
Improving Fine-Tuning with Latent Cluster
Correction

Cédric Ho Thanh
Prediction Science Laboratory, RIKEN, Japan

cedric.hothanh@riken.jp

Abstract

The formation of salient clusters in the latent spaces of a neural network (NN)
during training strongly impacts its final accuracy on classification tasks. This
paper proposes a novel fine-tuning method that boosts performance by improving
the quality of these latent clusters, using the Louvain community detection algo-
rithm and a specifically designed loss function. We present preliminary results
that demonstrate that this process yields an appreciable accuracy gain for classical
NN architectures fine-tuned on the CIFAR100 dataset.

1 Introduction

1.1 Background

Neural networks (NNs) are a family of machine learning models obtained by composition of simple,
usually learnable operations called layers. In its simplest form, a NN f can be expressed as

f(x) = fn (fn−1 (⋯f1(x)⋯)) , (1.1)

where x is an input sample, and where f1, . . . , fk are f ’s layers, e.g. dense, convolutional, dropout,
softmax, tanh. Depending on the application, x can represent an abstract vector of numbers, an
image, an electrocardiogram, etc. The present paper deals with classifier NNs which places an input
x in a discrete category by assigning a predicted label ypred = f(x) to it.

A latent representation of x is any intermediate value z = fi (⋯f1(x)⋯) for some 1 ≤ i < n,
obtained while evaluating the NN on x. The space in which z lives, i.e. the output space of fi,
is called a latent space. Although the relationship between x and its predicted label ypred = f(x)
can be well-understood (for example an image of a cat should have the label “cat”), the relationship
between x, y, and the latent representations of x is more mysterious.

During training, a NN learns to extract features from the input x and represents them in its abstract
latent spaces, shuffles them in a way that is (hopefully) beneficial by passing the representations
through further transformation layers, and finally make a classification decision. However the pre-
cise way in which the NN decides to organize its latent spaces is not known and perhaps not even
knowable. Indeed, popular NNs can have dozens of different latent spaces each spanning tens of
thousands of dimensions!

Nonetheness, it is known that eventhough the dimension of a chosen latent space can be large, the
actual (or intrinsic) number dimensions used by the NN can be much smaller, and some patterns
emerge. Consider figure 1 representing the structures of several latent spaces 1 of an instance of
ResNet-18 [HZRS16] trained on the CIFAR-10 dataset [Kri09].

1We shall use the expression “latent space” a little loosely to also refer to the distribution of latent represen-
tations in the latent space. So by “structure of the latent space” we actually refer to the patterns that emerge in
the distribution of latent representations.

38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).



Figure 1: Latent representations of 5000 samples from the CIFAR-10 dataset passed through a
pretrained instance of ResNet-18, after dimensionality reduction using UMAP [MHM20], coloured
by class. The latent space sits deeper in the network as we go from left to right.

It is apparent that as we go deeper into the network (i.e. apply more and more layers to the input),
the successive latent spaces become increasingly structured. Representations of samples from the
same class, while initially scattered during the feature extraction phase, get increasingly clumped,
or clustered together, while the clusters get increasingly separated.

With this in mind, a few natural questions emerge: 1. how does latent space structure (mainly sep-
aration and clustering) relate to the NN’s performance? 2. how to measure latent space structure?
3. how to influence latent space structure during training to improve the NN’s performance?

1.2 Related works

Separation and clustering in latent spaces has been investigated in several works.

First, [SMG+21] introduce the generalized discrimination distance (GDV) which is perhaps the most
direct way to measure separation and clustering of a set of samples. Through empirical study, they
demonstrate that GDV is relevant for the study of latent spaces of multi-layer perceptrons (MLPs).

In [CCLS20], the authors place more emphasis in the study of the geometry (such as the dimension
and radius) of the object manifolds, which are the manifolds defined by the latent representation of
samples in a given class. They investigate the capacity of a NN to linearly separate these manifolds
by computing a quantity known as the system load. Their empirical study shows that learning tends
to increase separability and decrease the dimension and radius of object manifolds.

In [BLH+19, LGO21], the authors try to actively influence the layout of the latent spaces by intro-
ducing the graph smoothness loss. That graph is constructed from the latent representations, where
the vertices are the representation and the edges are weighted inversely exponentially by distance.
By training a NN to exclusively minimize this graph smoothness loss, and then training a separate
small classifier model (either a MLP or a support vector machine) on top of that, the authors achieve
performances similar to NNs trained classically using cross-entropy loss. In [LGO21] specifically,
the authors also use these separations methods for knowledge distillation [HVD15, RBK+15] and to
improve the robustness of classifier models against dataset corruption or adversarial attacks.

The works of [SPA+21] go even further by designing NN architectures that are more amenable to
latent separation. In their first approach, the authors create a model consisting of M parallel deep
convolutional neural networks (DCNN), where M is the number of classes. Each is a binary classi-
fier for the corresponding class tasked with clustering latent representations of its class away from
samples from other classes. The second approach is more involved. First, a single DCNN is trained
to maximize the Grassmanian geodesic distance (GGD) [ZZHJH18] between the subspaces of la-
tent representation of each classes. Unlike traditional separation metrics that aim to minimize the
distance between samples of the same class and/or maximize the distance between samples of differ-
ent classes, the GGD merely encourages the network to allocate different linear latent subspaces for
each class in such a way that the principal angles between these subspaces is as large as possible.

The aforementionned works, along with the present paper, only deal with classifier NNs. In [Dah18],
the author applies these separation and clustering ideas to autoencoders (AEs). Instead of naively

2



encouraging clusters in the latent space2 of an AE, an extra NN, called representation network is
attached to the encoder alongside the decoder. The role of the representation network is to embed
latent representations to another space in which a clustering metric is applied.

1.3 Contribution

The present work follows the same idea as many of the papers above, namely encouraging cluster-
ing to improve performance. Our method, which we call latent cluster correction (LCC), uses a
nearest-neighbor-based Louvain community detection algorithm to find these clusters (section 2.1),
an assignment method to interpret their “intended” class (section 2.2), and a new loss function to en-
courage the formation of more salient and accurate clusters (section 2.3). Finally, we present some
promising preliminary results in section 3.

1.3.1 Louvain clustering

Although the final latent structure of figure 1 seems simple enough to be solvable via an ensemble
support vector machine scheme, one must keep in mind that the process of dimensionality reduction
inevitably destroys a lot of information. A cluster in the 2D representation may in fact contain
several clusters in the original high-dimensional latent space, and the relative position and shape of
2D clusters does not reflect the true latent geometry in general. Furthermore, empirical evidence
suggests that a latent space may exhibit more clusters than there are true classes. For example,
the right plot of figure 2 displays the latent representations (after dimensionality reduction) of a
single class. Two significant clusters are visible. This separation originates from the presence of
multiple (non-dimensionality-reduced) clusters among latent representations of this class. We can
think of this phenomenon as the NN deciding to segregate samples in the same class based on some
extracted features, only to ultimately assign the same label to them. Therefore, we argue that forcing
the NN to make one cluster per class, as is the case in [BLH+19, SPA+21] among others, could be
counterproductive.

Figure 2: On the left: latent representations of 5000 samples from the Fashion MNIST dataset
passed through a pretrained instance of AlexNet, after dimensionality reduction using UMAP,
coloured by class. On the right: same, but only the representations belonging to the “Ankle boot”
class are plotted.

In particular, the algorithm used for detecting the clusters should not have the expected number of
clusters as a hyperparameter, which rules out k-means for example. In fact, the choice of algo-
rithm and its hyperparameters should carry as few empirical biases as possible. For example, the
clustering algorithm should be able to deal with non-linearly separable clusters, shouldn’t produce
outliers, should have few hyperparameters, should produce meaningful clusters even if the data is
high-dimensional, etc. Table 1 compares a small selection of the most common clustering algo-
rithms against our requirements. This list is far from exhaustive, and a more complete account can
be found in [PHL04, AR14, MGL+18].

Our method, kNN-Louvain, first constructs the k-nearest neighbors (kNN) graph of the sample set,
and then applies the Louvain method to find communities in the graph, which correspond to clusters
in sample space. Other flexible graph community detection algorithm exist and could be used, see
[LF09] for a survey. Using these alternative methods is the subject of ongoing studies.

2When talking about AEs, the term “latent space” refers only to the space that sits between the encoder and
decoder.

3



Table 1: A very small review of clustering algorithms.

Algorithm
Can deal with

unknown number
of clusters

Can deal with
non-linearly

separable clusters

Few
parameters

Doesn’t produce
outliers

k-means × × ✓ ✓
Gaussian mixture × × ✓ ✓
BIRCH [ZRL96] ✓ × ✓ ✓
CLIQUE [AGGR98] ✓ ✓ ✓ ✓
OPTICS [ABKS99] ✓ ✓ × ×
Spectral clustering [NJW01] × ✓ × ✓
Affinity propagation [FD07] ✓ × ✓ ✓
HDBSCAN [CMS13] ✓ ✓ × ×
kNN-Louvain (used in this work) ✓ ✓ ✓ ✓

2 The Louvain loss

The Louvain loss measures the quality and accuracy (vis-à-vis the true labels) of the clusters in a
chosen latent space of a NN f . If f(x) = fn (fn−1 (⋯f1(x)⋯)) and we selected an index 1 ≤ i < n,
then the Louvain loss of f on a dataset or a batch (X,y) is computed in four steps:

1. compute the latent representations Z = fi (⋯f1(X)⋯);
2. (section 2.1) compute the latent clusters of Z using our proposed kNN-Louvain method:

(a) compute kNN graph G of Z;
(b) find the Louvain communities of G which creates a new vector ȳ of Louvain labels;

3. (section 2.2) find an optimal one-to-many matching between the labels in y and ȳ;
4. (section 2.3) based on this matching, find the misclustered latent samples and compute the

loss term associated to each; the Louvain loss is the mean of all these terms.

2.1 The Louvain–Leiden algorithm

Given a graph G = (V,E) with weighted edges, what is the best partition of V into communities
so as to maximise the weighted connectivity within each community while minimizing it between
communities? A popular approximation method known as the Louvain algorithm [BGLL08] seeks
to maximize a surrogate objective called modularity, given by Q = 1

2m ∑i,j (Ai,j − kikj

2m
) δi,j where

A is the adjacency matrix of G, m = 1
2 ∑i,j Ai,j is the sum of all the edges weight, ki = ∑iAi,j

is the sum of the weights of all edges incident to node i, and δi,j is 1 if node i and j are in the
same community, and 0 otherwise. The algorithm then produces a series of partitioned graphs
G = G(1),G(2), . . . as follows:

1. (initialization) Start with the trivial partition where every node belongs to its own commu-
nity.

2. (modularity optimization) For every edge e = (i, j), we consider whether is it beneficial to
remove node i from the community it currently belongs to and move it to the community
that contains its neighbor j, say Cj ⊆ V . The benefit is measured by the modularity gain
∆Q, which is a quantity that depends on the connectivity within Cj , and between Cj and
i. Node i is moved to the community of its neighbor j for which the modularity gain is the
largest, provided it is positive. If all modularity gains are negative, node i does not move.

3. (aggregation) A new graph G(n+1) is built, where the nodes are the communities of G(n)

produced by step 2. The adjacency matrix of G(n+1) is given by A
(n+1)
C,D = ∑c∈C,d∈D A

(n)
c,d

if C ≠D, and A
(n+1)
C,C = 1

2 ∑c,d∈C A
(n)
c,d .

These steps are repeated until no further improvement is possible, i.e. until a graph G(N) is produced
for which no “node moving” in step 2. offers a positive modularity gain. At this point, nodes of

4



G(N) can be traced back to a partition of the nodes of G into disjoint communities. Unfortunately,
the Louvain algorithm sometimes produces sparse communities, (i.e. for which the k′i’s are small
even if i ∈ C). The Leiden algorithm [TWVE19] is an improvement that prevents this. It works
by adding a step between step 1. and 2. that further partitions communities into subcommunities
following a set complex rules. Then, at the begining of the next iteration, instead of starting with
the trivial partition (that in which every node belongs to its own community), subcommunities of
the same community are already grouped together. In the sequel, we refer to the Louvain–Leiden
algorithm as simply “Louvain algorithm”.

Let (Z, y) be a labeled dataset of latent representations, where Z = (z1, . . . , zN)t ∈ RN×d (d is
called the latent dimension), and y ∈ NN . The vector y is referred to as the vector of true labels.

The first step towards computing the Louvain loss of (Z, y) is to construct the k-nearest neighbor
(kNN) graph G of Z, where k is a hyperparameter chosen in advance. The set of nodes of G is
simply {zi ∣ 1 ≤ i ≤ N}, and nodes zi and zj are linked if zi is among the kNNs of zj or conversely.3
In this case, the weight of the edge is the Euclidean distance ∥zi − zj∥.
Then, running the Louvain algorithm on G produces a partition of Z into communities C1,C2, . . .,
which gives rise to the vector of Louvain labels ȳ ∈ NN , where ȳi = j if zi ∈ Cj . It is expected that
most of the time y ≠ ȳ even up to label permutation, and in fact, the two vectors might not even have
the same number of distinct labels (see section 1.3.1 and figure 2).

2.2 True labels vs. Louvain labels

To establish a relationship between y and ȳ, we construct an assignment between the true labels and
the Louvain labels. To disambiguate, let us denote the set of true labels (i.e. the distinct values of y)
by Ltrue ⊆ N, and the set of Louvain labels by LLouvain ⊆ N. Up to changing the name of the labels,
we may assume that Ltrue ∩ LLouvain = ∅. An one-to-many matching between Ltrue and LLouvain

is simply a function α ∶ LLouvain Ð→ Ltrue, possibly non bijective. We think of the Louvain label
l ∈ LLouvain as “being matched” to the true label α(l). The assignment is optimal if the following
value is maximized:

∑
t∈Ltrue

∣{zn ∣ yn = t} ∩ {zn ∣ α(ȳn) = t}∣ , (2.1)

where ∣−∣ refers to the cardinality of a set. In other words, the Louvain labels are assigned to true
labels so as to minimize the overall discrepency between the set of samples with true labels t ∈ Ltrue

and the set of samples with Louvain label matched to t.

Such an assignment can be found by reformulating the objective function of equation (2.1) as a
discrete max-flow-max-weight problem. A directed graph F = (V,E) is constructed, where the
underlying set of nodes is V = {�,⊺} ∪ Ltrue ∪ LLouvain. The edges and their weight and capacity
are given by the following rules:

1. for all t ∈ Ltrue and all l ∈ LLouvain, there is an edge from t to l whose weight is
∣{zn ∣ yn = t} ∩ {zn ∣ ȳn = l}∣ and whose capacity is 1;

2. for all t ∈ Ltrue, there is an edge from � to t whose weight is 0 and whose capacity is
infinite;

3. for all l ∈ LLouvain, there is an edge from l to ⊺ whose weight is 0 and whose capacity is 1.

A discrete flow from � to ⊺ is a function g ∶ E Ð→ N such that:

1. for all node v except � and ⊺, ∑(w,v)∈E g((w, v)) = ∑(v,w)∈E g((v,w)), i.e. the incoming
flow of node v equals its outgoing flow;

2. for all edge e ∈ E, g(e) is at most the capacity of e.

The flow is optimal if the quantity∑e g(e)we is maximized, where we is the weight of edge e. In this
case, it is possible to define an optimal one-to-many matching α ∶ LLouvain Ð→ Ltrue by matching
l ∈ LLouvain to the de-facto unique true label t ∈ Ltrue such that the edge (t, l) has a positive flow.

3An element is not considered to be one of its own neighbors.

5



2.3 The Louvain loss

At this stage, we dispose of a Louvain label vector ȳ which regroups samples following an optimal
kNN clustering scheme. We also constructed a many-to-one matching α which assigns a true label
to each Louvain label.

We say that a sample zi with true label yi is misclustered if its Louvain label ȳi is not assigned to
its true label yi, i.e. α(ȳi) ≠ yi. The Louvain loss of the dataset of latent representations (Z, y) is
defined as

LLouvain =
1√
dE

∑
zi miscl.

∥zi −
zj1 +⋯ + zjk

k
∥ (2.2)

where d is the latent dimension, E is the number of misclustered samples, and where zj1 , . . . , zjk are
the k nearest neighbots of zi that are correctly clustered and in the same true class as zi, i.e. yjp = yi
and α(ȳjp) = yi for all 1 ≤ p ≤ k. If there exist less than k such neighbors, then the contribution of
zi is 0 instead.

2.4 The approximate Louvain loss

The whole process of computing the “true” Louvain loss is computationally expensive, see section
4.1. To partially alleviate this, we propose an approximate Louvain loss that is slightly faster to
compute. First, for each cluster C, choose a random sample in C that is correctly clustered, if such
a sample exists. The approximate Louvain loss is defined as

L̃Louvain =
1√
dE

∑
zi miscl.

∥zi − z̄i∥ (2.3)

where z̄i is the closest target to zi that is in the same true class as zi. If such a target does not exist,
the contribution of zi is 0 instad.

3 Experiments

3.1 Setup

This preliminary study focuses on three model architectures, varying from small to somewhat large:

Model Nb. of weights

TinyNet [HWZ+20, LN21] ≈ 2.06 × 106
ResNet-18 [HZRS16] ≈ 11.7 × 106
VGG-11 [SZ15] ≈ 132.9 × 106

The task at hand is to fine-tune them on the CIFAR-100 dataset [Kri09] using LCC.

The selected layers for latent cluster correction were either the last dense layer (which outputs the
logits, also called the classifier head), or the second to last trainable layer. The Louvain loss weight
w ranged over {1,10−2,10−4}. In all cases, the number of neighbors considered for clustering was
k = 2, and training started with a warmup epoch, where the Louvain loss was not applied. Lastly,
we studied the case where LCC is applied at every epoch (post-warmup) versus the case where it is
applied only every five epochs.

Every training was performed using the Adam optimization algorithm [KB17] with a fixed learning
rate of 5 × 10−5 and no weight decay.

3.2 Results

The best parameters and results are summarized in the tables below. The first row of every table
corresponds to the baseline, which has been fine-tuned without LCC.

These results reveal that TinyNet and VGG-11, respectively the smallest and biggest of the three
models, benefited little from LCC on average (with one notable exception for VGG-11). ResNet-18,
which had highest baseline accuracy of the three, however, did consistently benefit from LCC.

6



Fine-tuning results for TinyNet

w Int. Layer Acc. Gain

70.57%
1 1 2nd. to last 69.13% −1.44%
1 1 Head 70.86% +0.29%
1 5 2nd. to last 70.75% +0.18%
1 5 Head 70.89% +0.32%
10−2 1 2nd. to last 70.56% −0.01%
10−2 1 Head 70.57% +0.0%
10−2 5 2nd. to last 70.73% +0.16%
10−2 5 Head 70.98% +0.41%
10−4 1 2nd. to last 70.58% +0.01%
10−4 1 Head 70.84% +0.27%
10−4 5 2nd. to last 70.79% +0.22%
10−4 5 Head 71.04% +0.47%

Fine-tuning results for ResNet-18

w Int. Layer Acc. Gain

73.21%
1 1 2nd. to last 75.71% +2.5%
1 1 Head 75.34% +2.13%
1 5 2nd. to last 77.22% +4.01%
1 5 Head 76.76% +3.55%
10−2 1 2nd. to last 75.45% +2.24%
10−2 1 Head 76.29% +3.08%
10−2 5 2nd. to last 77.79% +4.58%
10−2 5 Head 78.19% +4.98%
10−4 1 2nd. to last 75.66% +2.45%
10−4 1 Head 75.35% +2.14%
10−4 5 2nd. to last 77.37% +4.16%
10−4 5 Head 77.48% +4.27%

Fine-tuning results for VGG-11

w Int. Layer Acc. Gain

67.82%
1 1 2nd. to last 70.19% +2.37%
1 1 Head 68.72% +0.9%
1 5 2nd. to last 69.7% +1.88%
1 5 Head 68.85% +1.03%
10−2 1 2nd. to last 67.35% −0.47%
10−2 1 Head 68.6% +0.78%
10−2 5 2nd. to last 66.67% −1.15%
10−2 5 Head 66.36% −1.46%
10−4 1 2nd. to last 68.62% +0.8%
10−4 1 Head 67.74% −0.08%
10−4 5 2nd. to last 66.99% −0.83%
10−4 5 Head 67.82% +0.0%

4 Discussion

4.1 Computational cost

Latent cluster correction comes at a steep computational cost. First, at the begining of each train-
ing epoch (after warmup), the correction targets of misclustered latent representations have to be
computed, which entails evaluating the whole dataset and keeping the latent representations Z in
memory.

1. Build a nearest neighbor index on Z to construct the kNN graph. Using the KD-tree or ball-
tree method, and assuming that the latent dimension is large (as is often the case, sadly),
this has a time complexity of O(N) on average, where N is the number of samples.

2. Run the Louvain algorithm on that graph. Each iteration of the algorithm has a complexity
of O(kN), but the number of iterations cannot be known in advance. Since every iteration
produces a smaller graph, in the worst case, N iterations are needed for the algorithm
to converge, which places the worst-case complexity at O(kN2). However, it has been
observed that the algorithm usually converges very quickly, giving it a O(kN) empirical
complexity [LF09, LF14].

3. Solve a max-flow max-weight problem to match the Louvain labels to the true labels. In
pactice, the cost of this is negligible compared to the other steps.

4. Then, for each true label t ∈ Ltrue, a new nearest neighbor index has to be build for the set
of samples with that labels and that are also correctly clustered. If there are nt,✓ correctly
clustered samples and nt,× misclustered samples with true label t, then building the index
has an average complexity of O(nt,✓). The index then needs to be queried nt,×, which,
again due to the high latent dimension, has a complexity of O(nt,×) times. So across all
labels, this step has a complexity of O(N).

7



It is important to note that for step 1., the whole dataset of latent prepresentations Z has to be
in memory, which might be prohibitive for very large datasets, or when the latent dimension is
extremely large. For step 4., technically, only the subdataset of samples with the same true label t
has to be loaded at a given time in order to compute the targets of misclustered samples with true
label t. All these costs compound if multiple layers are selected for simultaneous LCC.

On the other hand, if Z fits on the GPU, then the nearest neighbor index can be built and queried very
quickly. This still adds a noticeable (albeit more palatable) overhead compared to regular training,
however.

4.2 Choice of latent space(s)

The efficacy of LCC is expected to be highly dependent on the choice of latent space(s). In general,
early layers are designed to extract features form the input samples, and the associated latent spaces
are not expected to contain meaningful clusters. On the other hand, deeper layers are dedicated
to classification rather than feature extraction, and it is expected that class-segregated clusters are
forming. A preliminary empirical analysis as in figures 1 and 2 can help refine the choice of latent
space(s).

4.3 Orthogonal correction

As noted in [CCLS20], latent representations not only form clusters, but organize along object mani-
folds of lower effective dimension. A misclustered representation z thus sits in an incorrect manifold
M ⊆ Rd. To remedy this, the Louvain loss pulls z along a vector v = z − zj1+⋯+zjk

k
pointing towards

some neighbors of z (see section 2.3). It could be advantageous to first project v onto (TzM)�, the
subspace orthogonal to the tangent space of M at z, in order to accelerate the separation of z from
M . If z sits in a dense enough region of M , approximating the tangent space TzM can be achieved
using principal component analysis, considering only the k′ closest neighbors of z for a fairly large
k′.

4.4 ImageNet

The ImageNet dataset [DDS+09] has become the de-facto benchmark for image classification. It is
significantly more varied than CIFAR-100 which we considered in this study, but it is also much
larger. Considering the computational burden outlined in section 4.1, fine-tuning on ImageNet is not
yet practical. Various algorithmic optimizations are under consideration as of the time of writing.

5 Conclusion

This paper presents a fine-tuning approach that operates on latent spaces by improving the quality
and accuracy (in the sense of the assignment of section 2.2) of latent clusters. The only assumption
underpinning our approach is the existence of such clusters, i.e. that during training, a NN tends to
represent similar samples in close proximity, and that high density regions mostly contain represen-
tations from the same class. This phenomenon has been observed in every study about the structure
of latent spaces. Unlike some of these studies however, we do not make any assumption on the
geometry, overall separability, or even the number of such clusters.

We propose a new procedure which we call latent cluster correction (LCC) that aims to improve the
quality of these clusters. The procedure consists of two steps: first, we use the Louvain community
detection algorithm to find these clusters, and then apply a “nearest desirable neighbor” correction
loss, which we call the Louvain loss.

Our preliminary results show that, on average, LCC brings noticeable classification accuracy im-
provements, but at a significant computational cost. We expect ongoing optimization efforts to
reduce this cost and bring models with larger latent dimensions (such as vision transformers) and
larger datasets (such as ImageNet) within reach.

8



Acknowledgments and Disclosure of Funding

We would like to thank our anonymous reviewers for their constructive feedback. We would also
like to thank Prof. Jun Seita and Dr. Dorothy Ellis for their helpful guidance and discussions. This
research was supported by RIKEN Pioneering Project “Prediction for Science”.

References

[ABKS99] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. OP-
TICS: Ordering points to identify the clustering structure. ACM SIGMOD Record,
28(2):49–60, June 1999.

[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Ragha-
van. Automatic subspace clustering of high dimensional data for data mining ap-
plications. In Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, pages 94–105, Seattle Washington USA, June 1998. ACM.

[AR14] Charu C. Aggarwal and Chandan K. Reddy, editors. Data Clustering: Algorithms
and Applications. Chapman & Hall/CRC Data Mining and Knowledge Discovery
Series. Chapman and Hall/CRC, Boca Raton, 2014.

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. Fast unfolding of communities in large networks. Journal of Statistical Me-
chanics: Theory and Experiment, 2008(10):P10008, October 2008.

[BLH+19] Myriam Bontonou, Carlos Lassance, Ghouthi Boukli Hacene, Vincent Gripon, Jian
Tang, and Antonio Ortega. Introducing Graph Smoothness Loss for Training Deep
Learning Architectures. In 2019 IEEE Data Science Workshop (DSW), pages 160–
164, Minneapolis, MN, USA, June 2019. IEEE.

[CCLS20] Uri Cohen, SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. Separability
and geometry of object manifolds in deep neural networks. Nature Communications,
11(1):746, February 2020.

[CMS13] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-Based
Clustering Based on Hierarchical Density Estimates. In David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell,
Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,
Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Jian Pei,
Vincent S. Tseng, Longbing Cao, Hiroshi Motoda, and Guandong Xu, editors, Ad-
vances in Knowledge Discovery and Data Mining, volume 7819, pages 160–172.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[CNL11] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks
in unsupervised feature learning. In Geoffrey Gordon, David Dunson, and Miroslav
Dudík, editors, Proceedings of the Fourteenth International Conference on Artifi-
cial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning
Research, pages 215–223, Fort Lauderdale, FL, USA, April 2011. PMLR.

[Dah18] Paras Dahal. Learning Embedding Space for Clustering From Deep Representations.
In 2018 IEEE International Conference on Big Data (Big Data), pages 3747–3755,
Seattle, WA, USA, December 2018. IEEE.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, Miami, FL, June 2009. IEEE.

[Den12] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[EBVJVD+17] Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes Van Diest, Bram Van Gin-
neken, Nico Karssemeijer, Geert Litjens, Jeroen A. W. M. Van Der Laak, and
the CAMELYON16 Consortium, Meyke Hermsen, Quirine F Manson, Maschenka
Balkenhol, Oscar Geessink, Nikolaos Stathonikos, Marcory Crf Van Dijk, Peter
Bult, Francisco Beca, Andrew H Beck, Dayong Wang, Aditya Khosla, Rishab
Gargeya, Humayun Irshad, Aoxiao Zhong, Qi Dou, Quanzheng Li, Hao Chen,

9



Huang-Jing Lin, Pheng-Ann Heng, Christian Haß, Elia Bruni, Quincy Wong, Ugur
Halici, Mustafa Ümit Öner, Rengul Cetin-Atalay, Matt Berseth, Vitali Khvatkov,
Alexei Vylegzhanin, Oren Kraus, Muhammad Shaban, Nasir Rajpoot, Ruqayya
Awan, Korsuk Sirinukunwattana, Talha Qaiser, Yee-Wah Tsang, David Tellez, Jonas
Annuscheit, Peter Hufnagl, Mira Valkonen, Kimmo Kartasalo, Leena Latonen,
Pekka Ruusuvuori, Kaisa Liimatainen, Shadi Albarqouni, Bharti Mungal, Ami
George, Stefanie Demirci, Nassir Navab, Seiryo Watanabe, Shigeto Seno, Yoichi
Takenaka, Hideo Matsuda, Hady Ahmady Phoulady, Vassili Kovalev, Alexander
Kalinovsky, Vitali Liauchuk, Gloria Bueno, M. Milagro Fernandez-Carrobles, Is-
mael Serrano, Oscar Deniz, Daniel Racoceanu, and Rui Venâncio. Diagnostic As-
sessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in
Women With Breast Cancer. JAMA, 318(22):2199, December 2017.

[FD07] Brendan J. Frey and Delbert Dueck. Clustering by Passing Messages Between Data
Points. Science, 315(5814):972–976, February 2007.

[HBDB18] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Introducing
Eurosat: A Novel Dataset and Deep Learning Benchmark for Land Use and Land
Cover Classification. In IGARSS 2018 - 2018 IEEE International Geoscience and
Remote Sensing Symposium, pages 204–207, Valencia, July 2018. IEEE.

[HBDB19] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. EuroSAT:
A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover
Classification. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 12(7):2217–2226, July 2019.

[HVD15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural
Network, March 2015.

[HWZ+20] Kai Han, Yunhe Wang, Qiulin Zhang, Wei Zhang, Chunjing Xu, and Tong Zhang.
Model Rubik’s Cube: Twisting Resolution, Depth and Width for TinyNets, Decem-
ber 2020.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, Las Vegas, NV, USA, June 2016. IEEE.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization,
January 2017.

[KDW+21] Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold,
Jakob Uszkoreit, Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil Houlsby,
Sylvain Gelly, Thomas Unterthiner, and Xiaohua Zhai. An image is worth 16x16
words: Transformers for image recognition at scale. 2021.

[Kri09] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.
[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification

with deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou,
and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

[Kuh10] Harold W. Kuhn. The Hungarian Method for the Assignment Problem. In Michael
Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pul-
leyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50
Years of Integer Programming 1958-2008, pages 29–47. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[LF09] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: A
comparative analysis. Physical Review E, 80(5):056117, November 2009.

[LF14] Andrea Lancichinetti and Santo Fortunato. Erratum: Community detection algo-
rithms: A comparative analysis [Phys. Rev. E 80 , 056117 (2009)]. Physical Review
E, 89(4):049902, April 2014.

[LGO21] Carlos Lassance, Vincent Gripon, and Antonio Ortega. Representing Deep Neural
Networks Latent Space Geometries with Graphs. Algorithms, 14(2):39, January
2021.

10



[LMW+22] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. A ConvNet for the 2020s. In 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 11966–11976, New Orleans,
LA, USA, June 2022. IEEE.

[LN21] Hugo Larochelle and Neural Information Processing Systems Foundation, editors.
34th Conference on Neural Information Processing Systems (NeurIPS 2020): On-
line, 6-12 December 2020. Number 33 in Advances in Neural Information Process-
ing Systems. Curran Associates, Inc, Red Hook, NY, 2021.

[MG07] Jiří Matoušek and Bernd Gärtner. Understanding and Using Linear Programming.
Universitext. Springer, Berlin ; New York, 2007.

[MGL+18] Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing Cui, and Jun Long. A
Survey of Clustering With Deep Learning: From the Perspective of Network Archi-
tecture. IEEE Access, 6:39501–39514, 2018.

[MHM20] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Ap-
proximation and Projection for Dimension Reduction, September 2020.

[NJW01] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis
and an algorithm. In Proceedings of the 14th International Conference on Neural
Information Processing Systems: Natural and Synthetic, NIPS’01, pages 849–856,
Cambridge, MA, USA, 2001. MIT Press.

[PHL04] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high di-
mensional data: A review. ACM SIGKDD Explorations Newsletter, 6(1):90–105,
June 2004.

[RBK+15] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. FitNets: Hints for Thin Deep Nets, March 2015.

[SHZ+18] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4510–
4520, Salt Lake City, UT, June 2018. IEEE.

[SMG+21] Achim Schilling, Andreas Maier, Richard Gerum, Claus Metzner, and Patrick
Krauss. Quantifying the separability of data classes in neural networks. Neural
Networks, 139:278–293, July 2021.

[SPA+21] Ali Sekmen, Mustafa Parlaktuna, Ayad Abdul-Malek, Erdem Erdemir, and Ah-
met Bugra Koku. Robust feature space separation for deep convolutional neural
network training. Discover Artificial Intelligence, 1(1):12, December 2021.

[SWY+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1–9, Boston, MA, USA, June 2015. IEEE.

[SZ15] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition, April 2015.

[TWVE19] V. A. Traag, L. Waltman, and N. J. Van Eck. From Louvain to Leiden: Guaranteeing
well-connected communities. Scientific Reports, 9(1):5233, March 2019.

[Unk98] Unknown. Semeion Handwritten Digit, 1998.
[VLW+18] Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling.

Rotation Equivariant CNNs for Digital Pathology, June 2018.
[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A Novel Image

Dataset for Benchmarking Machine Learning Algorithms, September 2017.
[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An efficient data

clustering method for very large databases. ACM SIGMOD Record, 25(2):103–114,
June 1996.

[ZZHJH18] Jiayao Zhang, Guangxu Zhu, Robert W. Heath Jr., and Kaibin Huang. Grassmannian
Learning: Embedding Geometry Awareness in Shallow and Deep Learning, August
2018.

11


	Introduction
	Background
	Related works
	Contribution
	Louvain clustering


	The Louvain loss
	The Louvain–Leiden algorithm
	True labels vs. Louvain labels
	The Louvain loss
	The approximate Louvain loss

	Experiments
	Setup
	Results

	Discussion
	Computational cost
	Choice of latent space(s)
	Orthogonal correction
	ImageNet

	Conclusion

