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Abstract

Based on the framework of Conformal Prediction (CP), we study the online con-1

struction of valid confidence sets given a black-box machine learning model.2

Converting the targeted confidence levels to quantile levels, the problem can be3

reduced to predicting the quantiles (in hindsight) of a sequentially revealed data4

sequence, where existing results can be divided into two types.5

• Assuming the data sequence is iid, one could maintain the empirical distribution6

of the observed data as an algorithmic belief, and directly predict its quantiles.7

• As the iid assumption is often violated in practice, a recent trend is to apply8

first-order online optimization on moving quantile losses [GC21]. This indirect9

approach requires knowing the targeted quantile level beforehand, and suffers10

from certain validity issues on the obtained confidence sets, due to the associated11

loss linearization.12

This paper presents a Bayesian approach that combines their strengths. Without13

any statistical assumption, it is able to both14

• answer multiple arbitrary confidence level queries online, with provably low15

regret; and16

• overcome the validity issues suffered by first-order optimization baselines, due17

to being “data-centric” rather than “iterate-centric”.18

From a technical perspective, our key idea is to take the above iid-based procedure19

and regularize its algorithmic belief by a Bayesian prior, which “robustifies” it by20

simulating a non-linearized Follow the Regularized Leader (FTRL) algorithm on21

the output. For statisticians, this can be regarded as an online adversarial view of22

Bayesian nonparametric distribution estimation. Importantly, the proposed belief23

update backbone is shared by “prediction heads” targeting different confidence24

levels, bringing practical benefits similar to U-calibration [KLST23].25

1 Introduction26

Modern machine learning (ML) models are better at point prediction compared to probabilistic27

prediction. For example, when given an image classification task, they are better at responding “this28

image is most likely a white cat”, rather than “I’m 90% sure this image is an animal, 60% sure it’s a29

cat, and 30% sure it’s a white cat”. For downstream users, the more nuanced probabilistic predictions30

are often important for risk assessment. The challenge, however, lies in aligning the model’s own31

uncertainty evaluation with its actual performance in the real world.32

Conformal Prediction (CP) [VGS05] has recently emerged as a premier framework to address this33

challenge, as it blends the empirical strength of modern ML with the theoretical soundness of34
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traditional statistical methods. In a nutshell, CP algorithms make confidence set predictions (rather35

than point predictions) on the label space, by sequentially interacting with three other parties: the36

nature (i.e., the data stream), a black-box ML model, and downstream users. Writing the covariate-37

label space as X × Y and the time horizon as T , we consider the following sequential interaction38

protocol. In each (the t-th) round,39

1. We, as the CP algorithm, observe a target covariate xt ∈ X from the nature, and a score function40

st : X × Y → [0, R] generated by a black-box ML model BASE.141

2. The downstream users select a finite set of confidence level queries, At ⊂ [0, 1]. Given each42

α ∈ At, we predict a score threshold rt(α),2 which leads to a confidence set43

Ct(xt, α) = {y ∈ Y : st(xt, y) ≥ rt(α)} . (1)

3. We observe the ground truth label yt ∈ Y from the nature, and send the (xt, yt) pair to BASE44

(which it optionally uses to update the score function st+1). Define the true score r∗t := st(xt, yt).45

Limitation of prior work The essential objective of CP is to have the prediction rt(α) close to46

the (1− α)-quantile of the true score sequence r∗1:T , while only knowing r∗1:t−1 [Rot22, Tib23]. For47

the readers’ reference, the (1− α)-quantile of a real random variable X is defined as q1−α(X) :=48

min{x;P(X ≤ x) ≥ 1− α}. Guided by this general principle, the community has focused on two49

very different approaches under distinct assumptions.50

• Assuming the sequence r∗1:T is iid, it suffices to maintain the empirical distribution of r∗1:t−1,51

denoted as Pt = P̄ (r∗1:t−1), as an algorithmic belief. Then, when queried with the confidence52

level α, the CP algorithm directly “post-processes” the belief by setting rt(α) = q1−α(Pt), or in53

situations with only exchangeability, q1−α−o(1)(Pt) [Tib23]. This is essentially Empirical Risk54

Minimization (ERM) with the quantile loss lα(r, r∗) := (α− 1[r < r∗])(r − r∗), i.e.,55

rt(α) = q1−α(Pt) ∈ argmin
r∈[0,R]

t−1∑
i=1

lα(r, r
∗
i ). (2)

• Since the iid assumption is often violated in practice, a recent trend [GC21] is to indirectly view CP56

as an instance of adversarial online learning [Haz23, Ora23], and apply first-order optimization57

algorithms from there. Taking gradient descent for example, such an approach amounts to picking58

r1(α) ∈ [0, R] and following with the projected incremental update59

rt+1(α) = Π[0,R] [rt(α)− ηt∂lα(rt(α), r
∗
t )] ,

where ηt > 0 is the learning rate, and ∂lα(r, r∗) can be any subgradient of the quantile loss lα60

with respect to the first argument.61

Strictly speaking the two approaches are incomparable due to targeting different performance metrics,62

but nonetheless, let us compare the algorithms side by side. Although first-order optimization seems63

more robust due to the nonnecessity of statistical assumptions, it requires being “iterate-centric”64

rather than “data-centric”: one needs to fix a single confidence level α beforehand, and the prediction65

rt(α) depends on how previous predictions r1:t−1(α) compare to the “data” r∗1:t−1, rather than just66

the “data” itself. This leads to some paradoxical observations regarding the obtained confidence sets.67

For example,68

• The confidence set Ct is not invariant to permutations of r∗1:t−1.69

• Suppose one runs two first-order optimization algorithms targeting different α (say, α1 < α2), then70

even if the initialization r1(α1) = r1(α2), it is still possible that Ct(xt, α1) is strictly contained in71

Ct(xt, α2). That is, the confidence sets violate the monotonicity of probability measures.72

In contrast, the ERM approach does not suffer from such issues, therefore is more “valid / plausible”73

in some sense. The problem is that ERM, also known as Follow the Leader (FTL) in online learning,74

is not robust to adversarial environments with quantile losses. Can we enjoy the best of both worlds?75

1An example is classification, where the score function is usually the softmax score of each candidate label
(R = 1). It is positively oriented: larger means the model is more certain that the candidate label is the true one.
For regression, it is more common to use negatively oriented score functions, which means the inequality in
Eq.(1) is reversed.

2This extended abstract focuses on marginal CP. More generally, the CP algorithm can predict rt(xt, α).
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Contribution This paper presents a Bayesian approach to CP, which (i) does not require any76

statistical assumption; (ii) does not suffer from the aforementioned validity issues; and (iii) efficiently77

handles multiple, arbitrary confidence levels revealed online, with provably low regret. Our main78

workhorse, in short, is an online adversarial view of Bayesian nonparametric estimation.79

2 Main result80

Overview Our proposed algorithm (Algorithm 1) is perhaps the simplest one could think of.81

Defining the Bayesian prior as an arbitrary distribution P0 on the domain [0, R] (with strictly positive82

density p0 : [0, R] → R>0), we update the algorithmic belief Pt by mixing P0 with the empirical83

distribution of the previous true scores, P̄ (r∗1:t−1). This can be seen as regularizing the frequentist84

belief update Pt = P̄ (r∗1:t−1). Then, given each queried confidence level α, our algorithm picks85

rt(α) = q1−α(Pt) just like the iid-based approach. It is clear that rt(α) is invariant to permutations86

of r∗1:t−1, and for any α1 < α2 we always have rt(α1) ≤ rt(α2).87

Algorithm 1 Online conformal prediction with regularized belief.
Require: Step sizes {λt}t∈N+

, where each λt ∈ [0, 1] and λ1 = 1. Bayesian prior P0.
1: for t = 1, 2, . . . do
2: Compute the empirical distribution P̄ (r∗1:t−1), and set the algorithmic belief Pt to

Pt = λtP0 + (1− λt) · P̄ (r∗1:t−1). (3)

3: for α ∈ At do
4: Output the score threshold rt(α) = q1−α(Pt).
5: end for
6: Observe the true score r∗t .
7: end for

Our central observation, however, is quite profound in our opinion:88

The Bayesian regularization on the algorithmic belief Pt induces downstream89

regularizations on the predicted threshold rt(α).90

In particular, Theorem 1 shows that despite not knowing α beforehand, Algorithm 1 generates the91

same output rt(α) as a non-linearized Follow the Regularized Leader (FTRL) algorithm with the92

quantile loss lα. To provide more context, FTRL is a standard improvement of ERM / FTL with93

better stability in adversarial environments, and our framework involves its non-linearized version94

which retains the full structure of quantile losses. It is also important to note that the downstream95

simulation of FTRL deviates from the common scope of online learning (which requires specifying a96

single loss function in each round [Haz23, Ora23]), and instead has a similar flavor as the recently97

proposed U-calibration [KLST23, LSS24]: forecasting for an unknown downstream agent.98

From a more technical perspective: prior works on U-calibration considered the setting of “finite-class99

distributional prediction” with generic proper losses [KLST23, LSS24], while our paper focuses on100

the continuous domain [0, R] (i.e., “infinitely many classes”) with the more specific quantile losses.101

The extra problem structure allows our algorithm to be deterministic (rather than Follow the Perturbed102

Leader; FTPL), thus establishing a closer connection to deterministic online convex optimization.103

Appendix A further discusses the interpretation of the belief update Eq.(3) as Bayesian nonpara-104

metric distribution estimation. The nontrivial insight here is that this statistical procedure induces105

downstream adversarial regret bounds, without statistical assumptions at all.106

Analysis Formally, we first present the FTRL-equivalence of Algorithm 1, which can be compared107

to the FTL-equivalence of the iid-based approach, i.e., Eq.(2).108

Theorem 1. With a base regularizer defined as ψ(r) := Er∗∼P0
[lα(r, r

∗)], the output rt(α) of109

Algorithm 1 satisfies110

rt(α) ∈ argmin
r∈[0,R]

[
λt(t− 1)

1− λt
· ψ(r) +

t−1∑
i=1

lα(r, r
∗
i )

]
, ∀α ∈ [0, 1], t ≥ 2. (4)
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Specifically, (i) ψ is strongly convex with coefficient infr∈[0,R] p0(r); and (ii) if P0 is the uniform111

distribution on [0, R], then ψ is the quadratic function,112

ψ(r) =
1

2R
r2 − (1− α)r +

1

2
(1− α)R.

Next, using Theorem 1, we obtain the following regret bound for our CP algorithm. Here we only113

consider the uniform prior, and defer the case of generic priors to longer versions of this paper (the114

benefit of good priors can be shown using the local norm analysis of FTRL [Ora23, Section 7.4]).115

Theorem 2. Let P0 be the uniform distribution on [0, R]. With the step size λt = 1/
√
t, the output of116

Algorithm 1 against any r∗1:T sequence satisfies117

T∑
t=1

lα(rt(α), r
∗
t )−

T∑
t=1

lα(q1−α(r
∗
1:T ), r

∗
t ) = O(R

√
T ), ∀α ∈ [0, 1],

where q1−α(r
∗
1:T ) denotes the (1− α)-quantile of the hindsight empirical distribution P̄ (r∗1:T ), and118

O(·) subsumes absolute constants.119

Let us interpret this bound. Suppose P̄ (r∗1:T ) is known beforehand (but the exact r∗1:T sequence is120

unknown), then for all α, a very reasonable strategy is to predict rt(α) = q1−α(r
∗
1:T ). Theorem 2121

shows that without statistical assumptions, Algorithm 1 asymptotically performs as well as this oracle122

in terms of the total quantile loss. Existing first-order optimization baselines are equipped with123

regret bounds of a similar type [BWXB23, GC24, ZBY24], but the key difference is that they require124

knowing α beforehand, whereas Algorithm 1 achieves low regret simultaneously for all α ∈ [0, 1].125

3 Discussion126

Any-α baseline Although not studied in existing works, it is actually possible to construct a127

nonstochastic CP algorithm from first-order optimization algorithms, without specifying a fixed α128

beforehand. The idea is simple: (i) evenly discretize the [0, 1] interval using a grid Ā of size
√
T ;129

(ii) for each ᾱ ∈ Ā, run a “base” CP algorithm targeting ᾱ; and (iii) at test time, given a queried α,130

follow the base algorithm corresponding to its nearest neighbor in Ā. It also satisfies the regret bound131

in Theorem 2, since the nearest-neighbor approximation only adds an additive O(R
√
T ) factor due132

to the Lipschitzness of the quantile loss function lα(r, r∗) with respect to α.133

However, such a baseline also suffers from the previously mentioned validity issues. Even more, the134

update (based on r∗t ) and the queries (based on At) are coupled: if At is empty for a certain t (all the135

users abstain), the baseline still needs O(
√
T ) time in that round to process the observation r∗t . In136

comparison, Algorithm 1 needs one UPDATETIME to process r∗t and |At| QUERYTIME to answer the137

α-queries, where their exact values depend on the data structure used to maintain the belief Pt.138

Coverage bound A common objective in online CP, initiated by [GC21], is to show that given a139

confidence level α, the post-hoc empirical coverage frequency of an algorithm approaches α, i.e.,140 ∣∣∣∣∣α− T−1
T∑

t=1

1[r∗t ≥ r∗t (α)]

∣∣∣∣∣ = o(1).

Since this can be achieved by switching between r∗t (α) = 0 and r∗t (α) = R independently of data141

[BGJ+22], one needs an extra objective, such as the regret (Theorem 2), to justify the validity of an142

online CP method. Existing first-order optimization baselines satisfy both desirable bounds.143

Here we argue that the regret could be a better-posed objective than the coverage. To support this144

argument, notice that just like the previous pathological example, first-order optimization baselines145

achieve the coverage bound due to the “overshooting” provided by the loss linearization, and the146

latter also causes the validity issues discussed earlier. Besides, achieving the coverage bound requires147

adjusting the prediction based on the coverage history: if an algorithm keeps mis-covering, then148

it has to predict a very small rt(α) to “almost ensure” coverage. These are different from regret149

minimization, where loss linearization is not necessary, and the algorithm is incentivized to best-150

respond to its belief (on the empirical distribution of the environment in hindsight).151
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Appendix191

A Bayesian interpretation192

We further discuss the Bayesian interpretation of our algorithm, i.e., how the belief update Eq.(3)193

can be viewed from the statistical lens as the Bayesian nonparametric estimation of the underlying194

distribution from iid samples. We will follow [GCS+21, Chapter 23]. This is not new, and we provide195

it only for the readers’ reference.196

Distribution estimation Consider the following standard statistical problem: given x1, . . . , xn ∈197

X sampled iid from an unknown distribution X , what is a good estimate of X? The simplest198

nonparametric estimate is just the empirical distribution P̄ (x1:n).199

However, there is a parallel Bayesian perspective. It says that before observing any samples, we hold200

a certain prior F0 on X , where F0 is a distribution on all possibilities of X (i.e., all distributions201

supported on the domain X ). Then, after observing the samples x1:n, we can use the Bayes’ theorem202

to compute the posterior Fn, the distribution of X conditioned on the samples. Our estimate of X203

can be just E[Fn], the expectation of the posterior. This is Bayes-optimal under the square loss.204

Concretely, one would like F0 to be a conjugate prior: it refers to a family of distributions (over X)205

such that if the prior F0 belongs to this family, then the posterior Fn also belongs to this family. The206

most notable conjugate prior for distribution estimation is the Dirichlet process (DP), denoted as207

DP(α, P0). Here α and P0 are hyperparameters of a DP: P0 equals the mean E[DP(α, P0)], while α208

controls the variance of DP(α, P0). The larger α is, the smaller the variance of DP(α, P0) gets. Due209

to the conjugacy, if the prior F0 = DP(α, P0), then the posterior after iid observations x1:n is210

Fn = DP

(
α+ n,

α

α+ n
P0 +

n

α+ n
P̄ (x1:n)

)
.

Consequently, the Bayesian estimate of the distribution X is211

E[Fn] =
α

α+ n
P0 +

n

α+ n
P̄ (x1:n).

This is the same as the belief update Eq.(3) in our algorithm, with λt = α/(α+ n).212

A more intuitive but less rigorous explanation: the Bayesian estimate E[Fn] could be regarded as213

adding “fictitious counts” to the samples x1:n. It means that before observing x1:n, we sample214

fictitious data x̃1:N ∈ X from the prior P0 (for some large N ) and give each of them equal but215

small weights, such that their total weight equals α. Then, after observing the true samples x1:n, our216

Bayesian distribution estimate is the “weighted” empirical distribution taking both x1:n and x̃1:N217

into account.218

Adversarial Bayes Deviating from the above, a novelty of our work is rigorously showing that in an219

adversarial setting (without statistical assumptions), it is still beneficial to maintain the same Bayesian220

algorithmic belief on the environment and best-respond to that. Mathematically this is simple after221

establishing the downstream equivalence to regularization (Theorem 1), but the connection between222

this idea and CP is quite surprising to us.223

To provide more context, such an idea of “adversarial Bayes” is closely related to the use of Follow224

the Perturbed Leader (FTPL) in adversarial online learning: in each round, FTPL randomly perturbs225

a summary of the historical observations, and best-responds to that using an optimization oracle. This226

can be regarded as best-responding to a belief sampled from a Bayesian posterior (rather than the227

posterior mean), and prior works on U-calibration (with possibly nonconvex losses) [KLST23, LSS24]228

are essentially built on this idea. Another well-known example is Thompson sampling, a prevalent229

Bayesian approach for bandits and reinforcement learning [LS20, XZ23].230

Different from U-calibration and bandits, the online CP problem we consider has convex losses and231

full information feedback. This removes the need of randomization, therefore our algorithmic belief232

is chosen as the posterior mean. The algorithm simulates FTRL rather than FTPL on the output,233

which is deterministic, analytically simpler, and arguably more interpretable.234
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B Omitted proofs235

Theorem 1. With a base regularizer defined as ψ(r) := Er∗∼P0
[lα(r, r

∗)], the output rt(α) of236

Algorithm 1 satisfies237

rt(α) ∈ argmin
r∈[0,R]

[
λt(t− 1)

1− λt
· ψ(r) +

t−1∑
i=1

lα(r, r
∗
i )

]
, ∀α ∈ [0, 1], t ≥ 2. (4)

Specifically, (i) ψ is strongly convex with coefficient infr∈[0,R] p0(r); and (ii) if P0 is the uniform238

distribution on [0, R], then ψ is the quadratic function,239

ψ(r) =
1

2R
r2 − (1− α)r +

1

2
(1− α)R.

Proof of Theorem 1. We first rewrite the base regularizer ψ as240

ψ(r) =

∫ R

0

lα(r, r
∗)p0(r

∗)dr∗

= α

∫ r

0

(r − r∗)p0(r
∗)dr∗ + (1− α)

∫ R

r

(r∗ − r)p0(r
∗)dr∗.

It is twice-differentiable, with241

ψ′(r) = α

∫ r

0

p0(r
∗)dr∗ − (1− α)

∫ R

r

p0(r
∗)dr∗ =

∫ r

0

p0(r
∗)dr∗ − (1− α),

and ψ′′(r) = p0(r). The strong convexity statement on ψ is thus clear. If P0 is uniform, we have242

ψ(r) = R−1

[
α

∫ r

0

(r − r∗)dr∗ + (1− α)

∫ R

r

(r∗ − r)dr∗

]

=
1

2R

[
αr2 + (1− α)(R− r)2

]
=

1

2R
r2 − (1− α)r +

1

2
(1− α)R.

Next, consider the first part of the theorem. Algorithm 1 outputs243

rt(α) = q1−α

[
λtP0 + (1− λt) · P̄ (r∗1:t−1)

]
= min

{
x;λt

∫ x

0

p0(r)dr +
1− λt
t− 1

t−1∑
i=1

1[r∗i ≤ x] ≥ 1− α

}
. (5)

On the other hand, consider the optimization objective in Eq.(4), scaled by (1− λt)/(t− 1); it can244

be written as245

γ(x) := λtψ(x) +
1− λt
t− 1

t−1∑
i=1

lα(x, r
∗
i ).

Notice that the function γ is continuous and right-differentiable. Taking its right-derivative, we have246

γ′+(x) = λt

[∫ x

0

p0(r
∗)dr∗ − (1− α)

]
+

1− λt
t− 1

[
(α− 1)

t−1∑
i=1

1[x < r∗i ] + α

t−1∑
i=1

1[x ≥ r∗i ]

]

= λt

∫ x

0

p0(r
∗)dr∗ + λt(α− 1) +

1− λt
t− 1

(α− 1)(t− 1) +
1− λt
t− 1

t−1∑
i=1

1[x ≥ r∗i ]

= λt

∫ x

0

p0(r
∗)dr∗ +

1− λt
t− 1

t−1∑
i=1

1[x ≥ r∗i ] + α− 1.

Comparing it to Eq.(5), we see that the output rt(α) of Algorithm 1 satisfies247

rt(α) = min{s; γ′+(x) ≥ 0}.
Therefore it also satisfies the FTRL update, Eq.(4).248
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Theorem 2. Let P0 be the uniform distribution on [0, R]. With the step size λt = 1/
√
t, the output of249

Algorithm 1 against any r∗1:T sequence satisfies250

T∑
t=1

lα(rt(α), r
∗
t )−

T∑
t=1

lα(q1−α(r
∗
1:T ), r

∗
t ) = O(R

√
T ), ∀α ∈ [0, 1],

where q1−α(r
∗
1:T ) denotes the (1− α)-quantile of the hindsight empirical distribution P̄ (r∗1:T ), and251

O(·) subsumes absolute constants.252

Proof of Theorem 2. Starting from Eq.(4), we first verify that the regularizer weight λt(t−1)
1−λt

is253

increasing with respect to t (when t > 1), so that the classical FTRL regret bound can be applied. To254

this end, define255

h(t) :=
λt(t− 1)

1− λt
=

t− 1√
t− 1

.

Taking the derivative, for all t > 1,256

h′(t) =

√
t− 1− t−1

2
√
t

(
√
t− 1)2

=
t− 2

√
t+ 1

2
√
t(
√
t+ 1− 1)2

=
(
√
t− 1)2

2
√
t(
√
t+ 1− 1)2

≥ 0.

Now, since the regularizer weight is increasing and the base regularizer ψ corresponding to the257

uniform prior is R−1-strongly convex, we can apply the strong-convexity-based FTRL regret bound258

[Ora23, Corollary 7.9] starting from t = 2 (and implicitly, T ≥ 2). This yields259

T∑
t=2

lα(rt(α), r
∗
t )−

T∑
t=2

lα(q1−α(r
∗
1:T ), r

∗
t ) ≤

λT (T − 1)

1− λT

[
max

r∈[0,R]
ψ(r)− min

r∈[0,R]
ψ(r)

]

+
R

2

T∑
t=2

1− λt
λt(t− 1)

g2t ,

where gt is defined as260

gt =


α, rt(α) > r∗t ,

1− α, rt(α) < r∗t ,

0, rt(α) = r∗t .

In all cases we have g2t ≤ 1. Furthermore, minr∈[0,R] ψ(r) =
1
2α(1− α)R ≥ 0, maxr∈[0,R] ψ(r) =261

R
2 max{α, 1− α} ≤ R/2. Therefore, plugging in λt = 1/

√
t we have262

T∑
t=2

lα(rt(α), r
∗
t )−

T∑
t=2

lα(q1−α(r
∗
1:T ), r

∗
t ) ≤

R

2

[
λT (T − 1)

1− λT
+

T∑
t=2

1− λt
λt(t− 1)

]

≤ R

2

[
4
√
T +

T−1∑
t=1

√
t+ 1

t

]
= O(R

√
T ).

Adding the instantaneous regret from the first round only results in an additional R on the total regret263

bound.264
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