

ing law (Kaplan et al., 2020), that larger models 066

tend to perform better, we ask: is this also reflected 067

in the structure of their induced lexico-semantic 068

networks? 069

We construct a lexico-semantic network from in- 070

put embeddings of large language models (LLMs), 071

treating vocabulary embeddings as nodes and defin- 072

ing edge weights via similarity metrics. Starting 073

from a fully connected graph, we prune weak edges 074

based on the connectivity hypothesis from semantic 075

map models (Haspelmath, 2003; Liu et al., 2025), 076

preserving overall connectivity. We analyze the 077

resulting networks across LLMs of different scales, 078

finding small-world structures characterized by 079

high clustering and short path lengths, with larger 080

models exhibiting denser and more complex pat- 081

terns. To assess practical utility, we examine local 082

subgraphs in three scenarios—common conceptual 083
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domains, WordNet-based lexical relations, and a084

cross-lingual case study—showing strong align-085

ment with human-annotated resources and validat-086

ing the effectiveness of our approach.087

In conclusion, our main contributions are as fol-088

lows:089

• We construct a lexico-semantic network using090

the input embeddings of the entire vocabu-091

lary from large language models (LLMs), and092

show that these networks exhibit the small-093

world property, indicating strong local cluster-094

ing and efficient word-to-word connectivity.095

• We conduct a comparative analysis of lexico-096

semantic networks derived from LLMs of dif-097

ferent parameter scales, grounded in the con-098

nectivity hypothesis. Our results reveal that099

larger-scale models display a weaker small-100

world effect, characterized by longer average101

path lengths and more complex community102

structures.103

• We design three evaluation scenarios to ana-104

lyze the lexico-semantic networks from both105

global and local perspectives: (1) common106

conceptual domains, (2) WordNet-based lexi-107

cal relations, and (3) a cross-lingual case study108

on evaluative words. In all cases, larger-scale109

LLMs consistently yield networks with longer110

semantic paths, reflecting greater relational111

richness and more nuanced concept structures.112

2 Related Work113

2.1 Word Embedding and Representation114

Contemporary language models represent words115

or subtokens using continuous vectors based on116

distributed semantics (Boleda, 2020). These117

high-dimensional vectors can be static (Mikolov118

et al., 2013; Bojanowski et al., 2017) or context-119

sensitive (Devlin et al., 2019). While effective,120

they lack the interpretability of semantic feature-121

based representations (Petersen and Potts, 2023).122

Word embeddings exhibit elegant linear relation-123

ships (Mikolov et al., 2013), high similarity with124

human judgments (Vulić et al., 2020), and mean-125

ingful representations (Turney and Pantel, 2010).126

Static embeddings are particularly suitable for of-127

fline, context-free words, especially monosemous128

ones. These embeddings are used in the input and129

output layers of LLMs. Previous research has ex-130

plored their linear properties (Han et al., 2024),131

conceptual space construction (Moullec and Dou- 132

ven, 2025), similarity distributions on the tasks of 133

word-pair similarity and analogy (Freestone and 134

Santu, 2024) and other aspects. They focus on 135

several instances rather than the network structure 136

built by the whole vocabulary. In this paper, we ex- 137

plore the lexico-semantic network via LLM input 138

embeddings, offering a more global and systematic 139

evaluation. 140

2.2 Lexico-semantic Network Representations 141

A prominent meaning-driven approach to construct- 142

ing lexico-semantic networks is the conceptual 143

space framework (CSF), widely applied in cog- 144

nitive science (Gärdenfors, 2000, 2014; Nosofsky, 145

1986) and neuroscience (Caglar, 2021). CSF mod- 146

els concepts as points or regions in a continuous 147

multidimensional space. For example, the color 148

domain is structured by hue, saturation, and bright- 149

ness, with color terms corresponding to convex re- 150

gions (Gärdenfors, 2000). Similar structures have 151

been proposed for other domains, such as body 152

parts and kinship (Zwarts, 2010). 153

A data-driven alternative is semantic map mod- 154

eling (SMM), which builds networks from cross- 155

linguistic co-expression patterns found in con- 156

tent words (Guo, 2012; Petersen and Potts, 2023; 157

Dellert, 2024), function words (Zhang, 2017), or 158

constructions (Malchukov et al., 2007). Nodes typ- 159

ically represent grammatical or conceptual mean- 160

ings. 161

Networks can be built via bottom-up or top- 162

down strategies. The bottom-up method relies on 163

the connectivity hypothesis (Haspelmath, 2003), 164

linking concepts co-expressed by a single form. 165

The top-down approach (Liu et al., 2025) begins 166

with a complete graph weighted by semantic simi- 167

larity, then prunes it to retain informative edges. 168

In this paper, we adopt a data-driven, top-down 169

approach to lexico-semantic network construction, 170

using LLM input embeddings and treating embed- 171

ding similarity as a proxy for semantic relatedness. 172

3 Approach 173

In this section, we first introduce the basic notions 174

and construct a complete graph connecting all con- 175

ceptual nodes. We then sparsify the graph based 176

on the revised connectivity hypothesis. Finally, 177

we define global and local metrics to evaluate the 178

lexico-semantic network. The overall pipeline is 179

illustrated in Figure 1. 180
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Figure 1: Outline of our lexico-semantic network construction. First, we extract the input word embeddings (E)
for the LLM vocabulary (V). Next, we build a complete graph C by calculating the cosine similarity between all
embedding pairs. Finally, we retain edges based on similarity, from highest to lowest, until the graph G is connected.
We then focus on specific connected subgraphs G′ representing certain domains at a local level.

3.1 Basic Notions181

We define a lexico-semantic network G = {V,E},182

where V and E are sets of nodes and edges, respec-183

tively. Each node v ∈ V represents a word or a184

token 1. Each edge e(u, v) ∈ E connects a pair of185

nodes (u, v), reflecting their semantic relatedness.186

If a path p(u, v) exists between nodes u and v, they187

are connected, with path length L defined as the188

number of edges along the path. If no path exists,189

L = ∞. We use L of the shortest path to indicate190

the topological distance between two nodes. The191

network G is considered connected if every pair of192

nodes is connected.193

A subgraph G′ = {V ′, E′}, where V ′ ⊂ V and194

E′ ⊂ E, reflects the local topology of G and typi-195

cally represents a specific semantic domain, such196

as adverbs (Zhang, 2017), color adjectives (Gär-197

denfors, 2014), or qualitative words (Perrin, 2010).198

Similarly, a subgraph is connected if every pair of199

nodes has a path. Note that G′ may not connected200

as a whole.201

We define a metric M on G to measure the re-202

latedness or similarity between nodes. A com-203

mon metric is cosine similarity , widely applied204

in similarity-related tasks. Accordingly, we also205

utilize the cosine distance D between nodes, which206

is one minus cosine similarity 2.207

3.2 Complete Graph208

We use an LLM to extract input embeddings E209

for all tokens in its vocabulary V , treating each210

token (the minimal computational unit) as a node211

1In LLMs, a token, typically a subword, is the minimal
computational unit.

2While cosine distance violates the triangle inequality re-
quired by strict distances, we relax this constraint due to its
simplicity and widespread use.

in the lexico-semantic network. After obtaining 212

the vectorized embeddings, we compute the cosine 213

distance between every pair of nodes to define edge 214

weights. Additionally, we apply centering by sub- 215

tracting the average vector from each embedding to 216

address anisotropy (?). This results in a complete 217

graph C, where every pair of words is connected. 218

3.3 Lexico-semantic Space 219

We derive a sparsified graph, denoted as the lexico- 220

semantic space G, from the complete graph C. We 221

propose a minimum connectivity hypothesis, which 222

states that G must remain connected while using 223

the fewest edges possible. The “connectivity” en- 224

sures that every pair of words is connected, form- 225

ing a valid space. The “minimum” condition favors 226

sparse connections, inspired by the top-down con- 227

struction of semantic map models, which even use 228

trees (with the least number of edges) to maintain 229

connectivity (Liu et al., 2025). To achieve this spar- 230

sity, we rank edges by weight defined on the metric 231

M and retain the top K ratio of edges, as higher 232

weights indicate more important connections. 233

A well-defined G is also a discrete topological 234

space {G, T }, where T is the collection of all sub- 235

sets. We define a subgraph G′ as a subset of G and 236

it is considered an open set. This is because the 237

intersection and union of any two subgraphs GA 238

and GB still belong to T : 239

∀GA,GB ∈ T , GA ∩ GB ∈ T , GA ∪ GB ∈ T . (1) 240

This is ensured by the “connectivity” condition, 241

while a “minimum” topological space is required 242

for the conceptual structure. 243
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3.4 Evaluation244

We evaluate the lexico-semantic network from both245

global and local perspectives.246

Globally, we compute network statistics to ana-247

lyze basic properties, connectivity, and small-world248

characteristics of the spaces built by two mod-249

els. Small-world characteristics are indicated by a250

higher clustering coefficient and a shorter shortest251

path, which are described in detail in Section 5.1.252

Locally, we analyze a subgraph G′ of the con-253

ceptual space G in three scenarios. Scenario 1 ex-254

amines common concepts across ten semantic cate-255

gories, each containing monosemous words, com-256

paring shortest paths within and between groups.257

Scenario 2 explores shortest-path connections for258

various WordNet relations. Scenario 3 evaluates a259

lexico-semantic network of qualitative words, com-260

paring it to the corresponding LLM subgraph. Be-261

yond topology and connectivity, we assess node262

degree correlations and measure recall and preci-263

sion against the ground truth.264

4 Experimental Design265

4.1 Large Language Models266

We adopt the Llama series as our LLMs, includ-267

ing Llama2-7B and Llama2-70B (Touvron et al.,268

2023). The dimension of the input embedding is269

4096 and 8192, for Llama2-7B and Llama2-70B re-270

spectively. Also, they share the vocabulary for both271

models, with the size of vocabulary 32,000. The272

tokens in the vocabulary are obtained by Byte Pair273

Encoding (Sennrich et al., 2016), merging the bi-274

gram with the most frequent co-occurrence. Thus,275

many tokens are part of a whole word. Besides, to-276

kens at the beginning of a word are different from277

those in other places, i.e., the end part of a word.278

For example, “man” in “policeman” and “man” are279

different units in the vocabulary. We identify the280

token appearing the end part of a word by add “#”281

at the beginning of the token, such as “#man”.282

4.2 Scenario 1: Common Concepts283

We construct nine semantic groups represent-284

ing common concepts, each containing ten fre-285

quent words: NUMBER, NAME, MONTH, COLOR,286

CITY, NATION, PLACE, HUMAN, and FURNI-287

TURE. Some of these groups, such as NUMBER,288

NAME, and MONTH, naturally exhibit sequential289

structures. Additionally, we include a RANDOM290

group as a control. All words in these groups are291

monosemous and consist of a single token, en- 292

suring that they appear directly in the vocabulary 293

and have well-defined type-level meanings. A full 294

list of the concepts is provided in Table 4 in Ap- 295

pendix A.1. This scenario investigates how well 296

the embedding-based network captures conceptual 297

similarity, as reflected by the length of shortest 298

paths within and across semantic groups. 299

4.3 Scenario 2: WordNet Relations 300

In Scenario 2, we examine a subgraph of Word- 301

Net (Miller, 1995) to assess how structural lexical 302

relations are reflected in the embedding-based net- 303

work. We use a filtered subset of the public WN18 304

dataset (Bordes et al., 2013), comprising 40,943 305

WordNet synsets and 18 relation types. The filter- 306

ing process follows these criteria: (1) after mapping 307

synsets to their corresponding words, only those 308

present in the LLaMA vocabulary are retained; (2) 309

only the first sense of each synset is kept to rep- 310

resent its prototypical meaning; (3) only relation 311

types involving at least 10 valid word pairs are 312

included; (4) symmetric relation types, such as hy- 313

pernym and hyponym, are merged. 314

We also introduce two additional wordform- 315

based relation types: tokenization variant, which 316

captures differences between tokens with and with- 317

out a leading underscore (e.g., “man” vs. “#man”), 318

and uppercase variant, which differentiates capital- 319

ized from lowercase forms (e.g., “red” vs. “Red”). 320

In total, we include eight relation types, summa- 321

rized in Table 1. This scenario investigates whether 322

and how these structured lexical relations are pre- 323

served in the topology of the embedding-based se- 324

mantic network. 325

Index Relation Type Count

A Member of Domain Topic 51
B Verb Group 10
C Hypernym 464
D Has Part 22
E Also See 95
F Derivationally Related Form 388
G Tokenization Variant 1685
H Uppercase Variant 1788

Table 1: WordNet Relations and Instance Counts

4.4 Scenario 3: SMM of Qualitative Words 326

In Scenario 3, we leverage a cross-linguistic seman- 327

tic map of adjectives and qualitative terms (Perrin, 328
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2010), which encompasses 22 African languages329

along with French and English. In this resource,330

polysemous words within each language are linked331

to reflect conceptual proximity, forming a semantic332

map that encodes a universal network of mean-333

ings. This map captures cross-linguistic regulari-334

ties in polysemy patterns, serving as an invariant335

conceptual structure underlying diverse lexical re-336

alizations. The semantic domains covered include337

dimension, age, value, and color, with concepts rep-338

resented by capitalized English words (e.g., BIG,339

SMALL, LONG, SHORT, WIDE, DEEP for the di-340

mension domain).341

We filter out words not present in the LLaMA342

vocabulary, resulting in a final set of 75 concepts343

from the original 110. The full list of concepts344

and the human-annotated semantic graph are pro-345

vided in Appendix A.2. This scenario evaluates346

how well the embedding-induced lexico-semantic347

network aligns with a cross-linguistically grounded348

conceptual structure.349

5 Results and Analysis350

In this section, we first construct the lexico-351

semantic network based on the minimum connec-352

tivity approach described in Section 3.3. We then353

evaluate the space in three distinct scenarios.354

5.1 Graph Construction355

Choice of K. To ensure the graph is minimally356

connected, we extract the top K ratio of edges,357

where the edge weights are determined by cosine358

similarity. We incrementally increase the value of359

K while monitoring the number of connected com-360

ponents (CC), as shown in Figure 2. The graph first361

becomes connected when the log of the number of362

CC reaches zero. In our experiments, we selected363

K = 0.002, at which point both models become364

connected. This choice ensures that the same num-365

ber of edges are used for both models, making the366

comparison fair.367

Global Statistics. We present the statistics of368

the lexico-semantic networks for both models in369

Table 2, divided into three parts. The Basic sec-370

tion includes the number of nodes (#Nodes), edges371

(#Edges), and the average (Avg. Degree) and stan-372

dard deviation (Std. Degree) of degrees. The373

Weighted section calculates the average and stan-374

dard deviation of weighted degrees (also called375

Strength or Traffic), along with the equivalent376

threshold—the minimum weight value in the final377

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
K ratio (×10 3)

0

2

4

6

8

NC
C 

(lo
g)

Llama2-7B
Llama2-70B

Figure 2: Logarithm of the number of connected com-
ponents as the top K ratio increases for Llama2-7B and
Llama2-70B. A value of zero indicates a fully connected
network, while the dotted line marks the first ratio at
which both models become connected.

Statistics Llama2-7B Llama2-70B

Basic

#Nodes 32,000 32,000
#Edges 1,024,000 1,024,000
Avg. Degree 64 64
Std. Degree 68.39 58.96

Weighted

Avg. Degree_W 8.76∗ 12.23∗

Std. Degree_W 13.78 14.02
Threshold 0.095 0.147

Small-world

GCC (↑) 0.325 0.215
ALCC (↑) 0.183∗ 0.174∗

Diameter (↓) 6 6

Table 2: Statistics for Llama2-7B and Llama2-70B.
GCC refers to global clustering coefficient, ALCC to av-
erage local clustering coefficient, and Diameter refers to
the longest path length. A star (∗) indicates high statisti-
cal significance between the two models for that metric.
Metrics without a star are not tested for significance,
typically because they are fixed by design (e.g., #Nodes,
#Edges) or not applicable for statistical comparison.

graph G. The last section focuses on Small-world 378

effects. The global clustering coefficient (GCC) 379

measures graph transitivity—the fraction of actual 380

triangles among all possible triangles in G. The 381

local clustering coefficient (ALCC) is calculated as 382

the average of actual connections within neighbors 383

for all nodes. The network diameter is the longest 384

path between any two nodes. Smaller diameters 385

and larger GCC/ALCC values indicate stronger 386
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3.34 2.97 3.22 3.26 3.21 3.18 3.38 0.98 3.71 3.7

4.01 3.52 3.65 4.03 3.57 3.56 3.64 3.71 1.64 4.01

3.69 3.7 3.63 3.93 3.67 3.6 3.85 3.7 4.01 1.77 0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(a) Llama-7B (b) Llama-70B

Figure 3: Shortest path lengths among semantic groups for Llama2-7B (left) and Llama2-70B (right).

small-world effects. We also calculate the statisti-387

cal difference of t-test and mark it by a star (*) for388

a high difference (with a p value less than 0.05).389

Llama2-7B and Llama2-70B share similar graph390

structures, both using the same number of edges.391

The average degree is 64, but 7B has a flatter de-392

gree distribution with a larger standard deviation.393

In the weighted version, 7B’s degree distribution394

is more concentrated. As shown in Figure 9 (Ap-395

pendix A.3), 7B exhibits a long-tailed distribution,396

indicating fewer high-degree (central) nodes.397

Both models exhibit pronounced small-world398

characteristics, reflected in their high global clus-399

tering coefficients (GCC), average local clustering400

coefficients (ALCC), and short diameters. In con-401

trast, random networks with the same number of402

edges show substantially lower GCC (0.0032) and403

ALCC (0.0020). Notably, the observed diameter404

of 6 corresponds with the Six Degrees of Separa-405

tion theory (Milgram, 1967), a phenomenon com-406

monly observed in social networks (Watts and Stro-407

gatz, 1998) and web graphs (Albert et al., 1999).408

Compared to the smaller model, the 70B model409

displays a somewhat weaker small-world effect,410

evidenced by higher GCC and ALCC values, sug-411

gesting longer and more complex node interactions.412

Our subsequent local analyses provide further sup-413

port for these observations through concrete exam-414

ples.415

5.2 Scenario 1416

In this scenario, we evaluate the lexico-semantic417

networks of both models by calculating the short-418

est path length between any pair of nodes within419
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Figure 4: Shortest Path Length Difference (Llama2-
70B Minus Llama2-7B) Across Semantic Groups. The
number of stars indicate the degree of the significance
level of the difference.

and between semantic groups. The shortest path is 420

computed using Dijkstra’s algorithm from the Net- 421

workX package 3 with the cosine distance between 422

any two nodes. The average lengths for Llama2-7B 423

and Llama2-70B are shown in Figure 3. Figure 4 424

presents the difference heatmap, where the differ- 425

ence is computed as the average length of Llama2- 426

70B minus that of Llama2-7B. The significance of 427

the differences is indicated by the number of stars 428

(one, two, or three), corresponding to p-values of 429

0.05, 0.01, and 0.001 in the t-test, respectively. 430

Our results indicate that Llama2-70B generally 431

exhibits longer path lengths than Llama2-7B, both 432

within and across semantic groups, suggesting that 433

3https://networkx.org/documentation/stable/
reference/algorithms/shortest_paths.html
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Figure 5: Averaged shortest path length across relation
types for both models. The number of stars indicates
the significance of the difference.

Llama2-70B uncovers relationships through more434

complex pathways. Figures 6a and 6b illustrate the435

six shortest paths between “bar” and “library.” The436

shortest path (highlighted in red) in Llama2-70B437

shows greater variation in word forms and conju-438

gations. Moreover, alternative paths involve multi-439

lingual links and diverse connections that assist in440

disambiguation—for instance, differentiating the441

building “library” from its software-related sense.442

This richer semantic representation may account443

for the superior performance of larger-scale mod-444

els.445

When analyzing per group, both models show446

shorter paths within the same group, and the trends447

are similar for different group pairs. Among the448

groups, COLOR shows the shortest paths, while449

FURNITURE exhibits the longest. This may be450

due to polysemy in FURNITURE, where terms451

like “chair” refer to both furniture and a human452

(e.g., a person referred to as a “chair”). This is453

further supported by the longer paths when com-454

paring FURNITURE to other groups. Conversely,455

NATION and CITY tend to have shorter paths.456

5.3 Scenario 2457

In the second scenario, we evaluate the network for458

word pairs from different relation types, as shown459

in Table 1. For each pair, we compute the shortest460

path and display the length for both models. The461

significance of the differences is indicated by the462

number of stars. The results are shown in Figure 5.463

The results mirror those of Scenario 1: Llama2-464

70B generally exhibits longer paths than Llama2-465

7B. For most relation types, the path lengths in466

70B are significantly greater, except for word 467

form–related relations where both models main- 468

tain direct edges between word pairs. Longer paths 469

are observed in relations such as member of do- 470

main topic, verb group, and hypernym, reflecting 471

more complex connection chains. For instance, in 472

the hypernym relation between “set” and “collec- 473

tion,” Llama2-70B demonstrates a more nuanced 474

path, gradually linking the singular “set” to the 475

plural “collection” with conjugation correlations, 476

as illustrated in Figures 7a and 7b. This suggests 477

that larger-scale models capture more logical and 478

intricate conceptual relations. 479

5.4 Scenario 3 480

In Scenario 3, we construct a lexico-semantic net- 481

work for qualitative words, with a reference (GT) 482

from cross-lingual research. The statistics for 483

the spaces built by Llama2-7B (7B), Llama2-70B 484

(70B), and GT are shown in Table 3. 485

Statistics 7B 70B GT

Basic

#Nodes 75 75 75
#Edges 293 130 37
Avg. Degree 7.813 3.467 0.987
Std. Degree 5.724 3.021 0.959

Weighted

Avg. Degree_W 0.963 0.611 -
Std. Degree_W 0.736 0.546 -
Avg. Weight 0.123 0.176 -

Connectivity

#Component (↓) 8 17 39
#Single (↓) 7 16 26

Reference with GT

Correlation (↑) 0.466 0.449 1
Recall (↑) 0.568 0.378 -
Precision (↑) 0.072 0.108 -

Table 3: Statistics for Llama2-7B, Llama2-70B, and
GT across four dimensions. “#Component” represents
the number of connected components, and “#Single”
indicates the number of nodes with zero degree. In the
bottom section, we report degree correlation, recall, and
precision.

Overall, the model-constructed networks con- 486

tain more edges and fewer connected components 487

and isolated nodes than those built by human ex- 488
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Figure 6: Shortest paths between “bar” and “library” in Llama2-7B and Llama2-70B. Edge width indicates weight;
red highlights mark the shortest path. The 70B model shows a more complex structure involving similar forms,
multilingual links, and disambiguation clusters.
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Figure 7: Shortest paths between “collection” and “set” in Llama2 models. Red highlights indicate the shortest path.
The 70B model shows a more logical semantic transition from singular to plural concepts.

perts. Expert-constructed graphs are based on cor-489

pus co-occurrence across at least three languages,490

a process especially difficult for low-resource lan-491

guages. In contrast, model embeddings produce492

much denser graphs. Notably, Llama2-70B yields a493

sparser network than Llama2-7B. Compared to the494

ground truth (GT), the automatic networks show495

moderate correlation and coverage (recall), indi-496

cating that the lexico-semantic network partially497

captures universal cross-linguistic patterns of se-498

mantic relatedness in polysemy. However, preci-499

sion is lower due to the larger number of edges,500

suggesting embeddings can serve as a preliminary501

space for linguists to further refine.502

6 Conclusion 503

This paper investigates the construction of lexico- 504

semantic networks using input embeddings from 505

large language models (LLMs). We analyze and 506

compare the network properties of LLMs with dif- 507

ferent scales across three scenarios. Our findings 508

show that the lexico-semantic network can be effec- 509

tively constructed from embeddings, which exhibit 510

a small-world clustering effect. Additionally, mod- 511

els with more parameters tend to explore longer and 512

more complex paths between concepts, partially 513

supporting the “scaling law” (Kaplan et al., 2020). 514

This study also provides an efficient approach to 515

constructing conceptual spaces, potentially benefit- 516

ing fields such as language typology and cognitive 517

science. 518
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7 Limitations519

We acknowledge several limitations in our work.520

First, we mainly concentrate on the monosemous521

words. However, words can be ambiguous, par-522

ticularly for homonyms that encompass multiple523

unrelated meanings. Second, our evaluation is lim-524

ited to two models, Llama2-7B and Llama2-70B.525

Results may differ with models of different archi-526

tectures or parameter scales. Additionally, we fo-527

cus only on input embeddings and do not explore528

the properties of output embeddings, which may529

also capture individual word representations. Fi-530

nally, the length of the shortest path in the lexico-531

semantic network is not a definitive metric for em-532

bedding quality, and we plan to explore more so-533

phisticated metrics to better reflect the characteris-534

tics of these spaces.535

8 Ethics Statement536

We do not foresee immediate ethical concerns537

arising from our research. However, there may538

be unintended biases in the connections between539

concepts, such as those involving gender and job540

ranks. These biases may stem from biased embed-541

dings (Bordes et al., 2013; Bolukbasi et al., 2016).542
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A Appendix690

A.1 Common Concepts in Scenario 1691

Table 4 lists specific concepts from different seman-692

tic groups, with each group containing ten common693

concepts.694

A.2 Conceptual Spaces in Scenario 3695

Scenario 3 presents a human-annotated conceptual696

space for qualitative words, as shown in Figure 8.697

Each concept is represented by an English word.698

Nodes are connected if a pair of concepts co-occur699

as a polysemous word in at least three languages.700

Nodes marked in red represent federative words,701

indicating a shared concept with a higher degree.702

A.3 Degree Distribution703

We show the distribution of node degrees for spaces704

generated by two models, Llama2-7B and Llama2-705

70B. Figure 9(a) displays the unweighted degree706

distribution, while (b) shows the weighted distribu-707

tion. The results indicate that the 70B model has a708

less pronounced long-tail distribution, with more709

nodes having relatively larger degrees.710
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Figure 8: A semantic map for the domain of qualitative words, with federative notions which have a higher degree
highlighted in red.
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Figure 9: Comparison of the degree distribution for both models: (a) unweighted degree and (b) weighted degree.
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Semantic Group Words

NUMBER one, two, three, four, five, six, seven, eight, nine, ten
NAME Alice, Bob, Carol, Dave, Francis, Grace, Hans, Ivan, Zach, Mike

MONTH January, February, March, April, May, June, July, August, September, October
COLOR red, orange, yellow, green, blue, brown, black, white, grey, gray

CITY Taiwan, York, Cambridge, Oxford, Berlin, Paris, Washington, Rome, Tokyo, Toronto
NATION China, America, England, UK, Germany, France, USA, Italy, Japan, Spain
PLACE factory, concert, museum, library, bar, zoo, park, theater, hospital, church

HUMAN female, male, man, woman, human, boy, girl, elder, gentleman, guys
FURNITURE chair, desk, table, bed, cabinet, computer, lamp, mirror, house, room

RANDOM conscious, distance, measure, almost, paste, sun, friend, other, waste, tongue

Table 4: Specific words from different semantic groups.
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