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Abstract

The importance of input features in the001
decision-making of neural network models is002
a well-explored area of machine learning re-003
search. Numerous approaches have been de-004
veloped to estimate and explain the behavior005
of these models. Among the models that rely006
on neural networks, the sequence-to-sequence007
(seq2seq) architecture is particularly complex.008
Although general techniques can be applied009
to these models, the evaluation of explainabil-010
ity methods in this context remains underex-011
plored. In this paper, we propose a novel012
approach, based on forward simulatabitly, to013
automatically evaluate explainability methods014
for transformer-based seq2seq models. The015
idea is to inject the learned knowledge from016
a large model into a smaller one and measure017
the change in the results for the smaller model.018
We experiment with eight explainability meth-019
ods using Inseq library to extract the attribution020
score of input to the output sequence. Then, we021
inject this information into the attention mecha-022
nism of an encoder-decoder transformer model023
for machine translation. Our results demon-024
strate that this framework can serve as an au-025
tomatic evaluation method for explainability026
techniques and a knowledge distillation pro-027
cess that improves performance. According to028
our experiments, the attention attribution and029
value zeroing methods consistently increased030
the result in three machine translation tasks and031
composition operators.032

1 Introduction033

In recent years, natural language processing (NLP)034

generative models have been extensively devel-035

oped and applied across a wide range of domains036

(Chang et al., 2024; Kalyan, 2024). At their037

core, these models rely on complex neural net-038

work architectures, such as the transformer ar-039

chitecture (Vaswani, 2017), which are often re-040

ferred to as "black boxes" (Dayhoff and DeLeo,041

2001; Burkart and Huber, 2021) due to their largely042
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Figure 1: (a) shows the overall architecture of our ap-
proach. The input sequence and the gold output (X,Y )
are given to a teacher model, and their attributions are
obtained. Then, a new untrained model is trained us-
ing the same (X,Y,E) triples, where E represents the
extracted attributions. (b) shows two places where we
inject the attributions obtained from XAI methods. On
the encoder side, the attributions are injected into all
layers. In a separate experiment, the attributions are
added only to the cross-attention residues.
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opaque internal mechanisms. To address this chal-043

lenge, Explainable AI (XAI) aims to improve the044

transparency and interpretability of machine learn-045

ing models. A central objective of this approach046

is to assess the importance of input features or at-047

tributions (Arya et al., 2019; Vieira and Digiampi-048

etri, 2022; Saeed and Omlin, 2023), providing in-049

sights into how the model processes information050

or which contribute more to the decision-making051

of the model. Several of these methods have been052

developed specifically for NLP models to clarify053

the mechanisms behind their output classification054

or generation(Madsen et al., 2022b).055

Yet determining which explanation accurately056

reflects the learned relationship between input and057

output remains an open question. Since explana-058

tions are intended for human interpretation, the059

validation of XAI methods has predominantly been060

human-centered (Kim et al., 2024). For the auto-061

matic evaluation of XAI methods, some approaches062

have been developed to assess them in other do-063

mains (Nauta et al., 2023). In image classifica-064

tion tasks, techniques such as removing important065

features identified by XAI methods and retraining066

the model based on the remaining characteristics067

(Hooker et al., 2019; Ribeiro et al., 2016a), as well068

as covering important features (Chang et al., 2018),069

have been explored. However, such approaches are070

less common in NLP (Madsen et al., 2022a), where071

human evaluation remains the dominant method072

(Madsen et al., 2022b; Leiter et al.). Furthermore,073

prior research has primarily focused on interpret-074

ing the attention mechanism (Moradi et al., 2021;075

Serrano and Smith, 2019) rather than comparing076

different explainability methods.077

One of the main NLP domains is Sequence-078

to-sequence (seq2seq) models (Sutskever, 2014),079

which utilize an encoder-decoder framework and080

play a central role in neural machine translation,081

summarization, and dialogue systems. However,082

their many-to-many mapping, autoregressive na-083

ture, and intricate encoding-decoding process make084

them significantly more challenging to interpret085

than simpler classification models (Gurrapu et al.,086

2023). In this context, understanding the causal087

relationship between input and output tokens pro-088

vides a framework for explanations of seq2seq mod-089

els (Alvarez-Melis and Jaakkola, 2017). Typically,090

explanation methods for seq2seq models have re-091

lied on attention mechanisms and perturbation-092

based analysis to attribute importance to input to-093

kens and assess their impact on model predictions094

(Moradi et al., 2021). However, attention is one 095

part of this architecture, and the methods that take 096

the whole system into account are less explored. 097

An important question to explore is whether hu- 098

man evaluations of XAI methods can be approxi- 099

mated by machines. One key approach in human 100

evaluation is simulatability (Doshi-Velez and Kim, 101

2017; Hase and Bansal, 2020), which measures 102

how well explanations enable humans to predict a 103

model’s behavior after receiving its explanation—a 104

process known as forward simulation. Building on 105

this concept, along with research on feature and at- 106

tribute importance in explainability evaluation, we 107

hypothesize that each explainability method pro- 108

vides unique information that differs from others. 109

We conjecture that feeding this information to train 110

new models can assess their effect and provide a 111

framework for evaluating this XAI method. For 112

this reason, in this work, we utilize attributions 113

provided by XAI methods and inject them into the 114

transformer architecture (Vaswani, 2017). We train 115

and evaluate Opus-MT (Tiedemann and Thottin- 116

gal, 2020) machine translation models by applying 117

different matrix composition operations on the en- 118

coder and decoder self-attention and cross-attention 119

mechanisms of these in the context of three ma- 120

chine translation datasets. By systematically evalu- 121

ating various explainability techniques provided by 122

Inseq (Sarti et al., 2023) as well as the four opera- 123

tions to merge the information with the attention, 124

this study provides insights into the strengths and 125

limitations of existing attribution methods. 126

To summarize, the main contributions of this 127

work are as follows: 128

• We propose a novel framework for evaluating 129

explainability methods in seq2seq models by 130

injecting attribution-based information into 131

the encoder-decoder architecture. 132

• We demonstrate that knowledge transfer from 133

a pre-trained model to a model trained from 134

scratch via feature attribution can improve per- 135

formance, highlighting the role of explainabil- 136

ity in model distillation. 137

• We conduct extensive experiments on multiple 138

strategies for integrating explanations into the 139

Transformer architecture and systematically 140

compare their impact on model performance 141

across different machine translation language 142

pairs. 143
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The findings contribute to the broader discourse144

on explainable NLP, emphasizing the need for eval-145

uation metrics that balance faithfulness, utility, and146

alignment in seq2seq model explanations. Further-147

more, the proposed knowledge injection framework148

is not limited to a specific model but can be applied149

to any encoder-decoder architecture, making it a150

flexible approach for improving interpretability and151

performance across various NLP tasks.152

2 Related work153

2.1 AI Explainability in Seq2seq Models154

Explainability in Deep Learning Models. The155

rise of deep learning models has significantly im-156

proved performance in NLP tasks but has also157

raised concerns about their lack of interpretability158

(Burkart and Huber, 2021; Madsen et al., 2022b;159

Vieira and Digiampietri, 2022). Explainable AI160

(XAI) aims to make machine learning predictions161

more understandable to humans by providing in-162

sights into the decision-making process. Tech-163

niques such as SHAP (SHapley Additive exPla-164

nations) and LIME (Local Interpretable Model-165

Agnostic Explanations) have been widely adopted166

to attribute importance to input features (Lundberg167

and Lee, 2017; Ribeiro et al., 2016a), as well as168

counterfactual explanations (Chang et al., 2018).169

However, these methods were primarily designed170

for models with straightforward input-output map-171

pings and may not directly extend to seq2seq ar-172

chitectures (Jain and Wallace, 2019; Serrano and173

Smith, 2019).174

Challenges in Explaining Seq2seq Models.175

Seq2seq models, particularly those based on the176

transformer architecture (Vaswani, 2017), have177

revolutionized tasks such as machine translation178

and text summarization by capturing complex de-179

pendencies between input and output sequences180

(Stahlberg, 2020; Shakil et al., 2024). However,181

their encoder-decoder structure introduces several182

challenges for explainability methods (Zhao et al.,183

2024). For instance, Intermediate representa-184

tions pose a challenge as the transformation of185

inputs through multiple layers makes it difficult186

to directly correlate input features with outputs187

(Sutskever, 2014). Attention mechanisms are of-188

ten used to explain decisions in transformer mod-189

els, but their reliability as faithful explanations has190

been questioned (Jain and Wallace, 2019; Madsen191

et al., 2022a). Additionally, evaluation metrics192

used in standard explainability methods may not193

fully capture the nuances of seq2seq models, neces- 194

sitating specialized evaluation frameworks (Hase 195

and Bansal, 2020; Nauta et al., 2023). 196

Advancements in Explainability for Seq2seq 197

Models. To address some of these challenges, re- 198

cent research has focused on developing explain- 199

ability methods tailored to seq2seq models (Burkart 200

and Huber, 2021; Zhao et al., 2024). For instance, 201

FiD-Ex Framework, introduced by Lakhotia et 202

al. (Lakhotia et al., 2021), improves the faithful- 203

ness of explanations in seq2seq models by incorpo- 204

rating sentence markers and fine-tuning on struc- 205

tured datasets. Furthermore, Inseq is a Python 206

library that provides a comprehensive tool for ana- 207

lyzing and comparing different explainability meth- 208

ods for generative language models (Sarti et al., 209

2023). The library offers a range of gradient-based, 210

perturbation-based, and internal representation- 211

based explainability techniques. One of its key 212

features is the ability to take an input-output pair, 213

run it through a pre-trained model, and generate 214

an importance analysis for the output sequence 215

with respect to the input sequence. Recently, Syn- 216

taxShap, proposed by Amara et al. (Amara et al., 217

2024), extends Shapley values to account for syn- 218

tactic dependencies in text generation, providing a 219

syntax-aware interpretability method that improves 220

the alignment between explanations and linguistic 221

structures. 222

In thi work, we evaluate the explainability of 223

seq2seq models in the context of machine trans- 224

lation tasks. Previous studies, such as (Li et al., 225

2020), have assessed explanation methods for ma- 226

chine translation using fidelity-based metrics, high- 227

lighting the limitations of traditional word align- 228

ment approaches. While these metrics provide 229

insights into model behavior, they do not fully 230

capture how explanations contribute to decision- 231

making. To address this, we propose an automatic 232

evaluation framework for explainability methods in 233

transformer-based seq2seq models. Our approach 234

involves injecting learned knowledge from a large 235

model into a smaller one and assessing its im- 236

pact on performance. Specifically, we first use 237

a pre-trained language model, the Opus-MT model 238

(Tiedemann and Thottingal, 2020), to generate ex- 239

planations for input-output pairs in the machine 240

translation task. We then train the same model from 241

scratch, incorporating the extracted explainability- 242

based knowledge into its encoder-decoder attention 243

mechanism. By measuring performance changes, 244

we evaluate how effectively these explanations in- 245
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fluence model behavior. To systematically com-246

pare different XAI techniques, we use the Inseq247

library1, applying the eight explainability methods248

described in the following subsection.249

2.2 AI Explainability Methods250

XAI methods fall into three main categories (Sarti251

et al., 2023): gradient-based, internal-based, and252

perturbation-based methods.253

Gradient-based Methods: Saliency com-254

putes gradients of the output with respect to255

the input to generate a saliency map, high-256

lighting influential features (Simonyan et al.,257

2013). Input(x)Gradient(IxG) quantifies fea-258

ture importance by multiplying input values259

with their gradients, emphasizing features with260

large gradients (Simonyan et al., 2014). Layer261

Gradient(X)Activation(LGxA) extends In-262

put(x)Gradient by considering the gradient of263

model output with respect to activations of a264

specific layer, weighted by those activations. Inte-265

grated Gradients(IG) computes attributions by266

integrating gradients along a path from a baseline267

input to the actual input, ensuring sensitivity and268

implementation invariance (Sundararajan et al.,269

2017). DeepLIFT(GSHAP) assigns importance270

scores by comparing a neuron’s activation to a271

reference activation and propagating contribution272

scores through the network (Shrikumar et al.,273

2019). Gradient SHAP combines SHAP and274

Integrated Gradients, computing expected gra-275

dients from a baseline distribution to the actual276

input (Lundberg and Lee, 2017).277

Internal-based Methods. Attention extracts278

encoder self-attention weights from the model’s for-279

ward pass (Bahdanau et al., 2016; Vaswani, 2017),280

using only encoder attention weights.281

Perturbation-based Methods. Value Zero-282

ing(ValueZeroing) systematically zeros out token283

value vectors to analyze information integration284

beyond self-attention, considering contributions285

from feedforward networks in Transformer en-286

coders (Mohebbi et al., 2023).287

While XAI methods offer insights into seq2seq288

models, their effectiveness varies by task. Next, we289

present our methodology to systematically evaluate290

these techniques in machine translation using the291

Inseq library.292

1https://github.com/inseq-team/inseq

3 Methodology 293

Inspired by forward simulation (Hase and Bansal, 294

2020), we design a pipeline to compare different 295

explainability attributions based on their impact on 296

system performance. To analyze the forward sim- 297

ulation of various XAI methods, we use a teacher- 298

student model (Fig. 1a). In the first step, we use the 299

Inseq library to extract input-output attributions 300

using the eight explainability algorithms specified 301

in Subsection 2.2. At this stage, the teacher model 302

receives a source-target language pair (X,Y ) as in- 303

put, and the output of Inseq is a set of attributions 304

(X,Y ) → E. 305

All of these attributions, except for the Attention- 306

based ones, are extracted in the shape e ∈ Rj×k×l, 307

where j is the input sequence length, k is the out- 308

put sequence length, and l is the hidden dimension 309

of the model. We aggregate them along the last 310

dimension by averaging the values, resulting in a 311

final shape of e ∈ Rj×k. With a slight difference, 312

the Attention attributions are extracted in the shape 313

e ∈ Rj×k×n×h, where j and k are the same as be- 314

fore, n represents the number of layers (here, only 315

on the encoder side, n = 6), and h is the number of 316

attention heads (8 in this case). We then compute 317

the average along both of the last two axes to ob- 318

tain a final shape of e ∈ Rj×k. To handle negative 319

values and normalize the attribution matrices, we 320

apply the MinMaxScaler as follows: 321

e′i,j =
ei,j −min

i
(e:,j)

max
i

(e:,j)−min
i
(e:,j)

322

Then, the input to the student model is the triple 323

of (X,Y,E′). In the next step, we apply four dif- 324

ferent operations on the attention heads as follows: 325

Ã(h) = A(h) +E′ (1) 326

Ã(h) = A(h) ⊙E′ (2) 327

Ã(h) =
A(h) +E′

2
(3) 328

˜Attention(Q,K, V,E′) 329

= f

(
softmax

(
QK⊤
√
dk

)
,E′

)
V (4) 330

Where E′ = {e′1, e′2, . . . , e′b} represents the ex- 331

plainability attributions based on the batch size 332
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used for the model, and Q, K, and V are the query,333

key, and value matrices of the transformer model. f334

is one of the operators mentioned above in 1-3. The335

last operation replaces E′ to completely substitute336
QK⊤
√
dk

.337

Now, we train the student Opus-MT model338

(Tiedemann and Thottingal, 2020) from scratch339

with two settings: 1) We apply one of the above-340

mentioned operators to all layers of the encoder341

block. 2) We apply the attributions to the cross-342

attention mechanism between the encoder and de-343

coder blocks. The source and target language pairs344

remain the same as those used for the teacher345

model. However, we now infuse the attribution346

scores into the attention heads of either the encoder347

or decoder of the model, respectively (Fig. 1b).348

4 Experimental Results349

4.1 Evaluation Datasets and Metrics350

To evaluate the proposed pipeline, we train the351

Opus-MT model (Tiedemann and Thottingal, 2020)352

on three datasets. We select two datasets from the353

same language family: German→English (de-en)354

and French→English (fr-en). For the third dataset,355

we choose Arabic→English (ar-en) due to its en-356

coding and linguistic differences from the target357

language. For de-en and fr-en, we use the WMT14358

dataset (Bojar et al., 2014), and for ar-en, we use359

the UN Parallel Corpus (Ziemski et al., 2016).360

We select 200, 000 sentence pairs from each361

dataset and preprocess them to suit our experimen-362

tal setup. Given the large number of seq2seq mod-363

els we train from scratch, we impose constraints364

to efficiently manage the training process. Specifi-365

cally, we limit both input and output sequences to366

a maximum of 128 tokens. Additionally, we dis-367

card samples with fewer than three tokens and filter368

out pairs where the input-to-output length ratio (or369

vice versa) exceeds 1.7. For the German→English370

(de-en) and French→English (fr-en) datasets, we371

further exclude samples with an excessively high372

normalized Levenshtein distance. Since the valida-373

tion and test sets of the WMT datasets are relatively374

small, we select an additional 15,000 samples from375

their training sets (without overlap with our training376

data). The UN Parallel Corpus does not include sep-377

arate validation and test sets, so we extract 15, 000378

samples from the main dataset for this purpose.379

Throughout our experiments, we use the imple-380

mentation of BLEU score (Papineni et al., 2002) to381

evaluate the student models.382

4.2 Experimental Settings 383

We train the Opus-MT models2 for 20 epochs and 384

apply an early stopping of three consecutive epochs 385

without improvement in validation loss. The model 386

follows an encoder-decoder architecture, with each 387

containing six layers with eight attention heads. 388

The model employs the Swish activation function, 389

as proposed by Ramachandran et al. (2017) (Ra- 390

machandran et al., 2017), which has been shown to 391

enhance training dynamics and convergence com- 392

pared to traditional activation functions like ReLU. 393

To handle preprocessed data and manage train- 394

ing time, we limit the input and output sequence 395

lengths to a maximum of 128 tokens. For training 396

the models, we utilized 20 Nvidia V100 GPUs. 397

4.3 Results and Discussion 398

In our analysis, we evaluate the proposed methods 399

through three key comparisons. First, we assess 400

eight XAI methods for their effectiveness in im- 401

proving translation quality when their attributions 402

are injected into the model. Second, we compare 403

the impact of injecting attributions into encoder 404

self-attention versus cross-attention layer to un- 405

derstand their influence on information flow and 406

source-target alignment. Lastly, we examine the ef- 407

fect of reducing the number of attention heads from 408

eight to four, exploring whether selective attribu- 409

tion enhances model efficiency while maintaining 410

performance. As a baseline, we report the results 411

of training the student model without attribution 412

injection on the three datasets. Table 1 presents the 413

BLEU scores for training the model from scratch 414

for each language pair. 415

de-en fr-en ar-en
Baseline 22.85 28.79 16.85

Table 1: baseline BLEU score results

Comparison of XAI Methods – This analysis 416

evaluates eight different explainability methods in 417

terms of their impact on translation quality. Ta- 418

ble 2 shows the result of the injection of the attri- 419

bution score to the 8 attention heads of the encoder 420

vs. cross attention part of the Opus-MT model 421

trained from scratch. Across all three language 422

pairs, attention-based and perturbation-based At- 423

tention and ValueZeroing tend to have the highest 424

values among the attribution methods. Results sug- 425

gest that these two mechanisms capture a strong 426

2https://huggingface.co/Helsinki-NLP
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de-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 23.10 27.36 23.10 27.68 23.17 23.26 31.58 33.12
multiply 21.59 27.98 21.85 27.75 21.65 21.73 35.08 35.01
average 23.18 26.65 23.18 26.51 22.90 22.99 30.47 32.27
replace 21.78 26.84 21.75 26.31 21.68 21.68 31.57 33.39
de-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 22.50 16.82 22.49 19.41 22.83 22.54 14.21 11.99
multiply 7.40 7.57 4.69 8.18 10.32 8.76 3.14 2.27
average 20.06 19.42 20.01 19.72 20.63 22.87 14.89 14.96
replace 0.25 0.08 0.21 0.04 0.25 0.38 4.69 0.25

fr-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 29.04 36.99 29.04 35.52 30.14 29.04 44.16 46.97
multiply 29.29 38.54 29.30 35.94 29.66 28.88 49.31 49.14
average 28.68 36.31 28.68 34.16 29.55 28.84 42.62 45.43
replace 28.15 36.15 28.15 34.42 29.26 28.26 42.77 45.35
fr-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 24.31 26.50 24.32 23.78 26.53 24.59 24.50 22.25
multiply 14.69 3.66 14.68 6.29 7.49 15.86 5.82 1.62
average 22.12 23.50 28.76 28.76 24.40 20.55 25.75 26.12
replace 0.77 0.06 0.77 0.01 0.70 1.60 5.89 1.63

ar-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 32.60 38.72 32.60 30.75 33.91 33.59 46.46 46.29
multiply 37.06 43.74 36.78 40.28 37.59 37.03 51.53 51.64
average 27.70 34.14 27.70 30.55 28.75 26.56 46.69 41.17
replace 36.76 43.4 36.69 40.17 37.75 36.81 49.77 51.48
de-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 33.87 31.31 33.87 29.24 34.94 33.61 26.28 29.61
multiply 17.40 5.81 17.41 12.52 22.63 17.41 6.17 1.72
average 18.47 10.32 18.47 12.94 14.38 18.10 11.05 13.08
replace 1.81 0.25 1.85 0.01 0.97 1.78 9.56 5.48

Table 2: BLEU score comparison of various attribution methods across different composition strategies (add,
multiply, average, replace) to 8 heads applied to encoder and cross-attention modules in neural machine translation
models. Results are reported for three language pairs—German–English (de–en), French–English (fr–en), and
Arabic–English (ar–en)—with columns corresponding to attribution techniques (IxG, Saliency, LGxA, IG, GSHAP,
DeepLIFT, Attention, and ValueZeroing). Scores that beat the baseline model for each setting are boldfaced and the
highest BLEU score for each dataset are highlighted in green.

signal relevant to the translation process. Gradient-427

based methods (IxG, LGxA, IG) generally yield428

lower scores compared to attention-based meth-429

ods, but they exhibit consistency across different430

language pairs, making them more stable for in-431

teroperability. DeepLIFT except for the addition432

operation, decreases the result for de-en and fr-433

en. French-English (fr-en) consistently exhibits434

higher attribution scores than German-English (de-435

en), while Arabic-English (ar-en) shows the highest436

scores overall across most methods. ValueZero-437

ing and Attention attribution help to double the438

BLEU score of this language pair. This finding439

may indicate that the morphological and syntactic440

complexity of the source language influences the 441

attributions and hence help the result of the student 442

model. 443

German-English (de-en) Attribution scores are 444

generally the lowest among the three language 445

pairs. This is likely due to the high word reorder- 446

ing requirements in German, which may lead to 447

weaker local alignment between input tokens and 448

model outputs (Avramidis et al., 2019; Macke- 449

tanz et al., 2021). French-English (fr-en) Attri- 450

bution scores are higher than de-en, suggesting that 451

French and English have more direct word align- 452

ment, which leads to stronger feature attributions. 453

This aligns with linguistic expectations and empiri- 454
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cal evidence (Legrand et al., 2016), as French and455

English share more lexical and syntactic similari-456

ties. Arabic-English (ar-en) This pair exhibits the457

highest attribution scores, particularly in Attention458

(46.46–51.53) and ValueZeroing (46.29–51.64). It459

is possible that Arabic’s rich morphology and non-460

concatenative structure likely cause the model to461

rely more heavily on attention mechanisms, ex-462

plaining the higher attribution values.463

LGxA and IG perform similarly across all lan-464

guage pairs, suggesting that deeper network ac-465

tivations contribute significantly to attribution re-466

sults. This reinforces the role of deep-layer interac-467

tions in determining translation outputs. Gradient468

SHAP (GSHAP) and DeepLIFT methods display469

relatively consistent scores across language pairs,470

implying that their reliance on perturbation-based471

techniques makes them less sensitive to specific472

linguistic properties of the source language.473

Overall, Attention and ValueZeroing tend to con-474

tribute to the highest scores among attribution meth-475

ods across all three language pairs. The results476

suggest these two mechanisms capture a strong477

signal relevant to the translation process. Gradient-478

based methods (IxG, LGxA, IG) generally yield479

lower scores than the other two methods but exhibit480

consistency across different language pairs, mak-481

ing them more stable for interpretability. French-482

English (fr-en) consistently exhibits higher attri-483

bution scores than German-English (de-en), while484

Arabic-English (ar-en) shows the highest overall485

scores across most methods. It may indicate that486

the morphological and syntactic complexity of the487

source language influences attributions.488

Encoder Self-Attention vs. Cross-Attention –489

This analysis examines the impact of injecting attri-490

bution scores into encoder self-attention layers ver-491

sus cross-attention layers. In contrast to the encoder492

self-attention, cross-attention bridges the source493

and target languages by guiding the decoder’s fo-494

cus on the encoder’s output. This mechanism is495

more sensitive because it manages the alignment496

between the source input and the target output. Any497

modification here can directly influence how the498

source information is integrated into the target gen-499

eration process. For this reason, the initial hypoth-500

esis was that injecting attributes—which describe501

the relation between the source and target—into502

the cross-attention layer might enhance the flow of503

relevant information. However, the experimental504

results tell a different story.505

In most cases, injecting these attributes into506

cross-attention either blocks or corrupts the flow 507

of information. For example, when we replace the 508

cross-attention weights entirely with the attribute 509

values (using the “replace” operator), the perfor- 510

mance degrades drastically to the point where the 511

model essentially fails to learn anything. This 512

suggests that the carefully learned cross-attention 513

weights are critical for proper alignment and that 514

overriding them with attribution values disrupts the 515

fine-grained balance necessary for effective trans- 516

lation. 517

For addition (+) vs. multiplication (×) an in- 518

teresting trend observed is that the addition opera- 519

tor tends to yield better results than multiplication 520

in the cross-attention context. Adding the attribu- 521

tions seems to augment the existing attention values 522

in a beneficial way, whereas multiplying them of- 523

ten leads to an overly aggressive modification that 524

harms the model’s ability to propagate information 525

from the encoder. This sensitivity is particularly 526

pronounced in cross-attention layers. The addition 527

might act as a mild corrective signal that helps the 528

decoder focus better, while multiplication can ex- 529

cessively amplify or diminish the weights, leading 530

to a loss of critical alignment information. The 531

encoder self-attention layers appear to benefit from 532

certain attribution methods (like Attention and Val- 533

ueZeroing). This suggests that these methods may 534

leverage the rich input representations directly, re- 535

inforcing the existing intra-sentence relationships 536

without destabilizing them. 537

In contrast, the effectiveness of the cross- 538

attention layer is based on an interaction between 539

the representations of the source and the target. 540

Methods like Attention and ValueZeroing, which 541

work well in self-attention due to their direct re- 542

liance on the input, do not provide the same im- 543

provement when applied to cross-attention. This 544

could be because the cross-attention mechanism 545

requires a more nuanced handling of the inter- 546

sequence relationship—one that the raw input-level 547

attributes cannot fully capture 548

Effect of Attention Head Reduction (8 Heads 549

vs. 4 Heads) – This analysis investigates how re- 550

ducing the number of attention heads affects model 551

performance when integrating attribution scores. 552

The experiment of reducing the number of attention 553

heads from eight to four provides valuable insights 554

into the impact of different attribution methods 555

and composition operations on translation perfor- 556

mance. By selectively applying attributions to only 557

four heads, we assess whether information flow 558
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can still be effectively captured and whether the559

model retains its translation quality. The changes in560

BLEU scores between 8-head and 4-head settings561

for gradient-based methods are relatively minor.562

Some methods show slight improvements, while563

others show slight degradation. This suggests that564

reducing the number of attention heads does not565

drastically alter how gradient-based attributions af-566

fect the model. A significant jump in BLEU score567

is observed when applying attributions to only four568

heads instead of eight. This suggests that focusing569

attribution influence on fewer attention heads helps570

refine the attention mechanism, possibly by pre-571

venting redundant information flow and reinforcing572

key attention patterns. Similar to attention mod-573

ifications, value zeroing shows a major increase574

in BLEU score when applied to only four heads.575

This result indicates that reducing the number of576

modified attention heads all.577

For the additive and multiplicative operations,578

the BLEU score remains relatively stable across579

8-head and 4-head settings. Figures 3 and 3 show580

the result of this comparison on at each place of581

the attribution injection and datasets. The replace-582

ment operation (where the attention values are fully583

substituted) leads to a performance drop in the 4-584

head setting, implying that completely overwriting585

attention information is more detrimental when586

fewer heads are active. The averaging operation587

also shows mild degradation in the 4-head setup,588

suggesting that blending information across fewer589

heads may not be as effective.590

5 Conclusion591

In this work, we explore the integration of592

attribution-based explanations into neural machine593

translation models, with the aim of evaluating in-594

terpretability and translation quality. Our extensive595

analysis across German–English, French–English,596

and Arabic–English language pairs included com-597

paring eight XAI methods and various composition598

strategies—addition, multiplication, averaging, and599

replacement—for injecting attribution scores into600

the Transformer’s attention mechanisms.601

Effectiveness of Attribution Methods can be602

summarized as: Attention-based and perturbation-603

based techniques, specifically the Attention and604

ValueZeroing methods, consistently showed the605

highest improvements in BLEU scores. In con-606

trast, while gradient-based approaches (e.g., IxG,607

LGxA, IG) provided stable and consistent attribu-608

tions, their impact on performance was compara- 609

tively modest. 610

Injecting attribution scores into encoder self- 611

attention layers generally reinforced intra-pairs re- 612

lationships and improved translation quality. Con- 613

versely, modifications in the cross-attention layers, 614

which govern source–target alignment, often dis- 615

rupted the balance required for effective translation, 616

mainly when we implemented replacement or mul- 617

tiplicative operations. Finally, reducing the num- 618

ber of attention heads from eight to four demon- 619

strated that selective attribution can refine the at- 620

tention mechanism, mitigate redundancy, and, in 621

some cases, further enhance performance. These 622

results suggest that attribution-based interventions 623

not only serve as valuable tools for model inter- 624

pretability but can also be leveraged to improve 625

translation outcomes, especially in linguistically 626

challenging scenarios. 627

Limitations 628

There are some limitations to this work worth 629

noting. First, we compared attribution informa- 630

tion across explainability methods, the majority of 631

which were gradient-based. This choice was pri- 632

marily due to the computational cost associated 633

with extracting attributions using other methods, 634

particularly perturbation-based approaches such as 635

LIME (Ribeiro et al., 2016b) and reAGent (Zhao 636

and Shan, 2024), which are both time-consuming 637

and resource-intensive. Finally, some of these 638

methods, provided by Inseq, generate attributions 639

for the decoder side of seq2seq models. However, 640

at this stage, we limited our experiments to encoder 641

self-attention and cross-attention between the de- 642

coder and encoder. 643

Another limitation of our study is that our exper- 644

iments were confined to machine translation and a 645

limited set of language pairs. Future work should 646

extend this pipeline to other sequence-to-sequence 647

models, such as those used for question answering, 648

by integrating it into the Transformer’s attention 649

mechanism, thereby enabling a broader evaluation 650

of XAI methods. 651

Finally, we limited our experiments to a single 652

evaluation metric, the BLEU score. While BLEU 653

provides a quantitative measure of similarity be- 654

tween generated and reference sequences, it does 655

not fully capture semantic adequacy or the overall 656

quality of the generated text. Incorporating addi- 657

tional evaluation metrics, such as those assessing 658

8



semantic similarity (e.g., METEOR, BERTScore)659

or human evaluations based on fluency, coherence,660

and relevance, could offer deeper insights and a661

more comprehensive assessment of model perfor-662

mance. Future studies should explore these alterna-663

tive metrics to ensure a more nuanced evaluation664

of generated sequences.665
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Figure 4: Result of Attribution Composition of Encoder Self-Attention Weights on the de-en (a), fr-en(b) and
ar-en(c) Datasets: Comparing 4-Head (Striped Bars) and 8-Head (Plain Bars) Configurations.
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