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Abstract

Self-supervised learning aims to learn maximally informative representations, but
explicit information maximization is hindered by the curse of dimensionality. Ex-
isting methods like VCReg address this by regularizing first- and second-order
feature statistics, which cannot fully achieve maximum entropy. We propose Radial-
VCReg, which augments VCReg with a radial Gaussianization loss that aligns
feature norms with the Chi distribution—a defining property of high-dimensional
Gaussians. We prove that Radial-VCReg transforms a broader class of distribu-
tions toward normality compared to VCReg and show on synthetic and real-world
datasets that it consistently improves performance by reducing higher-order depen-
dencies and promoting more diverse and informative representations.

1 Introduction

Self-supervised learning leverages unlabeled data to create useful representations for downstream
tasks [Radford et al., 2018, Chen et al., 2020]. Many methods are based on the InfoMax principle,
which aims to maximize mutual information between different views of the same input [Hjelm et al.,
2019, Ozsoy et al., 2022]. This requires both enforcing agreement across views and preserving feature
diversity to prevent collapse—the latter being more challenging.

Non-contrastive self-supervised learning methods like the VCReg component of VICReg [Bardes
et al., 2022] address this by regularizing the covariance of features [Zbontar et al., 2021, Ermolov et al.,
2021, Bardes et al., 2022]. While effective in practice [Sobal et al., 2025], covariance regularization
only removes linear dependencies and cannot fully maximize information.

In this paper, we aim to optimize the InfoMax objective by Gaussianizing feature representations.
The Gaussian distribution is the maximum entropy distribution for a given mean and variance [Cover
and Thomas, 1991], encouraging features to be maximally spread out and resistant to collapse.
Unfortunately, directly matching the feature distribution to a high-dimensional Gaussian suffers
from the curse of dimensionality. Previous methods such as E2ZMC circumvent this by maximizing
entropy per feature dimension along with whitening [Chakraborty et al., 2025]. However, there exist
distributions that minimize the E2ZMC loss but do not maximize entropy. See Figure 1a for example.

In this work, we propose to Gaussianize our features radially. A d-dimensional isotropic Gaussian
concentrates on a thin shell of radius v/d with an O(1) width, whose marginal follows a Chi
distribution [Vershynin, 2018]. Enforcing this radial property with whitening provides sufficient
conditions for Gaussianity if the underlying distribution is elliptically symmetric [Lyu and Simoncelli,
2009, 2008].

Inspired by this observation, we explore to what extent we can obtain Gaussian features in self-
supervised learning by enforcing a chi-distribution on the radial marginal of neural network features
to maximize information. To summarize, our main contributions are as follows:
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Figure 1: The Radial-VCReg objective more effectively pushes samples from a non-elliptically
symmetric X-distribution towards the standard normal distribution in 2D compared to the
VCReg objective. (a) The X-distribution has an identity covariance matrix, but it is not elliptically
symmetric. (b) Samples from the X-distribution are optimized with the Radial-VCReg loss, yielding a
spherical structure. (c) As the ratio « of samples from the X-distribution increases, samples optimized
with the Radial-VCReg loss achieve a lower Wasserstein distance to the standard normal compared to
that of VCReg. The VCReg objective is also unable to move the samples away from their starting
distributions.

1. We propose the Radial Gaussianization loss, a consistent estimator of the Kullback—Leibler
divergence between the empirical radius distribution and the ground-truth chi-distribution.

2. We introduce Radial-VCReg, a self-supervised method that extends VCReg by explicitly regular-
izing radial distributions, with theoretical guarantees of transforming a broader class of feature
distributions toward normality.

3. We demonstrate empirically that Radial-VCReg 1) pushes the sample distributions closer to the
standard normal compared to VCReg in synthetic settings, even in cases where the underlying
distribution might not be elliptically symmetric, and 2) achieves consistent gains on real-world
image datasets over VCReg.

2 Radial Gaussianization

In the following section, we show how to incorporate radial Gaussianization into an optimization
objective for self-supervised learning. Additional background can be found in Appendix A.

2.1 Self-Supervised Learning

In self-supervised learning, we are given unlabeled samples X = [x1,---,xy] drawn from a
data distribution px, where x; € R% and X € R¥*dn During training, we sample transforma-
tions ¢,t’ ~ T and apply them to the original samples to create two sets of transformed samples,
Xag = [t(x1),- - ,t(xn)] and X'y = [t'(x1),--- ,¢'(xn)], which form positive pairs. The
goal is to train a neural network hg to learn representations such that the resulting positive pairs,
Z = [hg(t(x1)), -+ ,he(t(xn))] and Z’' = [he(t'(x1)), - - 7hg(t’(xN)d)], are close according to a
specified distance metric. Simultaneously, the output features z;,z’; € R%» must remain diverse and
informative, avoiding representational collapse.

2.2 VICReg

VICReg [Bardes et al., 2022] is a non-contrastive self-supervised learning method that contains
the variance, invariance, and covariance loss terms. For a feature matrix Z € RY*dou we de-
note the i-th row as z; € R%u and the j-th column as z/ € RY. The variance loss is glven by

v(Z) = 7~ Z 2, max(0,y — /Var(z/) + €), where 7 is typically fixed at 1. The invariance loss
computed as the mean squared error between Z and Z', is given by s(Z,Z') = + Zl Nz — 23113
This term encourages positive pairs to have similar representations. Let the empirical covariance
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Figure 2: Radial-VICReg enforces a chi-distributed radius after optimization, and there exists a
correlation between classification accuracy and the quality of the chi-distribution matching.
(a) The feature norm distribution at random initialization with Wasserstein distance W to the Chi
distribution x equal to 17.15. (b) Feature norm distribution under the VICReg loss is far away from
the Chi distribution. (c) Representations learned with Radial-VICReg is closely matching the Chi
distribution density function. (d) Across hyperparameter sweeps, validation accuracy increases as the
radii distribution better matches the y-distribution as measured by lower Wasserstein distance.

matrix for the feature matrix Z be C(Z) = x— ZZ 1(z; )(z, —7)", wherez = Zfil z; is
the empirical mean. The covariance loss is deﬁned as c( ) = - iz J[ (Z)]7 ;. Combining the
three terms, we arrive at the VICReg formulation:

EVICReg(Z; Z/) = )\18(2, Z’) + )\2 [U(Z) + ’U(Z/)] + )\3[0(2) + C(Z/)] (1)

where the variance and covariance losses are applied to Z and Z' separately. When A; = 0, we call it
VCReg.

2.3 Radial-VICReg

Let ||z||2 be the norm (or radius) of the feature vector z with density pg(||z||2). The radial Gaussian-
ization loss is a consistent estimator of the Kullback—Leibler divergence between pg(||z||2) and the
Chi distribution pX(HzH ) up to constant offsets:

" tog (%2 (e — ]2
@)

P S g

where 1, 32 are tunable hyperparameters, m is the spacing hyperparameter, and ||z ||z < [|z2]]2 <

r(Z; 1, B2) = %Z 1213 — (doue — 1) log ||| )

- < |lzn]|2 are the ordered samples of the set {||z;||2}2,. We defer detailed derivations to
Appendix B. In practice, we apply this term to both Z and Z’, resulting in the Radial-VICReg loss:

Lradiavicreg(Z, Z') = Lyicreg(Z, Z') + 1(Z; 1, B2) + r(Z'; b1, B2) 3)

In Lemma 1, we show that the set of distributions Gaussianizable by Radial-VCReg (with \; =
0) strictly contains that of VCReg (See Appendix C for proofs). Thus, we interpret the radial
Gaussianization term as enforcing a necessary—but not sufficient—condition for Gaussianity.

Lemma 1. Let X be a random vector in R® with distribution Px. Define the VCReg map and
Radial-VCReg map as

Tycreg(x) = 72 (x — ) 4

2Px—p) ~1/2

1= 2x— s Fy (Fnz—l/?(xfu)nz(HE P(x - M)Hz)) o)
where p = E[X], 3 = Cov[X], F|5-1/2(x_p)|, is the CDF of the radial component of the whitened
random vector, and F,~ Lis the inverse CDF of the x(d) distribution. We denote the pushforward

measure by TVCReg#PX and TRadial-VCReg#PX‘ Let ]:VCReg = {PX . TVCReg#PX = N(O, I)} and
FRradiai-vcRes = {PxX : TRadiai-vcregst Px = N(0,1)} be sets of distributions that can be Gaussianized
by the VCReg map and the Radial-VCReg map respectively. Then Fycre, & FRadial-VCReg-

TRadial-vCReg (X) =
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Table 1: CIFAR-100 Results (Linear Probes). The table reports the mean =+ standard deviation for
Top-1 and Top-5 accuracies, with the two metrics separated by a forward slash (/). All results were
averaged over multiple random seeds. Hyperparameter details are provided in Appendix F.1.

Projector Dimension (d)

Architecture  Method 512 2048

ResNet18 Radial-VICReg 65.99 +0.08/89.28 £0.21 68.25+0.41/90.61 + 0.23
VICReg 64.23 +£0.10/88.32 +£0.10 67.99 +£0.27/90.78 + 0.05

ViT Radial-VICReg 61.33 +0.29/87.36 £0.28 62.91 +0.20/88.11 +£0.37
VICReg 60.30 = 0.21/86.68 + 0.05 62.28 £0.33/87.97 + 0.31

Table 2: ImageNet-10 Results (Linear Probes). The table reports the mean + standard deviation for
Top-1 and Top-5 accuracies, which are separated by a forward slash (/). All results were averaged
over multiple random seeds. Hyperparameter details can be found in Appendix F.2.

Projector Dimension 512 2048 8192
Radial-VICReg 94.73 £ 0.58/99.27 £ 0.12 93.93 + 0.31/99.07 £ 0.12 93.33 +0.70/99.47 £+ 0.23
VICReg 93.20 4+ 0.69/99.07 £ 0.31 93.53 +£0.23/99.47 £0.31 93.33 +1.55/99.20 & 0.00

3 Synthetic Experiments

To test whether Radial-VCReg encourages Gaussianity, we construct the X-distribution in 2D
Euclidean space as shown in Figure 1a. Although it has identity covariance, minimizing variance and
covariance losses, the distribution is not elliptically symmetric and exhibits higher-order dependencies.

We apply gradient descent over samples from the X-distribution by differentiating the Radial-VCReg
loss with respect to the sampled points. In Figure 1b, we show the final samples after 200000
training steps. The resulting points spread spherically and resemble standard normal samples
(Figure 1b). We further measure the Wasserstein distance between optimized samples from a mixture
aX + (1 — a)N(0,I) and N(0,1I). As « increases, Radial-VCReg consistently produces samples
closer to Gaussian than standard VCReg (Figure 1c). Thus, even though the X-distribution is not
elliptically symmetric, the added radial Gaussianization term can push the samples closer to a
Gaussian distribution. We also provide additional details and experiments in Appendix D.

4 Empirical Results

To evaluate Radial-VICReg, we pretrain networks with 512-dimensional outputs and an MLP pro-
jector on CIFAR-100 and ImageNet- 10, reporting results in Table 1, 2. Radial-VICReg consistently
outperforms VICReg by about 1.5% on both datasets for smaller projector dimensions like 512, with
gains holding across ResNet18 and ViT backbones. The improvements remain stable under MLP
probing (Table 3 in Appendix G), suggesting that radial Gaussianization enhances representations
rather than exploiting linear probes. Figures 2a, 2b, and 2¢ show that the added radial term shifts
radius distributions toward the Chi distribution, while Figure 2d illustrates that closer alignment
with Chi correlates with higher accuracy. We also observe improvements on CelebA for multi-label
attribute prediction (Appendix H); further experimental details are in Appendix F.

5 Conclusion

We introduced Radial-VCReg, a self-supervised method that augments VCReg with a radial Gaus-
sianization loss to align feature norms with a Chi distribution. This extension pushes a broader
class of distributions toward Gaussianity than VCReg alone, as shown theoretically and on synthetic
data. Experiments on real-world image datasets confirm that the radial term consistently improves
performance. While not sufficient for perfect Gaussianity, it highlights the value of higher-order
constraints in learning more diverse and informative representations.
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A Additional Background

In this section, we review key concepts related to information maximization in self-supervised
learning.

Mutual Information Self-supervised learning can be viewed as maximizing the mutual information
1(Z; Z'") between different views Z and Z’ of the same input. By definition, I(Z; Z’) = H(Z) +
H(Z')— H(Z,Z') where H is the entropy function. During training, we would like to minimize
the joint entropy H(Z, Z') and maximize the marginal entropies H(Z) and H(Z'). In general, it’s
difficult to directly maximize the marginal entropy due to the curse of dimensionality.

Maximum Entropy Distribution Even if it’s hard to maximize entropy in general, some distribu-
tions are maximum entropy by default. Given a fixed mean and variance, the Gaussian distribution
is the maximum entropy distribution when compared to all other distributions with support over
[—00, 0o] [Cover and Thomas, 1991]. This fact also extends to high-dimensional cases. In the context
of representation learning, maximizing the entropy of the output feature distribution is crucial to
preventing representational collapse, where the model learns to map all inputs to a single, trivial
point.

Elliptically Symmetric Density (ESD) Given a random vector x in d dimension with a zero mean,
we say that its density px is elliptically symmetric if it has the following form:

px(x)=c- f( - ;x—rﬁllx) 6)

where ¢ is the normalization constant, 3 is a positive definite matrix, and f(-) > 0 and

IS f(=r?/2)r¢=1dr < oo [Lyu and Simoncelli, 2008]. When X is the covariance matrix and

is a scalar multiple of the identity matrix (i.e., ¥ = ¢°I), the density function is said to be spheri-
cally symmetric. A key property of ESDs is that they can always be transformed into a spherically
symmetric density by applying whitening (i.e., making the covariance matrix the identity).

In practice, it’s difficult to Gaussianize high-dimensional output features without making assumptions.
In the following lemma, we provide a sufficient condition for a Gaussian density that relates to the
family of elliptically symmetric densities.

Lemma 2. If x is a random vector in d dimensions with a spherically symmetric density and the
random variable ||x||2 follows the Chi distribution x(d) with d degrees of freedom, then the density
function p(x) = N(0,1,).

Proof. From Theorem 4.2 in Dominique Fourdrinier [2018], we know that the density function for
spherically symmetric density only depends on the norm, i.e. p(x) = g(||x||2). Let r = ||x||2 be the
radius. Our goal is to show that p(x) = g(r) = N (0,1,).

It’s well known that the infinitesimal volume element dx in spherical coordinate is given by dx =
r?=1drdQ, where Q4 is the surface measure of a unit sphere S%. It’s shown in Dominique Fourdrinier
[2018] that the surface measure of a unit sphere is

2 d/2
Qu(SY) = [ dy = -~

o M= Ta2) @
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Thus the probability distribution can be computed with this new measure

PixeB) = [ xix ®)
_ /0 - /S pGorttrdn, ©)

:/OOO /Sdg(r)rd_ldrde (10)

_ /Owg@)rdl(/sd de>dr (an

_ /0 ~ %g(r)rdldr (12)

(13)

Since we marginalize out the angular components, we can define the density for the radial component
7 to be
2mrd/2 d—1
= — B 14
However, we are also constraining r to follow a Chi distribution r ~ x(d) with d degree of freedom.
This gives us another expression for the radial marginal

Td_l 2

r
_ _ 15
pX(r) 2%_11—‘(%) eXp( 2 ) ( )
We can combine these two expressions to compute g(r) as follows
_ py(r)(d/2)
(r) = 2d/2pd—1 (16)
d—1 2
— o exp(—=F)I'(d/2)
=2 ) (17)
2rd/2pd—1
1 r2
= exp(—— (18)
) p(—3)
1 ]2
= exp(——— (19)
) p(=—-)
=N(x;0,I) (20)

Thus we have shown that any random vector with spherically symmetric density and Chi-distributed
radius with d degree of freedom has to be the standard multivariate normal distribution N'(0,1;). O

Lemma 2 shows that we can transform any distribution from the ESD family into a standard Gaussian
by ensuring two conditions are met: isotropic covariance (achieved through whitening) and a
Chi-distributed radius. While real-world feature distributions are not guaranteed to be elliptically
symmetric, there are cases where this transformation remains useful. We argue that imposing these
two conditions serves as a necessary step towards optimizing for Gaussian features, which inherently
maximize information content.

B Derivation of the Radial Gaussianization Loss

Our goal is to minimize the Kullback-Leibler divergence between pg(]/z||2) and the Chi-distribution
px(ll=l2):

]px<||z||2>) B apo el | Togpx (2l - Hpo(llzl2)) 1)

Cross-Entropy Entropy

wjn D (o)
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where the cross entropy term is approximated using the Monte Carlo estimate:

d d ZI12
Elala~po (lzll2) [— log Dx ([12]]2)] = E{ (2 - 1) log 2 +log I'(5) +% C(d—1)log ”Z”2]
constants
(22)
6 N
=~ WZ: < ||ZZ||2 outl)logHzi”Z) +C (23)

with a tunable hyperparameter $;. The entropy term can also be computed using the m-spacing
estimator [Vasicek, 1976]:

N—m N +1 o o
H(po(lle)) ~ 2 3 1o (T (el - Tl ) ) 24

i=1

We refer to the composition of the cross-entropy and entropy loss as the radial Gaussianization loss
r(Z; 1, B2). By the Law of Large Numbers, the cross-entropy estimator is consistent. Vasicek
[1976] also shows that the m-spacing estimator is consistent. If 51 and 35 are both set to 1, the radial
Gaussianization loss is a consistent estimator of the true KL divergence, as it is a linear combination of
two consistent estimators. In practice, we notice that sometimes it’s useful to include a multiplicative
term 1/d, for the cross entropy term, but we view this as absorbed in the 3, hyperparameter.

The goal of radial Gaussianization can also be achieved with other optimization objectives. We defer
the details on alternative loss constructions to Appendix E.

C Proofs of Lemma 1

Proof. We would like to prove the following equivalent conditions first.

* 1) Tycreg# Px = N(0,I) <= Px is Gaussian, i.e., Px = N (u, X).

* 2) Tradial-vereg# Px = N(0,I) <= Px is elliptically symmetric.

We list the proofs below for claims 1) and 2).
Claim 1). VCReg.

(=). Since Tycres(X) ~ N(0,I), we can write the random vector X via the affine map X =
S 2 Tycreg(X) + 1 ~ N (1, ). Thus Px = N (p, ).

(<=). We know that X ~ A (g, ). Then the random vector Tycreg(X) = =7 /%(X—p) ~ N(0,1).
Thus TVCReg#PX = N(O, I)

Claim 2). Radial-VCReg.

(=) We'’re given that TRadial—VCReg#PX = N(O, I) Then Z = TRadial—VCReg(X) is spherically
symmetric. Let Y := X7 /3(X — p) = r - ©, where r = ||Y||5 is the radius and © = Y /|[Y]2 is
the angle. Note that Tragial-vcreg preserves angles and only modifies radius. Therefore, the angular
component ® must be uniform and independent of r, which implies Y is spherically symmetric.
Hence, X = ='/2Y + w is elliptically symmetric.

(«<=) Suppose Px is elliptically symmetric. Then Y = »Y 2(X — ) is spherically symmetric. By
Lemma 2, we know that TRadial—VCReg#PX = N(O, I)

Now given the equivalent conditions, we know that Fycreg consists only of Gaussian distributions,
whereas Fragial-vcreg contains all elliptically symmetric distributions. Since there exist elliptically
symmetric distributions that are not Gaussian (e.g., uniform on a sphere or isotropic Student-t), we
have F VCReg = C FRadial- -VCReg- O
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Figure 3: There exist distributions that minimize the Radial-VCReg loss but are not Gaussian (a)
The sunshine distribution is built by first generating points from a 2D isotropic Gaussian distribution.
These points are then converted to polar coordinates and sorted into a specified number of pie slices.
Finally, every even-numbered slice is rotated clockwise, creating a distinctive pattern of segmented,
rotated clusters. (b) As the weighting (s for the entropy term in the radial Gaussianization loss
increases, samples are pushed towards the circle of radius v/d — 1. In 2-dimensions, the radius is just
1. (c¢) For both the X distribution and the Sunshine distribution, we observe a correlation between the
E2MC loss and the radial Gaussianization loss. As both losses decreases, the optimized samples are
also closer to a standard normal as measured by the Wasserstein distance.

D Synthetic Distributions

D.1 Sunshine Distribution

There also exist non-ESD (elliptically symmetric) distributions that already minimize the Radial-
VCReg loss but are not Gaussian. In Figure 3a, we plot the sunshine distribution with an identity
covariance matrix and chi-distributed radius. The final optimized samples using the Radial-VCReg
objective are shown in Figure 3b with varying weights for the radial entropy loss. Across hyperpa-
rameters, Radial-VCReg is unable to push samples from the sunshine distribution towards Gaussian.
This illustrates that certain distributions cannot be fully Gaussianized by the Radial-VCReg objective.
Nevertheless, the inclusion of the radial Gaussianization term expands the class of feature distributions
that move toward Gaussianity compared to standard VCReg.

In Figure 3c, we explore to what extent the radial Gaussianization loss is related to E2MC
[Chakraborty et al., 2025]. We take samples from both the X distribution and the Sunshine dis-
tribution with Radial-VCReg optimization and log the corresponding E2MC loss. We find that
minimizing the radial Gaussianization loss implicitly leads to a lower E2MC loss. The reduction
in both losses also bring samples closer to a standard normal as measured by Wasserstein dis-
tances. Therefore, both Radial-VCReg and E2MC are effective proposals for reducing higher-order
dependencies and achieving more Gaussian-like samples.

D.2 Experimental Details

For both the X-distribution and the sunshine distribution, we utilized a dataset of 10, 000 samples for
optimization. Training was performed using stochastic gradient descent (SGD) for 200, 000 steps
with a linear warm-up and cosine-decay learning rate scheduler.

We performed a hyperparameter sweep over the following values:

« Mixture Weight (a): {0.01,0.25,0.5,0.75,0.99}

* Learning Rate: {5 x 10715 x 1072,5 x 1072,5 x 1074,5 x 107°}
* Radial Gaussianization Parameters (51, 52): {0,0.1,1, 10,100}

* VCReg Parameters (\2, \3): {1,10,25}
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E Wasserstein Distance Formulation of the Radial Gaussianization Loss

E.1 Approximating the Radial Chi Distribution: KL vs. Wasserstein

Our radial objective is one—dimensional: given features z € R%« with radii r = ||z||2, we seek
to match the empirical radius distribution pj to the Chi distribution with do,; degrees of freedom,
denoted X(doy ). Two natural divergences for this one-dimensional matching are (i) a KL-based loss,
introduced in the main text, and (ii) a Wasserstein- 1 loss, which we detail here.

Wasserstein-1 (quantile) radial loss. For one-dimensional distributions, the Wasserstein distance
is characterized by Vallender [1974]:

Wihp) = [|F @)= Rlde= [ D7 00 = (R0 e, @9)

where F' denotes the cumulative distribution function. We use a simple, low-variance empirical
estimator: given K radii samples {r;}X | from the mini-batch and K i.i.d. samples {u;}X ; from
X(dout), we sort both sets and compute

1 :
= 22 Iro —u@l withray < <, ue) < S, (26)

For two augmented views Z, Z’, we sum their losses:
Lwi(Z,2') = Wi({]|zll2}, x(dow)) + Wi ({I|z]|2}, X (dou))-

We weight the radial Wasserstein term by a scalar v > 0:
Lioa(Z,Z') = Ny $(Z,Z") + Xa [v(Z)+v(Z")] + N3 [c(Z)+c(Z')] + v Lw1(Z,Z"). (27)

LV]CReg (sz/)

The estimator in eq. (26) is differentiable almost everywhere (via the sort’s subgradient routing).
Unlike the KL-based loss, however, the Wasserstein-1 estimator depends on the batch size: larger K
reduces quantile noise and yields sharper shape matching.

Empirical comparison. In practice, we find that both KL and Wasserstein objectives optimize
essentially the same radial constraint. To illustrate this, we compare three cases: (a) optimization
directly minimizing the Wasserstein-1 distance, (b) Radial-VICReg optimization using the KL-based
radial Gaussianization loss, and (c) no optimization. The results are shown in Figure 4: Wasserstein-1
minimization achieves a distance of 0.310 to the x distribution, KL optimization achieves 0.792,
while the unoptimized baseline achieves a distance of 8.175.

F Experimental Details

For hyperparameter sweeps, we varied the base learning rate {0.3,0.03}, the cross-entropy (CE/rlw)
weight {0, 1,10, 100}, and the entropy (rlew) weight {0,0.1,0.3,0.5,0.75, 1.0}, each across three
random seeds.

CIFAR-100 (ResNet-18). For all experiments on CIFAR-100 with ResNet-18, we trained the
radialvicreg method using a three-layer MLP projector with dimensionality varying across settings.
We applied standard image augmentations: random resized crops (scale range 0.2-1.0), color jitter
(brightness 0.4, contrast 0.4, saturation 0.2, hue 0.1, applied with probability 0.8), random grayscale
(probability 0.2), horizontal flips (probability 0.5), and solarization (probability 0.1). Gaussian blur
and histogram equalization were disabled for CIFAR-100. Images were resized to 32 x 32, with
two crops per image. Optimization used LARS with batch size 256, base learning rate (either 0.3
or 0.03 depending on sweep setting), classifier-head learning rate 0.1, weight decay 104, learning-
rate clipping, n = 0.02, and bias/normalization parameters excluded from weight decay. We used
a warmup cosine schedule for learning-rate annealing. Training ran for 400 epochs with mixed
precision (fp16) and distributed data parallelism (ddp) across GPUs. The invariance, variance, and
covariance loss weights were fixed at 25.0, 25.0, and 1.0, respectively.

10



311
312
313
314
315
316
317

319
320
321
322

323
324

325

326

327

328

330

331

332

333

334

335

336

337

338

339

M Empirical M Empirical M Empirical
05| — Target 05| — Target 05| —Target
Wi dist = 0.310 W1 dist = 0.792 W1 dist = 8.175
0.4 0.4
= =
o3 o3
j j
a a
0.2 0.2
0.1 0.1
0. = 0. = 0.0 =
5 10 15 20 . 25 30 35 40 5 10 15 20 . 25 30 35 40 5 10 15 20 . 25 30 35 40
Radius Radius Radius
(a) Wasserstein-1 optimization. (b) KL Optimization (c) No optimization. W; = 8.175.
Wi = 0.310; v = 1.0 Wi = 0.792m; 81 = 100 B2 = 0.

batch-size=512

Figure 4: Radial Gaussianization aligns radii distributions with the y distribution. Comparison
of (a) direct Wasserstein-1 optimization, (b) Radial-VICReg optimization, and (c) no optimization.
Both Wasserstein-1 and Radial-VICReg push the empirical radii distribution closer to the target
distribution, with Radial-VICReg achieving a substantial improvement over the unoptimized baseline.

CIFAR-100 (ViT-Tiny/16). We also trained a vision transformer variant using the ViT-Tiny/16
architecture from timm, consisting of 12 transformer encoder layers with an embedding dimension
of 192 and 3 attention heads per layer. For CIFAR-100, we adapted the patch size from 16 to 4 to
accommodate 32 x 32 images, yielding 8 x 8 patches. The projector was configured with hidden and
output dimensions of 2048. Optimization employed AdamW with a base learning rate of 5 x 10~4
(and 5 x 1073 for the classifier head), batch size 256, weight decay 1074, and a warmup cosine
learning rate schedule. Training details otherwise matched the ResNet-18 CIFAR-100 setup.

ImageNet-10 (ResNet-18). For ImageNet-10, we used a ResNet-18 backbone with a three-layer
MLP projector. Images were cropped to 224 x 224 and augmented with the same transformations as
above, except that Gaussian blur (probability 0.5) was enabled. Optimization followed the CIFAR-
100 ResNet-18 settings, except with batch size 128. Training was conducted for 400 epochs with
synchronized batch normalization, mixed precision, and two GPUs.

All experiments (on synthetic and image datasets) were run on NVIDIA V100, RTX8000, or A100
GPUs.

F.1 Table 1 Details
ResNet-18. Best Radial-VICReg hyperparameters on CIFAR-100:

e d=2048: 51 = 1.0, B3 = 0.10, learning rate = 0.3.
e d=512: 1 = 100, B2 = 0.0, learning rate = 0.3.

For VICReg, the best learning rates were 0.03 at d = 512 and 0.3 at d = 2048. These values were
obtained from the sweep described above.

ViT-Tiny/16. Best Radial-VICReg hyperparameters:

e d=512: B; = 100.0, B> = 0.0.
e d=2048: B = 1.0, B> = 0.10.

For VICReg, both /31 and 5 are set to 0.
F.2 Table 2 Details

ResNet-18. Best Radial-VICReg hyperparameters on ImageNet-10:

e d=512: B =100, 35 = 0.
e d=2048: B = 1, B> = 0.5.
e d=28192: 81 =0, B> = 0.1.

11
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Table 3: CIFAR-100 MLP Probe Results. The table reports the mean and standard deviation for
Top-1 and Top-5 accuracies, which are separated by a forward slash (/). All results were averaged
over multiple random seeds, and the experimental settings are identical to those in Table 1.

Projector Dimension 512 2048
Radial-VICReg 64.11 £0.14/86.88+0.14 66.33 +0.33/88.05+0.10
VICReg 62.30 £ 0.34/85.58 £ 0.14 65.81 £ 0.16 / 88.09 £+ 0.42

Table 4: CelebA Multi-Label Classification. We compare standard VICReg with Radial-VICReg by
ablating the cross entropy and entropy terms in the KL divergence for the Chi-distribution. Radial CE
stands for only using the cross entropy term, and Radial ENT represents using the entropy term alone.
Radial KL uses both with non-zero hyperparameter values for 51 and (3.

Encoder Linear Probe Projector Linear Probe
Projector Dimension 512 2048 512 2048
VICReg 62.29+£0.49 65.93£0.35 62.88+0.58 67.50+0.39

VICReg + Radial CE 63.37£0.89 66.07+0.27 64.33+0.70 67.48+0.50
VICReg + Radial ENT  50.51 £ 0.41 54.95+1.16  50.04 £0.07  55.97 £1.56
VICReg + Radial KL 62.40 £ 0.45  66.00 £0.31 62.76 = 0.47  66.54 +£0.52

G Additional Results for CIFAR-100

In Table 3, we provide CIFAR-100 MLP probe results. We also show the sensitivity to hyperparame-
ters for the Radial-VICReg objective in Figure 5.

H Additional Results for CelebA

In Table 4, we show the averaged multi-label attributes prediction performances over the CelebFaces
Attributes Dataset (CelebA) [Liu et al., 2015] for Radial-VICReg and VICReg. The hyperparameter
settings are inherited from the CIFAR-100 experiments. In addition, we sweep the base learning
rate in {(0.3,0.03,0.003) } with linear probe learning rate {0.1,0.01,0.001}. For CelebA, we apply
standard data augmentations commonly used in self-supervised learning. Each image is randomly
resized and cropped to 128 x 128 pixels with scale sampled uniformly from [0.5, 1.0], producing two
views per image. We further apply color jittering (brightness/contrast 0.4, saturation +0.2, hue
+0.1) with probability 0.8, random grayscale conversion with probability 0.2, Gaussian blur with
probability 0.5, and horizontal flipping with probability 0.5. Solarization and histogram equalization
are disabled, as such transformations might distort facial structures and yield unnatural artifacts on
human faces.

On average, we observe the most improvements from optimizing the cross entropy term alone in
the radial Gaussianization loss. We notice that optimizing the entropy term alone actually leads to a
performance degradation. This is expected since maximizing the entropy alone leads to unconstrained
variance in the feature norm.

12
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Figure 5: The optimal performance of Radial-VICReg can be obtained with 3; # (3, even if
(1 = B2 gives theoretically consistent estimator of the underlying KL divergence. We observe
that sometimes it’s better to have 5, > 9 for optimal performance in downstream tasks.

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:
¢ You should answer [ Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
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expensive" or "we were unable to find the license for the dataset we used"). In general, answering

"

"or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we

acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",

* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [NA|

Guidelines:

The answer NA means that the abstract and introduction do not include the claims
made in the paper.

The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
Justification: [NA|

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
[NA]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [NA|
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA|
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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12.

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|

Guidelines:
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685 * The answer NA means that the paper does not involve crowdsourcing nor research with
686 human subjects.

687 * Depending on the country in which research is conducted, IRB approval (or equivalent)
688 may be required for any human subjects research. If you obtained IRB approval, you
689 should clearly state this in the paper.

690 * We recognize that the procedures for this may vary significantly between institutions
691 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
692 guidelines for their institution.

693 * For initial submissions, do not include any information that would break anonymity (if
694 applicable), such as the institution conducting the review.

695 16. Declaration of LLM usage

696 Question: Does the paper describe the usage of LLMs if it is an important, original, or
697 non-standard component of the core methods in this research? Note that if the LLM is used
698 only for writing, editing, or formatting purposes and does not impact the core methodology,
699 scientific rigorousness, or originality of the research, declaration is not required.

700 Answer: [NA]

701 Justification: [NA |

702 Guidelines:

703 * The answer NA means that the core method development in this research does not
704 involve LLMs as any important, original, or non-standard components.

705 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
706 for what should or should not be described.
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