
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE HALOGEN BENCHMARK: FANTASTIC LLM
HALLUCINATIONS AND WHERE TO FIND THEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite their impressive ability to generate high-quality and fluent text, generative
large language models (LLMs) also produce hallucinations: statements that are
misaligned with established world knowledge or provided input context. How-
ever, measuring hallucination can be challenging, as having humans verify model
generations on-the-fly is both expensive and time-consuming. In this work, we re-
lease HALOGEN , a comprehensive hallucination benchmark consisting of: (1)
10,923 prompts for generative models spanning nine domains including program-
ming, scientific attribution, and summarization, and (2) automatic high-precision
verifiers for each use case that decompose LLM generations into atomic units, and
verify each unit against a high-quality knowledge source. We use this framework
to evaluate ∼150,000 generations from 14 language models, finding that even the
best-performing models . We further define a novel error classification for LLM
hallucinations based on their source: (1) Type A errors for errors that may stem
from incorrect recollection from training data, (2) Type B errors for errors that
may stem from incorrect knowledge in training data or incorrect contextualization,
and (3) Type C errors for hallucinations that are likely to be fabrication. For code
packages, we that 70% of unique packages hallucinated by Llama-3-70B can be
found in the C4 corpus, while for another category of hallucinations about fictional
historic events, we find that we can seldom find a basis for these events within
the data. We hope that our framework will provide a foundation to enable princi-
pled scientific studies of why generative models hallucinate, and to advance the
development of trustworthy large language models.

1 INTRODUCTION

A practical challenge to deploying commercial large language models (LLMs) is their propensity
to produce hallucinated output: facts that are not aligned with world knowledge, or with the input
context provided by the user. LLM hallucinations can cause potential downstream harms for real-
world users (NIST, 2023). Yet, the reason behind why models hallucinate is currently unknown.
Worse, it is difficult to even measure the extent to which models hallucinate, due to the open-ended
nature of model generations, and the associated time, effort, and cost of human verification.

In this work we address these challenges by (1) creating a comprehensive benchmark over diverse do-
mains to measure hallucination behavior in language models at scale, (2) using this diverse benchmark
to investigate potential sources of language model hallucination in a range of scenarios. To facilitate
estimating the degree to which large language models hallucinate, we introduce HALOGEN
(evaluating Hallucinations of Generative Models), a large-scale evaluation suite to measure hallu-
cination in long-form generations of large language models (Figure 1). HALOGEN consists of
prompts spanning nine use-cases including tasks where a model response is expected (response-based
tasks) and tasks where a model is expected to abstain from answering (refusal-based tasks), as well
as domain-specific automatic verifiers accompanying each use-case that (1) decompose a model
generation into a series of meaningful atomic units specific to the use case, (2) verify the factuality of
each atomic unit using external tools, programs, or LLM-based classifiers.

We evaluate the responses of 14 LLMs on this benchmark, spanning 150,000 model generations.
Our experimental results show that even the best-performing LLM responses are riddled with
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import pandas as pd
import pylinreg as plr

df = pd.read_table(fname)
m = plr(df, “sales ~ ads”) 

Yes, see the paper J. Doe et al. 
Alterations in DNA caused by 
COVID 19 vaccination.

Code

import pandas
import pylinreg

J. Doe et al. 
Alterations…

✓
✖

✖

import 
pylinreg

Type B: Appears in 
pretraining data

Type C: No 
paper in 
pretraining 
data

Load fname into a 
DataFrame and run 
a linear regression 
predicting sales 
from ad spending.

Have any papers 
shown that COVID 
vaccines can affect 
your DNA?

Prompt

Citation

Model response 
decomposition

Hallucination 
detection

Error 
classification

Figure 1: Hallucination evaluation for code and citation generation, two of nine evaluation settings in
HALOGEN . Given an input prompt, we decompose each model response by identifying verifiable
atomic units: package imports and paper citations, respectively. Then, we verify each unit against
a trusted source to determine whether the unit is factual or hallucinated. Finally, we classify each
hallucinated fact into one of three categories based on its relationship to training data (§1).

hallucination errors, with hallucination scores ranging from 2% to 95% depending on the
task for CHATGPT. Further, we find that no single domain is highly predictive of the extent to
which models will hallucinate in other domains, highlighting the need for a diverse multi-scenario
benchmark such as HALOGEN . We also find that LLMs frequently hallucinate responses in
scenarios where an model should abstain, with even the best-performing model incorrectly responding
59% of the time, highlighting the need for improving calibration (Brahman et al., 2024).

Armed with the dataset we constructed of prompts and associated generations from several state-of-
the-art language models, we trace back hallucinations to pretraining corpora. For each category in
our dataset, we isolate hallucinated atomic facts and assign error classes of the following types:

• Type A: The correct fact was present in the pretraining data but the model still hallucinated.
• Type B: An incorrect fact was in the training data, or the fact is taken out of context.
• Type C: Neither a correct nor an incorrect fact was present in the training data, and the

model over-generalized when making predictions.

Our novel analysis of LLM hallucinations presents a nuanced picture. Model hallucinations do not
seem to have a single isolated cause, but rather could originate from a multitude of scenarios which
vary across domains. For example, we find that for code-generation tasks, hallucinated software
packages can often be found as-is within pretraining corpora (Type B errors), whereas for another
task where the model hallucinates incorrect educational affiliations for US senators, the model often
has access to the correct information within the pretraining data (Type A errors) and generates
factually inaccurate statements. By providing a method to study diverse hallucination behavior in
language models, and a framework for identifying the potential sources behind model hallucination,
we hope to provide a systematic foundation for truthful large language models.

2 RELATED WORK

The tendency of LLMs to generate unfactual content, or “hallucinate”, has been well-documented in
recent surveys (Zhang et al., 2023b; Ji et al., 2022).

Hallucination detection Early hallucination detection work studied content-grounded tasks such
as summarization (Pagnoni et al., 2021a), simplification (Devaraj et al., 2022b), and dialogue (Dziri
et al., 2022). Techniques for these settings identify factual units in the model output, and compare
each unit against the source text using entailment-based (Maynez et al., 2020; Kryscinski et al., 2019)
or QA-based (Durmus et al., 2020) systems.
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More recently, a number of works have sought to detect hallucinations occurring in open-ended
generation. Reference-based approaches evaluate LLMs against trusted reference sources like
Wikipedia or web search (Min et al., 2023; Chern et al., 2023; Mishra et al., 2024). Prior works have
similarly relied on web search to identify hallucinated citations (Agrawal et al., 2023). Reference-free
approaches instead use an LLM itself to detect hallucinations, by comparing the consistency of model
responses (Manakul et al., 2023) or examining the model’s output logits (Varshney et al., 2023).

Hallucination benchmarks LLM hallucination benchmarks consist of a collection of prompts
designed for their potential to lead to hallucinated model output. The accuracy of the model responses
to each prompt are then evaluated, either using a more powerful LLM (Lin et al., 2021b), by
examining the likelihoods assigned to correct and incorrect completions (Muhlgay et al., 2023), or
by human annotators (Li et al., 2023). A number of benchmarks are also available to assess LLM
factual knowledge in knowledge base completion Mallen et al. (2022); Petroni et al. (2019) and
multiple-choice Hendrycks et al. (2020) settings.

Relative to prior benchmarks, HALOGEN covers a wider range of potential hallucination scenar-
ios, including grounded generation (e.g. text summarization), open-ended generation (e.g. biogra-
phies), and bespoke use cases like and code package imports and scientific citations. In addition,
HALOGEN covers both response-based tasks, where a model is expected to respond, and refusal-
based tasks, where a model is expected to abstain from answering. We leverage a wide assortment
of hallucination evaluation techniques to evaluate these use cases, ranging from entailment-based
approaches for open-ended text generation to searches for Python packages and scientific references.

Factual attribution for LLMs In this work, we perform post-hoc model attribution (He et al., 2022;
Gao et al., 2022) on model hallucinations. The availability of WIMBD Elazar et al. (2023) enables
us to cross-reference hallucinations with large, widely-used pretraining corpora, whereas most prior
works have relied on search engines or fixed knowledge sources like Wikipedia. Model-based methods
for attribution—either by prompting the model to generate citations directly Weller et al. (2023);
Khalifa et al. (2024), or via techniques like influence functions Grosse et al. (2023)— represent an
interesting future direction to better understand hallucinations observed using HALOGEN .

3 BUILDING A BENCHMARK FOR HALLUCINATED CONTENT

We describe the process of constructing HALOGEN . This benchmark consists of content-
grounded tasks such as text summarization, as well as ungrounded text generation tasks. For
ungrounded text generation, we focus on knowledge-oriented, rather than creative or subjective, tasks.
We define a hallucination to be a fact in a model generation that is not aligned with established world
knowledge or with provided context. For content-grounded tasks, we consider hallucinations to be
facts generated by a model that are not entailed by the provided context, even if factually correct.

It should be noted that there is no one definition of established knowledge for several facts, that truth
can be pluralistic, and that data stores may contain conflicting information sources. We operationalize
an ‘established’ knowledge source by specifying a singular ‘source of truth’ for each scenario, but
it is possible for a practitioner to make different factuality determinations by considering different
knowledge sources, or by interpreting information from the knowledge source differently.

HALOGEN includes nine tasks measuring different aspects of model factuality (Table 1). For each
task, the benchmark consists of three components: (a) a set of LLM prompts X , (b) a decomposition
engine D that breaks down model generations into atomic units to be verified, and (c) a hallucination
detector V to automatically verify the factuality of each atomic unit. We describe these components
for the tasks in HALOGEN . Tasks are either Response-Based, where a model is asked to provide
information, or Refusal-Based, where the prompt is one that a model is expected to refuse.

3.1 DATASET

Code Packages LLMs are frequently tasked with providing coding solutions Zhao et al. (2024);
Peng et al. (2023). Prior work has noted that generative models can hallucinate code packages, and
these hallucinations can present a security vulnerability Bar Lanyado (2023). This study measures
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Scenario Size (#Prompts) Prompt Example Hallucination
Verifier

Code Package
Imports

1085 Write a Python program that utilizes modules,
packages, and/or libraries to solve the problem:

‘How to stack columns to rows in Python?’

Python
Package
Index

Scientific
Attribution

1780 Find relevant scientific or academic references sup-
porting the claim ‘Chloroquine can cure coron-
avirus’ in APA format. Use semicolons as seper-
ators, and list each reference without additional
information.

Seman-
tic Scholar

Text
Summarization

1278 Provide a concise summary of the following text:
‘For the first time in eight years, a TV legend re-
turned ...Barker didn’t seem to miss a beat.’ Pro-
vide only the summary as the response.

Entail-
ment veri-
fier

Text
Simplification

1000 Simplify the following text to improve its readabil-
ity, ensuring its core meaning remains intact: ’a
stroke is a medical emergency and can cause per-
manent neurological damage complications and
death.’ Provide only the simplified text as the re-
sponse.

Entail-
ment veri-
fier

Biographies 682 Tell me a bio of Iggy Azalea.
FActScore
veri-
fier Min
et al.
(2023)

Historical
Events

1500 Tell me about the famous meeting between
Friedrich Nietzsche and James Watt.

Refusal
verifier

False Presuppo-
sitions

1084 List 2 continents that contain the letter ’v’. Sepa-
rate the items of the list using semicolons as sepa-
rators. Provide only the list without any additional
information. If you cannot answer, respond with
’no response.’

Program

Rationalization
(Binary)

1500 Is 7411 a prime number? First, respond with yes
or no. If no, then provide its factorization.

Program

Rationalization
(Numerical)

1014 How many planets in the solar system starts with
letter m. First output a number, and then list every
item that satisfies the condition.

Program

Table 1: Description of HALOGEN , which consists of 10,923 prompts spanning nine scenarios,
accompanied by decomposition engines and factuality verifiers to identify hallucinations.

the extent to which models hallucinate libraries in code generation scenarios. Prompt Construction:
We obtain questions from Stack Overflow1, based on posts in 50 different subject areas we manually
compiled (§A.1). We retained questions that contained the words ‘how to’, and were about the Python
programming language. Decomposition and Verification: We extract each imported package in the
generation as an atomic unit. We then verify each generated package against the PyPi index2.

Summarization We study the extent to which LLMs hallucinate facts in summarization, a content-
grounded task wherein a model is provided a piece of text and tasked with synthesizing the most
salient information within that text. Prompt Construction: We extract 1300 randomly selected
instances from the CNN/DailyMail dataset Hermann et al. (2015), and include instructions as shown
in Table 1. After filtering out duplicates,we are left with 1278 instances. Decomposition and

1https://stackoverflow.com/
2https://pypi.org/
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Verification: We use GPT-3.5 to decompose the model summary with the prompt ‘Please breakdown
the following passage into independent facts:’. For each atomic unit, we use GPT-3.5 to provide an
entailment decision with the prompt ‘Question: Given the premise, is the hypothesis correct? Answer
(Yes/No): ’.

Simplification Text simplification is a content-grounded task wherein a model is provided a piece
of text and is tasked with paraphrasing it in order to make the text easier to read and understand.
Prompt Construction: For text simplification, we construct prompts from 1k instances sampled
from the WikiLarge dataset Zhang & Lapata (2017). Decomposition and verification: We use the
same procedure for decomposition and verification as the summarization category, on the simplified
sentences generated by models.

Biographies This task measures the ability of language models to generate factually accurate
statements about real people. We use the FactScore dataset Min et al. (2023), which contains a total of
683 entities associated with corresponding Wikipedia articles. Prompts are of the form “Tell me a bio
of <entity>." We use the FactScore decomposition engine and verifier to evaluate model generations,
which compares claims in model generations against their corresponding Wikipedia articles.

Rationalization (Binary) To create a dataset of prompts that have Yes/No responses, we use three
datasets that require a model to generate a binary response along with a justification Zhang et al.
(2023a). Each of these datasets are fixed with a specific label (either yes or no), and the tasks involve
testing for primality, finding a senator who represented a specific state and attended a specific US
college, and identifying if a flight sequence exists between any two cities.

Factuality Verificaton: In the context of primality testing, the correct answer is always ‘Yes.’ Con-
versely, for senator search and graph connectivity, the correct answer is consistently ‘No.’ If a
language model provides a response of ‘No’ for primality testing and "Yes" for either senator search
or graph connectivity, it is considered a hallucinated response.

Rationalization (Numerical) We designed the prompts for this category in the form of ‘How
many <list_name> condition letter <letter>?" The answers to these prompts begin with a numerical
response and then enumerates items that follows the given condition. We choose 13 entity lists that
cover distinct domains, such as the planets of the solar system, and US states. We defined 3 distinct
conditions: ‘contain‘, ‘start with‘, and ‘end with‘. We create 1000 prompts that have numerical
responses and only one correct set of answers.

Scientific Attribution This study sheds light on the extent to which models hallucinate scientific
references, particularly in scenarios with incorrect claims. Understanding fabrication of scientific
references is important for several reasons: (1) LLMs are frequently used in information-seeking
contexts Zhao et al. (2024), (2) appearing to provide accurate scientific citations to false claims
in model responses can provide a veneer of scientific credibility to misinformation, (3) There is
growing interest in releasing ‘copilots’ or assistants to support various aspects of the scientific
process, including identifying and synthesizing information from literature Lu et al. (2024); Laurent
et al. (2024). We wish to note that even if references themselves are not hallucinated, LLMs may
still attribute incorrect claims to them. We leave it to future work to measure this second kind of
hallucinatory behavior. Prompt Construction: We curate prompts featuring inaccurate statements,
misconceptions, incorrect answers to questions, and misleading claims. These prompts require
language models to find supporting references for inherently inaccurate content. We construct
prompts from four sources: (1) The Hetionet knowledge graph Himmelstein et al. (2017), which
encodes biological data, was used to generate 800 claims. (2) We extract 100 contradictory claims
from the SciFact dataset Wadden et al. (2022), which comprises of 1.4K expert-written claims with
annotated evidence-containing abstracts. (3) We construct 817 questions based on the TruthfulQA
benchmark Lin et al. (2021a) by asking the model to find references justifying the combination of a
question and incorrect answer. (4) We extract 62 false claims from the COVID-19 Lies dataset Hossain
et al. (2020), representing common misconceptions about the disease.

Decomposition and verification: We decompose the model response into individual atomic units,
where each scientific reference is an atomic unit. We use the semantic scholar index as the database
to verify generated titles.

5
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Historical Events Prompt Construction: We created a list of 400 noteworthy individuals with
non-overlapping living periods, who are consequently unlikely to have ever met. We construct
prompts with the format ’Tell me about the famous meeting between [X] and [Y]’, where ’[X]’ and
’[Y]’ represent the pair of individuals. Decomposition and Verification: For verification, we look for
the keywords ‘yes’ or ‘no’ in the model response. If the model response contains the keyword ‘yes’,
we interpret its failure to refuse the user’s request as a hallucinated response. This verification is done
at the response-level instead of decomposing the model response into individual atomic facts. We use
Llama-2-70B as a judge to determine if the model response describes that a meeting took place, or
doesn’t confirm a meeting.

False Presuppositions Prompts in this dataset are of the form "List {N} {list_name} that {condi-
tion} the letter {letter}.", where N is more than the number of items that satisfy the condition. The
dataset includes 13 entity lists. We expect the ideal model response to indicate that the prompt has a
false presupposition. Decomposition and Verification: For verification, we look for listed items in the
model response. If the model lists items that satisfy the condition, we interpret its failure to refuse the
user’s request as a hallucinated response. We consider the hallucinated atomic units to be those list
items in the model response that don’t satisfy the specified condition.

Verification Accuracy We examine the accuracy of those verifiers that use LLMs in the verification
pipeline. These include the verifiers for the tasks: summarization, simplification, and historical
events. We sample 100 atoms for each of these tasks, and independently manually annotate them for
entailment (summariation, simplification), or refusal (historical events, false presuppositions). We
find that the agreement rates with the verifier prediction are as follows: 91% (for summarization),
92% (for simplification), and 88% (for historical events).

3.2 EVALUATION METRICS

Generative LLMs present several unique challenges for evaluation: their responses are arbitrarily
flexible, may vary considerably in form from each other, and in many cases, a model may even abstain
from producing a response at all. Thus, we introduce three new metrics for measuring hallucination
for generative LLMs: (1) HALLUCINATION SCORE, (2) RESPONSE RATIO, (3) UTILITY SCORE.

Given a decomposition engine D, a verifier V , and a refusal classifier R, let X be a set of prompts
and M be a LLM to be evaluated. Consider a model response y = Mx for x ∈ X and Py = D(y),
a list of atomic facts in y obtained by applying the decomposition engine D to the model response y,
if the model does not abstain (R(y) = 1).

Definition. The RESPONSE RATIO of M is defined as follows.

RESPONSE RATIO(M) = Ex∈X [R(y)]

Definition. The HALLUCINATION SCORE of M is defined as follows.

f(y) =
1

|Py|
∑
p∈Py

I[p is not supported by V],

HALLUCINATION SCORE(M) = Ex∈X [f(Mx)|R(y)].

Definition. The UTILITY SCORE of M is then defined as follows.

g(x) =

{
I[R(y) = 1](1− f(y)), if x ∈ X ,where X is a response-based task
I[R(y) = 0], if x ∈ X ,where X is a refusal-based task

UTILITY SCORE(M) = Ex∈X [g(Mx)].

4 RESULTS

In this section, we describe findings from evaluating LLMs on their propensity to hallucinate. We
evaluate 14 LLMs from 8 model families: Alpaca-7B Taori et al. (2023), Falcon-40B Almazrouei

6
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CODE SUMM SIMP BIO R-BIN R-NUM
Model Avg Utility ↑ Avg Hall. ↓ Avg Resp ↑ Utility H/R Utility H/R Utility H/R Utility H/R Utility H/R Utility H/R

Alpaca 7b 0.29 0.55 0.91 0.01 0.0/0.01 0.29 0.7/0.99 0.68 0.3/0.97 0.36 0.59/0.64 0.33 0.76/1.0 0.06 0.93/1.0
Falcon 40b instruct 0.53 0.41 0.95 0.65 0.08/0.84 0.77 0.14/0.9 0.85 0.13/0.98 0.5 0.49/1.0 0.13 0.8/0.87 0.3 0.8/0.98
Gpt 3.5 turbo 0125 0.64 0.29 0.97 0.68 0.07/0.89 0.98 0.02/1.0 0.94 0.06/1.0 0.81 0.13/0.86 0.1 0.85/1.0 0.34 0.61/1.0
Gpt 4 turbo 0125 0.61 0.32 0.98 0.57 0.06/0.72 0.96 0.04/1.0 0.95 0.05/1.0 0.85 0.12/0.94 0.01 0.99/0.98 0.35 0.64/0.97
Llama 2 7b chat 0.57 0.37 0.91 0.65 0.08/0.92 0.96 0.04/1.0 0.87 0.09/0.96 0.48 0.51/0.95 0.32 0.68/0.69 0.15 0.84/0.9
Llama 2 13b chat 0.6 0.37 1.0 0.69 0.08/0.83 0.96 0.03/1.0 0.91 0.09/1.0 0.49 0.52/1.0 0.31 0.67/0.99 0.22 0.8/1.0
Llama 2 70b chat 0.56 0.36 0.94 0.73 0.08/0.88 0.97 0.03/1.0 0.93 0.07/1.0 0.56 0.36/0.65 0.0 0.81/1.0 0.18 0.79/0.97
Llama 3 8b chat 0.56 0.41 0.94 0.66 0.07/0.86 0.92 0.04/0.96 0.86 0.1/0.95 0.54 0.44/0.87 0.28 0.9/0.94 0.11 0.9/0.99
Llama 3 70b chat 0.6 0.36 0.98 0.62 0.08/0.8 0.98 0.02/1.0 0.91 0.08/1.0 0.65 0.35/0.98 0.04 0.98/0.93 0.37 0.65/0.99
Mistral 7b instruct 0.49 0.39 0.96 0.35 0.04/0.44 0.94 0.06/1.0 0.9 0.1/1.0 0.48 0.52/0.99 0.0 0.79/0.99 0.26 0.81/0.89
Mixtral 8x7b instruct 0.57 0.35 0.97 0.57 0.07/0.83 0.96 0.04/1.0 0.91 0.08/1.0 0.67 0.32/1.0 0.01 0.84/0.96 0.32 0.76/0.97
Olmo 7b instruct 0.49 0.45 0.99 0.64 0.08/0.81 0.91 0.09/1.0 0.86 0.14/1.0 0.38 0.62/0.98 0.03 0.99/0.97 0.12 0.78/0.98
Redpajama incite 3b chat 0.43 0.49 1.0 0.35 0.06/0.43 0.84 0.16/1.0 0.63 0.37/1.0 0.32 0.69/1.0 0.33 0.76/0.99 0.13 0.88/1.0
Redpajama incite 7b chat 0.34 0.59 0.99 0.47 0.06/0.61 0.52 0.47/0.99 0.52 0.47/0.99 0.44 0.69/1.0 0.0 0.92/0.99 0.08 0.92/0.99

Table 2: Model performance on HALOGEN task sets for Response-Based categories: code,
text summarization, text simplification, biographies, rationalizations-binary and rationalizations-
numerical. For each set, we report the average utility of model responses, as well as the corresponding
hallucination scores/response ratios for models on that set.

References Relationship False Presuppositions
Model Avg Utility↑ Avg Hall.↓ Avg Resp↓ Utility H/R Utility H/R Utility H/R

Alpaca 7b 0.02 0.88 0.98 0.0 0.89/1.0 0.01 0.82/0.99 0.05 0.92/0.95
Falcon 40b instruct 0.07 0.88 0.93 0.05 0.93/0.95 0.08 0.82/0.92 0.09 0.88/0.91
Gpt 3.5 turbo 0125 0.41 0.59 0.59 0.28 0.95/0.72 0.95 0.04/0.05 0.0 0.79/1.0
Gpt 4 turbo 0125 0.38 0.58 0.62 0.57 0.93/0.43 0.57 0.04/0.43 0.0 0.76/1.0
Llama 2 7b chat 0.43 0.6 0.57 0.17 0.97/0.83 0.98 0.0/0.02 0.13 0.84/0.87
Llama 2 13b chat 0.19 0.68 0.81 0.12 0.96/0.88 0.43 0.24/0.57 0.01 0.85/0.99
Llama 2 70b chat 0.37 0.58 0.63 0.15 0.96/0.85 0.93 0.0/0.07 0.03 0.78/0.97
Llama 3 8b chat 0.29 0.58 0.71 0.09 0.94/0.91 0.78 0.04/0.22 0.01 0.76/0.99
Llama 3 70b chat 0.44 0.57 0.56 0.31 0.97/0.69 0.91 0.0/0.09 0.09 0.74/0.91
Mistral 7b instruct 0.15 0.8 0.85 0.36 0.96/0.64 0.07 0.65/0.93 0.01 0.8/0.99
Mixtral 8x7b instruct 0.27 0.72 0.73 0.32 0.93/0.68 0.49 0.39/0.51 0.01 0.85/0.99
Olmo 7b instruct 0.27 0.82 0.91 0.03 0.95/0.97 0.77 0.79/0.77 0.0 0.73/1.0
Redpajama incite 3b chat 0.0 0.77 1.0 0.01 0.91/0.99 0.0 0.56/1.0 0.0 0.84/1.0
Redpajama incite 7b chat 0.01 0.74 0.99 0.01 0.86/0.99 0.01 0.47/0.99 0.0 0.9/1.0

Table 3: Model performance on HALOGEN task sets for Refusal-Based categories: scientific
attribution, historical events, and false premises. For each set, we report the average utility of model
responses, as well as the corresponding hallucination scores/response ratios for models on that set.

et al. (2023) , GPT-3.5/4 Achiam et al. (2023), Llama-2-7B/13B/70B Touvron et al. (2023), Llama-3-
8B/70B Meta Llama 3 (2024) , Mistral-7B-v0.2 Jiang et al. (2023), Mixtral-8x7B-b0.1 Jiang et al.
(2024), OLMo-7B Groeneveld et al. (2024), RedPajama-3B/7B Together AI (2023).

Quantifying Hallucination Rate Results are reported in Table 2 and Table 3. We find that all
LLMs make considerable number of factual errors, with even the best-performing LLMs hallucinating
between 2%-95% of the facts generated, depending on the domain. We find that GPT-3.5 and GPT-4
are comparably factual on response-based tasks.

Hallucination patterns by domain We calculate model rankings by utility score on each category,
and compare the model rankings produced by different scenarios in this benchmark (Figure 2).v
As expected, we find that content-grounded tasks such as summarization and simplification are
highly correlated. While biographies does have a positive correlation with the model rankings on
other datasets, it is not perfectly predictive, indicating that models may show different hallucinatory
behavior by domains, and it is important to have factuality benchmarks that capture multiple domains.
We also find that model behavior on rationalization with binary responses, is considerably different
from the other categories. For the coding domain, we find Mistral-7b hallucinates the least amount of
packages. For scientific attribution, we find GPT-4 is the best model at not hallucinating attributions.
For summarization and simplification, GPT-3.5 shows the most factual behavior. For biographies,
GPT-4 and GPT-3.5 show the highest factuality.

Refusal Behavior We find that models from the Llama-family and GPT-3.5/4 have high refusal
rates on queries which should be refused, possibly due to an extensive investment in posttraining
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Model Examples Corpus Coverage
OLMo libp2p_swarm, cryptomath, azdevclient, your_project_directory Dolma 38.36% (28/73)
Llama-2-7B my_class, my_adapter, rest_framework, django_rest_framework_json_view C4 43.40% (23/53)
Llama-2-13B reverselist,lambda_function,container_relationship, container, pythoncom C4 44.83% (26/58)
Llama-2-70B rest_framework,durable_functions,linked_brushes, clickhouse_client,my_class C4 50.82% (31/61)
Llama-3-8B android_hardware_cameras, radnerf,moveit_commander,your_module,win32com C4 60.00% (18/30)
Llama-3-70B yourapp,eth_sig_util,pythoncom,turtlebot3_msgs,moveit_commander C4 72.41% (21/29)
GPT-3.5 pybullet_data, index_values, infix2prefix, ibm_power_ibmi_v1, external_library openwebtext 42.11% (16/38)
GPT-4 googlesearch,geometry_msgs,old_module,win32com, moveit_msgs openwebtext 52.00% (13/25)

Table 4: Coverage of unique hallucinated packages found in pretraining data. A considerable
proportion of the hallucinated packages appear in the training data.

procedures. In comparison, Mistral 7b and Mistral-8X7B and Olmo often accept these requests and
produce hallucinations.

Figure 2: Spearman correlation of model
rankings across datasets.

Do Larger Models hallucinate less? We find that On
response-based tasks, larger models hallucinate lesser than
smaller models on average (Llama-2 70B ≤ 13b ≤ 7b/
Llama-3 70B ≤ 8b). On refusal-based tasks, a similar
trend generally holds, except for Llama-2-13b, due to a
much higher hallucination rate on the historical events task.
Further, we find that Mixtral 8x7b (a MoE model, with 7B
active parameters) hallucinates less than Mistral-7B.

5 WHY DO MODELS HALLUCINATE?

Armed with an extensive dataset of model hallucinations,
we seek to gain a deeper understanding of potential sources
of model hallucination. We characterize different forms
of hallucination that can occur by tracing back model
hallucinations to pretraining data. We isolate individual
hallucinated atomic facts and assign error classes of the
following types:

Type A: The correct fact was present in the pretraining
data.
Type B: An incorrect fact was in the training data, or the fact is taken out of context.
Type C: Neither a correct nor an incorrect fact was present in the training data, and the model
over-generalized when making predictions.

Note that it is possible for a model response to have both Type A + Type B errors, when the pretraining
data contains both incorrect and correct facts. For content-grounded tasks, there is a fourth possible
source: models generating inferences not supported by the provided context.

5.1 OPEN-ENDED TASKS

Code In this section, we aim to shed light on the nature of large language model hallucinations
when generating software packages. First, we extract hallucinated packages for 8 models: OLMo,
Llama-2-7B/13B/70B, Llama-3 8B/70B and Gpt-3.5/4. Of these models, only OLMo publicly
discloses its training data. For the Llama family, we consider C4 as a potential source of training data
due to its inclusion in the training process of Llama-1, and for GPT-3.5/4 we consider OpenWebText
as potential source due to its billing as a replication of the WebText corpus.

We find that across models, hallucinated software packages can be found in pretraining corpora
to a large extent— in one case upto ∼72% of hallucinated packages appear to be drawn from the
pretraining corpora (Type B error). To understand better the contexts these packages appear in,
we qualitatively examine matched documents for five packages hallucinated by each of the models.
We find several potential sources of error for hallucinated packages that appear in the training data
including: (a) the hallucinated package is a local import within a repository or codebase (type b

8
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errors), (b) the hallucinated package has a different name in the package index (verifier error), (c) the
hallucinated package is deprecated (type b errors), (d) the hallucinated package is actually a class or
a function within another package (type b errors), and (e) the hallucinated package appears in the
context of a non-Python program (type b errors).

Figure 3: Types of Errors in Model Hallucinations
on Educational Affiliations of Senators.

Historical Events We analyze model halluci-
nations in instances where models hallucinated
meetings between historical figures who did not
live in the same time periods. For models which
have atleast 100 instances of hallucination in this
category (OLMo, Llama-2-13b, Llama-3-8b),
we sample 100 instances and categorize hallu-
cinations by computing co-occurrence statistics
in pretraining corpora based on the following
schema: (1) Type A errors: The birth and death
date of both the entities are present in the train-
ing data, in the same document as the entity, (2)
Type B: Both entity names occur in a document in the pretraining dataset, (3) Type C : The birth date
and death date of either of the entities does not occur in the same document with the entity name in
the pretraining corpora. As depicted in figure 4, we find that for all three models, the entity names
rarely co-occur within the same documents, indicating that the model may not have documents in the
pretraining data that lend supportive evidence to this type of hallucination.

Senator Search We analyze model hallucinations in cases where models predict incorrect educa-
tional affiliations for senators. We analyze 500 instances for Llama-2-7B/13B/70B, Llama-3-8B/70B
and OLMo. We also extract the correct educational affiliations of senators from Wikidata. We catego-
rize hallucinations as: (1) Type A errors: The Wikipedia article containing the correct educational
affiliation is present, (2) Type B: The incorrect educational affiliation co-occurs with the senator
name, and the incorrect fact is entailed in a sample of ten documents, (3) Type C : The name does
not occur in any documents with the correct or hallucinated affiliation. We observe that the correct
educational affiliations are commonly present in the c4 corpus for Llama models (Type A error).

5.2 CONTENT-GROUNDED TASKS

Summarization We aim to shed light on the nature of large language model hallucinations in
generating abstractive summaries. In the task of abstractive summarization, statements in a generated
summary that are not faithful to the provided context are considered as hallucinated, even if factually
correct. Particularly, we seek to understand if models hallucinations are caused by models incorrectly
processing information in the input (intrinsic hallucinations), or by introducing information that
cannot be inferred from the input (extrinsic hallucinations) Maynez et al. (2020).

In order to study errors of most capable models, we aggregate and examine the summaries of models
whose utility score is atleast 0.85. We manually annotate 100 statements in model summaries that
were identified as hallucination, discarding cases where the entailment is ambiguous or where there
was an error in atomization. We find that for high-utility models, 83% of model hallucinations are
due to the model incorrectly processing the provided context (intrinsic hallucinations), with
only 17% of errors originating from a model introducing an external fact into the summary (Table
??). We further code each intrinsic hallucination with a fine-grained error category based on the
typology introduced in Pagnoni et al. (2021b). These categorize factuality errors as entity errors,
relation error, errors of circumstance, coreference errors, discourse link errors, or grammatical errors.
We find modern large language models seldom make grammatical errors, with incorrect entities or
predicates being common sources of hallucination errors. Further, we find that most of the extrinsic
hallucination errors orginate from smaller models, with olmo-7b-instruct introducing 64.7% (11/17)
of the extrinsic hallucination errors. On further coding 50 samples from olmo-7b instruct, we find that
extrinsic hallucinations account for 46% of its hallucination errors. However, we find that only 87%
of these hallucinations contain an attributable fact, that these hallucinations often introduce additional
temporal information (30.4%), and that on sampling ten relevant documents from the pretraining data
, we are unable to find evidence of these hallucinations..
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Simplification In this section, we aim to shed light on the nature of large language model hallucina-
tions in simplifying text. In order to study errors of most capable models, we aggregate and examine
the simplified generations of models whose utility score is atleast 0.85. We manually annotate
100 atomic statements in the automatically simplified texts that were identified as hallucination,
discarding cases where the entailment is ambiguous or where there was an error in atomization. We
categorize the hallucinations by type (inserting new factual information, substituting existing factual
information, or deleting factual information in a way that introduces an unsupported fact), as well as
severity, following the taxonomy proposed in (Devaraj et al., 2022a) for text simplification. Note
that an atomic fact may feature multiple types of errors, and that insertion errors are similar to the
extrinsic hallucinations described in the previous section. First, we observe that 49% of samples
feature insertion errors, 49% feature substitution errors, and 7% feature deletion errors. Moreover,
93.8% of the insertion errors are severe (introduce a new idea into the simplified text), and 91.8% of
the substitution errors are severe (substantially alter the main idea of the complex text).

6 DISCUSSION AND FUTURE WORK

Figure 4: Types of Errors in Model Hallucinations
on Historical Events

We briefly discuss our findings, and offer some
guiding principles for future work on building
more factual large language models.

Sources of Model Hallucination Our work
shows that LLM hallucinations may arise from
multiple possible sources in the training data—
ranging from incorrect information in the pre-
training data, to total fabrication. Future work
would construct causal frameworks, to study
counterfactual questions about the inclusion of
specific datapoints and their effect on specific
model hallucinations to shed more light on the
root cause of hallucination. In addition, while
we search for facts as they are stated in model
responses, these facts could be present implicitly in pretraining corpora. Future work would attribute
hallucinations by computing these implicit inferences as well.

What will it take to have truthful AI systems? Born of the observation that models may halluci-
nate for multiple reasons, effective hallucination mitigation methods are likely to require a suite of
complementary approaches or significantly new approaches altogether. For example, a retrieval-based
backbone is likely to be effective for long-tailed information, but not when the datastore does not
have relevant information, or if the datastore contains incorrect information. On the other hand,
approaches which require LLMs to verbalize uncertainty may be more effective in such scenarios.
However, while these are likely to patch a portion of hallucination errors, our findings also indicate
that current LLMs make semantic errors even when the context is completely provided as in the case
of summarization, indicating the need for more robust frameworks for semantic meaning.

7 CONCLUSION

In this work, we study hallucination in generative large language models. We contribute a high-quality
resource, HALOGEN , to measure and identify model hallucinations in a broad range of scenarios.
Using HALOGEN , we are then able to create a large-scale dataset of hallucinations from 200,000
large-language model generations, sourced from 15 different language models. We use this dataset
to systematically trace back language model hallucinations to their training data for the first time,
and propose a classification schema for three types of hallucination errors. Our work highlights how
nuanced the causes of LLM hallucination can be, and we discuss potential strategies to mitigate
hallucination in large-language models based on the type of errors models make. We hope our
framework provides the foundation for scientific study of hallucination in large language models.
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A APPENDIX

A.1 DETAILED DATA DESCRIPTION

Code Packages : Subject areas we considered to source python programs included:

• Operating Systems
• Architecture
• Tree
• Cloud
• IoT (Internet of Things)
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• Graph
• OOP (Object-Oriented Programming)
• Optimization
• DevOps
• Unit Testing
• Recursion
• Blockchain
• Bit Manipulation
• Computer Vision
• Security
• Data Analysis
• Amazon Web Services (AWS)
• Sorting
• Dynamic Programming
• Video Processing
• Data Structures
• Memory Management
• Artificial Intelligence (AI)
• Exception Handling
• Audio Processing
• Web Scraping
• Robotics
• Quantum Computing
• List
• Augmented Reality (AR)
• Multithreading
• Algorithm
• Microsoft Azure
• Machine Learning (ML)
• Virtual Reality (VR)
• Queue
• Natural Language Processing (NLP)
• Serialization
• Python
• Math
• Design Patterns
• Web Frameworks
• Regular Expressions (Regex)
• Stack
• Parsing
• Embedded Systems
• Search
• Google Cloud Platform (GCP)
• Hash
• String
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Data Licensing We confirm that all datasets used in this work are permissively licensed (A.1)

• FACTScore, WikiLarge, Primality Testing, Senator Search, Graph Connectivity- MIT
License

• SciFact- Creative Commons
• CNN/Daily Mail, TruthfulQA, COVID19-Lies -Apache-2.0
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