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Abstract

The importance of input features in the
decision-making of neural network models is
a well-explored area of machine learning re-
search. Numerous approaches have been de-
veloped to estimate and explain the behavior
of these models. Among the models that rely
on neural networks, the sequence-to-sequence
(seq2seq) architecture is particularly complex.
Although general techniques can be applied
to these models, the evaluation of explainabil-
ity methods in this context remains underex-
plored. In this paper, we propose a novel
approach, based on forward simulatabitly, to
automatically evaluate explainability methods
for transformer-based seq2seq models. The
idea is to inject the learned knowledge from
a large model into a smaller one and measure
the change in the results for the smaller model.
We experiment with eight explainability meth-
ods using Inseq library to extract the attribution
score of input to the output sequence. Then, we
inject this information into the attention mecha-
nism of an encoder-decoder transformer model
for machine translation. Our results demon-
strate that this framework can serve as an au-
tomatic evaluation method for explainability
techniques and a knowledge distillation pro-
cess that improves performance. According to
our experiments, the attention attribution and
value zeroing methods consistently increased
the result in three machine translation tasks and
composition operators.

1 Introduction

In recent years, natural language processing (NLP)
generative models have been extensively devel-
oped and applied across a wide range of domains
(Chang et al., 2024; Kalyan, 2024). At their
core, these models rely on complex neural net-
work architectures, such as the transformer ar-
chitecture (Vaswani, 2017), which are often re-
ferred to as "black boxes" (Dayhoff and DelLeo,
2001; Burkart and Huber, 2021) due to their largely
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Figure 1: (a) shows the overall architecture of our ap-
proach. The input sequence and the gold output (X,Y")
are given to a teacher model, and their attributions are
obtained. Then, a new untrained model is trained us-
ing the same (X, Y, E) triples, where E represents the
extracted attributions. (b) shows two places where we
inject the attributions obtained from XAI methods. On
the encoder side, the attributions are injected into all
layers. In a separate experiment, the attributions are
added only to the cross-attention residues.



opaque internal mechanisms. To address this chal-
lenge, Explainable Al (XAI) aims to improve the
transparency and interpretability of machine learn-
ing models. A central objective of this approach
is to assess the importance of input features or at-
tributions (Arya et al., 2019; Vieira and Digiampi-
etri, 2022; Saeed and Omlin, 2023), providing in-
sights into how the model processes information
or which contribute more to the decision-making
of the model. Several of these methods have been
developed specifically for NLP models to clarify
the mechanisms behind their output classification
or generation(Madsen et al., 2022b).

Yet determining which explanation accurately
reflects the learned relationship between input and
output remains an open question. Since explana-
tions are intended for human interpretation, the
validation of XAI methods has predominantly been
human-centered (Kim et al., 2024). For the auto-
matic evaluation of XAl methods, some approaches
have been developed to assess them in other do-
mains (Nauta et al., 2023). In image classifica-
tion tasks, techniques such as removing important
features identified by XAl methods and retraining
the model based on the remaining characteristics
(Hooker et al., 2019; Ribeiro et al., 2016a), as well
as covering important features (Chang et al., 2018),
have been explored. However, such approaches are
less common in NLP (Madsen et al., 2022a), where
human evaluation remains the dominant method
(Madsen et al., 2022b; Leiter et al.). Furthermore,
prior research has primarily focused on interpret-
ing the attention mechanism (Moradi et al., 2021;
Serrano and Smith, 2019) rather than comparing
different explainability methods.

One of the main NLP domains is Sequence-
to-sequence (seq2seq) models (Sutskever, 2014),
which utilize an encoder-decoder framework and
play a central role in neural machine translation,
summarization, and dialogue systems. However,
their many-to-many mapping, autoregressive na-
ture, and intricate encoding-decoding process make
them significantly more challenging to interpret
than simpler classification models (Gurrapu et al.,
2023). In this context, understanding the causal
relationship between input and output tokens pro-
vides a framework for explanations of seq2seq mod-
els (Alvarez-Melis and Jaakkola, 2017). Typically,
explanation methods for seq2seq models have re-
lied on attention mechanisms and perturbation-
based analysis to attribute importance to input to-
kens and assess their impact on model predictions

(Moradi et al., 2021). However, attention is one
part of this architecture, and the methods that take
the whole system into account are less explored.

An important question to explore is whether hu-
man evaluations of XAI methods can be approxi-
mated by machines. One key approach in human
evaluation is simulatability (Doshi-Velez and Kim,
2017; Hase and Bansal, 2020), which measures
how well explanations enable humans to predict a
model’s behavior after receiving its explanation—a
process known as forward simulation. Building on
this concept, along with research on feature and at-
tribute importance in explainability evaluation, we
hypothesize that each explainability method pro-
vides unique information that differs from others.
We conjecture that feeding this information to train
new models can assess their effect and provide a
framework for evaluating this XAI method. For
this reason, in this work, we utilize attributions
provided by XAI methods and inject them into the
transformer architecture (Vaswani, 2017). We train
and evaluate Opus-MT (Tiedemann and Thottin-
gal, 2020) machine translation models by applying
different matrix composition operations on the en-
coder and decoder self-attention and cross-attention
mechanisms of these in the context of three ma-
chine translation datasets. By systematically evalu-
ating various explainability techniques provided by
Inseq (Sarti et al., 2023) as well as the four opera-
tions to merge the information with the attention,
this study provides insights into the strengths and
limitations of existing attribution methods.

To summarize, the main contributions of this
work are as follows:

* We propose a novel framework for evaluating
explainability methods in seq2seq models by
injecting attribution-based information into
the encoder-decoder architecture.

* We demonstrate that knowledge transfer from
a pre-trained model to a model trained from
scratch via feature attribution can improve per-
formance, highlighting the role of explainabil-
ity in model distillation.

* We conduct extensive experiments on multiple
strategies for integrating explanations into the
Transformer architecture and systematically
compare their impact on model performance
across different machine translation language
pairs.



The findings contribute to the broader discourse
on explainable NLP, emphasizing the need for eval-
uation metrics that balance faithfulness, utility, and
alignment in seq2seq model explanations. Further-
more, the proposed knowledge injection framework
is not limited to a specific model but can be applied
to any encoder-decoder architecture, making it a
flexible approach for improving interpretability and
performance across various NLP tasks.

2 Related work

2.1 Al Explainability in Seq2seq Models

Explainability in Deep Learning Models. The
rise of deep learning models has significantly im-
proved performance in NLP tasks but has also
raised concerns about their lack of interpretability
(Burkart and Huber, 2021; Madsen et al., 2022b;
Vieira and Digiampietri, 2022). Explainable Al
(XAI) aims to make machine learning predictions
more understandable to humans by providing in-
sights into the decision-making process. Tech-
niques such as SHAP (SHapley Additive exPla-
nations) and LIME (Local Interpretable Model-
Agnostic Explanations) have been widely adopted
to attribute importance to input features (Lundberg
and Lee, 2017; Ribeiro et al., 2016a), as well as
counterfactual explanations (Chang et al., 2018).
However, these methods were primarily designed
for models with straightforward input-output map-
pings and may not directly extend to seq2seq ar-
chitectures (Jain and Wallace, 2019; Serrano and
Smith, 2019).

Challenges in Explaining Seq2seq Models.
Seq2seq models, particularly those based on the
transformer architecture (Vaswani, 2017), have
revolutionized tasks such as machine translation
and text summarization by capturing complex de-
pendencies between input and output sequences
(Stahlberg, 2020; Shakil et al., 2024). However,
their encoder-decoder structure introduces several
challenges for explainability methods (Zhao et al.,
2024). For instance, Intermediate representa-
tions pose a challenge as the transformation of
inputs through multiple layers makes it difficult
to directly correlate input features with outputs
(Sutskever, 2014). Attention mechanisms are of-
ten used to explain decisions in transformer mod-
els, but their reliability as faithful explanations has
been questioned (Jain and Wallace, 2019; Madsen
et al., 2022a). Additionally, evaluation metrics
used in standard explainability methods may not

fully capture the nuances of seq2seq models, neces-
sitating specialized evaluation frameworks (Hase
and Bansal, 2020; Nauta et al., 2023).

Advancements in Explainability for Seq2seq
Models. To address some of these challenges, re-
cent research has focused on developing explain-
ability methods tailored to seq2seq models (Burkart
and Huber, 2021; Zhao et al., 2024). For instance,
FiD-Ex Framework, introduced by Lakhotia et
al. (Lakhotia et al., 2021), improves the faithful-
ness of explanations in seq2seq models by incorpo-
rating sentence markers and fine-tuning on struc-
tured datasets. Furthermore, Inseq is a Python
library that provides a comprehensive tool for ana-
lyzing and comparing different explainability meth-
ods for generative language models (Sarti et al.,
2023). The library offers a range of gradient-based,
perturbation-based, and internal representation-
based explainability techniques. One of its key
features is the ability to take an input-output pair,
run it through a pre-trained model, and generate
an importance analysis for the output sequence
with respect to the input sequence. Recently, Syn-
taxShap, proposed by Amara et al. (Amara et al.,
2024), extends Shapley values to account for syn-
tactic dependencies in text generation, providing a
syntax-aware interpretability method that improves
the alignment between explanations and linguistic
structures.

In thi work, we evaluate the explainability of
seq2seq models in the context of machine trans-
lation tasks. Previous studies, such as (Li et al.,
2020), have assessed explanation methods for ma-
chine translation using fidelity-based metrics, high-
lighting the limitations of traditional word align-
ment approaches. While these metrics provide
insights into model behavior, they do not fully
capture how explanations contribute to decision-
making. To address this, we propose an automatic
evaluation framework for explainability methods in
transformer-based seq2seq models. Our approach
involves injecting learned knowledge from a large
model into a smaller one and assessing its im-
pact on performance. Specifically, we first use
a pre-trained language model, the Opus-MT model
(Tiedemann and Thottingal, 2020), to generate ex-
planations for input-output pairs in the machine
translation task. We then train the same model from
scratch, incorporating the extracted explainability-
based knowledge into its encoder-decoder attention
mechanism. By measuring performance changes,
we evaluate how effectively these explanations in-



fluence model behavior. To systematically com-
pare different XAl techniques, we use the Inseq
library', applying the eight explainability methods
described in the following subsection.

2.2 Al Explainability Methods

XAI methods fall into three main categories (Sarti
et al., 2023): gradient-based, internal-based, and
perturbation-based methods.

Gradient-based Methods: Saliency com-
putes gradients of the output with respect to
the input to generate a saliency map, high-
lighting influential features (Simonyan et al.,
2013). Input(x)Gradient(IxG) quantifies fea-
ture importance by multiplying input values
with their gradients, emphasizing features with
large gradients (Simonyan et al., 2014). Layer
Gradient(X)Activation(LGxA) extends In-
put(x)Gradient by considering the gradient of
model output with respect to activations of a
specific layer, weighted by those activations. Inte-
grated Gradients(IG) computes attributions by
integrating gradients along a path from a baseline
input to the actual input, ensuring sensitivity and
implementation invariance (Sundararajan et al.,
2017). DeepLIFT(GSHAP) assigns importance
scores by comparing a neuron’s activation to a
reference activation and propagating contribution
scores through the network (Shrikumar et al.,
2019). Gradient SHAP combines SHAP and
Integrated Gradients, computing expected gra-
dients from a baseline distribution to the actual
input (Lundberg and Lee, 2017).

Internal-based Methods. Attention extracts
encoder self-attention weights from the model’s for-
ward pass (Bahdanau et al., 2016; Vaswani, 2017),
using only encoder attention weights.

Perturbation-based Methods. Value Zero-
ing(ValueZeroing) systematically zeros out token
value vectors to analyze information integration
beyond self-attention, considering contributions
from feedforward networks in Transformer en-
coders (Mohebbi et al., 2023).

While XAI methods offer insights into seq2seq
models, their effectiveness varies by task. Next, we
present our methodology to systematically evaluate
these techniques in machine translation using the
Inseq library.

"https: //github.com/inseqg-team/inseq

3 Methodology

Inspired by forward simulation (Hase and Bansal,
2020), we design a pipeline to compare different
explainability attributions based on their impact on
system performance. To analyze the forward sim-
ulation of various XAl methods, we use a teacher-
student model (Fig. 1a). In the first step, we use the
Inseq library to extract input-output attributions
using the eight explainability algorithms specified
in Subsection 2.2. At this stage, the teacher model
receives a source-target language pair (X, Y") as in-
put, and the output of Inseq is a set of attributions
(X,Y)— E.

All of these attributions, except for the Attention-
based ones, are extracted in the shape e € RI***,
where j is the input sequence length, & is the out-
put sequence length, and [ is the hidden dimension
of the model. We aggregate them along the last
dimension by averaging the values, resulting in a
final shape of e € R7**. With a slight difference,
the Attention attributions are extracted in the shape
e € RIXFXnxh ‘where j and k are the same as be-
fore, n represents the number of layers (here, only
on the encoder side, n = 6), and h is the number of
attention heads (8 in this case). We then compute
the average along both of the last two axes to ob-
tain a final shape of ¢ € R7**_ To handle negative
values and normalize the attribution matrices, we
apply the MinMaxScaler as follows:

eij — min(e, ;)

/I
€ij =

.

max(e: ;) — min(e: ;)
i i

Then, the input to the student model is the triple
of (X,Y,E’). In the next step, we apply four dif-
ferent operations on the attention heads as follows:

AW = AW L E (1)

AP = AW o F )

. A L F
Al = —=—— 3)

Attention(Q, K, V, E/)

=f (softmax <%> ,E') V 4

Where E' = {¢], ¢, ..., €} represents the ex-
plainability attributions based on the batch size
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used for the model, and @), K, and V' are the query,
key, and value matrices of the transformer model. f
is one of the operators mentioned above in 1-3. The

last operation replaces E’ to completely substitute
QKT
Vi .

Now, we train the student Opus-MT model

(Tiedemann and Thottingal, 2020) from scratch
with two settings: 1) We apply one of the above-
mentioned operators to all layers of the encoder
block. 2) We apply the attributions to the cross-
attention mechanism between the encoder and de-
coder blocks. The source and target language pairs
remain the same as those used for the teacher
model. However, we now infuse the attribution
scores into the attention heads of either the encoder
or decoder of the model, respectively (Fig. 1b).

4 Experimental Results

4.1 Evaluation Datasets and Metrics

To evaluate the proposed pipeline, we train the
Opus-MT model (Tiedemann and Thottingal, 2020)
on three datasets. We select two datasets from the
same language family: German— English (de-en)
and French—English (fr-en). For the third dataset,
we choose Arabic—English (ar-en) due to its en-
coding and linguistic differences from the target
language. For de-en and fr-en, we use the WMT14
dataset (Bojar et al., 2014), and for ar-en, we use
the UN Parallel Corpus (Ziemski et al., 2016).

We select 200,000 sentence pairs from each
dataset and preprocess them to suit our experimen-
tal setup. Given the large number of seq2seq mod-
els we train from scratch, we impose constraints
to efficiently manage the training process. Specifi-
cally, we limit both input and output sequences to
a maximum of 128 tokens. Additionally, we dis-
card samples with fewer than three tokens and filter
out pairs where the input-to-output length ratio (or
vice versa) exceeds 1.7. For the German—English
(de-en) and French—English (fr-en) datasets, we
further exclude samples with an excessively high
normalized Levenshtein distance. Since the valida-
tion and test sets of the WMT datasets are relatively
small, we select an additional 15,000 samples from
their training sets (without overlap with our training
data). The UN Parallel Corpus does not include sep-
arate validation and test sets, so we extract 15, 000
samples from the main dataset for this purpose.

Throughout our experiments, we use the imple-
mentation of BLEU score (Papineni et al., 2002) to
evaluate the student models.

4.2 Experimental Settings

We train the Opus-MT models? for 20 epochs and
apply an early stopping of three consecutive epochs
without improvement in validation loss. The model
follows an encoder-decoder architecture, with each
containing six layers with eight attention heads.
The model employs the Swish activation function,
as proposed by Ramachandran et al. (2017) (Ra-
machandran et al., 2017), which has been shown to
enhance training dynamics and convergence com-
pared to traditional activation functions like ReLU.
To handle preprocessed data and manage train-
ing time, we limit the input and output sequence
lengths to a maximum of 128 tokens. For training
the models, we utilized 20 Nvidia V100 GPUs.

4.3 Results and Discussion

In our analysis, we evaluate the proposed methods
through three key comparisons. First, we assess
eight XAl methods for their effectiveness in im-
proving translation quality when their attributions
are injected into the model. Second, we compare
the impact of injecting attributions into encoder
self-attention versus cross-attention layer to un-
derstand their influence on information flow and
source-target alignment. Lastly, we examine the ef-
fect of reducing the number of attention heads from
eight to four, exploring whether selective attribu-
tion enhances model efficiency while maintaining
performance. As a baseline, we report the results
of training the student model without attribution
injection on the three datasets. Table 1 presents the
BLEU scores for training the model from scratch
for each language pair.

de-en fr-en
22.85 28.79

ar-en
16.85

Baseline

Table 1: baseline BLEU score results

Comparison of XAI Methods — This analysis
evaluates eight different explainability methods in
terms of their impact on translation quality. Ta-
ble 2 shows the result of the injection of the attri-
bution score to the 8§ attention heads of the encoder
vs. cross attention part of the Opus-MT model
trained from scratch. Across all three language
pairs, attention-based and perturbation-based At-
tention and ValueZeroing tend to have the highest
values among the attribution methods. Results sug-
gest that these two mechanisms capture a strong

Zhttps://huggingface.co/Helsinki-NLP



de-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 23.10 27.36  23.10 27.68 23.17 23.26 31.58 33.12
multiply 21.59 2798 21.85 27.75 21.65 21.73 35.08 35.01
average 23.18 26.65  23.18 26.51 22.90 22.99 30.47 32.27
replace 21.78 26.84 21.75 26.31 21.68 21.68 31.57 33.39
de-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 22.50 16.82 2249 1941 22.83 22.54 14.21 11.99
multiply 7.40 7.57 4.69 8.18 10.32 8.76 3.14 2.27
average 20.06 1942 20.01 19.72 20.63 22.87 14.89 14.96
replace 0.25 0.08 0.21 0.04 0.25 0.38 4.69 0.25
fr-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 29.04 36.99 29.04 35.52 30.14 29.04 44.16 46.97
multiply 29.29 38.54 2930 35.94 29.66 28.88 49.31 49.14
average 28.68 36.31 28.68 34.16 29.55 28.84 42.62 45.43
replace 28.15 36.15 28.15 34.42 29.26 28.26 42.77 45.35
fr-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 24.31 26.50 2432 23.78 26.53 24.59 24.50 22.25
multiply 14.69 3.66 14.68 6.29 7.49 15.86 5.82 1.62
average 22.12 23.50 2876 28.76 24.40 20.55 25.75 26.12
replace 0.77 0.06 0.77 0.01 0.70 1.60 5.89 1.63
ar-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 32.60 38.72 32.60 30.75 33.91 33.59 46.46 46.29
multiply 37.06 43.74  36.78 40.28 37.59 37.03 51.53 51.64
average 27.70 34.14  27.70  30.55 28.75 26.56 46.69 41.17
replace 36.76 434  36.69 40.17 37.75 36.81 49.77 51.48
de-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 33.87 31.31 33.87 29.24 34.94 33.61 26.28 29.61
multiply 17.40 5.81 1741 12.52 22.63 17.41 6.17 1.72
average 18.47 10.32 1847 12.94 14.38 18.10 11.05 13.08
replace 1.81 0.25 1.85 0.01 0.97 1.78 9.56 5.48

Table 2: BLEU score comparison of various attribution methods across different composition strategies (add,
multiply, average, replace) to 8 heads applied to encoder and cross-attention modules in neural machine translation
models. Results are reported for three language pairs—German—English (de—en), French—English (fr—en), and
Arabic—English (ar—en)—with columns corresponding to attribution techniques (IxG, Saliency, LGxA, IG, GSHAP,
DeepLIFT, Attention, and ValueZeroing). Scores that beat the baseline model for each setting are boldfaced and the
highest BLEU score for each dataset are highlighted in green.

signal relevant to the translation process. Gradient-
based methods (IxG, LGxA, 1G) generally yield
lower scores compared to attention-based meth-
ods, but they exhibit consistency across different
language pairs, making them more stable for in-
teroperability. DeepLIFT except for the addition
operation, decreases the result for de-en and fr-
en. French-English (fr-en) consistently exhibits
higher attribution scores than German-English (de-
en), while Arabic-English (ar-en) shows the highest
scores overall across most methods. ValueZero-
ing and Attention attribution help to double the
BLEU score of this language pair. This finding
may indicate that the morphological and syntactic

complexity of the source language influences the
attributions and hence help the result of the student
model.

German-English (de-en) Attribution scores are
generally the lowest among the three language
pairs. This is likely due to the high word reorder-
ing requirements in German, which may lead to
weaker local alignment between input tokens and
model outputs (Avramidis et al., 2019; Macke-
tanz et al., 2021). French-English (fr-en) Attri-
bution scores are higher than de-en, suggesting that
French and English have more direct word align-
ment, which leads to stronger feature attributions.
This aligns with linguistic expectations and empiri-



cal evidence (Legrand et al., 2016), as French and
English share more lexical and syntactic similari-
ties. Arabic-English (ar-en) This pair exhibits the
highest attribution scores, particularly in Attention
(46.46-51.53) and ValueZeroing (46.29-51.64). It
is possible that Arabic’s rich morphology and non-
concatenative structure likely cause the model to
rely more heavily on attention mechanisms, ex-
plaining the higher attribution values.

LGxA and IG perform similarly across all lan-
guage pairs, suggesting that deeper network ac-
tivations contribute significantly to attribution re-
sults. This reinforces the role of deep-layer interac-
tions in determining translation outputs. Gradient
SHAP (GSHAP) and DeepLIFT methods display
relatively consistent scores across language pairs,
implying that their reliance on perturbation-based
techniques makes them less sensitive to specific
linguistic properties of the source language.

Overall, Attention and ValueZeroing tend to con-
tribute to the highest scores among attribution meth-
ods across all three language pairs. The results
suggest these two mechanisms capture a strong
signal relevant to the translation process. Gradient-
based methods (IxG, LGxA, 1G) generally yield
lower scores than the other two methods but exhibit
consistency across different language pairs, mak-
ing them more stable for interpretability. French-
English (fr-en) consistently exhibits higher attri-
bution scores than German-English (de-en), while
Arabic-English (ar-en) shows the highest overall
scores across most methods. It may indicate that
the morphological and syntactic complexity of the
source language influences attributions.

Encoder Self-Attention vs. Cross-Attention —
This analysis examines the impact of injecting attri-
bution scores into encoder self-attention layers ver-
sus cross-attention layers. In contrast to the encoder
self-attention, cross-attention bridges the source
and target languages by guiding the decoder’s fo-
cus on the encoder’s output. This mechanism is
more sensitive because it manages the alignment
between the source input and the target output. Any
modification here can directly influence how the
source information is integrated into the target gen-
eration process. For this reason, the initial hypoth-
esis was that injecting attributes—which describe
the relation between the source and target—into
the cross-attention layer might enhance the flow of
relevant information. However, the experimental
results tell a different story.

In most cases, injecting these attributes into

cross-attention either blocks or corrupts the flow
of information. For example, when we replace the
cross-attention weights entirely with the attribute
values (using the “replace” operator), the perfor-
mance degrades drastically to the point where the
model essentially fails to learn anything. This
suggests that the carefully learned cross-attention
weights are critical for proper alignment and that
overriding them with attribution values disrupts the
fine-grained balance necessary for effective trans-
lation.

For addition (+) vs. multiplication (X) an in-
teresting trend observed is that the addition opera-
tor tends to yield better results than multiplication
in the cross-attention context. Adding the attribu-
tions seems to augment the existing attention values
in a beneficial way, whereas multiplying them of-
ten leads to an overly aggressive modification that
harms the model’s ability to propagate information
from the encoder. This sensitivity is particularly
pronounced in cross-attention layers. The addition
might act as a mild corrective signal that helps the
decoder focus better, while multiplication can ex-
cessively amplify or diminish the weights, leading
to a loss of critical alignment information. The
encoder self-attention layers appear to benefit from
certain attribution methods (like Attention and Val-
ueZeroing). This suggests that these methods may
leverage the rich input representations directly, re-
inforcing the existing intra-sentence relationships
without destabilizing them.

In contrast, the effectiveness of the cross-
attention layer is based on an interaction between
the representations of the source and the target.
Methods like Attention and ValueZeroing, which
work well in self-attention due to their direct re-
liance on the input, do not provide the same im-
provement when applied to cross-attention. This
could be because the cross-attention mechanism
requires a more nuanced handling of the inter-
sequence relationship—one that the raw input-level
attributes cannot fully capture

Effect of Attention Head Reduction (8 Heads
vs. 4 Heads) — This analysis investigates how re-
ducing the number of attention heads affects model
performance when integrating attribution scores.
The experiment of reducing the number of attention
heads from eight to four provides valuable insights
into the impact of different attribution methods
and composition operations on translation perfor-
mance. By selectively applying attributions to only
four heads, we assess whether information flow



can still be effectively captured and whether the
model retains its translation quality. The changes in
BLEU scores between 8-head and 4-head settings
for gradient-based methods are relatively minor.
Some methods show slight improvements, while
others show slight degradation. This suggests that
reducing the number of attention heads does not
drastically alter how gradient-based attributions af-
fect the model. A significant jump in BLEU score
is observed when applying attributions to only four
heads instead of eight. This suggests that focusing
attribution influence on fewer attention heads helps
refine the attention mechanism, possibly by pre-
venting redundant information flow and reinforcing
key attention patterns. Similar to attention mod-
ifications, value zeroing shows a major increase
in BLEU score when applied to only four heads.
This result indicates that reducing the number of
modified attention heads all.

For the additive and multiplicative operations,
the BLEU score remains relatively stable across
8-head and 4-head settings. Figures 3 and 3 show
the result of this comparison on at each place of
the attribution injection and datasets. The replace-
ment operation (where the attention values are fully
substituted) leads to a performance drop in the 4-
head setting, implying that completely overwriting
attention information is more detrimental when
fewer heads are active. The averaging operation
also shows mild degradation in the 4-head setup,
suggesting that blending information across fewer
heads may not be as effective.

5 Conclusion

In this work, we explore the integration of
attribution-based explanations into neural machine
translation models, with the aim of evaluating in-
terpretability and translation quality. Our extensive
analysis across German—English, French—English,
and Arabic—English language pairs included com-
paring eight XAI methods and various composition
strategies—addition, multiplication, averaging, and
replacement—for injecting attribution scores into
the Transformer’s attention mechanisms.
Effectiveness of Attribution Methods can be
summarized as: Attention-based and perturbation-
based techniques, specifically the Attention and
ValueZeroing methods, consistently showed the
highest improvements in BLEU scores. In con-
trast, while gradient-based approaches (e.g., IXG,
LGxA, IG) provided stable and consistent attribu-

tions, their impact on performance was compara-
tively modest.

Injecting attribution scores into encoder self-
attention layers generally reinforced intra-pairs re-
lationships and improved translation quality. Con-
versely, modifications in the cross-attention layers,
which govern source—target alignment, often dis-
rupted the balance required for effective translation,
mainly when we implemented replacement or mul-
tiplicative operations. Finally, reducing the num-
ber of attention heads from eight to four demon-
strated that selective attribution can refine the at-
tention mechanism, mitigate redundancy, and, in
some cases, further enhance performance. These
results suggest that attribution-based interventions
not only serve as valuable tools for model inter-
pretability but can also be leveraged to improve
translation outcomes, especially in linguistically
challenging scenarios.

Limitations

There are some limitations to this work worth
noting. First, we compared attribution informa-
tion across explainability methods, the majority of
which were gradient-based. This choice was pri-
marily due to the computational cost associated
with extracting attributions using other methods,
particularly perturbation-based approaches such as
LIME (Ribeiro et al., 2016b) and reAGent (Zhao
and Shan, 2024), which are both time-consuming
and resource-intensive. Finally, some of these
methods, provided by Inseq, generate attributions
for the decoder side of seq2seq models. However,
at this stage, we limited our experiments to encoder
self-attention and cross-attention between the de-
coder and encoder.

Another limitation of our study is that our exper-
iments were confined to machine translation and a
limited set of language pairs. Future work should
extend this pipeline to other sequence-to-sequence
models, such as those used for question answering,
by integrating it into the Transformer’s attention
mechanism, thereby enabling a broader evaluation
of XAI methods.

Finally, we limited our experiments to a single
evaluation metric, the BLEU score. While BLEU
provides a quantitative measure of similarity be-
tween generated and reference sequences, it does
not fully capture semantic adequacy or the overall
quality of the generated text. Incorporating addi-
tional evaluation metrics, such as those assessing



semantic similarity (e.g., METEOR, BERTScore)
or human evaluations based on fluency, coherence,
and relevance, could offer deeper insights and a
more comprehensive assessment of model perfor-
mance. Future studies should explore these alterna-
tive metrics to ensure a more nuanced evaluation
of generated sequences.
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