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Abstract

Self-supervised learning aims to learn maximally informative representations, but1

explicit information maximization is hindered by the curse of dimensionality. Ex-2

isting methods like VCReg address this by regularizing first- and second-order3

feature statistics, which cannot fully achieve maximum entropy. We propose Radial-4

VCReg, which augments VCReg with a radial Gaussianization loss that aligns5

feature norms with the Chi distribution—a defining property of high-dimensional6

Gaussians. We prove that Radial-VCReg transforms a broader class of distribu-7

tions toward normality compared to VCReg and show on synthetic and real-world8

datasets that it consistently improves performance by reducing higher-order depen-9

dencies and promoting more diverse and informative representations.10

1 Introduction11

Self-supervised learning leverages unlabeled data to create useful representations for downstream12

tasks [Radford et al., 2018, Chen et al., 2020]. Many methods are based on the InfoMax principle,13

which aims to maximize mutual information between different views of the same input [Hjelm et al.,14

2019, Ozsoy et al., 2022]. This requires both enforcing agreement across views and preserving feature15

diversity to prevent collapse—the latter being more challenging.16

Non-contrastive self-supervised learning methods like the VCReg component of VICReg [Bardes17

et al., 2022] address this by regularizing the covariance of features [Zbontar et al., 2021, Ermolov et al.,18

2021, Bardes et al., 2022]. While effective in practice [Sobal et al., 2025], covariance regularization19

only removes linear dependencies and cannot fully maximize information.20

In this paper, we aim to optimize the InfoMax objective by Gaussianizing feature representations.21

The Gaussian distribution is the maximum entropy distribution for a given mean and variance [Cover22

and Thomas, 1991], encouraging features to be maximally spread out and resistant to collapse.23

Unfortunately, directly matching the feature distribution to a high-dimensional Gaussian suffers24

from the curse of dimensionality. Previous methods such as E2MC circumvent this by maximizing25

entropy per feature dimension along with whitening [Chakraborty et al., 2025]. However, there exist26

distributions that minimize the E2MC loss but do not maximize entropy. See Figure 1a for example.27

In this work, we propose to Gaussianize our features radially. A d-dimensional isotropic Gaussian28

concentrates on a thin shell of radius
√
d with an O(1) width, whose marginal follows a Chi29

distribution [Vershynin, 2018]. Enforcing this radial property with whitening provides sufficient30

conditions for Gaussianity if the underlying distribution is elliptically symmetric [Lyu and Simoncelli,31

2009, 2008].32

Inspired by this observation, we explore to what extent we can obtain Gaussian features in self-33

supervised learning by enforcing a chi-distribution on the radial marginal of neural network features34

to maximize information. To summarize, our main contributions are as follows:35
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Figure 1: The Radial-VCReg objective more effectively pushes samples from a non-elliptically
symmetric X-distribution towards the standard normal distribution in 2D compared to the
VCReg objective. (a) The X-distribution has an identity covariance matrix, but it is not elliptically
symmetric. (b) Samples from the X-distribution are optimized with the Radial-VCReg loss, yielding a
spherical structure. (c) As the ratio α of samples from the X-distribution increases, samples optimized
with the Radial-VCReg loss achieve a lower Wasserstein distance to the standard normal compared to
that of VCReg. The VCReg objective is also unable to move the samples away from their starting
distributions.

1. We propose the Radial Gaussianization loss, a consistent estimator of the Kullback–Leibler36

divergence between the empirical radius distribution and the ground-truth chi-distribution.37

2. We introduce Radial-VCReg, a self-supervised method that extends VCReg by explicitly regular-38

izing radial distributions, with theoretical guarantees of transforming a broader class of feature39

distributions toward normality.40

3. We demonstrate empirically that Radial-VCReg 1) pushes the sample distributions closer to the41

standard normal compared to VCReg in synthetic settings, even in cases where the underlying42

distribution might not be elliptically symmetric, and 2) achieves consistent gains on real-world43

image datasets over VCReg.44

2 Radial Gaussianization45

In the following section, we show how to incorporate radial Gaussianization into an optimization46

objective for self-supervised learning. Additional background can be found in Appendix A.47

2.1 Self-Supervised Learning48

In self-supervised learning, we are given unlabeled samples X = [x1, · · · ,xN ] drawn from a49

data distribution pX , where xi ∈ Rdin and X ∈ RN×din . During training, we sample transforma-50

tions t, t′ ∼ T and apply them to the original samples to create two sets of transformed samples,51

Xaug = [t(x1), · · · , t(xN )] and X′
aug = [t′(x1), · · · , t′(xN )], which form positive pairs. The52

goal is to train a neural network hθ to learn representations such that the resulting positive pairs,53

Z = [hθ(t(x1)), · · · , hθ(t(xN ))] and Z′ = [hθ(t
′(x1)), · · · , hθ(t

′(xN ))], are close according to a54

specified distance metric. Simultaneously, the output features zi, z′i ∈ Rdout must remain diverse and55

informative, avoiding representational collapse.56

2.2 VICReg57

VICReg [Bardes et al., 2022] is a non-contrastive self-supervised learning method that contains58

the variance, invariance, and covariance loss terms. For a feature matrix Z ∈ RN×dout , we de-59

note the i-th row as zi ∈ Rdout and the j-th column as zj ∈ RN . The variance loss is given by60

v(Z) = 1
dout

∑dout
j=1 max(0, γ −

√
Var(zj) + ϵ), where γ is typically fixed at 1. The invariance loss,61

computed as the mean squared error between Z and Z′, is given by s(Z,Z′) = 1
N

∑N
i=1 ∥zi − z′i∥22.62

This term encourages positive pairs to have similar representations. Let the empirical covariance63
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Figure 2: Radial-VICReg enforces a chi-distributed radius after optimization, and there exists a
correlation between classification accuracy and the quality of the chi-distribution matching.
(a) The feature norm distribution at random initialization with Wasserstein distance W1 to the Chi
distribution χ equal to 17.15. (b) Feature norm distribution under the VICReg loss is far away from
the Chi distribution. (c) Representations learned with Radial-VICReg is closely matching the Chi
distribution density function. (d) Across hyperparameter sweeps, validation accuracy increases as the
radii distribution better matches the χ-distribution as measured by lower Wasserstein distance.

matrix for the feature matrix Z be C(Z) = 1
N−1

∑N
i=1(zi − z̄)(zi − z̄)⊤, where z̄ = 1

N

∑N
i=1 zi is64

the empirical mean. The covariance loss is defined as c(Z) = 1
dout

∑
i ̸=j [C(Z)]2i,j . Combining the65

three terms, we arrive at the VICReg formulation:66

LVICReg(Z,Z
′) = λ1s(Z,Z

′) + λ2[v(Z) + v(Z′)] + λ3[c(Z) + c(Z′)] (1)

where the variance and covariance losses are applied to Z and Z′ separately. When λ1 = 0, we call it67

VCReg.68

2.3 Radial-VICReg69

Let ∥z∥2 be the norm (or radius) of the feature vector z with density pθ(∥z∥2). The radial Gaussian-70

ization loss is a consistent estimator of the Kullback–Leibler divergence between pθ(∥z∥2) and the71

Chi distribution pχ(∥z∥2) up to constant offsets:72

r(Z;β1, β2) =
β1

N

N∑
i=1

(
1
2∥zi∥

2
2 − (dout − 1) log ∥zi∥2

)
− β2

N−m

N−m∑
i=1

log
(

N+1
m ( ˜∥zi+m∥2 − ∥̃zi∥2)

)
(2)

where β1, β2 are tunable hyperparameters, m is the spacing hyperparameter, and ∥̃z1∥2 ≤ ∥̃z2∥2 ≤73

· · · ≤ ∥̃zN∥2 are the ordered samples of the set {∥zi∥2}Ni=1. We defer detailed derivations to74

Appendix B. In practice, we apply this term to both Z and Z′, resulting in the Radial-VICReg loss:75

LRadial-VICReg(Z,Z
′) = LVICReg(Z,Z

′) + r(Z;β1, β2) + r(Z′;β1, β2) (3)

In Lemma 1, we show that the set of distributions Gaussianizable by Radial-VCReg (with λ1 =76

0) strictly contains that of VCReg (See Appendix C for proofs). Thus, we interpret the radial77

Gaussianization term as enforcing a necessary—but not sufficient—condition for Gaussianity.78

Lemma 1. Let X be a random vector in Rd with distribution PX. Define the VCReg map and79

Radial-VCReg map as80

TVCReg(x) = Σ−1/2(x− µ) (4)

TRadial-VCReg(x) =
Σ−1/2(x− µ)

∥Σ−1/2(x− µ)∥2
F−1
χ

(
F∥Σ−1/2(x−µ)∥2

(∥Σ−1/2(x− µ)∥2)
)

(5)

where µ = E[X], Σ = Cov[X], F∥Σ−1/2(x−µ)∥2
is the CDF of the radial component of the whitened81

random vector, and F−1
χ is the inverse CDF of the χ(d) distribution. We denote the pushforward82

measure by TVCReg#PX and TRadial-VCReg#PX. Let FVCReg = {PX : TVCReg#PX = N (0, I)} and83

FRadial-VCReg = {PX : TRadial-VCReg#PX = N (0, I)} be sets of distributions that can be Gaussianized84

by the VCReg map and the Radial-VCReg map respectively. Then FVCReg ⊊ FRadial-VCReg.85

3



Table 1: CIFAR-100 Results (Linear Probes). The table reports the mean ± standard deviation for
Top-1 and Top-5 accuracies, with the two metrics separated by a forward slash (/). All results were
averaged over multiple random seeds. Hyperparameter details are provided in Appendix F.1.

Projector Dimension (d)

Architecture Method 512 2048

ResNet18 Radial-VICReg 65.99± 0.08 / 89.28± 0.21 68.25± 0.41 / 90.61± 0.23
VICReg 64.23± 0.10 / 88.32± 0.10 67.99± 0.27 / 90.78± 0.05

ViT Radial-VICReg 61.33± 0.29 / 87.36± 0.28 62.91± 0.20 / 88.11± 0.37
VICReg 60.30± 0.21 / 86.68± 0.05 62.28± 0.33 / 87.97± 0.31

Table 2: ImageNet-10 Results (Linear Probes). The table reports the mean ± standard deviation for
Top-1 and Top-5 accuracies, which are separated by a forward slash (/). All results were averaged
over multiple random seeds. Hyperparameter details can be found in Appendix F.2.

Projector Dimension 512 2048 8192

Radial-VICReg 94.73± 0.58/99.27± 0.12 93.93± 0.31/99.07± 0.12 93.33± 0.70/99.47± 0.23

VICReg 93.20± 0.69/99.07± 0.31 93.53± 0.23/99.47± 0.31 93.33± 1.55/99.20± 0.00

3 Synthetic Experiments86

To test whether Radial-VCReg encourages Gaussianity, we construct the X-distribution in 2D87

Euclidean space as shown in Figure 1a. Although it has identity covariance, minimizing variance and88

covariance losses, the distribution is not elliptically symmetric and exhibits higher-order dependencies.89

We apply gradient descent over samples from the X-distribution by differentiating the Radial-VCReg90

loss with respect to the sampled points. In Figure 1b, we show the final samples after 20000091

training steps. The resulting points spread spherically and resemble standard normal samples92

(Figure 1b). We further measure the Wasserstein distance between optimized samples from a mixture93

αX+ (1− α)N (0, I) and N (0, I). As α increases, Radial-VCReg consistently produces samples94

closer to Gaussian than standard VCReg (Figure 1c). Thus, even though the X-distribution is not95

elliptically symmetric, the added radial Gaussianization term can push the samples closer to a96

Gaussian distribution. We also provide additional details and experiments in Appendix D.97

4 Empirical Results98

To evaluate Radial-VICReg, we pretrain networks with 512-dimensional outputs and an MLP pro-99

jector on CIFAR-100 and ImageNet-10, reporting results in Table 1, 2. Radial-VICReg consistently100

outperforms VICReg by about 1.5% on both datasets for smaller projector dimensions like 512, with101

gains holding across ResNet18 and ViT backbones. The improvements remain stable under MLP102

probing (Table 3 in Appendix G), suggesting that radial Gaussianization enhances representations103

rather than exploiting linear probes. Figures 2a, 2b, and 2c show that the added radial term shifts104

radius distributions toward the Chi distribution, while Figure 2d illustrates that closer alignment105

with Chi correlates with higher accuracy. We also observe improvements on CelebA for multi-label106

attribute prediction (Appendix H); further experimental details are in Appendix F.107

5 Conclusion108

We introduced Radial-VCReg, a self-supervised method that augments VCReg with a radial Gaus-109

sianization loss to align feature norms with a Chi distribution. This extension pushes a broader110

class of distributions toward Gaussianity than VCReg alone, as shown theoretically and on synthetic111

data. Experiments on real-world image datasets confirm that the radial term consistently improves112

performance. While not sufficient for perfect Gaussianity, it highlights the value of higher-order113

constraints in learning more diverse and informative representations.114
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A Additional Background163

In this section, we review key concepts related to information maximization in self-supervised164

learning.165

Mutual Information Self-supervised learning can be viewed as maximizing the mutual information166

I(Z;Z ′) between different views Z and Z ′ of the same input. By definition, I(Z;Z ′) = H(Z) +167

H(Z ′) −H(Z,Z ′) where H is the entropy function. During training, we would like to minimize168

the joint entropy H(Z,Z ′) and maximize the marginal entropies H(Z) and H(Z ′). In general, it’s169

difficult to directly maximize the marginal entropy due to the curse of dimensionality.170

Maximum Entropy Distribution Even if it’s hard to maximize entropy in general, some distribu-171

tions are maximum entropy by default. Given a fixed mean and variance, the Gaussian distribution172

is the maximum entropy distribution when compared to all other distributions with support over173

[−∞,∞] [Cover and Thomas, 1991]. This fact also extends to high-dimensional cases. In the context174

of representation learning, maximizing the entropy of the output feature distribution is crucial to175

preventing representational collapse, where the model learns to map all inputs to a single, trivial176

point.177

Elliptically Symmetric Density (ESD) Given a random vector x in d dimension with a zero mean,178

we say that its density pX is elliptically symmetric if it has the following form:179

pX(x) = c · f
(
− 1

2
x⊤Σ−1x

)
(6)

where c is the normalization constant, Σ is a positive definite matrix, and f(·) ≥ 0 and180 ∫∞
0

f(−r2/2)rd−1dr < ∞ [Lyu and Simoncelli, 2008]. When Σ is the covariance matrix and181

is a scalar multiple of the identity matrix (i.e., Σ = σ2I), the density function is said to be spheri-182

cally symmetric. A key property of ESDs is that they can always be transformed into a spherically183

symmetric density by applying whitening (i.e., making the covariance matrix the identity).184

In practice, it’s difficult to Gaussianize high-dimensional output features without making assumptions.185

In the following lemma, we provide a sufficient condition for a Gaussian density that relates to the186

family of elliptically symmetric densities.187

Lemma 2. If x is a random vector in d dimensions with a spherically symmetric density and the188

random variable ∥x∥2 follows the Chi distribution χ(d) with d degrees of freedom, then the density189

function p(x) = N (0, Id).190

Proof. From Theorem 4.2 in Dominique Fourdrinier [2018], we know that the density function for191

spherically symmetric density only depends on the norm, i.e. p(x) = g(∥x∥2). Let r = ∥x∥2 be the192

radius. Our goal is to show that p(x) = g(r) = N (0, Id).193

It’s well known that the infinitesimal volume element dx in spherical coordinate is given by dx =194

rd−1drdΩd where Ωd is the surface measure of a unit sphere Sd. It’s shown in Dominique Fourdrinier195

[2018] that the surface measure of a unit sphere is196

Ωd(Sd) =
∫
Sd

dΩd =
2πd/2

Γ(d/2)
(7)

6



Thus the probability distribution can be computed with this new measure197

P (x ∈ B) =

∫
B

p(x)dx (8)

=

∫ ∞

0

∫
Sd

p(x)rd−1drdΩd (9)

=

∫ ∞

0

∫
Sd

g(r)rd−1drdΩd (10)

=

∫ ∞

0

g(r)rd−1

(∫
Sd

dΩd

)
dr (11)

=

∫ ∞

0

2πd/2

Γ(d/2)
g(r)rd−1dr (12)

(13)

Since we marginalize out the angular components, we can define the density for the radial component198

r to be199

pχ(r) =
2πd/2

Γ(d/2)
g(r)rd−1 (14)

However, we are also constraining r to follow a Chi distribution r ∼ χ(d) with d degree of freedom.200

This gives us another expression for the radial marginal201

pχ(r) =
rd−1

2
d
2−1Γ(d2 )

exp(−r2

2
) (15)

We can combine these two expressions to compute g(r) as follows202

g(r) =
pχ(r)Γ(d/2)

2πd/2rd−1
(16)

=

rd−1

2
d
2
−1Γ( d

2 )
exp(− r2

2 )Γ(d/2)

2πd/2rd−1
(17)

=
1

(2π)
d
2

exp(−r2

2
) (18)

=
1

(2π)
d
2

exp(−∥x∥2

2
) (19)

= N (x;0, I) (20)

Thus we have shown that any random vector with spherically symmetric density and Chi-distributed203

radius with d degree of freedom has to be the standard multivariate normal distribution N (0, Id).204

Lemma 2 shows that we can transform any distribution from the ESD family into a standard Gaussian205

by ensuring two conditions are met: isotropic covariance (achieved through whitening) and a206

Chi-distributed radius. While real-world feature distributions are not guaranteed to be elliptically207

symmetric, there are cases where this transformation remains useful. We argue that imposing these208

two conditions serves as a necessary step towards optimizing for Gaussian features, which inherently209

maximize information content.210

B Derivation of the Radial Gaussianization Loss211

Our goal is to minimize the Kullback–Leibler divergence between pθ(∥z∥2) and the Chi-distribution212

pχ(∥z∥2):213

min
θ

DKL

(
pθ(∥z∥2)

∥∥∥∥ pχ(∥z∥2)
)

= E∥z∥2∼pθ(∥z∥2)[− log pχ(∥z∥2)]︸ ︷︷ ︸
Cross-Entropy

−H(pθ(∥z∥2))︸ ︷︷ ︸
Entropy

(21)

7



where the cross entropy term is approximated using the Monte Carlo estimate:214

E∥z∥2∼pθ(∥z∥2)[− log pχ(∥z∥2)] = E
[(

d

2
− 1

)
log 2 + log Γ(

d

2
)︸ ︷︷ ︸

constants

+
∥z∥22
2

− (d− 1) log ∥z∥2
]
(22)

≈ β1

N

N∑
i=1

(
1

2
∥zi∥22 − (dout − 1) log ∥zi∥2

)
+ C (23)

with a tunable hyperparameter β1. The entropy term can also be computed using the m-spacing215

estimator [Vasicek, 1976]:216

H(pθ(∥z∥2)) ≈
β2

N −m

N−m∑
i=1

log

(
N + 1

m

(
˜∥zi+m∥2 − ∥̃zi∥2

))
(24)

We refer to the composition of the cross-entropy and entropy loss as the radial Gaussianization loss217

r(Z;β1, β2). By the Law of Large Numbers, the cross-entropy estimator is consistent. Vasicek218

[1976] also shows that the m-spacing estimator is consistent. If β1 and β2 are both set to 1, the radial219

Gaussianization loss is a consistent estimator of the true KL divergence, as it is a linear combination of220

two consistent estimators. In practice, we notice that sometimes it’s useful to include a multiplicative221

term 1/dout for the cross entropy term, but we view this as absorbed in the β1 hyperparameter.222

The goal of radial Gaussianization can also be achieved with other optimization objectives. We defer223

the details on alternative loss constructions to Appendix E.224

C Proofs of Lemma 1225

Proof. We would like to prove the following equivalent conditions first.226

• 1) TVCReg#PX = N (0, I) ⇐⇒ PX is Gaussian, i.e., PX = N (µ,Σ).227

• 2) TRadial-VCReg#PX = N (0, I) ⇐⇒ PX is elliptically symmetric.228

We list the proofs below for claims 1) and 2).229

Claim 1). VCReg.230

(⇒). Since TVCReg(X) ∼ N (0, I), we can write the random vector X via the affine map X =231

Σ1/2TVCReg(X) + µ ∼ N (µ,Σ). Thus PX = N (µ,Σ).232

(⇐). We know that X ∼ N (µ,Σ). Then the random vector TVCReg(X) = Σ−1/2(X−µ) ∼ N (0, I).233

Thus TVCReg#PX = N (0, I).234

Claim 2). Radial-VCReg.235

(⇒) We’re given that TRadial-VCReg#PX = N (0, I). Then Z = TRadial-VCReg(X) is spherically236

symmetric. Let Y := Σ−1/2(X− µ) = r ·Θ, where r = ∥Y∥2 is the radius and Θ = Y/∥Y∥2 is237

the angle. Note that TRadial-VCReg preserves angles and only modifies radius. Therefore, the angular238

component Θ must be uniform and independent of r, which implies Y is spherically symmetric.239

Hence, X = Σ1/2Y + µ is elliptically symmetric.240

(⇐) Suppose PX is elliptically symmetric. Then Y = Σ−1/2(X− µ) is spherically symmetric. By241

Lemma 2, we know that TRadial-VCReg#PX = N (0, I).242

Now given the equivalent conditions, we know that FVCReg consists only of Gaussian distributions,243

whereas FRadial-VCReg contains all elliptically symmetric distributions. Since there exist elliptically244

symmetric distributions that are not Gaussian (e.g., uniform on a sphere or isotropic Student-t), we245

have FVCReg ⊊ FRadial-VCReg.246
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Figure 3: There exist distributions that minimize the Radial-VCReg loss but are not Gaussian (a)
The sunshine distribution is built by first generating points from a 2D isotropic Gaussian distribution.
These points are then converted to polar coordinates and sorted into a specified number of pie slices.
Finally, every even-numbered slice is rotated clockwise, creating a distinctive pattern of segmented,
rotated clusters. (b) As the weighting β2 for the entropy term in the radial Gaussianization loss
increases, samples are pushed towards the circle of radius

√
d− 1. In 2-dimensions, the radius is just

1. (c) For both the X distribution and the Sunshine distribution, we observe a correlation between the
E2MC loss and the radial Gaussianization loss. As both losses decreases, the optimized samples are
also closer to a standard normal as measured by the Wasserstein distance.

D Synthetic Distributions247

D.1 Sunshine Distribution248

There also exist non-ESD (elliptically symmetric) distributions that already minimize the Radial-249

VCReg loss but are not Gaussian. In Figure 3a, we plot the sunshine distribution with an identity250

covariance matrix and chi-distributed radius. The final optimized samples using the Radial-VCReg251

objective are shown in Figure 3b with varying weights for the radial entropy loss. Across hyperpa-252

rameters, Radial-VCReg is unable to push samples from the sunshine distribution towards Gaussian.253

This illustrates that certain distributions cannot be fully Gaussianized by the Radial-VCReg objective.254

Nevertheless, the inclusion of the radial Gaussianization term expands the class of feature distributions255

that move toward Gaussianity compared to standard VCReg.256

In Figure 3c, we explore to what extent the radial Gaussianization loss is related to E2MC257

[Chakraborty et al., 2025]. We take samples from both the X distribution and the Sunshine dis-258

tribution with Radial-VCReg optimization and log the corresponding E2MC loss. We find that259

minimizing the radial Gaussianization loss implicitly leads to a lower E2MC loss. The reduction260

in both losses also bring samples closer to a standard normal as measured by Wasserstein dis-261

tances. Therefore, both Radial-VCReg and E2MC are effective proposals for reducing higher-order262

dependencies and achieving more Gaussian-like samples.263

D.2 Experimental Details264

For both the X-distribution and the sunshine distribution, we utilized a dataset of 10, 000 samples for265

optimization. Training was performed using stochastic gradient descent (SGD) for 200, 000 steps266

with a linear warm-up and cosine-decay learning rate scheduler.267

We performed a hyperparameter sweep over the following values:268

• Mixture Weight (α): {0.01, 0.25, 0.5, 0.75, 0.99}269

• Learning Rate: {5× 10−1, 5× 10−2, 5× 10−3, 5× 10−4, 5× 10−5}270

• Radial Gaussianization Parameters (β1, β2): {0, 0.1, 1, 10, 100}271

• VCReg Parameters (λ2, λ3): {1, 10, 25}272
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E Wasserstein Distance Formulation of the Radial Gaussianization Loss273

E.1 Approximating the Radial Chi Distribution: KL vs. Wasserstein274

Our radial objective is one–dimensional: given features z ∈ Rdout with radii r = ∥z∥2, we seek275

to match the empirical radius distribution prθ to the Chi distribution with dout degrees of freedom,276

denoted χ(dout). Two natural divergences for this one-dimensional matching are (i) a KL-based loss,277

introduced in the main text, and (ii) a Wasserstein-1 loss, which we detail here.278

Wasserstein-1 (quantile) radial loss. For one-dimensional distributions, the Wasserstein distance279

is characterized by Vallender [1974]:280

W1(p
r
θ, pχ) =

∫
R

∣∣F r
θ (t)− Fχ(t)

∣∣ dt = ∫ 1

0

∣∣(F r
θ )

−1(u)− (Fχ)
−1(u)

∣∣ du, (25)

where F denotes the cumulative distribution function. We use a simple, low-variance empirical281

estimator: given K radii samples {ri}Ki=1 from the mini-batch and K i.i.d. samples {ui}Ki=1 from282

χ(dout), we sort both sets and compute283

Ŵ1 =
1

K

K∑
i=1

∣∣r(i) − u(i)

∣∣, with r(1) ≤ · · · ≤ r(K), u(1) ≤ · · · ≤ u(K). (26)

For two augmented views Z,Z′, we sum their losses:284

LW1(Z,Z
′) = Ŵ1({∥zi∥2}, χ(dout)) + Ŵ1({∥z′i∥2}, χ(dout)).

We weight the radial Wasserstein term by a scalar γ ≥ 0:285

Ltotal(Z,Z
′) = λ1 s(Z,Z

′) + λ2 [v(Z)+v(Z′)] + λ3 [c(Z)+c(Z′)]︸ ︷︷ ︸
LVICReg(Z,Z′)

+ γ LW1(Z,Z
′). (27)

The estimator in eq. (26) is differentiable almost everywhere (via the sort’s subgradient routing).286

Unlike the KL-based loss, however, the Wasserstein-1 estimator depends on the batch size: larger K287

reduces quantile noise and yields sharper shape matching.288

Empirical comparison. In practice, we find that both KL and Wasserstein objectives optimize289

essentially the same radial constraint. To illustrate this, we compare three cases: (a) optimization290

directly minimizing the Wasserstein-1 distance, (b) Radial-VICReg optimization using the KL-based291

radial Gaussianization loss, and (c) no optimization. The results are shown in Figure 4: Wasserstein-1292

minimization achieves a distance of 0.310 to the χ distribution, KL optimization achieves 0.792,293

while the unoptimized baseline achieves a distance of 8.175.294

F Experimental Details295

For hyperparameter sweeps, we varied the base learning rate {0.3, 0.03}, the cross-entropy (CE/rlw)296

weight {0, 1, 10, 100}, and the entropy (rlew) weight {0, 0.1, 0.3, 0.5, 0.75, 1.0}, each across three297

random seeds.298

CIFAR-100 (ResNet-18). For all experiments on CIFAR-100 with ResNet-18, we trained the299

radialvicregmethod using a three-layer MLP projector with dimensionality varying across settings.300

We applied standard image augmentations: random resized crops (scale range 0.2–1.0), color jitter301

(brightness 0.4, contrast 0.4, saturation 0.2, hue 0.1, applied with probability 0.8), random grayscale302

(probability 0.2), horizontal flips (probability 0.5), and solarization (probability 0.1). Gaussian blur303

and histogram equalization were disabled for CIFAR-100. Images were resized to 32 × 32, with304

two crops per image. Optimization used LARS with batch size 256, base learning rate (either 0.3305

or 0.03 depending on sweep setting), classifier-head learning rate 0.1, weight decay 10−4, learning-306

rate clipping, η = 0.02, and bias/normalization parameters excluded from weight decay. We used307

a warmup cosine schedule for learning-rate annealing. Training ran for 400 epochs with mixed308

precision (fp16) and distributed data parallelism (ddp) across GPUs. The invariance, variance, and309

covariance loss weights were fixed at 25.0, 25.0, and 1.0, respectively.310
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Figure 4: Radial Gaussianization aligns radii distributions with the χ distribution. Comparison
of (a) direct Wasserstein-1 optimization, (b) Radial-VICReg optimization, and (c) no optimization.
Both Wasserstein-1 and Radial-VICReg push the empirical radii distribution closer to the target χ
distribution, with Radial-VICReg achieving a substantial improvement over the unoptimized baseline.

CIFAR-100 (ViT-Tiny/16). We also trained a vision transformer variant using the ViT-Tiny/16311

architecture from timm, consisting of 12 transformer encoder layers with an embedding dimension312

of 192 and 3 attention heads per layer. For CIFAR-100, we adapted the patch size from 16 to 4 to313

accommodate 32× 32 images, yielding 8× 8 patches. The projector was configured with hidden and314

output dimensions of 2048. Optimization employed AdamW with a base learning rate of 5× 10−4315

(and 5 × 10−3 for the classifier head), batch size 256, weight decay 10−4, and a warmup cosine316

learning rate schedule. Training details otherwise matched the ResNet-18 CIFAR-100 setup.317

ImageNet-10 (ResNet-18). For ImageNet-10, we used a ResNet-18 backbone with a three-layer318

MLP projector. Images were cropped to 224× 224 and augmented with the same transformations as319

above, except that Gaussian blur (probability 0.5) was enabled. Optimization followed the CIFAR-320

100 ResNet-18 settings, except with batch size 128. Training was conducted for 400 epochs with321

synchronized batch normalization, mixed precision, and two GPUs.322

All experiments (on synthetic and image datasets) were run on NVIDIA V100, RTX8000, or A100323

GPUs.324

F.1 Table 1 Details325

ResNet-18. Best Radial-VICReg hyperparameters on CIFAR-100:326

• d = 2048: β1 = 1.0, β2 = 0.10, learning rate = 0.3.327

• d = 512: β1 = 100, β2 = 0.0, learning rate = 0.3.328

For VICReg, the best learning rates were 0.03 at d = 512 and 0.3 at d = 2048. These values were329

obtained from the sweep described above.330

ViT-Tiny/16. Best Radial-VICReg hyperparameters:331

• d = 512: β1 = 100.0, β2 = 0.0.332

• d = 2048: β1 = 1.0, β2 = 0.10.333

For VICReg, both β1 and β2 are set to 0.334

F.2 Table 2 Details335

ResNet-18. Best Radial-VICReg hyperparameters on ImageNet-10:336

• d = 512: β1 = 100, β2 = 0.337

• d = 2048: β1 = 1, β2 = 0.5.338

• d = 8192: β1 = 0, β2 = 0.1.339
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Table 3: CIFAR-100 MLP Probe Results. The table reports the mean and standard deviation for
Top-1 and Top-5 accuracies, which are separated by a forward slash (/). All results were averaged
over multiple random seeds, and the experimental settings are identical to those in Table 1.

Projector Dimension 512 2048

Radial-VICReg 64.11± 0.14 / 86.88± 0.14 66.33± 0.33 / 88.05± 0.10
VICReg 62.30± 0.34 / 85.58± 0.14 65.81± 0.16 / 88.09± 0.42

Table 4: CelebA Multi-Label Classification. We compare standard VICReg with Radial-VICReg by
ablating the cross entropy and entropy terms in the KL divergence for the Chi-distribution. Radial CE
stands for only using the cross entropy term, and Radial ENT represents using the entropy term alone.
Radial KL uses both with non-zero hyperparameter values for β1 and β2.

Encoder Linear Probe Projector Linear Probe

Projector Dimension 512 2048 512 2048

VICReg 62.29± 0.49 65.93± 0.35 62.88± 0.58 67.50± 0.39
VICReg + Radial CE 63.37± 0.89 66.07± 0.27 64.33± 0.70 67.48± 0.50
VICReg + Radial ENT 50.51± 0.41 54.95± 1.16 50.04± 0.07 55.97± 1.56
VICReg + Radial KL 62.40± 0.45 66.00± 0.31 62.76± 0.47 66.54± 0.52

G Additional Results for CIFAR-100340

In Table 3, we provide CIFAR-100 MLP probe results. We also show the sensitivity to hyperparame-341

ters for the Radial-VICReg objective in Figure 5.342

H Additional Results for CelebA343

In Table 4, we show the averaged multi-label attributes prediction performances over the CelebFaces344

Attributes Dataset (CelebA) [Liu et al., 2015] for Radial-VICReg and VICReg. The hyperparameter345

settings are inherited from the CIFAR-100 experiments. In addition, we sweep the base learning346

rate in {(0.3, 0.03, 0.003)} with linear probe learning rate {0.1, 0.01, 0.001}. For CelebA, we apply347

standard data augmentations commonly used in self-supervised learning. Each image is randomly348

resized and cropped to 128× 128 pixels with scale sampled uniformly from [0.5, 1.0], producing two349

views per image. We further apply color jittering (brightness/contrast ±0.4, saturation ±0.2, hue350

±0.1) with probability 0.8, random grayscale conversion with probability 0.2, Gaussian blur with351

probability 0.5, and horizontal flipping with probability 0.5. Solarization and histogram equalization352

are disabled, as such transformations might distort facial structures and yield unnatural artifacts on353

human faces.354

On average, we observe the most improvements from optimizing the cross entropy term alone in355

the radial Gaussianization loss. We notice that optimizing the entropy term alone actually leads to a356

performance degradation. This is expected since maximizing the entropy alone leads to unconstrained357

variance in the feature norm.358
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Figure 5: The optimal performance of Radial-VICReg can be obtained with β1 ̸= β2, even if
β1 = β2 gives theoretically consistent estimator of the underlying KL divergence. We observe
that sometimes it’s better to have β1 > β2 for optimal performance in downstream tasks.

NeurIPS Paper Checklist359

The checklist is designed to encourage best practices for responsible machine learning research,360

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove361

the checklist: The papers not including the checklist will be desk rejected. The checklist should362

follow the references and follow the (optional) supplemental material. The checklist does NOT count363

towards the page limit.364

Please read the checklist guidelines carefully for information on how to answer these questions. For365

each question in the checklist:366

• You should answer [Yes] , [No] , or [NA] .367

• [NA] means either that the question is Not Applicable for that particular paper or the368

relevant information is Not Available.369

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).370

The checklist answers are an integral part of your paper submission. They are visible to the371

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it372

(after eventual revisions) with the final version of your paper, and its final version will be published373

with the paper.374

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.375

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a376

proper justification is given (e.g., "error bars are not reported because it would be too computationally377
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expensive" or "we were unable to find the license for the dataset we used"). In general, answering378

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we379

acknowledge that the true answer is often more nuanced, so please just use your best judgment and380

write a justification to elaborate. All supporting evidence can appear either in the main paper or the381

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification382

please point to the section(s) where related material for the question can be found.383

IMPORTANT, please:384

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",385

• Keep the checklist subsection headings, questions/answers and guidelines below.386

• Do not modify the questions and only use the provided macros for your answers.387

1. Claims388

Question: Do the main claims made in the abstract and introduction accurately reflect the389

paper’s contributions and scope?390

Answer: [Yes]391

Justification: [NA]392

Guidelines:393

• The answer NA means that the abstract and introduction do not include the claims394

made in the paper.395

• The abstract and/or introduction should clearly state the claims made, including the396

contributions made in the paper and important assumptions and limitations. A No or397

NA answer to this question will not be perceived well by the reviewers.398

• The claims made should match theoretical and experimental results, and reflect how399

much the results can be expected to generalize to other settings.400

• It is fine to include aspirational goals as motivation as long as it is clear that these goals401

are not attained by the paper.402

2. Limitations403

Question: Does the paper discuss the limitations of the work performed by the authors?404

Answer: [Yes]405

Justification: [NA]406

Guidelines:407

• The answer NA means that the paper has no limitation while the answer No means that408

the paper has limitations, but those are not discussed in the paper.409

• The authors are encouraged to create a separate "Limitations" section in their paper.410

• The paper should point out any strong assumptions and how robust the results are to411

violations of these assumptions (e.g., independence assumptions, noiseless settings,412

model well-specification, asymptotic approximations only holding locally). The authors413

should reflect on how these assumptions might be violated in practice and what the414

implications would be.415

• The authors should reflect on the scope of the claims made, e.g., if the approach was416

only tested on a few datasets or with a few runs. In general, empirical results often417

depend on implicit assumptions, which should be articulated.418

• The authors should reflect on the factors that influence the performance of the approach.419

For example, a facial recognition algorithm may perform poorly when image resolution420

is low or images are taken in low lighting. Or a speech-to-text system might not be421

used reliably to provide closed captions for online lectures because it fails to handle422

technical jargon.423

• The authors should discuss the computational efficiency of the proposed algorithms424

and how they scale with dataset size.425

• If applicable, the authors should discuss possible limitations of their approach to426

address problems of privacy and fairness.427
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• While the authors might fear that complete honesty about limitations might be used by428

reviewers as grounds for rejection, a worse outcome might be that reviewers discover429

limitations that aren’t acknowledged in the paper. The authors should use their best430

judgment and recognize that individual actions in favor of transparency play an impor-431

tant role in developing norms that preserve the integrity of the community. Reviewers432

will be specifically instructed to not penalize honesty concerning limitations.433

3. Theory assumptions and proofs434

Question: For each theoretical result, does the paper provide the full set of assumptions and435

a complete (and correct) proof?436

Answer: [Yes]437

Justification: [NA]438

Guidelines:439

• The answer NA means that the paper does not include theoretical results.440

• All the theorems, formulas, and proofs in the paper should be numbered and cross-441

referenced.442

• All assumptions should be clearly stated or referenced in the statement of any theorems.443

• The proofs can either appear in the main paper or the supplemental material, but if444

they appear in the supplemental material, the authors are encouraged to provide a short445

proof sketch to provide intuition.446

• Inversely, any informal proof provided in the core of the paper should be complemented447

by formal proofs provided in appendix or supplemental material.448

• Theorems and Lemmas that the proof relies upon should be properly referenced.449

4. Experimental result reproducibility450

Question: Does the paper fully disclose all the information needed to reproduce the main ex-451

perimental results of the paper to the extent that it affects the main claims and/or conclusions452

of the paper (regardless of whether the code and data are provided or not)?453

Answer: [Yes]454

Justification: [NA]455

Guidelines:456

• The answer NA means that the paper does not include experiments.457

• If the paper includes experiments, a No answer to this question will not be perceived458

well by the reviewers: Making the paper reproducible is important, regardless of459

whether the code and data are provided or not.460

• If the contribution is a dataset and/or model, the authors should describe the steps taken461

to make their results reproducible or verifiable.462

• Depending on the contribution, reproducibility can be accomplished in various ways.463

For example, if the contribution is a novel architecture, describing the architecture fully464

might suffice, or if the contribution is a specific model and empirical evaluation, it may465

be necessary to either make it possible for others to replicate the model with the same466

dataset, or provide access to the model. In general. releasing code and data is often467

one good way to accomplish this, but reproducibility can also be provided via detailed468

instructions for how to replicate the results, access to a hosted model (e.g., in the case469

of a large language model), releasing of a model checkpoint, or other means that are470

appropriate to the research performed.471

• While NeurIPS does not require releasing code, the conference does require all submis-472

sions to provide some reasonable avenue for reproducibility, which may depend on the473

nature of the contribution. For example474

(a) If the contribution is primarily a new algorithm, the paper should make it clear how475

to reproduce that algorithm.476

(b) If the contribution is primarily a new model architecture, the paper should describe477

the architecture clearly and fully.478
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(c) If the contribution is a new model (e.g., a large language model), then there should479

either be a way to access this model for reproducing the results or a way to reproduce480

the model (e.g., with an open-source dataset or instructions for how to construct481

the dataset).482

(d) We recognize that reproducibility may be tricky in some cases, in which case483

authors are welcome to describe the particular way they provide for reproducibility.484

In the case of closed-source models, it may be that access to the model is limited in485

some way (e.g., to registered users), but it should be possible for other researchers486

to have some path to reproducing or verifying the results.487

5. Open access to data and code488

Question: Does the paper provide open access to the data and code, with sufficient instruc-489

tions to faithfully reproduce the main experimental results, as described in supplemental490

material?491

Answer: [Yes]492

[NA]493

Guidelines:494

• The answer NA means that paper does not include experiments requiring code.495

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/496

public/guides/CodeSubmissionPolicy) for more details.497

• While we encourage the release of code and data, we understand that this might not be498

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not499

including code, unless this is central to the contribution (e.g., for a new open-source500

benchmark).501

• The instructions should contain the exact command and environment needed to run to502

reproduce the results. See the NeurIPS code and data submission guidelines (https:503

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.504

• The authors should provide instructions on data access and preparation, including how505

to access the raw data, preprocessed data, intermediate data, and generated data, etc.506

• The authors should provide scripts to reproduce all experimental results for the new507

proposed method and baselines. If only a subset of experiments are reproducible, they508

should state which ones are omitted from the script and why.509

• At submission time, to preserve anonymity, the authors should release anonymized510

versions (if applicable).511

• Providing as much information as possible in supplemental material (appended to the512

paper) is recommended, but including URLs to data and code is permitted.513

6. Experimental setting/details514

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-515

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the516

results?517

Answer: [Yes]518

Justification: [NA]519

Guidelines:520

• The answer NA means that the paper does not include experiments.521

• The experimental setting should be presented in the core of the paper to a level of detail522

that is necessary to appreciate the results and make sense of them.523

• The full details can be provided either with the code, in appendix, or as supplemental524

material.525

7. Experiment statistical significance526

Question: Does the paper report error bars suitably and correctly defined or other appropriate527

information about the statistical significance of the experiments?528

Answer: [Yes]529

Justification: [NA]530

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Guidelines:531

• The answer NA means that the paper does not include experiments.532

• The authors should answer "Yes" if the results are accompanied by error bars, confi-533

dence intervals, or statistical significance tests, at least for the experiments that support534

the main claims of the paper.535

• The factors of variability that the error bars are capturing should be clearly stated (for536

example, train/test split, initialization, random drawing of some parameter, or overall537

run with given experimental conditions).538

• The method for calculating the error bars should be explained (closed form formula,539

call to a library function, bootstrap, etc.)540

• The assumptions made should be given (e.g., Normally distributed errors).541

• It should be clear whether the error bar is the standard deviation or the standard error542

of the mean.543

• It is OK to report 1-sigma error bars, but one should state it. The authors should544

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis545

of Normality of errors is not verified.546

• For asymmetric distributions, the authors should be careful not to show in tables or547

figures symmetric error bars that would yield results that are out of range (e.g. negative548

error rates).549

• If error bars are reported in tables or plots, The authors should explain in the text how550

they were calculated and reference the corresponding figures or tables in the text.551

8. Experiments compute resources552

Question: For each experiment, does the paper provide sufficient information on the com-553

puter resources (type of compute workers, memory, time of execution) needed to reproduce554

the experiments?555

Answer: [Yes]556

Justification: [NA]557

Guidelines:558

• The answer NA means that the paper does not include experiments.559

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,560

or cloud provider, including relevant memory and storage.561

• The paper should provide the amount of compute required for each of the individual562

experimental runs as well as estimate the total compute.563

• The paper should disclose whether the full research project required more compute564

than the experiments reported in the paper (e.g., preliminary or failed experiments that565

didn’t make it into the paper).566

9. Code of ethics567

Question: Does the research conducted in the paper conform, in every respect, with the568

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?569

Answer: [Yes]570

Justification: [NA]571

Guidelines:572

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.573

• If the authors answer No, they should explain the special circumstances that require a574

deviation from the Code of Ethics.575

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-576

eration due to laws or regulations in their jurisdiction).577

10. Broader impacts578

Question: Does the paper discuss both potential positive societal impacts and negative579

societal impacts of the work performed?580

Answer: [NA]581
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Justification: This paper presents work whose goal is to advance the field of Machine582

Learning. There are many potential societal consequences of our work, none of which we583

feel must be specifically highlighted here.584

Guidelines:585

• The answer NA means that there is no societal impact of the work performed.586

• If the authors answer NA or No, they should explain why their work has no societal587

impact or why the paper does not address societal impact.588

• Examples of negative societal impacts include potential malicious or unintended uses589

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations590

(e.g., deployment of technologies that could make decisions that unfairly impact specific591

groups), privacy considerations, and security considerations.592

• The conference expects that many papers will be foundational research and not tied593

to particular applications, let alone deployments. However, if there is a direct path to594

any negative applications, the authors should point it out. For example, it is legitimate595

to point out that an improvement in the quality of generative models could be used to596

generate deepfakes for disinformation. On the other hand, it is not needed to point out597

that a generic algorithm for optimizing neural networks could enable people to train598

models that generate Deepfakes faster.599

• The authors should consider possible harms that could arise when the technology is600

being used as intended and functioning correctly, harms that could arise when the601

technology is being used as intended but gives incorrect results, and harms following602

from (intentional or unintentional) misuse of the technology.603

• If there are negative societal impacts, the authors could also discuss possible mitigation604

strategies (e.g., gated release of models, providing defenses in addition to attacks,605

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from606

feedback over time, improving the efficiency and accessibility of ML).607

11. Safeguards608

Question: Does the paper describe safeguards that have been put in place for responsible609

release of data or models that have a high risk for misuse (e.g., pretrained language models,610

image generators, or scraped datasets)?611

Answer: [NA]612

Justification: [NA]613

Guidelines:614

• The answer NA means that the paper poses no such risks.615

• Released models that have a high risk for misuse or dual-use should be released with616

necessary safeguards to allow for controlled use of the model, for example by requiring617

that users adhere to usage guidelines or restrictions to access the model or implementing618

safety filters.619

• Datasets that have been scraped from the Internet could pose safety risks. The authors620

should describe how they avoided releasing unsafe images.621

• We recognize that providing effective safeguards is challenging, and many papers do622

not require this, but we encourage authors to take this into account and make a best623

faith effort.624

12. Licenses for existing assets625

Question: Are the creators or original owners of assets (e.g., code, data, models), used in626

the paper, properly credited and are the license and terms of use explicitly mentioned and627

properly respected?628

Answer: [Yes]629

Justification: [NA]630

Guidelines:631

• The answer NA means that the paper does not use existing assets.632

• The authors should cite the original paper that produced the code package or dataset.633
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• The authors should state which version of the asset is used and, if possible, include a634

URL.635

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.636

• For scraped data from a particular source (e.g., website), the copyright and terms of637

service of that source should be provided.638

• If assets are released, the license, copyright information, and terms of use in the639

package should be provided. For popular datasets, paperswithcode.com/datasets640

has curated licenses for some datasets. Their licensing guide can help determine the641

license of a dataset.642

• For existing datasets that are re-packaged, both the original license and the license of643

the derived asset (if it has changed) should be provided.644

• If this information is not available online, the authors are encouraged to reach out to645

the asset’s creators.646

13. New assets647

Question: Are new assets introduced in the paper well documented and is the documentation648

provided alongside the assets?649

Answer: [Yes]650

Justification: [NA]651

Guidelines:652

• The answer NA means that the paper does not release new assets.653

• Researchers should communicate the details of the dataset/code/model as part of their654

submissions via structured templates. This includes details about training, license,655

limitations, etc.656

• The paper should discuss whether and how consent was obtained from people whose657

asset is used.658

• At submission time, remember to anonymize your assets (if applicable). You can either659

create an anonymized URL or include an anonymized zip file.660

14. Crowdsourcing and research with human subjects661

Question: For crowdsourcing experiments and research with human subjects, does the paper662

include the full text of instructions given to participants and screenshots, if applicable, as663

well as details about compensation (if any)?664

Answer: [NA]665

Justification: [NA]666

Guidelines:667

• The answer NA means that the paper does not involve crowdsourcing nor research with668

human subjects.669

• Including this information in the supplemental material is fine, but if the main contribu-670

tion of the paper involves human subjects, then as much detail as possible should be671

included in the main paper.672

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,673

or other labor should be paid at least the minimum wage in the country of the data674

collector.675

15. Institutional review board (IRB) approvals or equivalent for research with human676

subjects677

Question: Does the paper describe potential risks incurred by study participants, whether678

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)679

approvals (or an equivalent approval/review based on the requirements of your country or680

institution) were obtained?681

Answer: [NA]682

Justification: [NA]683

Guidelines:684
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• The answer NA means that the paper does not involve crowdsourcing nor research with685

human subjects.686

• Depending on the country in which research is conducted, IRB approval (or equivalent)687

may be required for any human subjects research. If you obtained IRB approval, you688

should clearly state this in the paper.689

• We recognize that the procedures for this may vary significantly between institutions690

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the691

guidelines for their institution.692

• For initial submissions, do not include any information that would break anonymity (if693

applicable), such as the institution conducting the review.694

16. Declaration of LLM usage695

Question: Does the paper describe the usage of LLMs if it is an important, original, or696

non-standard component of the core methods in this research? Note that if the LLM is used697

only for writing, editing, or formatting purposes and does not impact the core methodology,698

scientific rigorousness, or originality of the research, declaration is not required.699

Answer: [NA]700

Justification: [NA]701

Guidelines:702

• The answer NA means that the core method development in this research does not703

involve LLMs as any important, original, or non-standard components.704

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)705

for what should or should not be described.706
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