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ABSTRACT

Inherent heterogeneity of local data distributions, which causes inefficient model
learning and significant degradation of model performance, has been a key chal-
lenge in Federated Learning (FL). So far, plenty of efforts have focused on ad-
dressing data heterogeneity by relying on a hypothetical clustering structure or
a consistent information sharing mechanism. However, because of the diversity
of the real-world local data, these assumptions may be largely violated. In this
work, we argue that information sharing is mostly fragmented in the federated
network in reality. More specifically, the distribution overlaps are not consistent but
scattered among local clients. We propose the concept “Precision Collaboration”
which refers to learning from the informative overlaps precisely while avoiding
the potential negative transfer induced by others. In particular, we propose to infer
the local data manifolds and estimate the exact local data density simultaneously.
The learned manifold aims to precisely identify the overlaps from other clients,
and the estimated likelihood allows to generate samples from the manifold in an
optimal sampling density. Experiments show that our proposed PCFL significantly
overcomes baselines on benchmarks and a real-world clinical scenario.

1 INTRODUCTION

Federated learning (FL) has drawn considerable interest from a variety of disciplines in recent
years. FL enables collaborative model learning without the need to access the raw data across
different clients, which facilitates real-world scenarios where privacy preservation is crucial, such
as finance (Yang et al., 2019), healthcare (Xu et al., 2021) and criminal justice (Berk, 2012). While
it is common that the data samples in local clients are non-i.i.d., existing research reveals that data
heterogeneity could lead to non-guaranteed convergence, inconsistent performance and catastrophic
forgetting across different clients (Qu et al., 2022). Despite the promise of FL, an increasing concern
is how to effectively handle data heterogeneity before FL is applied in real-world data scenarios.

In view of this challenge, an important direction is personalization. A variety of efforts have been
made to explore this direction. For example, Ghosh et al. (2020) proposed to cluster the clients
according to their sample distributions and build a customized model for each cluster. However, their
hypothesis excludes the possibility of knowledge transfer across clusters. Li et al. (2021b) enhanced
personalized model learning by introducing a global regularization term, which assumed that the
shared knowledge was consistent across all clients.

Considering the diversity of local data, in this paper, we study a more flexible and general scenario
where the distribution overlaps could be fragmented as shown in Figure 1 (a). Since the informative
and ambiguous data shards exist simultaneously in another client, collaborating with all data could do
harm to the model learning. An interesting and challenging problem is how to selectively collaborate
with the favorable part of other clients in a privacy-preserving way.

In this paper, we put forward the concept “Precision Collaboration” for fragmented information
sharing. To begin with, we argue that data heterogeneity comes from inconsistent local data manifolds.
In particular, the data manifolds of different local clients could share different overlaps. Maximizing
the benefit of collaboration requires a precise utilization of these overlaps. Moreover, local data are
usually gathered from the manifold based on a particular density. If we want to generate data from the
manifold, a precise distribution density approximation for each client could facilitate model learning.
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Figure 1: Overview of our proposed PCFL. (a) Fragmented distribution overlaps exist among clients;
(b) learn the global data manifold and determine the local manifold for each client; (c) the data from
other clients lie on the local manifold Mi are identified as informative overlaps; (d) learn a precise
local density for synthetic data generation.

To realize our proposed precision collaboration, we develop a novel framework named PCFL shown
in Figure 1. We assert that the key to precisely collaborative model learning is identifying and
utilizing the distribution overlaps scattered in other clients. These overlaps between clients indeed
correspond to a specific data manifold region. We propose to infer the local data manifold to identify
the overlaps. While it is hard to learn the local manifold from the insufficient data in local clients
directly, we firstly infer the underlying manifold Mg of the data from all clients, so that the data
from all overlapped distributions are utilized for the manifold inference. Then the local manifold
Mi ⊂ Mg of the i-th client could be determined by local data Di as shown in Figure 1 (b).

From Figure 1 (c), the local data manifold Mi is used to identify the beneficial overlaps from other
clients. In particular, if a subset of the data from Dj lies on Mi, this subset is the overlaps between
the i-th and j-th clients. To further boost the local model training, we suggest sampling from Mi

with an optimal sampling probability estimated from local data as shown in Figure 1 (d), which
effectively mitigates the potential distribution discrepancy. We highlight our key contributions as
follows:

• While existing research studies FL under certain assumptions about the information sharing,
we investigate a more general learning scenario where the data sharing a common distribution
is fragmented among local clients;

• We achieve a more precise collaboration for the federated network by proposing a frame-
work PCFL. Our framework identifies the meaningful overlaps and excludes ambiguous
information from other clients, which avoids potential negative transfer;

• PCFL could be used to improve other SOTA algorithms in a plug-and-play way. Empirical
experiments corroborate that PCFL significantly outperforms all baselines on a series of
benchmark data sets and a real-world clinical data set.

2 RELATED WORK

2.1 FEDERATED LEARNING AND DATA HETEROGENEITY

Recent years have witnessed growing attention to federated learning (McMahan et al., 2017), of which
several challenges have been concerning topics including communication efficiency (Konečnỳ et al.,
2016), privacy (Agarwal et al., 2018) and data heterogeneity (Karimireddy et al., 2020). While data
heterogeneity could cause the lack of convergence and the potential of catastrophic forgetting (Qu
et al., 2022), there are researchers aiming to tackle the heterogeneity by learning a global model. For
example, Li et al. (2020) propose a proximal term to restrict the local updates to be closer to the initial
model. Mohri et al. (2019) seek a fair model performance distribution by maximizing the model
performance on any arbitrary target distribution. Li et al. (2021a) develop MOON that corrects local
training by maximizing the agreements of representation between local and global models. Instead of
pursuing a balanced performance distribution, we are interested in achieving the best performance for
each client by precisely learning the shared informative overlaps from others.

2.2 PERSONALIZED FEDERATED LEARNING

In addition to reaching a global consensus, personalized model learning also attracts widespread
concern in FL community, which may boost the flexibility of learned models when adapting to local
distributions (Cui et al., 2022; Li et al., 2021b). Plentiful research have proposed techniques for a
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(c) fragmented sharing
Figure 2: Illustrations of the three assumptions on data heterogeneity. (a) clustered sharing; 1.
all information are shared within the clusters; 2. the sharing are not consistent across all clients;
(b) common partial sharing; 1. partial information within clients are shared; 2. the sharing are
consistent across all clients; (c) fragmented sharing; 1. partial information within clients may be
shared with others, 2. the sharing are not consistent.

trade-off between local and global models. For example, Fallah et al. (2020) proposed to train local
models that can quickly adapt to local data starting from an initial shared model in a meta-learning
way. Some works train personalized models by interpolating between global and local models (Deng
et al., 2020; Dinh et al., 2020). Li et al. (2021b) achieve such a trade-off through regularizing local
models close to the global model. There are other works suggesting a partially shared model structure
for efficient information transferring (Liang et al., 2020; Collins et al., 2021). Nonetheless, we are
concerned that a global model is hard to model the various shared information between clients. The
fragmented knowledge requires precise identification when collaboratively learning from others.

To mitigate the potential overfitting when learning from limited local data, some works also attempt
generative methods to improve the model performance (Du & Wu, 2020; Zhu et al., 2021). In
particular, Zhu et al. (2021) regulate local training with the distilled knowledge from all clients. Du
& Wu (2020) lead into GAN for generating similar data for local clients. However, generating data
in an arbitrary density could result in distribution discrepancy. An optimal sampling density may
present more benefits for local learning tasks.

3 NOTATIONS AND PROBLEM DEFINITION

3.1 NOTATIONS

Suppose there are N clients in a federated network, each client owns a private dataset Dk with nk

data samples. The dataset Dk =
{
Xk, Y k

}
consists of the input space Xk and output space Y k. We

use z = {x, y} to denote a data point, and z ∈ M denotes the data manifold. The input space and the
output space are shared across all clients. In the following, we also use Di to denote the i-th client
without causing further confusion.

The goal of each client is to learn a best model to predict the label y by collaborating with others. For
example, McMahan et al. (2017) propose FedAvg, which learns a global model f for all clients by
minimizing the empirical risk over the samples from all clients, i.e.,

min
f∈F

1∑N
k=1 n

k

N∑
k=1

nk∑
i=1

l
(
f
(
xk
i

)
, yki

)
, (1)

where F is the hypothesis space and l denotes the loss objective of all clients. From Eq.1, FedAvg
assumes that the data from different clients associate with a common data manifold M and sampling
density pgz(z), i.e.,

∀ Di ∈
{
D0, Di, ..., DN−1

}
, s.t., z ∈ Di ⊂ M, z ∼ pgz(z). (2)

3.2 ASSUMPTIONS ON DATA HETEROGENEITY

However, i.i.d. assumption in Eq.(2) is largely violated as the local data distributions may be
significantly distinctive. In this event, learning a consensus by averaging the local gradients could
cause severe performance degradation on certain clients (Li et al., 2019b; Cui et al., 2021). There are
research studying federated learning with non-i.i.d. data and the assumptions on data heterogeneity
are mainly from two perspectives.

Clustered sharing. As shown Figure 2 (a), the clients partitioned in each cluster own a common data
manifolds (Mj) and sampling density (pjz(z)), i.e.,
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∀ i ∈ {0, 1, ..., N − 1} ,∃ j ∈ {0, 1, ...,K} (K < N), s.t., z ∈ Di ⊂ Mj and z ∼ pjz(z). (3)

From Eq.(3), clustered sharing requires that all message is shared within the clusters, and there is no
knowledge transferring across clusters.

Common partial sharing. From Figure 2 (b), a common distribution overlap is shared across all
clients. Meanwhile, each client owns specific knowledge that cannot be leveraged by others.

Formally, each client associates with a specific data manifold Mi, and the overlapped region of the
manifold is shared across all clients, i.e.,

∀ i ∈ {0, 1, ..., N − 1} , s.t., z ∈ Di ⊂ Mi and z ∼ piz(z),

∀ i, j, k ∈ {0, 1, ..., N − 1} (i ̸= j ̸= k), s.t., Mi ∩Mj ̸= ∅ andMi ∩Mj ⊂ Mk.
(4)

Compared with the previous assumptions above, we study a more general scenario fragmented
sharing, where the shared distribution overlaps are scattered among the clients. Besides, these
overlaps are inconsistent across all clients as shown in Figure 2 (c).

Fragmented sharing. The local data z ∈ Di are sampled from the local manifold Mi in a particular
density piz(z), and there exist overlaps among data manifolds, i.e.,

z ∈ Mi ⊂ Rd, z ∼ piz(z) (5a)

∃ i, j ∈ {0, 1, ..., N − 1} , s.t., Mi ∩Mj ̸= ∅. (5b)

where d in Eq.(5a) is the dimension of z. Eq.(5b) implies the shared overlaps may not be consistent
across all clients, e.g., ∩N−1

i=0 Mi = ∅.

4 METHODOLOGY

4.1 PRELIMINARY: NORMALIZING FLOW

Normalizing flow. The generative method NF achieves exact likelihood estimation through an
invertible transformation from a known distribution to a complex target distribution. Given a target
dataset D = {z0, z1, ..., zn−1} , zi ∈ Rd and a base variable e ∈ Rd with a known density pe(e),
classic NF methods learn a diffeomorphism f : ei = g(zi) which maps pz to the density pe:

pz(z) = pe (g(z)) |det Jg (g(z))|−1
, (6)

where det Jg (g(z)) ∈ Rd×d denotes the Jacobian matrix evaluated at g(z). Since g is bijective, it
is trackable and Eq.(6) could be effectively computed. By fitting the dataset D, the approximated
distribution p′z(z) is optimized through a pushforward operation. To enhance the scalability of g, one
could compose several diffeomorphisms g = gn−1 ◦ · · · ◦ g1 ◦ g0 for a larger model capacity.

4.2 AN OVERVIEW OF PCFL

Mi
s
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Figure 3: Two meanings of Precision Collaboration. (1) for the shared region of the local manifold
Mi, PCFL precisely learns from the overlapped data of other clients; (2) for the unshared region of
Mi, PCFL generates synthetic data with the exact density piz(z).

Learning an optimal personalized model f i for the i-th client expects a sufficient utilization of the
shared overlaps with other clients. However, due to privacy concerns, one cannot identify these
overlaps with direct access to the raw data. We suggest leveraging the overlaps via the learned
data manifold to prevent privacy leakage. As shown in Figure 3, in general, our proposed precisely
collaborative learning scheme contains:

• for the shared overlaps in other clients, we aim to precisely learn from the shared overlaps
identified by the local data manifold Mi;

• for the remaining unshared region of Mi, we expect to advance models with the generated
synthetic data from Mi in an optimal sampling density.
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4.3 PRECISION COLLABORATION I: LEARNING FROM THE SHARED OVERLAPS

From Figure 1 (a), different clients could share different distribution overlaps, and the distribution
overlaps associate with the overlapped region of the local data manifolds. While the data manifold of
local clients is mostly agnostic and hardly be inferred by limited local data, we propose to learn the
global data manifold with the data on all clients. In this way, all data are utilized and contribute to the
manifold inference.
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Figure 4: Illustrations of the manifold learning via a NF method. For a complex distribution pz(z),
we learn a tractable injective chart g ◦ h, which models pz(z) to a simple distribution pu′(u′).

Learn the global manifold. The data z ∈ D are usually supported on an unknown lower-dimensional
manifold M. In our realization, we propose to use a NF method to learn the global manifold Mg.
Given the data z, a bijective transformation gθ is used to obtain the latent representation e ∈ E,

e = gθ(z), where z = g−1
θ (e), (7)

which avoids the risk of information loss during encoding.

While a classical NF requires the latent variable e ∈ E to have the same dimension with the data space
Z, following the design in (Brehmer & Cranmer, 2020), we separate the latent space E = U × V as
shown in Figure 4, where U = Rd′

denotes the coordinates on the manifold. V = 0d−d′
denotes the

remaining coordinates, which are the directions orthogonal to the manifold.

To model the density pu(u), we transform the variable u to the variable u′ with the given density
pu′(u′) using a bijective model hϕ:

u′ = hϕ(u), where u = Split(e), (8)

where Split(e) denotes deleting the d − d′ dimensional 0 vector from e, and Pad(u) denotes the
inverse operation. Please note that in the rest of this paper we will use g∗θ to denote Split ◦ gθ and
g∗−1
θ denotes g−1

θ ◦ Pad.

After the training of the model with the parameters θ and ϕ, we learn a diffeomorphism from the
data z ∼ pz(z) to a lower dimension space u′ ∼ pu′(u′) with the encoder hϕ ◦ g∗θ . This means
that we transform the original data manifold Mg to the projected data manifold U ′. Note that the
decoder is the inverse of the encoder. The data is reconstructed given the latent variable u′ ∈ U ′, i.e.,
z = g∗−1

θ ◦ h−1
ϕ (u′).

Following the work in (Brehmer & Cranmer, 2020), we train gθ and hϕ by a two-stage optimization
framework. In particular, we first train gθ to obtain the projection onto the manifold by minimizing
the reconstruction error. Then, we optimize hϕ to approximate the density by maximizing the
likelihood (Brehmer & Cranmer, 2020). More implementation details could be found in Appendix
due to the page limit.

Determine the local manifold. A local data manifold Mi should contain the local data Di. Con-
sidering that the original global manifold Mg and the latent space U ′ (U ′ = Rd′

) is topologically
equivalent, we propose to approximate the local manifold with the projected representation:

Mi = g∗−1
θ ◦ h−1

ϕ (U ′i), where U ′i =
{
hϕ ◦ g∗θ(x

i
j)
}ni

j=1
, (9)

where U ′i denotes the set of the samples transformed to U ′ from Di, and U ′i is called the projected
local data manifold, which is computed as the convex hull of U ′i.

Note that U ′i may have a clustered structure. In the realization, we could also firstly cluster the U ′i.
The union of the convex hull of all clusters is the projected local data manifold, and the original local
data manifold (Mi) could be obtained by Mi = g∗−1

θ ◦ h−1
ϕ (U ′i).

Identify the data overlaps from other clients. Since we cannot determine the data overlaps directly
because of privacy concerns, we propose to identify the overlaps using the learned local manifolds.
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Note that the data overlaps correspond to the overlaps of the data manifolds. For example, suppose
Di,j is a subset of Di, if Di,j lies on Mi, Di,j is the data overlap between Di and Dj . From Eq.(9),
Mi is reconstructed by g∗−1

θ ◦ h−1
ϕ with U ′i. Therefore, Di,j could be identified as follows:

Di,j =
{
zjk|hϕ ◦ g∗θ(zjk) ∈ U ′i, k = 1, ..., nj

}
⊂ Mi. (10)

From Eq.(10), the data overlap Di,j is the subset in which each sample is transformed in the projected
local data manifold U ′i.

By learning from the overlaps identified from other clients, we have the following objective,

min
fi∈F

1

ni

ni∑
j=1

ℓ(f(xi
j), y

i
j) + α · 1

N − 1

N−1∑
k=0,k ̸=i

E(xk,yk)∈Di,k(ℓ(f(xk), yk)), (11)

where α > 0 is the regularization parameter, which controls the trade-off between the risk on the i-th
client and other clients.

4.4 PRECISION COLLABORATION II: LEARNING WITH AN OPTIMAL SAMPLING DENSITY

In Sec.4.3, we learn personalized models from the data overlaps between clients. However, the model
performance on the unshared data cannot be improved by collaborating with others. The specific
region Mi

s has no overlap with others, which is formulated as

Mi
s = g∗−1

θ ◦ h−1
ϕ (U ′i

s ), where U
′i
s = U ′i − ∪N−1

j=0,j ̸=i(U
′j ∩ U ′i), (12)

We propose to advance the model by generating data sampled from the local manifold Mi.

While an arbitrary sampling density could generate data D′i deviated from the local distribution
d(D′i, Di) > ϵ, this could induce bias to the learned model. An optimal utilization of the synthetic
data expects a sampling density close to piz(z). Therefore, we propose to sample from Mi with the
exact estimation of piz(z).

Exact likelihood estimation. Note that we learn the manifold by applying a normalizing flow
framework, which achieves the exact likelihood estimation simultaneously.

Since we learn the global data manifold, the global data density pgz(z) is transformed to pu′(u′). For
the local data density piz(z), we have the following proposition.
Proposition 1. (proof in Appendix) For any data point z ∈ Mi

s, the local density piz(z) satisfies

piz(z) = c · pu′ (hϕ ◦ g∗θ(z))
∣∣det Jhϕ

(hϕ ◦ g∗θ(z))
∣∣−1

∣∣∣det [JT
g∗
θ
(g∗θ(x)) Jg∗

θ
(g∗θ(z))

]∣∣∣− 1
2

, (13)

where c is a proportionality constant, and Jhϕ
and Jg∗

θ
are the Jacobian matrix of hϕ and g∗θ ,

respectively.
From the Proposition 1, to sample z ∈ Mi

s in the density piz(z), we could firstly sample u′ ∼ pu′(u′)
and choose u′ ∈ U ′i

s defined in Eq.(12). Then we transform the sampled u′ to the data space by
z = g∗−1

θ ◦ h−1
ϕ (u′). The final objective is as follows

min
fi∈F

1

ni

ni∑
j=1

ℓ(f(xi
j), y

i
j)+α· 1

N − 1

N−1∑
k=0,k ̸=i

E(xk,yk)∈Di,k(ℓ(f(xk), yk))+β·E(x,y)∼pi
z(z)

ℓ(f(x), y),

(14)
where the sampled (x, y) in the third term satisfies (x, y) ∈ Mi

s.

4.5 MORE DISCUSSION ON PCFL

From the objective formulated in Eq.(14), PCFL advances a generative framework for efficiently
collaborative learning. In addition to the properties summarized as follows, more discussions could
be found in Appendix,

• Scalability: Since PCFL achieves a smarter utilization of data from other clients, it is
pluggable for other FL algorithms. Experiments in Sec. 5 also verify that PCFL could
benefit other SOTA baselines;

• Similarity metric: PCFL identifies the overlaps among federated networks, which inspires
a novel metric for measuring the similarity between clients. More information about it could
be found in Appendix.

6
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(a) ground truth

(b) local training

(c) FedAvg

(d) PCFL

(e) the projected data manifold  

Figure 5: Illustrations of the synthetic experiments. (a) the learning tasks of the six clients; (b),
(c) and (d) are the performance of the models learned by local training, FedAvg and PCFL; (e) the
learned projected global data manifolds. The points denote the samples from different clients. The
colored lines denote the identified local manifolds.

5 EXPERIMENTS

We intuitively show the motivation of our method by conducting experiments on synthetic data.
We compare our method with various baselines on a wide range of benchmark datasets, including
image and tabular datasets. More importantly, the practicability of our method is validated in a
real-world clinical federated scenario on eICU dataset (Pollard et al., 2018). The source codes are
made publically available at https://github.com/pcfl/pcfl.

5.1 SYNTHETIC EXPERIMENTS

Synthetic data. Suppose there are 96 clients: Di, i ∈ {1, 2..., 96}. The data points z = {x, y} is
generated from two objectives y = sin(x) + ϵ or y = −sin(x) + ϵ shown in Figure 5 (a), where
ϵ ∼ N (0, 0.1) denotes label noise.

Fragmented data overlaps. To generate heterogeneous and overlapped local data, we sample
x from the overlapped ranges. In particular, we separate the input space X into four intervals
[0, π

2 ], [
π
2 , π], [π,

3π
2 ] and [ 3π2 , 2π], and each client randomly chooses two different intervals to

sample data. To create conflicting learning tasks, the label of the selected 48 clients is calculated
by y = sin(x) + ϵ, and the label of the remaining 48 clients is calculated by y = −sin(x) + ϵ.

Table 1: CIFAR10
Methods ACC (%)

local 68.9±1.1

FedAvg 72.3±.5

FedProx 71.5±.8

Fed-MTL 68.4±2.2

PerFedAvg 67.3±.1

LG-FedAvg 69.2±.3

FedPer 82.2±.9

FedRep 82.2±1.8

APFL 64.5±3.7

L2GD 10.0±.0

Ditto 82.1±.2

PCFL 87.3±1.2

local FedAvg FedRep*
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Figure 6: CIFAR10

In this setting, learning a global model
for all clients could hurt the model per-
formance as there are two conflicting
learning tasks as shown in Figure 5 (c).
The best way of collaborative learning
for each client is identifying the data
overlaps which are sampled from the
identical objective with the same inter-
vals. For example, D0 consists of the
data sampled from [0, π

2 ] and [π2 , π],
while D1 consists of the data sampled
from [π2 , π] and [π, 3π

2 ] shown in Fig-
ure 5 (a). Learning an optimal model for D0 needs to precisely identify the data overlap sampled
from [π2 , π] in D1. From Figure 5 (e), PCFL efficiently obtains local data manifolds and identifies
the data overlaps between clients. Therefore, PCFL learns a better model by precision collaboration
which maximizes the benefits and avoids potential negative transfer from other clients as shown in
Figure 5 (d).

Datasets. We adopt three benchmark image datasets: CIFAR10 (Krizhevsky et al., 2009), FEM-
NIST (Caldas et al., 2018), CelebA (Liu et al., 2015), and a tabular dataset Adult (Kohavi et al.,
1996). We create the federated environment with data heterogeneity for CIFAR10 by randomly

7
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allocating several classes to each client following the work (McMahan et al., 2017). We use K to
denote the number of clients and S to denote the number of classes in each client. For CIAFR10,
K = 150, S = 5 means there are 150 clients and each client contains 5 classes of images. For
FEMNIST which has 10 classes of handwritten letters, we consider the setting of K = 200, S = 5.
The number of samples in each client is determined according to a log-normal distribution (Li et al.,
2019a). The task on CelebA is to classify whether the celebrity in the image is smiling (Li et al.,
2021b). There are 545 clients and 21 samples per client in average. For the tabular dataset Adult, the
task is to predict whether an individual’s income is beyond 50K/year based on some census features,
including age, race, workclass, etc. Following the setting in (Mohri et al., 2019), all individuals are
split into two clients. One is PhD client and the other is non-PhD client.

5.2 BENCHMARK EXPERIMENTS

Table 2: FEMNIST
Methods ACC (%)

local 59.9±.9

FedAvg 85.4±.8

FedProx 84.9±1.7

Fed-MTL 60.7±2.2

PerFedAvg 26.8±.5

LG-FedAvg 35.2±1.4

FedPer 82.9±.2

FedRep 82.8±1.4

APFL 62.3±1.4

L2GD 14.5±1.6

Ditto 85.4±.2

PCFL 91.9±.4
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Figure 7: FEMNIST

Baselines. We compare our method
with various baseline, including
global and personalized methods.
Global baselines include: 1) Fe-
dAvg (McMahan et al., 2017); 2)
FedProx (Li et al., 2020). Person-
alized baselines include: 1) Fed-
MTL (Smith et al., 2017); 2) PerFe-
dAvg (Fallah et al., 2020); 3) LG-
FedAvg (Liang et al., 2020); 4) Fed-
Per (Arivazhagan et al., 2019); 5) Fe-

dRep (Collins et al., 2021); 6) APFL (Deng et al., 2020); 7) L2GD (Hanzely & Richtárik, 2020); 8)
Ditto (Li et al., 2021b).

Experimental Results. The accuracy of all methods on CIFAR10 dataset are shown in Table 11.
PCFL outperforms all baselines on this classification task. Since each client has insufficient data
samples (ni = 333), FedAvg (72.3%) learning from all data has a better performance compared with
local (68.9). From Table 1, FedRep (82.2%) surpasses other baselines by learning a global feature
extractor. As a pluggable method, PCFL could be used to enhance the performance of other art
methods. From Figure 6, PCFL improves the performance of FedRep by 5.1%, which indicates that
PCFL effectively identifies the informative knowledge from others.

Similar phenomena could also be found in the experimental results on FEMNIST. FedAvg achieves a
better performance compared with other baselines because of the relatively slighter heterogeneity.
PCFL also outperforms all baselines on both learning tasks. Moreover, PCFL successfully boosts
the models learning on the three baselines as shown in Figure 7. More experimental results could be
found in Appendix.

Table 3: Adult

Methods average non-PhD PhD
local 83.3±.1 83.4±.1 70.2±.4

FedAvg 83.3±.3 83.4±.3 72.9±.2

FedProx 83.3±.1 83.5±.1 71.8±.5

Fed-MTL 83.3±.2 83.4±.2 69.1±.4

PerFedAvg 83.4±.2 83.6±.2 70.2±2.0

APFL 83.0±.1 83.2±.1 69.1±.3

L2GD 70.4±.0 70.4±.0 71.8±0.6

Ditto 83.4±.2 83.5±.2 75.7±.9

PCFL 83.5±.1 83.6±.1 77.3±.7
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Figure 8: Adult
We also evaluate the availability of our proposed method on a tabular data Adult, and the results on
the two clients are shown in Table 3. Since the classifier on Adult is one-layer MLP, LG-FedAvg,
FedPer and FedRep degrade into local training. Compared with PhD client which has 413 training
samples, non-PhD has more than 30000 training samples. From Table 3, all methods achieve similar
performance on non-PhD client. Because of the severe distribution discrepancy, naive averaging may
not lead to optimal accuracy on non-PhD client. From Figure 8, by leveraging the favorable data

1We show the best performance of PCFL in all tables. For all figures in experiments, we show the results of
Local, FedAvg and the best baseline.
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in non-PhD client and the learned manifold of PhD client, PCFL substantially improves the model
performance of local training (↑ 7.1%).

5.3 REAL DATA EXPERIMENTS

To further verify the practicability of PCFL, we conduct experiments on a real-world clinical dataset
eICU (Pollard et al., 2018). eICU contains the patients to ICUs with hospital information. Naturally,
hospitals located in different areas are local clients as in (Cui et al., 2022), where the patient data are
kept confidential. We preprocess the data following the work (Sheikhalishahi et al., 2019) and each
data spans a 1-hour window. The task is to predict in-hospital mortality of each instance using the
48-hour monitoring data.

Table 4: eICU
Methods AUC(%)

local 73.7±1.4

FedAvg 73.2±.5

FedProx 78.2±.2

Fed-MTL 77.2±1.6

PerFedAvg 73.8±.3

LG-FedAvg 74.5±.2

FedPer 74.3±.7

FedRep 74.1±1.2

APFL 68.3±.8

L2GD 72.0±.6

Ditto 78.3±.1

PCFL 80.0±.6
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Figure 9: eICU

In the experiments, we randomly select
14 hospitals in the federated network.
We use a Bi-LSTM to implement this bi-
nary classification. We use AUC as the
metric due to the severe label imbalance
(more than 90% samples have negative
labels).

From Table 4, PCFL still maintains the
best model utility. FedAvg achieves
a comparable performance compared
with local. While different hospitals

own different populations which could result in data heterogeneity, Ditto learns a robust personalized
model and achieves better performance (78.3%). The results shown in Figure 9 prove that PCFL could
also benefit the baselines in real-world scenarios.

5.4 ABLATION STUDIES

While PCFL formulated in Eq.(14) consists three terms: 1). loss of local training; 2). loss on the
identified overlapped data from other clients; 3). loss on sampled data from the manifold, to analysis
the effect of each component, we conduct ablation studies on several datasets. More ablation studies
and implementation details could be found in Appendix.

When α = 0, only the local data and sampled data from local manifolds are used for model learning.
When β = 0, only the local data and the identified overlapped data from other clients are utilized
for model learning. Experiments in Table 5 demonstrate that 1). both the identified distributional
overlaps (β = 0) and the data sampled with a learned distribution density (α = 0) facilitate the
model learning; 2). the identified overlaps (β = 0) could achieve more performance gain than the
generated data (α = 0).

Table 5: Ablation studies of PCFL formulated Eq.(14).
Dataset local α = 0 β = 0 PCFL

CIFAR10 68.9±1.1 76.7±.3 79.4±.7 84.1±.8

FEMNIST 59.9±.9 75.5±1.1 82.7±.8 89.7±.2

CelebA 69.3±1.1 82.6±2.7 80.8±.9 85.8±1.1

eICU 73.7±.4 76.6±.3 77.4±.5 78.6±.4

6 CONCLUSION

In this paper, we propose a precise collaboration framework PCFL for a more general FL learning
scenario, where the fragmented and shared knowledge is distributed among other clients. Experiments
on benchmark datasets and a real-world clinical dataset verify the superiority of our method because
of optimal and precise utilization of the shared information. Our framework determines the overlaps
between clients, which suggests several attractive topics, such as identifying malicious clients or
noisy data in the federated network. Moreover, PCFL encourages a novel similarity metric stated
in Sec. C.1. This metric could be used to provide incentives or impose charges on each client, to
promote the practicality of FL in real-world applications.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Naman Agarwal, Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar, and Brendan McMahan. cpsgd:
Communication-efficient and differentially-private distributed sgd. In NeurIPS, 2018.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Feder-
ated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Richard Berk. Criminal justice forecasts of risk: A machine learning approach. Springer Science &
Business Media, 2012.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estimation.
Advances in Neural Information Processing Systems, 33:442–453, 2020.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
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A THEORETICAL PROOFS

A.1 PROOF OF PROPOSITION 1

Suppose there is a smooth and injective mapping g∗θ : Rd → Rd′
with d′ ≤ d, U ∈ Rd′

is the latent
variable and has Z := g∗−1

θ (U). From differential geometry (Krantz & Parks, 2008), we have

pz(z) = pu (g
∗
θ(z))

∣∣∣det J⊤
g∗
θ
(g∗θ(z)) Jg∗

θ
(g∗θ(x))

∣∣∣−1/2

. (15)

Suppose there is a smooth and bijective mapping hϕ : Rd′ → Rd′, U ′ ∈ Rd′
is the latent variable

which has U := hϕ(U
′). We have

pu(u) = pu′ (hϕ(u))
∣∣det Jhϕ

(hϕ(u))
∣∣−1

. (16)

According to the chain rule, combining Eq.(15) and Eq.(16), we have

pz(z) = pu′ (hϕ ◦ g∗θ(z))
∣∣det Jhϕ

(hϕ ◦ g∗θ(z))
∣∣−1

∣∣∣det J⊤
g∗
θ
(g∗θ(z)) Jg∗

θ
(g∗θ(z))

∣∣∣−1/2

. (17)

Since we learn a global manifold Mg with the data from all clients, the density of the data from all
clients pgz(z) is approximated in Eq.(17). From the definition of Mi

s in Eq.(12), if there is a data
point z ∈ Mi

s, z will cannot be sampled from any other manifolds Mj ( j ̸= i ) but Mi, i.e.,

∀z ∈ Mg, s.t., z /∈ Mj(j ̸= i) if z ∈ Mi
s. (18)

Therefore, we have

pgz(z, z ∈ Mi
s|z ∈ Mi) =

pgz(z, z ∈ Mi
s, z ∈ Mi)

pgz(z ∈ Mi)
=

pgz(z, z ∈ Mi
s)

pgz(z ∈ Mi)
=

1

pgz(z ∈ Mi)
· piz(z, z ∈ Mi

s).

(19)

Combining with Eq.(17), for z ∈ Mi
s, we have

piz(z) = c · pu′ (hϕ ◦ g∗θ(z))
∣∣det Jhϕ

(hϕ ◦ g∗θ(z))
∣∣−1

∣∣∣det J⊤
g∗
θ
(g∗θ(z)) Jg∗

θ
(g∗θ(z))

∣∣∣−1/2

, (20)

and Proposition 1 holds.

B PIPELINE OF OUR FRAMEWORK PCFL

The pipeline of the global manifold learning Mg is elaborated in Algorithm 1. We learn a global
manifold model in the federated learning setting. There are two phases of training. Firstly, only the
parameters of gθ are updated as in Line 5-7. Then the parameters of hϕ are updated as in Line 9-10.
The learned manifold model g∗θ ◦ hϕ is utilized in our framework PCFL, whose pipeline is elaborated
in Algorithm 2. To begin with, the local manifolds of clients are extracted based on Eq.(9) and the
distribution overlaps are calculated based on Eq.(10). Since only the borders of convex hulls are
exchanged, there is no leakage of sensitive information. The data from the overlapped distribution
of other clients are used to train the models. They are utilized by transmitting the average gradients
through the server as in Line 7-14.
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Algorithm 1 Learn the global manifold in the federated learning framework
Input: epoch Tm, batch size Bm, initial manifold model Mg with the parameters θ and

ϕ.
1: for t = 0, ..., Tm − 1 do
2: randomly select a subset of clients St

3: for client Di ∈ St in parallel do
4: draw mini-batch zi : zit1 , ..., z

i
tBm

∼ Di

5: if t < Tm/2 then
6: calculate the loss: 1

Bm

∑Bm

i=1 ∥ zi − g−1
θ (gθ(z

i)) ∥;
7: then calculate the gradients of loss with respect to parameters θ;
8: else
9: calculate the loss: − 1

Bm

∑Bm

i=1

(
log pu′(hϕ ◦ g∗θ(zi))− log detJh(hϕ ◦ g∗θ(zi))

)
;

10: then calculate the gradients of loss with respect to parameters ϕ;
11: end if
12: end for
13: Server aggregates the gradients of selected clients and update the parameters θ and ϕ.
14: end for
15: Output: the learned manifold model gθ and hϕ.

Algorithm 2 Federated learning framework PCFL

Input: epoch T , batch size B, initial models
{
f0, ..., fN−1

}
, hyperparameters α and

β;
1: all the clients determine the local manifold Mi and U ′i based on Eq.(9), and send U ′i to the

Server.
2: the Server calculates the overlaps of U ′i between clients, calculates U ′i

s based on Eq.(12), and
sends them to each client;

3: for t = 0, ..., T − 1 do
4: randomly select a subset of clients St,
5: the selected clients send their local models to the Server;
6: for client Di ∈ St in parallel do
7: draw mini-batch (xi, yi) ∼ Di;
8: calculate the loss E(xi,yi)∈Di(ℓ(fi(x

k), yk)) + β · E(x,y)∈pi
z(z)

ℓ(fi(x), y), and update the
model f i using the gradients of loss;

9: for k = 0, ..., N, k ̸= i do
10: draw mini-batch (xk, yk) ∼ Di,k

11: calculate the loss α · E(xk,yk)∈Di,kℓ(fi(x
k), yk), and update the model f i using the

gradients of loss;
12: end for
13: the Server aggregates the parameters of f i from other clients and send the average to the

i-th client;
14: then the i-th client Di updates the model f i with the received parameters and local gradients.
15: end for
16: end for
17: Output: the learned personalized models

{
f0, ..., fN−1

}
.

C MORE DISCUSSIONS ABOUT PCFL

C.1 A NEW METRIC OF CLIENT SIMILARITY

Our framework PCFL inspires a novel metric for measuring the similarity between local clients.
For example, suppose the i-th client and j-th client has the identical local manifold Mi = Mj ,
the similarity between clients is close to 1. On the contrary, if the two local manifolds are disjoint
Mi ∩ Mj = ∅, the measured similarity should be 0. In particular, we propose to measure the
similarity as the Intersection of Union (IoU) of the projected local manifold,

S(Di, Dj) = IoU(U ′i, U ′j). (21)
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A communication-efficient client-level collaboration. Our proposed metric allows efficient collabo-
rator identification which reduces the communication and computation overhead. For example, we
require Di to collaborate with certain clients who have a higher client similarity:

min
f∈F

1∑N−1
k=0,S(Di,Dk)≥ϵ n

k

N−1∑
k=0,S(Di,Dk)≥ϵ

nk∑
i=1

l
(
f
(
xk
i

)
, yki

)
, (22)

where ϵ ≥ 0 is a pre-defined threshold. Note that the objective in Eq.(22) is different from clustered
FL methods. Clustered FL methods learn a common model for each cluster while Eq.(22) learns a
personalized model for each client. Experimental results shown in Sec. E.2 verify that this method
achieves a comparable performance while reducing communication and computation overhead.

Previous work has explored the problem of identifying similar datasets in a graph network for
downstream learning tasks (Hallac et al., 2015). In particular, Jung (2020) formulate the learning
from distributed local datasets as a convex optimization problem, and proposes to cluster the local
datasets according to the learned parameters. Jung & Tran (2019) extend network lasso methods
in regression tasks under a clustering assumption. These cluster-based methods could be applied in
federated learning with a proper design for privacy-preserving. In our experiments, we use network
lasso to cluster the local datasets under the federated setting. In Table 6, we show the comparison
of PCFL and the clustered methods. Our method outperforms all cluster-based methods, which
demonstrates that a precision identification of overlaps in other clients facilitates model learning.
Moreover, an interesting direction is the application of our proposed similarity metric in the graph
network. For example, the manifold learning of local datasets in the graph network may also be used
for similarity measurement.

Table 6: More experimental results on eICU
Methods AUC (%)

local 73.7±1.4

FedAvg 73.2±.5

FedProx 78.2±.2

Fed-MTL 77.2±1.6

PerFedAvg 73.8±.3

LG-FedAvg 74.5±.2

FedPer 74.3±.7

FedRep 74.1±1.2

APFL 68.3±.8

L2GD 72.0±.6

Ditto 78.3±.1

Clustered FL 74.7±.3

Network Lasso 76.3±.8

ours 80.0±.6

C.2 COMPUTATION COMPLEXITY AND OPTIMIZATION EFFICIENCY

From Algorithm 1 and Algorithm 2, PCFL is realized by a two-staged optimization framework. For
the training of the normalizing flow in the first stage, PCFL learns a global model for all clients,
which has the computation complexity as FedAvg. For the identification of the manifold overlaps,
it has O(1) time complexity as the server only computes it once. For the training of local models
in the second stage, PCFL learns a personalized model for each client, which has the computation
complexity as other personalized methods. From the above all, PCFL achieves a similar computation
complexity as baselines.

A classical NF method requires a fixed dimensionality of the latent space, which is the same as the
dimension of the data. In this case, learning such a NF model could bring a huge computation overhead
when the data is high-dimensional. In the first phase of our framework, we learn a low-dimensional
manifold in a NF method, which significantly reduces the computation overhead.

Our method learns from local data, data overlaps of other clients, and sampled data in the manifold.
By precision collaboration, we avoid learning from all data. We make comparisons of run-time
consumption with the baselines. The experiments are conducted on the same device NVIDIA GeForce
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RTX 2080 Ti. The results on eICU dataset are displayed in Table 7. As a pluggable method, the time
consumption of PCFL is comparable to the corresponding baselines. Fed-MTL involves computing
the correlation of the parameters among all client models, which could result in more computation
overhead.

Table 7: Run-time consumption comparisons
Methods Run-time consumption

local 33 min 47 s
FedAvg 57 min 41 s
FedProx 56 min 35 s

Fed-MTL 101 min 12 s
PerFedAvg 79 min 47 s
LG-FedAvg 55 min 27 s

FedPer 57 min 43 s
FedRep 40 min 37 s
APFL 92 min 13 s
L2GD 63 min 4 s
Ditto 71 min 34 s
PCFL 74 min 27 s

C.3 PRIVACY PRESERVING

PCFL maintains data confidentiality as baselines because there is no shared data between local clients.
PCFL achieves privacy-preserving as baselines because our framework learns models by commu-
nicating model parameters only. Federated learning may need further exploration to maintain data
privacy. Some researchers claim there is information leakage when sharing models or gradients (Zhu
et al., 2019). To alleviate this issue, there are research proposing to apply other techniques to FL
methods, such as differential privacy (Wei et al., 2020), secure multi-party computation, etc. PCFL is
also compatible with these techniques.

D ABLATION STUDIES

D.1 MORE ABLATION STUDIES ABOUT PCFL

PCFL is pluggable for other FL algorithms. We test local, FedAvg, FedRep and Ditto which are
implemented with/without our method as in Table 8 and Table 9. In the datset Adult, all individuals
are split into two clients, one of which is PhD client and the other is non-PhD client. The non-PhD
client contains 32148 training samples while the PhD client contains 413 samples. Therefore the
non-PhD client of Adult can not benefit much from federated learning methods. In other datasets, our
method boosts the baselines by large margins.

Table 8: Experiment results of PCFL implemented on CIFAR10, FEMNIST, and CelebA (%)
Dataset local PCFL (local) FedAvg PCFL (FedAvg) FedRep PCFL (FedRep)

CIFAR10 68.9±1.1 84.1±.8 (↑ 15.2) 72.3±.5 79.5±.5 (↑ 7.2) 82.2±1.8 87.3±1.2 (↑ 5.1)
FEMNIST 59.9±.9 89.7±.2 (↑ 29.8) 85.4±.8 90.2±1.2 (↑ 4.8) 82.8±1.4 91.9±.4 (↑ 9.1)

CelebA 69.3±1.1 85.8±1.1 (↑ 16.5) 85.2±2.1 89.5±2.0 (↑ 4.3) 68.1±.6 71.2±.6 (↑ 3.1)

Table 9: Experiment results of PCFL on eICU and Adult (%)
Dataset local PCFL (local) FedAvg PCFL (FedAvg) Ditto PCFL (Ditto)

Adult non-PhD 83.4±.1 83.6±.1 (↑ .2) 83.4±.3 83.6±.1 (↑ .2) 83.5±.2 83.6±.0 (↑ .1)
Adult PhD 70.2±.4 77.3±.7 (↑ 7.1) 72.9±.2 76.8±.2 (↑ 3.9) 75.7±.9 76.8±.1 (↑ 1.1)

eICU 73.7±1.4 78.6±.4 (↑ 4.9) 73.2±.5 80.0±.6 (↑ 6.8) 78.3±.1 79.6±.4 (↑ 1.3)

E EXPERIMENTS AND IMPLEMENTATION DETAILS

E.1 MORE EXPERIMENTS

The experimental results on CelebA are shown in Table 11 and Figure 10. Moreover, we conduct
experiments on FEMNIST on more heterogeneous settings with more clients. We partition the dataset
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into 400 clients with the Dirichlet distribution Dir400(0.1) and Dir400(0.5) following the work
in (Wang et al., 2019). We compare our method with the baselines, and the results are shown in
Table 10. With more clients, each client has fewer training samples. Local method shows poor perfor-
mance (63.6% in Dir400(0.5)). Global methods (FedAvg and FedProx) achieve better performance
under a less heterogeneous setting (Dir400(0.5)), while the performance of personalized methods
degrades. Under two settings (Dir400(0.1) and Dir400(0.5)), PCFL outperforms all baselines by
identifying the informative overlaps for each client.

Table 10: More experimental results on FEMNIST (Acc %)
methods Dir400(0.1) Dir400(0.5)

local 71.8±.8 63.6±.4

FedAvg 69.1±.5 80.6±1.7

FedProx 67.8±.3 79.9±.2

Fed-MTL 81.8±.9 60.1±.4

PerFedAvg 82.4±1.1 46.7±.8

LG-FedAvg 86.8±.8 49.5±.5

FedPer 91.1±.3 76.8±.2

FedRep 91.8±1.4 74.6±.3

APFL 79.9±.9 60.9±.5

L2GD 77.6±.4 39.9±1.5

Ditto 91.7±.7 82.9±.4

PCFL 96.1±.4 88.3±.6

E.2 EVALUATION ABOUT THE PROPOSED NOVEL METRIC

Table 11: CelebA
Methods ACC (%)

local 69.3 ±1.1

FedAvg 85.2±2.1

FedProx 81.2±1.2

Fed-MTL 68.2±.4

PerFedAvg 68.6±.8

LG-FedAvg 68.4±1.2

FedPer 68.2±.5

FedRep 68.1±.6

APFL 71.4±.6

L2GD 67.9±2.0

Ditto 84.5±.6

PCFL 89.5±2.0
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Figure 10: CelebA

In Sec. C.1, we propose a novel
metric for measuring the distance
between local clients, which could
be used for a communication-
efficient client-level collaboration.
We conduct experiments on eICU
dataset, in which we select the
most similar 7 clients for each
client to learn a personalized
model. The experimental results
are shown in Table 12.

From Table 12, our method for
identifying the collaborators achieves a comparable performance compared with baselines and
reduces computation and communication overhead by collaborating with a subset of local clients.

To explore the effect of ϵ on the performance of the learned models, we set ϵ by controlling the
number of clients to collaborate for each client. There are 14 clients in eICU dataset. We test the
number of the collaborator (C) to be 1, 3, 5, ... etc. The results are shown in Table ??. When C = 7,
the learned model achieves the highest AUC (78.0). When C > 7, the performance tends to remain
unchanged.

E.3 IMPLEMENTATION DETAILS

Our method is implemented with Pytorch and all experiments are run 5 times to calculate the average
results with stds. We use a four-layer MLP for the synthetic experiment, three-layer MLP for
FEMNIST, two-layer CNNs for CIFAR10 and CelebA, and a one-layer MLP for Adult. Following
the work (Collins et al., 2021), for all the methods we sample 10% of the clients in every global
epoch. We train the models for 200 global epochs on FEMNIST, CIFAR10 and CelebA, 50 on
Adult. And we train 15 local epochs for FEMNIST, CIFAR10 and Adult in every global epoch, 25
for CelebA. All models are trained with stochastic gradient descent. We use grid search to find the
optimal hyperparameters α and β in the validation set of each dataset. We set α = 0.5, β = 0.5 for
CIFAR10, CelebA, Adult; and set α = 1, β = 0.5 for FEMNIST and eICU. Besides, we test different
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Table 12: Experimental results on eICU
Methods AUC (%)

local 73.7±1.4

FedAvg 73.2±.5

FedProx 78.2±.2

Fed-MTL 77.2±1.6

PerFedAvg 73.8±.3

LG-FedAvg 74.5±.2

FedPer 74.3±.7

FedRep 74.1±1.2

APFL 68.3±.8

L2GD 72.0±.6

Ditto 78.3±.1

ours 78.0±.1

Table 13: Experimental results on eICU with adaptive ϵ

C AUC (%)
1 69.0±.4

3 75.4±.2

5 75.5±.7

7 78.0±.1

9 77.1±.9

11 76.8±.2

13 77.0±.3

manifold dimensions d′ for each benchmark dataset. We keep d′ as small as possible while ensuring
reconstruction quality on the validation set. We d′ = 256 for CIFAR10 and CelebA, d′ = 12 for
FEMNIST, d′ = 32 for Adult and eICU. For synthetic experiment, the data dimension d = 3 and
manifold dimension d′ = 2 since one element of data z identically equals to 0. The source codes are
made publically available at https://github.com/pcfl/pcfl.

E.4 DATASETS

In our experiments, CIFAR10, FEMNIST, CelebA and Adult are all public dataset. For the synthetic
experiment, the data point z = {x, 0, y} has three elements. We add a zero element to data so that the
manifold dimension is smaller than the data dimension, which simulates the situation in real-world
datasets. We create the federated environment with data heterogeneity for CIFAR10 and FEMNSIT
by randomly allocating several classes to each client following the work (McMahan et al., 2017). For
the dataset eICU, we follow the procedure on the website https://eicu-crd.mit.edu and
got the approval for the dataset. We follow the data preprocessing as in Sheikhalishahi et al. (2019)
and randomly select 14 hospitals as introduced in the main text.

E.5 COMPUTING RESOURCES

Part of the experiments is conducted on a local server with Ubuntu 16.04 system. It has two physical
CPU chips which are Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz with 32 logical kernels. The
other experiments are conducted on a remote server. It has 8 GPUs which are GeForce RTX 2080 Ti.
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