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Abstract

The search for a general model that can operate seamlessly across multiple domains
remains a key goal in machine learning research. The prevailing methodology
in Reinforcement Learning (RL) typically limits models to a single task within
a unimodal framework, a limitation that contrasts with the broader vision of a
versatile, multi-domain model. In this paper, we present Jack of All Trades (JAT),
a transformer-based model with a unique design optimized for handling sequential
decision-making tasks and multi-modal data types. The JAT model demonstrates
its robust capabilities and versatility by achieving strong performance on very
different RL benchmarks, along with promising results on Computer Vision (CV)
and Natural Language Processing (NLP) tasks, all using a single set of weights.
The JAT model marks a significant step towards more general, cross-domain AI
model design, and notably, it is the first model of its kind to be fully open-sourced1,
including a pioneering general-purpose dataset.

1 Introduction

Machine learning researchers have long aimed to develop versatile models that can adapt seamlessly
to different domains. The recent success of Transformers (Vaswani et al., 2017) in NLP, CV, and
to some extent in RL, has opened new avenues in this quest. In this paper, we attempt to extend
the boundaries of this success by proposing a single, unified model capable of operating across a
wide range of NLP, CV, and RL tasks using a single set of parameters. This effort not only seeks to
challenge the conventional compartmentalization of AI tasks into distinct domains, but also aims to
establish a more holistic approach to AI model design.

While combining visual and textual tasks has been well-researched, integrating RL tasks remains
relatively unexplored and poses distinct challenges. RL tasks are inherently diverse and heterogeneous,
making their combination among themselves and with other domains a highly complex exercise.
This integration requires dealing with a landscape of different modalities, task complexities, and data
volumes across domains and tasks. New questions that arise include: (1) How to design a model
and learning method that effectively handles different modalities and data types (sequential decision-
making and text-centric)? (2) How to formulate a learning objective that appropriately balances and
harmonizes the different modalities, tasks, and domains without bias toward any particular domain or
task? (3) How to design a learning strategy that can accommodate the different levels of complexity
inherent in different tasks?

1https://huggingface.co/jat-project/jat

38th Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).
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These goals are concurrent and, to our knowledge, have only been addressed together by Reed et al.
(2022) with the Gato model. Our contributions are characterized by three major advances: (1) Our
model features an innovative structure optimized for sequential decision-making tasks. It uniquely
assigns each timestep to a corresponding token embedding, resulting in a simpler design. This
approach significantly expands the attention window in terms of timesteps compared to Gato (e.g., it
is 19 times larger for Atari and more than 25 times larger for Meta-World). (2) In the spirit of open
source, we release our code, dataset, and model to the research community. (3) We add observation
prediction as an auxiliary task to our model. We demonstrate that this integration significantly
contributes to learning a more efficient agent.

Ultimately, our JAT model achieves competitive results on the tasks studied, while being more than 6
times smaller than Gato and relying on a significantly lower training budget. As mentioned above,
this new paradigm raises a number of open questions and paves the way for new research. We present
a first milestone in this emerging framework and acknowledge the significant potential for improved
results.

2 Related Work

2.1 Transformer for RL

Transformer models (Vaswani et al., 2017) are designed to model sequences and in particular
sequences of words in natural language. However, sequence modeling problems span over a much
larger set of domains than only NLP. Several efforts have been made to leverage these models for RL
(Li et al., 2023). In this paper, we focus on modeling RL trajectories (i.e., sequences of observations,
actions and rewards). Modeling such sequences with a Transformer was introduced by Chen et al.
(2021) and the Decision Transformer (DT) model. In DT, a Transformer model is trained with offline
RL to take sequences of transitions as input and predict the next action. In particular, Chen et al.
(2021) proposed to use returns-to-go (i.e. the return from the current state) to condition actions’
generation on both the previous observation and the desired return-to-go. While this has the advantage
of explicitly modeling the relations between action selection and return, using the model at inference
requires providing at every step a desired return. Liu & Abbeel (2023) proposed to extend this by
using hindsight relabelling to better exploit sub-optimal trajectories. Zheng et al. (2022) also extended
the DT approach by mixing offine pretraining and online finetuning. Finally, Lee et al. (2022) studied
how the DT approach scales to a multi-task RL setup where a single policy is learned for multiple
games. In terms of sequence structure, some discretize each dimension of the observation and action
spaces separately (Reed et al., 2022; Janner et al., 2021; Chebotar et al., 2023), while others associate
an embedding with each element of the sequence (Chen et al., 2021; Zheng et al., 2022).

Our work lies in this line of work as it also leverages Transformers to model trajectories. However,
our approach (1) uses standard Behavior Cloning (BC) instead of conditional BC, relaxing the need
to condition the agent by the return-to-go and (2) models a multi-task dataset in which sequences
come from very different domains (e.g. control, Atari, visual question answering, see Section 3.2).

2.2 Multi-Modal Transformer

Apart from being widely used in NLP, Transformers also thrive in vision and vision-and-language
domains. As one of the first works leveraging Transformers for vision, Dosovitskiy et al. (2021)
introduced Vision Transformer (ViT), a Transformer model using image patches for recognition.
Following this, a line of work aiming to train multi-modal Transformers using both text and images
emerged, including works such as Flamingo (Alayrac et al., 2022), PaLI (Chen et al., 2023) or
IDEFICS (Laurençon et al., 2023a). All these models imply the use of an image encoder allowing to
obtain image tokens or embeddings that can be given to the Transformer alongside text tokens.

These models, typically generating text outputs, are trained for vision-and-language tasks like Visual
Q&A. However, recent multi-modal Transformers focus on decision-making. For example, Jiang
et al. (2022) trained a robot with Imitation Learning (IL) using multi-modal prompts to produce motor
actions. RT-1 (Brohan et al., 2023b) and RT-2 (Brohan et al., 2023a) use expert demonstrations for
real-world robots, with RT-2 building on RT-1 by directly outputting motor actions. Palm-E (Driess
et al., 2023) leverages a pretrained Visual Language Model (VLM) for robotics tasks, producing
sequences of text instructions executed by control policies.
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Finally, our approach is largely inspired by Gato (Reed et al., 2022), which proposed to train
a Transformer on both vision-and-language and decision-making tasks without relying on any
pretrained model. The resulting model is therefore smaller than the ones leveraging large VLMs
(e.g. Palm-E, RT-2) while still being able to perform both vision-and-language and decision-making
tasks. In this paper, we first propose to build a dataset that resembles Gato’s dataset except we only
use open-source data sources and release all demonstrations as well as expert policies we used to
obtain these demonstrations. Then, we also leverage a multi-modal Transformer along with IL for our
model, but introduce several improvements, notably in the processing of sequential data and support
for continuous values (see Section 3.1).

2.3 Multi-Task RL

The quest for a general agent has long been a goal of RL (Bellemare et al., 2013). However, most
works have chosen to use a different neural network for each environment. Recent research has
revived interest in this objective and explores it through several approaches.

One such approach involves directly extending online learning to multi-task environments (Espeholt
et al., 2018; Yu et al., 2019; Song et al., 2020). These works highlight the potential for positive
transfer in multi-task learning, meaning that learning across tasks can be mutually beneficial due
to underlying commonalities. However, they also acknowledge the risk of negative transfer, where
inter-task interference can impair training. Studies have investigated methods to limit this risk, such
as that by Yang et al. (2020), which proposed refined gradient management techniques to mitigate
these detrimental effects.

An alternative approach is policy distillation, which involves condensing the behaviors of expert
agents into a singular, unified policy (Rusu et al., 2016; Parisotto et al., 2016). While these studies
also report positive transfer across tasks (Rusu et al., 2016), they also identify instances of negative
transfer. Subsequent research has focused on strategies to minimize this negative transfer (Teh et al.,
2017). The reliance on the availability of policies to distill is a limitation. This constraint is notably
addressed in (Chen et al., 2021), which proposes conditioning the distilled policy on the desired
return thus allowing the use of any policy, including those of non-expert agents. This strategy has
been adapted to the multi-task setting by Lee et al. (2022).

Despite the diversity of research in this area, most studies are limited to multi-task learning within a
single domain, such as Atari or Meta-World, and thus involve semantically related tasks (although
this is somewhat less true for Atari). The only notable exception we found is the Gato model (Reed
et al., 2022), which learns a large number of domains in a single network. It is the closest baseline to
our work.

3 Methodology

In this section, we introduce the JAT model, detailing our architectural choices that underpin its effec-
tiveness and highlighting its ability to handle different modalities in both sequential decision-making
and text-centric tasks. We present the associated dataset, which is notable for its groundbreaking
diversity across domains and modalities. Finally, we discuss in depth the learning strategy used.

3.1 Model Architecture

3.1.1 Embedding Mechanism

The model is designed to handle two main categories of data: tasks involving sequential decision-
making and text-centric tasks. In text-centric tasks, the model currently supports two modalities: text
and image. Although the current version of the model supports image generation, we focus only
on tasks that involve text generation. To ease reading, we will refer to it as text-centric tasks in the
remainder of this paper. Each of these two categories requires a slightly different approach to the
embedding process.

In both cases, the resulting sequence is truncated to match the maximum permissible input size of the
inner Transformer model. Any truncated portion is not discarded; instead, it forms the basis of a new
sample. This process may be repeated if necessary, ensuring that no valuable information is lost.

3
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Figure 1: Architecture of the JAT network. For sequential decision-making tasks, observations and
rewards on the one hand, and actions on the other, are encoded and interleaved. The model generates
the next embedding autoregressively with a causal mask, and decodes according to expected modality.

Sequential Decision-Making Tasks For sequential decision-making tasks, the data comprises
a sequence of observations, actions, and rewards. At the embedding stage, these sequences are
processed to produce an interleaved sequence of observation embeddings (augmented with the
corresponding reward) and action embeddings, denoted as [ϕ(s0, 0.0), ϕ(a0), ϕ(s1, r1), ϕ(a1), . . .].
Unlike DT (Chen et al., 2021) and Gato (Reed et al., 2022), each timestep is consistently associated
with two embeddings: one for the observation and the other for the action, regardless of the modality.
This enables JAT to better handle high-dimensional observations, and to provide a much wider,
constant attention window in terms of timesteps. As an example, this multiplies the size of the
attention window in terms of timesteps by more than 25 for Meta-World. The embedding method
employed at a specific timestep is modality-dependent (with H the hidden size of the model):

• Continuous observation: The reward value is appended to the observation vector. This augmented
vector is then padded to achieve a uniform length of 377, corresponding to the maximum augmented
observation size in the dataset. The embedding vector is subsequently obtained by passing this
padded vector through a linear layer with an output size of H . This layer is consistently used
across all timesteps.

• Discrete observation: The observation consists of a vector of integers, each of which is encoded
into a continuous vector of size H using a lookup table. Subsequently, a linear layer is applied to
reduce the dimensionality to ⌊H/50⌋. Following vector flattening, another linear layer is applied,
resulting in an output size of H − 1. Lastly, the reward is added to the resulting vector.

• Image observation: The input image is first resized to a uniform dimension of 84×84 using bicubic
approximation, normalized, and padded to ensure 4 channels. The image encoder consists of a
series of three blocks, each consisting of a convolutional layer, an instance normalization layer,
and an attention layer. The output of the last block is flattened and passed through a linear layer,
resulting in an embedding vector of size H .

• Continuous action: The process is similar to that of continuous observations, with the exception
of the reward component. Notably, the linear layer is shared with the one used for continuous
observations.

• Discrete action: In the case of discrete actions, the process is slightly different due to the nature of
the input: a discrete action is represented by a single integer, as opposed to a vector of integers
for discrete observations. The input is directly mapped to a continuous vector of size H using the
same lookup table employed for discrete observations.
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Text-Centric Tasks For text-centric tasks, each sample includes text, accompanied or not by an
image.

• Image data: We employ the ViT architecture, as originally proposed by Dosovitskiy et al. (2021).
The image is first cropped to its central square, and resized to 224 × 224. The image is then
normalized and divided into non-overlapping patches of 16× 16. Each patch is linearly embedded
in a vector of size H .

• Text data: We use the GPT-2 tokenization strategy (Radford et al., 2019), utilizing a byte-pair
encoding (Sennrich et al., 2016, BPE) specifically designed for unicode characters. This approach
ensures comprehensive and granular tokenization. The tokenizer produces a vocabulary of 50,257
tokens. For efficient implementation, we use the Hugging Face integration (Moi & Patry, 2023).
Each token is mapped to an embedding vector using a lookup table, where each unique token in
the vocabulary is associated with a distinct vector. Notably, this lookup table is shared with the one
employed for discrete values in sequential decision-making tasks.

When a sample includes both images and text, the embeddings are arranged so that the image
embeddings precede the text embeddings. This specific order is essential for image captioning
task because of the causal masking applied by the model’s internal Transformer. The concatenated
image-text embeddings form a unified representation for subsequent processing steps.

3.1.2 Transformer Architecture

The JAT model is based on a Transformer architecture using EleutherAI’s implementation of GPT-Neo
(Black et al., 2021). It takes as input the embedding sequence whose computation was described
in the previous section. The model uses a dual attention mechanism whose design is inspired by
the Longformer (Beltagy et al., 2020): global attention with a window size of 512 tokens for full
context understanding, and local attention with a fixed window of 256 tokens. The Transformer’s
feed-forward components consist of 12 layers and 12 heads with an intermediate dimensionality of
8192 and a hidden size of 768. They are designed to be causal, meaning a causal mask is applied
during training and inference.

3.1.3 Output Processing and Loss

The internal causal Transformer outputs a sequence of embeddings, each encoding the basis for
predicting subsequent elements in different data modalities. As we predict multiple modalities within
a single sequence, we use the appropriate decoders and corresponding loss functions for each modality.
When an embedding encodes an image, we use a transposed convolutional neural network (Zeiler
et al., 2010) for prediction. When an embedding represents a continuous vector, we use a continuous
linear layer for prediction. For both image and continuous vector prediction, we compute the loss
using Mean Square Error (MSE). When an embedding represents a discrete value, we assign scores
to each discrete candidate using a linear projection layer and compute the loss using cross-entropy.
Notably, we use the same projection layer for text tokens and discrete sequential values (like action
for Atari and BabyAI). To compute the overall loss of the sequence, we average the individual losses
computed for each element. For sequential decision-making task, we apply a weighting between the
loss related to observations and the loss related to actions. We show in Section 4.3 that predicting the
observations does help learning, and thereby solve one of the common open questions of (Chen et al.,
2021) and (Reed et al., 2022).

3.2 Datasets

In this work, we have collected a wide range of datasets, classified into two main groups: sequential
decision-making datasets and textual datasets. The former include a series of interaction sequences,
each consisting of observations, actions and a subsequent rewards, generated by so-called expert
agents, details of which are given in the Appendix B. The latter includes large corpora of textual data
and image-text pairs. In order to promote the emerging field of general-purpose AI models, we have
made these datasets, together with the expert agents and the full set of code required to generate them,
available to the public as open resources in our Hugging Face repository, accessible at the following
URL https://huggingface.co/jat-project. To the best of our knowledge, this compilation
is unprecedented in terms of the variety of tasks and the volume of data, representing a valuable new
contribution to the field.
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3.3 Training

3.3.1 Overall Training Procedure

The model was trained for 250,000 steps. We distributed the training across 8 GPUs NVIDIA V100
using the Trainer from the Hugging Face Transformers library (Wolf et al., 2020) in conjunction
with Accelerate (Gugger et al., 2022). This training lasted approximately 9 days. For practical
reasons, each batch is made up of data from a single dataset. We use a constant batch size of 20 and
accumulate over 2 steps, resulting in an effective batch size of 320. We use the AdamW optimizer
with parameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The learning rate starts at 5 ·10−5 and linearly
decays to zero throughout the training process.

3.3.2 Task-Specific Weight Adjustments

Each task presents a unique training challenge. To allow for balanced learning of all tasks, we
introduced custom weight modifications. The choice of these weights is made heuristically. The
learning would surely benefit from a more precise and systematic method for choosing these weights.

Sample Weight Some tasks required more updates for effective convergence. To allow proportionate
progress of all tasks during learning, these tasks are sampled more frequently. Specifically, Oscar,
Conceptual-Captions and Wikipedia was assigned a sample weight of 10.0 while other have a sample
weight of 1.0.

Loss Weight Some control tasks require increased accuracy of actions. To allow for more strongly
penalizing the error for these tasks, we assigned loss weights. In MuJoCo tasks, the loss weight is
typically set at 10.0, except for the Pendulum task (20.0) and the Double Pendulum task (50.0). In
Meta-World tasks, a uniform loss weight of 50.0 is used.

4 Experiments and Results

In this section we discuss the results of our experiments. First, we provide a brief overview of the
model’s performance on text-centric tasks. We then present the results of the sequential decision-
making tasks, showing the different levels of mastery across the different domains within our study.
Finally, we provide a comprehensive analysis highlighting the benefits of incorporating the prediction
of the next observation as an auxiliary task during the learning process.

4.1 Text-Centric Tasks

the flag was removed from the
building after the fire broke out

: and beverage type at the
beach. here are some of the
most beautiful things i have

ever seen.

: the food is good for the body!
:) - a-baked chicken. person.

p̃hoto by author

Figure 2: JAT image captioning examples. The theme is usually correct, although the relevance is
sometimes limited.

We present a showcase of JAT’s capabilities, with a particular focus on text completion and image
captioning. It’s important to note that JAT is much smaller and has a much lower training budget than
the specialized models for these tasks. Therefore, instead of comparing it to these expert systems,
we want to demonstrate its intrinsic capabilities. Figure 2 shows a selection of captioning results
to illustrate how the model interprets and describes visual data. Additional examples are given in
Appendix C. Figure 3, meanwhile, shows a series of text-based interactions that provide insight into
its ability to complete text prompts. These examples were chosen to highlight the model’s basic
capabilities in these areas, providing a realistic view of its current state of development and potential
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for future enhancements. In addition, we provide a demos2 for direct interaction and experimentation,
allowing users to experience its functionalities.

INPUT MODEL COMPLETION

The weather today is a great time to the city of New York City. The city is a great place to stay in.

In the future, cars will be able to drive cars to the market. The new car will be built in the new
market for the new car.

My favorite book is a book by the author of the book.

Figure 3: JAT text completion examples. The syntax is generally correct, the completion is on-topic,
although the generated text may be wrong.

4.2 Sequential Decision-Making Tasks

We save checkpoints regularly during training. We evaluate each checkpoint on all the tasks on which
it has been trained. Unlike Gato, the evaluation does not require any data to be used as a prompt.
We show empirically in Appendix D that despite the absence of a prompt, and even in the worst
case of our study, the agent still manages to identify the requested task. For each task, we collect 10
evaluation episodes and normalize by the average expert score of the dataset for this task. For the
final checkpoint, we use 100 evaluation episodes. We then aggregate the results by domain. Figure 4
shows the evolution of the aggregate score for each domain during learning, and Figure 5 focuses on
Atari, showing the human normalized score for each environment. The final results are presented in
detail in Appendix A.
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Figure 5: Human normalized scores for the JAT agent on the Atari 57 benchmark.

The final agent achieves a average expert normalized interquartile mean (IQM) of 65.8%, demonstrat-
ing the network’s ability to effectively mimic expert agents across a wide range of tasks. The agent
achieves 14.1% of the expert’s score on the Atari 57 benchmark, corresponding to 37.6% of human
performance, and exceeding the average human level in 21 games. For the BabyAI benchmark, JAT

2https://huggingface.co/spaces/jat-project/text-completion
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achieves a normalized score of 99.0%. This score falls below 50% for only one task, namely Move
Two Across S8N9. For this benchmark, however, there is no guarantee that the expert score can be
achieved, since the bot used for dataset collection has access to the full state of the environment,
while the interacting agents only have access to a partial observation. Finally, in the MuJoCo and
Meta-World, JAT records scores of 84.8% and 65.5%, respectively. Although JAT reaches expert
level for a fair number of Meta-World tasks, we note that some, such as basketball, have not been
learned at all. Insofar as the action and observation spaces are identical for all tasks in this benchmark,
these failures may be due to task indeterminacy, which we explore in more detail in Appendix D.
Future research will have to confirm this hypothesis. We also note that some domains are mastered
more quickly than others; in particular, BabyAI achieves a score of 90% after only 30,000 learning
steps. We hypothesize that the high semantic similarity of the tasks enables a strong positive transfer,
without however providing any proof of this. The Appendix A presents the final results in detail.

Although the results achieved are commendable, for a fair comparison we limit our benchmarking to
Gato only, as it is the only truly comparable baseline. Reed et al. (2022) present results only for the
1.18 billion parameter version of Gato, which is 6 times larger than JAT. Its results are normalized to
expert performance. Since we don’t have access to the normalization parameters, we estimated scores
for the random agents, which may not be exactly the same as those used by Reed et al. (2022), and
used our expert scores for normalization, even though they obviously do not match those used by Reed
et al. (2022). Therefore, comparisons of these normalized scores should be interpreted with great
caution. On the Atari benchmark, JAT achieves an average normalized score of 31.1% outperforming
Gato, which reports a score of 30.9%. For BabyAI, JAT achieves an average normalized score of
86.2%, close to the Gato score of 93.2%. Our study, however, is made with 39 tasks versus the 46
used in Gato’s training, with the specific seven additional tasks in their study remaining unidentified.
Since our evaluation includes all of the hardest tasks mentioned in their study, the seven missing tasks
are likely to be easier, suggesting a harder test scenario in our study. For Meta-World, JAT achieves
an average normalized score of 62.8%, which is below the 87.0% reported for Gato. On the MuJoCo
benchmark, JAT achieves an average normalized score of 73.6%. While Gato’s training doesn’t use
MuJoCo, it’s worth noting that they use the DMC benchmark, which shares some similarities. For
reference, on the DMC benchmark (Tassa et al., 2018), Gato achieves an average score of 63.6%.

4.3 Predicting the Observations Does Help

The model’s main task is to predict the actions that maximize the sum of future rewards. Its ability to
predict future observations is therefore not the main concern. However, can this ability contribute to
better prediction of actions or accelerate the learning process? Two contrasting hypotheses emerge:
firstly, learning to predict observations could serve as an auxiliary objective, directing the learning
process towards a deeper understanding of the environment, which could lead to improved and
faster learning. Conversely, this prediction learning could serve as a distracting objective: instead of
excelling in action prediction, the model might only achieve moderate performance in both action
and observation prediction. This could slow down the learning process, resulting in a lower overall
performance score. Reed et al. (2022) choose not to predict the observation, but does not study the
influence of this prediction on learning.

To answer this question, we use a loss function that combines observation loss (Lobs) and action loss
(Lact), balanced by a weighting parameter κ. The function is defined as:

L = κ · Lobs + (1− κ) · Lact (1)

We select a range of values for κ and train the model on a subset of 6 dataset tasks from different
domains (Freeway, Pong, ButtonPressWall, WindowClose, Ant and DoubleInvertedPendulum).
Figure 6 compares the results at the end of training for the different values of κ.

In our study of the κ coefficient and its impact on learning, we find an interesting balance. When
set to the highest value in our range (κ = 0.5), the learning process seems to be somewhat hindered
by the additional objective. On the other hand, at lower κ values, this added task of predicting
observations doesn’t significantly impact learning, leading to scores that are similar to the base score
of 94.5± 1.1%, which we get when predicting observations isn’t part of the objective. The sweet
spot appears to be around κ = 0.005. Learning to predict observations doesn’t distract but actually
improves the agent’s learning efficiency, achieving an near-optimal score of 99.1±0.4%. This finding
highlights that adding observation prediction into the learning process is beneficial, provided it’s
balanced correctly.

8



0.
0

0
.0

0
05

0
.0

05

0
.0

5

0.
5

0.7

0.8

0.9

1.0

E
x
p

er
t

n
o
rm

a
li
ze

d
re

tu
rn

Median

0.
0

0
.0

0
05

0
.0

05

0
.0

5

0.
5

κ

IQM

0.
0

0
.0

0
05

0
.0

05

0
.0

5

0.
5

Mean

Figure 6: Aggregate measures with 95% CIs for the study on the influence of observation prediction
learning for selected tasks. The results presented cover the selected range of κ values and are based
on 100 evaluations per task. Optimal κ selection can significantly improve agent performance.

5 Conclusion

In this study, we introduce JAT, a novel multi-modal framework for general RL agents. JAT features
the ability to handle diverse tasks of varying complexity using a single set of parameters. Its
innovations include a new transformer-based structure that efficiently addresses sequential decision-
making, CV, and NLP tasks. We also show that joint learning of observation prediction significantly
improves performance in sequential decision-making tasks. We’ve open-sourced our training dataset,
which includes a wide range of sequential decision-making data as well as extensive language and
visual data. We believe that JAT represents an important and valuable step towards general-purpose
RL models.

This study reveals several avenues for improvement. A primary challenge is the joint learning of tasks
characterized by high heterogeneity. Our dataset features variations in size, task complexity, and
accuracy requirements for optimal performance. Our current approach, which uses basic sample and
loss weighting, partially addresses this challenge. A refinement of task sampling could potentially
account for task difficulty, although quantifying difficulty remains a challenge. Another important
challenge is imitation learning. While our current method relies on rudimentary behavioral cloning,
the use of more advanced imitation learning techniques is likely to yield better results. In addition,
improving the quality of expert data is a clear opportunity for improvement. For example, in the
Asterix task, our model’s expert score (3699.6) lags significantly behind the scores achieved by agents
such as R2D2 (999,153.3) (Kapturowski et al., 2019). Using the best RL agent for each specific task
could significantly improve the overall scores in our dataset, leading to better results when distilled
for the generalist agent.

Broader Impact

What sets generalist agents apart is their ability to produce output in a wide range of modalities
(textual, visual, virtual or physical control) for multiple applications. This versatility introduces a
potential for cross-domain generalisation, although no work to our knowledge actually demonstrates
this transfer. The theoretical risk is that such agents transpose behaviours from one domain to another
in an inappropriate or undesirable way, and raises important ethical and safety questions. For example,
translating aggressive actions in a virtual environment (which may be legitimate in the context of
a game or film) into harmful behaviour in the real world. While the alignment of large language
models (LLMs) with human values and preferences has been extensively studied (Ouyang et al.,
2022; Rafailov et al., 2023; Azar et al., 2023), the application of these alignment strategies to the
broader category of generalist models has not been examined in depth. The adaptation of existing
alignment methodologies to the requirements of generalist agents is necessary to enable more reliable
and secure models.
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A Full results

This appendix contains a detailed view of the results of the trained JAT agent. The score of the
random agent for Atari games is sourced from (Mnih et al., 2015). In other domains, this score is
approximated by averaging the returns from 1,000 episodes, where the agent selects actions uniformly
across its action space. The expert scores represent the average return in the dataset for the task.
Meanwhile, the raw score is the average return achieved by the trained agent, based on 100 evaluation
episodes. Both these scores, along with the trained agent, are accessible as open-source3. The
normalized score is derived by comparing the agent’s return to the expert’s, calculated using the
formula: score−random score

expert score−random score . It’s important to note that in instances where the expert, inaccurately
named, does not fully master the task and thus scores similarly or lower than the random agent, the
normalized score must be interpreted cautiously. Specifically, if this score falls below that of the
random agent, as in the case of Bowling, normalization is not applied. The results for Atari are
presented in Table 1 and Figure 7, for BabyAI in Table 2 and Figure 8, for Meta-World in Table 3
and Figure 9, and for MuJoCo in Table 4 and Figure 10.

3https://huggingface.co/jat-project/jat
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Table 1: Comparison of performance scores across tasks on Atari 57. The table presents the episodic
return (score) achieved by a random agent (from (Mnih et al., 2015)), scores of the expert agent (as
averaged from the dataset), scores of the learned agent, and the expert normalized score calculated as

score−random score
expert score−random score .

TASK RANDOM AGENT EXPERT JAT (RAW) JAT (NORMALIZED)

ALIEN 227.8 16912.5 ± 7087.4 1474.9 ± 588.7 0.07 ± 0.04
AMIDAR 5.8 2164.7 ± 1229.5 104.9 ± 103.5 0.05 ± 0.05
ASSAULT 222.4 15699.1 ± 9572.1 1650.1 ± 821.0 0.09 ± 0.05
ASTERIX 210.0 3699.6 ± 2421.3 800.0 ± 584.9 0.17 ± 0.17
ASTEROIDS 719.0 177011.1 ± 35334.2 1385.3 ± 507.5 0.00 ± 0.00
ATLANTIS 12850.0 320679.6 ± 418247.4 66980.0 ± 158449.7 0.18 ± 0.51
BANK HEIST 14.2 1322.4 ± 60.8 948.3 ± 199.9 0.71 ± 0.15
BATTLE ZONE 236.0 295592.6 ± 161961.0 17420.0 ± 6071.5 0.06 ± 0.02
BEAM RIDER 363.9 29589.3 ± 16133.0 797.3 ± 328.3 0.01 ± 0.01
BERZERK 123.7 57085.3 ± 13104.5 687.3 ± 331.9 0.01 ± 0.01
BOWLING 23.1 20.4 ± 7.3 22.4 ± 5.6 N/A
BOXING 0.1 98.0 ± 3.8 90.1 ± 23.0 0.92 ± 0.24
BREAKOUT 1.7 703.0 ± 203.6 8.8 ± 5.6 0.01 ± 0.01
CENTIPEDE 2090.9 11624.3 ± 4918.3 5589.9 ± 2567.3 0.37 ± 0.27
CHOPPER COMMAND 811.0 90990.6 ± 270876.9 2417.0 ± 1489.9 0.02 ± 0.02
CRAZY CLIMBER 10780.5 179296.9 ± 39862.1 97639.0 ± 26184.7 0.52 ± 0.16
DEFENDER 2874.5 351958.3 ± 40466.8 39323.5 ± 15203.0 0.10 ± 0.04
DEMON ATTACK 152.1 92195.2 ± 26174.8 815.3 ± 989.7 0.01 ± 0.01
DOUBLE DUNK -18.6 20.9 ± 3.6 14.4 ± 10.0 0.84 ± 0.25
ENDURO 0.0 2292.2 ± 147.5 108.5 ± 42.7 0.05 ± 0.02
FISHING DERBY -91.7 7.2 ± 25.1 -30.4 ± 24.4 0.62 ± 0.25
FREEWAY 0.0 33.9 ± 0.3 27.5 ± 1.6 0.81 ± 0.05
FROSTBITE 65.2 13196.1 ± 4341.0 2769.6 ± 1445.6 0.21 ± 0.11
GOPHER 257.6 81676.2 ± 46329.5 5340.6 ± 2547.1 0.06 ± 0.03
GRAVITAR 173.0 3986.6 ± 1729.0 1269.5 ± 903.0 0.29 ± 0.24
H.E.R.O. 1027.0 44677.4 ± 1754.4 11709.6 ± 3233.5 0.24 ± 0.07
ICE HOCKEY -11.2 25.2 ± 5.8 7.5 ± 5.6 0.51 ± 0.15
JAMES BOND 29.0 27786.9 ± 33819.2 327.5 ± 123.2 0.01 ± 0.00
KANGAROO 52.0 574.0 ± 636.9 378.0 ± 344.0 0.62 ± 0.66
KRULL 1598.0 11439.8 ± 1218.3 10720.5 ± 1284.1 0.93 ± 0.13
KUNG-FU MASTER 258.5 32392.8 ± 10006.6 288.0 ± 255.1 0.00 ± 0.01
MONTEZUMA’S REVENGE 0.0 393.5 ± 50.4 0.0 ± 0.0 0.00 ± 0.00
MS. PACMAN 307.3 6896.1 ± 2032.0 1573.1 ± 484.0 0.19 ± 0.07
NAME THIS GAME 2292.3 22991.2 ± 2473.1 7523.3 ± 2471.4 0.25 ± 0.12
PHOENIX 761.5 424583.2 ± 97649.2 2197.9 ± 1795.4 0.00 ± 0.00
PITFALL -229.4 -1.4 ± 4.5 -6.7 ± 19.0 0.98 ± 0.08
PONG -20.7 21.0 ± 0.2 13.7 ± 13.3 0.82 ± 0.32
PRIVATE EYE 24.9 100.0 ± 0.0 44.0 ± 49.6 0.25 ± 0.66
Q*BERT 163.9 42971.4 ± 85070.7 1951.5 ± 2577.2 0.04 ± 0.06
RIVER RAID 1338.5 14800.9 ± 7924.6 3758.5 ± 1536.7 0.18 ± 0.11
ROAD RUNNER 11.5 77942.8 ± 6088.6 6407.0 ± 4847.4 0.08 ± 0.06
ROBOTANK 2.2 80.5 ± 13.3 11.3 ± 5.5 0.12 ± 0.07
SEAQUEST 68.4 2597.3 ± 386.1 804.0 ± 403.3 0.29 ± 0.16
SKIING -17098.0 -10738.1 ± 111.1 -16231.5 ± 6060.5 0.14 ± 0.95
SOLARIS 1236.3 1353.7 ± 517.0 1286.6 ± 446.7 0.43 ± 3.81
SPACE INVADERS 148.0 29425.3 ± 23623.9 325.4 ± 163.4 0.01 ± 0.01
STAR GUNNER 664.0 360588.6 ± 49207.7 4379.0 ± 3027.2 0.01 ± 0.01
SURROUND -10.0 9.4 ± 0.8 2.7 ± 4.7 0.65 ± 0.24
TENNIS -23.8 11.1 ± 7.6 -13.5 ± 3.8 0.30 ± 0.11
TIME PILOT 3568.0 69583.3 ± 29838.7 13028.0 ± 5222.6 0.14 ± 0.08
TUTANKHAM 11.4 291.2 ± 30.4 85.7 ± 61.8 0.27 ± 0.22
UP AND DOWN 533.4 429418.3 ± 7187.4 17768.7 ± 10322.0 0.04 ± 0.02
VENTURE 0.0 0.0 ± 0.0 0.0 ± 0.0 N/A
VIDEO PINBALL 0.0 441507.9 ± 283264.6 11917.4 ± 8204.3 0.03 ± 0.02
WIZARD OF WOR 563.5 49333.3 ± 16157.1 2544.0 ± 2902.4 0.04 ± 0.06
YARS REVENGE 3092.9 270262.9 ± 161816.0 12532.7 ± 8062.8 0.04 ± 0.03
ZAXXON 32.5 73097.2 ± 14825.8 6902.0 ± 3206.1 0.09 ± 0.04
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Figure 7: Expert normalized episodic return for the JAT agent on the Atari 57 benchmark.
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Table 2: Comparison of performance scores across tasks on BabyAI. The table presents the episodic
return (score) achieved by a random agent (averaged over 1,000 episodes), scores of the expert agent
(as averaged from the dataset), scores of the learned agent, and the expert normalized score calculated
as score−random score

expert score−random score .

TASK RANDOM AGENT EXPERT JAT (RAW) JAT (NORMALIZED)

ACTION OBJ DOOR 0.37 ± 0.39 0.99 ± 0.01 0.94 ± 0.14 0.93 ± 0.23
BLOCKED UNLOCK PICKUP 0.00 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 1.00 ± 0.01
BOSS LEVEL 0.06 ± 0.21 0.94 ± 0.05 0.52 ± 0.43 0.53 ± 0.49
BOSS LEVEL NO UNLOCK 0.06 ± 0.19 0.94 ± 0.05 0.48 ± 0.43 0.48 ± 0.48
FIND OBJ S5 0.08 ± 0.23 0.95 ± 0.04 0.95 ± 0.04 1.01 ± 0.05
GO TO 0.13 ± 0.29 0.92 ± 0.07 0.83 ± 0.27 0.89 ± 0.34
GO TO DOOR 0.45 ± 0.38 0.99 ± 0.00 0.99 ± 0.02 0.99 ± 0.04
GO TO IMP UNLOCK 0.07 ± 0.22 0.83 ± 0.13 0.60 ± 0.41 0.70 ± 0.54
GO TO LOCAL 0.16 ± 0.30 0.93 ± 0.04 0.88 ± 0.14 0.94 ± 0.19
GO TO OBJ 0.13 ± 0.27 0.93 ± 0.03 0.93 ± 0.03 1.00 ± 0.04
GO TO OBJ DOOR 0.53 ± 0.39 0.99 ± 0.01 0.96 ± 0.10 0.94 ± 0.21
GO TO RED BALL 0.17 ± 0.30 0.93 ± 0.04 0.92 ± 0.05 0.99 ± 0.07
GO TO RED BALL GREY 0.12 ± 0.27 0.92 ± 0.05 0.91 ± 0.07 0.99 ± 0.08
GO TO RED BALL NO DISTS 0.14 ± 0.28 0.93 ± 0.03 0.93 ± 0.03 1.00 ± 0.04
GO TO RED BLUE BALL 0.12 ± 0.27 0.92 ± 0.05 0.88 ± 0.11 0.95 ± 0.14
GO TO SEQ 0.08 ± 0.23 0.94 ± 0.05 0.72 ± 0.34 0.74 ± 0.40
KEY CORRIDOR 0.00 ± 0.00 0.91 ± 0.01 0.86 ± 0.16 0.94 ± 0.18
MINI BOSS LEVEL 0.07 ± 0.21 0.89 ± 0.10 0.61 ± 0.39 0.65 ± 0.47
MOVE TWO ACROSS S8N9 0.00 ± 0.00 0.96 ± 0.01 0.02 ± 0.13 0.02 ± 0.13
ONE ROOM S8 0.08 ± 0.21 0.92 ± 0.03 0.92 ± 0.04 1.00 ± 0.04
OPEN 0.10 ± 0.24 0.95 ± 0.05 0.94 ± 0.11 0.98 ± 0.13
OPEN DOOR 0.23 ± 0.34 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.01
OPEN DOORS ORDER N4 0.16 ± 0.30 0.99 ± 0.01 0.95 ± 0.17 0.95 ± 0.20
OPEN RED DOOR 0.08 ± 0.21 0.92 ± 0.03 0.91 ± 0.03 1.00 ± 0.04
OPEN TWO DOORS 0.08 ± 0.20 0.98 ± 0.00 0.98 ± 0.00 1.00 ± 0.00
PICKUP 0.08 ± 0.22 0.92 ± 0.07 0.76 ± 0.32 0.82 ± 0.38
PICKUP ABOVE 0.02 ± 0.09 0.91 ± 0.07 0.90 ± 0.08 0.99 ± 0.09
PICKUP DIST 0.10 ± 0.24 0.86 ± 0.21 0.90 ± 0.07 1.05 ± 0.09
PICKUP LOC 0.08 ± 0.23 0.91 ± 0.04 0.86 ± 0.16 0.94 ± 0.19
PUT NEXT S7N4 0.00 ± 0.03 0.96 ± 0.01 0.85 ± 0.22 0.88 ± 0.23
PUT NEXT LOCAL 0.00 ± 0.05 0.92 ± 0.03 0.63 ± 0.36 0.69 ± 0.40
SYNTH 0.11 ± 0.26 0.93 ± 0.06 0.77 ± 0.33 0.80 ± 0.40
SYNTH LOC 0.13 ± 0.29 0.94 ± 0.06 0.79 ± 0.33 0.81 ± 0.40
SYNTH SEQ 0.07 ± 0.20 0.95 ± 0.04 0.52 ± 0.44 0.52 ± 0.50
UNBLOCK PICKUP 0.08 ± 0.22 0.91 ± 0.08 0.74 ± 0.32 0.79 ± 0.39
UNLOCK 0.03 ± 0.15 0.87 ± 0.10 0.52 ± 0.42 0.58 ± 0.50
UNLOCK LOCAL 0.01 ± 0.09 0.98 ± 0.01 0.98 ± 0.01 1.00 ± 0.01
UNLOCK PICKUP 0.00 ± 0.00 0.75 ± 0.04 0.76 ± 0.04 1.01 ± 0.05
UNLOCK TO UNLOCK 0.00 ± 0.00 0.96 ± 0.00 0.80 ± 0.35 0.83 ± 0.37
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Figure 8: Expert normalized episodic return for the JAT agent on the BabyAI benchmark.
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Table 3: Comparison of performance scores across tasks on Meta-World. The table presents the
episodic return (score) achieved by a random agent (averaged over 1,000 episodes), scores of the
expert agent (as averaged from the dataset), scores of the learned agent, and the expert normalized
score calculated as score−random score

expert score−random score .

TASK RANDOM AGENT EXPERT JAT (RAW) JAT (NORMALIZED)

ASSEMBLY 45.3 ± 4.1 246.0 ± 3.5 238.0 ± 34.6 0.96 ± 0.17
BASKETBALL 2.8 ± 1.2 628.0 ± 2.0 1.6 ± 0.4 -0.00 ± 0.00
BINPICKING 1.9 ± 0.4 425.6 ± 101.9 200.0 ± 222.1 0.47 ± 0.52
BOX CLOSE 76.4 ± 17.9 512.5 ± 107.8 462.6 ± 172.0 0.89 ± 0.39
BUTTON PRESS 31.7 ± 5.2 643.1 ± 12.8 560.0 ± 182.6 0.86 ± 0.30
BUTTON PRESS TOPDOWN 29.0 ± 10.4 490.2 ± 27.2 266.2 ± 77.2 0.51 ± 0.17
BUTTON PRESS TOPDOWN WALL 29.0 ± 10.5 497.2 ± 31.4 275.8 ± 88.6 0.53 ± 0.19
BUTTON PRESS WALL 9.0 ± 4.0 675.4 ± 15.0 638.3 ± 123.0 0.94 ± 0.18
COFFEE BUTTON 31.7 ± 6.4 731.1 ± 29.3 298.0 ± 285.6 0.38 ± 0.41
COFFEE PULL 4.1 ± 0.4 259.9 ± 88.5 41.0 ± 69.8 0.14 ± 0.27
COFFEE PUSH 4.2 ± 0.8 496.8 ± 118.2 153.1 ± 218.9 0.30 ± 0.44
DIAL TURN 29.6 ± 16.7 793.6 ± 80.1 758.4 ± 120.4 0.95 ± 0.16
DISASSEMBLE 40.3 ± 7.5 42.8 ± 6.3 40.7 ± 9.9 0.17 ± 3.91
DOOR CLOSE 5.3 ± 1.3 529.7 ± 27.2 524.3 ± 33.2 0.99 ± 0.06
DOOR LOCK 112.3 ± 28.6 811.5 ± 34.1 696.3 ± 198.6 0.84 ± 0.28
DOOR OPEN 56.4 ± 11.2 581.9 ± 19.7 577.5 ± 53.7 0.99 ± 0.10
DOOR UNLOCK 94.2 ± 15.6 802.9 ± 17.1 768.3 ± 91.8 0.95 ± 0.13
DRAWER CLOSE 116.7 ± 253.1 867.9 ± 4.5 596.7 ± 223.4 0.64 ± 0.30
DRAWER OPEN 126.8 ± 25.2 493.0 ± 2.5 485.9 ± 36.8 0.98 ± 0.10
FAUCET CLOSE 253.1 ± 22.9 753.9 ± 13.4 367.8 ± 91.1 0.23 ± 0.18
FAUCET OPEN 244.1 ± 23.3 705.8 ± 7.1 566.1 ± 169.9 0.70 ± 0.37
HAMMER 95.3 ± 9.0 693.2 ± 34.6 667.7 ± 89.4 0.96 ± 0.15
HAND INSERT 2.8 ± 3.5 740.5 ± 36.7 688.1 ± 187.7 0.93 ± 0.25
HANDLE PRESS 80.4 ± 110.2 855.9 ± 72.7 735.0 ± 252.0 0.84 ± 0.32
HANDLE PRESS SIDE 57.0 ± 39.5 861.1 ± 20.0 64.5 ± 73.7 0.01 ± 0.09
HANDLE PULL 10.3 ± 13.5 669.4 ± 24.8 556.6 ± 161.7 0.83 ± 0.25
HANDLE PULL SIDE 2.1 ± 2.8 384.7 ± 102.9 195.1 ± 187.2 0.50 ± 0.49
LEVER PULL 60.3 ± 15.8 612.0 ± 38.9 280.9 ± 234.8 0.40 ± 0.43
PEG INSERT SIDE 1.7 ± 0.4 315.2 ± 140.1 254.3 ± 158.4 0.81 ± 0.51
PEG UNPLUG SIDE 4.7 ± 2.8 456.1 ± 81.7 80.6 ± 145.5 0.17 ± 0.32
PICK OUT OF HOLE 1.5 ± 0.2 219.6 ± 88.9 2.1 ± 0.1 0.00 ± 0.00
PICK PLACE 1.6 ± 1.0 419.1 ± 98.2 135.8 ± 200.1 0.32 ± 0.48
PICK PLACE WALL 0.0 ± 0.0 450.6 ± 64.1 43.7 ± 129.7 0.10 ± 0.29
PLATE SLIDE 74.6 ± 13.8 527.0 ± 155.3 481.5 ± 190.2 0.90 ± 0.42
PLATE SLIDE BACK 33.5 ± 11.2 718.2 ± 87.4 196.9 ± 1.7 0.24 ± 0.00
PLATE SLIDE BACK SIDE 34.3 ± 11.5 729.6 ± 69.1 703.7 ± 117.3 0.96 ± 0.17
PLATE SLIDE SIDE 22.6 ± 17.4 662.8 ± 102.8 122.6 ± 24.6 0.16 ± 0.04
PUSH 5.5 ± 2.4 750.6 ± 44.0 702.4 ± 157.6 0.94 ± 0.21
PUSH BACK 1.2 ± 0.2 85.0 ± 107.1 82.2 ± 108.0 0.97 ± 1.29
PUSH WALL 6.1 ± 3.2 748.9 ± 10.6 158.8 ± 224.6 0.21 ± 0.30
REACH 149.7 ± 44.7 681.4 ± 133.7 332.2 ± 171.5 0.34 ± 0.32
REACH WALL 143.3 ± 36.6 746.1 ± 104.2 631.6 ± 224.0 0.81 ± 0.37
SHELF PLACE 0.0 ± 0.0 241.3 ± 24.6 92.1 ± 112.0 0.38 ± 0.46
SOCCER 5.7 ± 4.6 375.2 ± 140.2 291.6 ± 161.8 0.77 ± 0.44
STICK PULL 2.6 ± 1.4 523.6 ± 18.9 480.1 ± 119.3 0.92 ± 0.23
STICK PUSH 2.8 ± 1.0 627.9 ± 10.2 303.2 ± 298.8 0.48 ± 0.48
SWEEP 11.2 ± 7.3 494.8 ± 43.3 16.7 ± 18.7 0.01 ± 0.04
SWEEP INTO 12.5 ± 10.7 799.2 ± 19.1 793.3 ± 47.5 0.99 ± 0.06
WINDOW CLOSE 57.5 ± 7.1 591.3 ± 38.6 414.3 ± 207.4 0.67 ± 0.39
WINDOW OPEN 43.4 ± 2.1 590.8 ± 57.1 577.3 ± 63.9 0.98 ± 0.12
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Figure 9: Expert normalized episodic return for the JAT agent on the Meta-World benchmark.
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Table 4: Comparison of performance scores across tasks on MuJoCo. The table presents the episodic
return (score) achieved by a random agent (averaged over 1,000 episodes), scores of the expert agent
(as averaged from the dataset), scores of the learned agent, and the expert normalized score calculated
as score−random score

expert score−random score .

TASK RANDOM AGENT EXPERT JAT (RAW) JAT (NORMALIZED)

ANT -59.9 ± 99.6 5846.4 ± 942.6 5110.5 ± 1720.8 0.88 ± 0.29
INVERTED DOUBLE PENDULUM 57.5 ± 17.5 9338.7 ± 352.6 8663.7 ± 1259.4 0.93 ± 0.14
HALF CHEETAH -285.0 ± 79.8 7437.8 ± 173.3 6595.9 ± 244.4 0.89 ± 0.03
HOPPER 18.4 ± 17.1 1858.7 ± 534.1 1409.0 ± 385.6 0.76 ± 0.21
HUMANOID 122.0 ± 35.3 6281.0 ± 1795.8 712.6 ± 120.6 0.10 ± 0.02
INVERTED PENDULUM 6.1 ± 3.5 475.4 ± 179.0 117.4 ± 22.0 0.24 ± 0.05
PUSHER -149.7 ± 7.4 -25.2 ± 6.7 -25.0 ± 6.3 1.00 ± 0.05
REACHER -43.0 ± 3.9 -5.7 ± 2.5 -5.9 ± 2.4 0.99 ± 0.06
HUMANOID STANDUP 33135.8 ± 2481.9 273574.2 ± 85253.3 116736.7 ± 22765.5 0.35 ± 0.09
SWIMMER 0.8 ± 10.7 92.2 ± 4.4 94.0 ± 4.1 1.02 ± 0.04
WALKER 2D 2.7 ± 6.1 4631.2 ± 1059.0 4381.3 ± 851.1 0.95 ± 0.18
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Figure 10: Expert normalized episodic return for the JAT agent on the MuJoCo benchmark.
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B JAT Dataset In Depth

B.1 Sequential Decision-Making Datasets

For each decision-making environment, we collect a set of interactions using expert agents. Detailed
scores are available in the Appendix A.

Atari We use the 57 games from the Arcade Learning Environment (Bellemare et al., 2013, ALE)
as a benchmark in our research, amassing roughly 500,000 interactions per game. Episode lengths
varied significantly depending on the specific game. For each game, we trained a dedicated agent for
2 billion steps using the asynchronous implementation of Proximal Policy Optimization (Schulman
et al., 2017) from Sample Factory (Petrenko et al., 2020). The expert agents achieve above human
performance on 43 tasks4.

BabyAI BabyAI stands out in our study due to its unique characteristic of being partially observable
and its dual-modality observations (Chevalier-Boisvert et al., 2019; Chevalier-Boisvert et al., 2023).
Using the bot provided with the BabyAI paper (Chevalier-Boisvert et al., 2019), we gathered 100,000
episodes for 39 of its available settings. Each interaction consists of a text observation (mission), a
discrete observation (7 × 7 symbolic representation of the agent’s field of view), an action, and a
reward.

Meta-World Meta-World’s MT50 benchmark provides a set of 50 diverse and challenging robot
manipulation tasks (Yu et al., 2019). Similar to the methodology used for Atari, we trained one agent
per task using the asynchronous PPO (Schulman et al., 2017) implementation of (Petrenko et al.,
2020). The trained agents solved most of the tasks, except for Assembly and Disassemble, where
they failed to reach the expected performance. We limit the number of timesteps per episode to 100,
which proved to be sufficient for solving the tasks. Without this limit, much of the subsequent dataset
would consist of the stabilization phases of the agents after goal attainment, reducing its relevance.
We then used the trained agents to generate 10,000 episodes per environment.

MuJoCo We included the MuJoCo locomotion benchmark suite (Todorov et al., 2012; Brockman
et al., 2016) comprising 11 continuous control tasks into our study due to its diverse challenges in
domain complexity and task difficulty, and its wide recognition in the research literature. Following
our methodologies for Atari and Meta-World, we individually trained agents for each task using
asynchronous PPO (Schulman et al., 2017) from Sample Factory (Petrenko et al., 2020). These agents
successfully solved all tasks, achieving scores that meet or exceed the current highest standards.
Subsequently, we employed these agents to generate 10,000 episodes per environment.

Each sample in this dataset is an episode. This episode consists of a list of observations, actions and
rewards, the nature and size of which depend on the task. In Figure 11, we represent for each Atari
game the average return of the episodes of the dataset normalized by the human score from (Mnih
et al., 2015). Notably, for 43 games the average score is higher than the human score, and for 31
games the average score is more than twice the human score. It should be noted, however, that for
7 games (Bowling, Montezuma’s Revenge, PitFall, Private Eye, Seaquest, Solaris and Venture) the
average score is less than 10% of the human score.

We also plot the distribution of returns for each task, which provides a more detailed picture than
a simple average. Figure 12 shows this distribution for Atari, Figure 13 for BabyAI, Figure 14 for
Meta-World and Figure 15 for MuJoCo.

4The expert score is below the human score for Asterix, Bowling, Centipede, Fishing Derby, Kangaroo,
Montezuma’s Revenge, Ms. Pacman, Pitfall, Private Eye, River Raid, Seaquest, Skiing, Solaris, Venture
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Figure 11: Human normalized dataset scores for Atari.
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Figure 12: Atari dataset return distribution.
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Figure 13: BabyAI dataset return distribution.
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Figure 14: Meta-World dataset return distribution.
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Figure 15: MuJoCo dataset return distribution.
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B.1.1 Text-Centric Datasets

Oscar Common Crawl-based text documents have been widely used in the past to create datasets
for Language Modeling (Radford et al., 2019; Brown et al., 2020; Raffel et al., 2020). We chose
to leverage the unshuffled deduplicated English subset of the OSCAR5 corpus (Ortiz Suárez et al.,
2020) for our language modeling objective. As such crawled internet data needs to be cleaned before
using it for training Language Models (e.g. deduplication, filtering out machine-generating content),
we reused both the cleaning and deduplication pipeline from the ROOTS corpus (Laurençon et al.,
2023b). The initial dataset was shuffled, split into a training (95%) and test (5%) set, and evenly
split into 30 shards on which the cleaning and deduplication pipelines were applied to reduce the
memory needs. Shards were then concatenated back together, leading to a final dataset of 245 million
documents (compared to 304 million documents in the initial dataset).

Conceptual-Captions We include the Conceptual-Captions dataset (Sharma et al., 2018), as it
is a key resource for image captioning and visual understanding tasks. It contains over 2.6 million
training examples and over 12,000 test examples, with a wide range of web-sourced images, each
paired with a descriptive caption.

OK-VQA We include the OK-VQA dataset (Marino et al., 2019) because it is an essential resource
for visual question answering tasks that focus on the intersection of visual perception and knowledge-
based reasoning. With over 14,000 samples, it contains a wide range of images, each associated with
questions that require not only visual understanding, but also external knowledge for an accurate
answer.

Wikipedia The Wikipedia dataset, built from the Wikipedia dump (Foundation), contains over 6
million English language samples as of March 1, 2022. It offers a wide range of topics and a wealth
of information. By using this dataset, we aim to improve the language processing capabilities of our
model and provide access to extensive reservoir of encyclopedic knowledge.

5Its original version from 2019: https://huggingface.co/datasets/oscar

27

https://huggingface.co/datasets/oscar


C Image captioning additional examples

tattoo on the left inner forearm. ∼
artist. ∼ ∼ photo sharing website

- shaped cloud formation over a city.
∼ photo by person. #zn. - #zn.0 #

christmas

and illustration of the new year.
photo by person.

s and drawings on the ceiling of a
building.

- cut emerald - cut diamonds are a
perfect addition to any home.

day in the green forest.

for the first time! by person, the man
who is now on the right.

s are part of the annual event.
organisation

ging it up : the model was spotted
wearing a pair of black jeans, a
white t - shirt and black t - shirt

s and other souvenirs at the market. s of the day : flowers dog in a bedroom.

Figure 16: JAT image captioning additional examples.
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D Reward as a Task Determinant

In multi-task learning, different environments may share identical dynamics and observational
structures while differing in their ultimate goals (i.e., reward functions). Initially, the agent cannot
distinguish the specific task it is facing. In most cases, this problem does not arise. For BabyAI,
for example, the goal is an explicit part of the observation. For Atari, a single frame is sufficient to
determine the game, and therefore the goal. In our dataset, the only domain that could be challenging
in this respect is Meta-World, for which the structure of observations and dynamics is consistent
across tasks. Note also that even in this case, it should be possible for the agent in some instances to
infer the task from the initial conditions. We confirm this hypothesis in the following experiment.

To solve the problem of task indeterminacy, Gato introduces a method of pre-empting the sequence
with an expert demonstration (prompt) to guide the agent. While this approach is effective, it
imposes an important limitation: a demonstration must be available, and this demonstration must
be sufficiently complete to clearly define the task. In the JAT model, we adopt a less restrictive and
simpler approach by incorporating the reward signal directly into the observation encoding. We
believe that this integration can, in most cases, provide the agent with sufficient context to remove
ambiguity about the task at hand.

To support our hypothesis on the effectiveness of integrating reward signals into observations,
we conducted an experiment with three different settings. First, to create a baseline where task
indeterminacy is absent, we trained individual agents, each on a specific task from a random subset
of 10 Meta-World tasks. This single-task training ensures that each agent is perfectly matched
to its respective task, without any ambiguity. Next, we introduced a degree of indeterminacy by
training a single model on the same 10 tasks without access to the reward signal, presenting a
scenario that simulates a worst-case uncertainty condition. We compare these two settings with our
full JAT model, i.e. with access to the reward signal, trained on the same selection of tasks. We
compared the performance of these three scenarios, with the results detailed in Figures 17 following
the recommendations of (Agarwal et al., 2021).
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Median

0.8 1.0

Expert normalized episodic return
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0.8 1.0

Mean

(a) Aggregated metrics.
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P (LEFT > RIGHT)

JAT
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JAT w/o reward

JAT

(b) Probability of improvement.

Figure 17: Results of the reward ablation. The vertical bars are the estimated values and the shaded
areas are the 95% stratified bootstrap CIs. The experiments were conducted on a selection of 10
tasks from the Meta-World benchmark. Displayed are the results of an ablation study on our JAT
model variations: Single-task JAT with each task learned by a dedicated agent; JAT without rewards
where the training omits reward signals; and the full JAT model integrating reward signals. Results
are based on 100 evaluations per task.
Firstly, it’s notable that the JAT model trained on a single task surpasses other settings, thus demon-
strating the existence of a negative impact of task indeterminacy. However, this impact is actually
very minor, and even in the most unfavorable setting (JAT without reward), the normalized IQM score
reaches 97.6 ± 0.7%. This confirms the previously formulated intuition that the task can generally be
inferred from the initial conditions. Then, when comparing the JAT model with and without access
to the reward, we observe a probability of improvement from the former over the latter of 51.8 ±
2.5%, indicating that the addition of the reward has a significant, albeit small, positive effect on
resolving indeterminacy. Lastly, the most significant gap is observed in the average score. This can
be attributed to the fact that this metric accounts for outliers. Here, the outliers are the tasks suffering
from indeterminacy, for which the agent often fails to resolve the task.

In summary, the key insight from this study is that complex solutions like prompting are often not
required to address this task indetermination issue, as it typically presents a minimal challenge.
Furthermore, in instances where the problem does manifest, implementing a straightforward strategy
like incorporating the reward into the observation proves to be an effective measure for mitigation.
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