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ABSTRACT

Network tomography is a crucial problem in network monitoring, where the ob-
servable path performance metric values are used to infer the unobserved ones,
making it essential for tasks such as route selection, fault diagnosis, and traffic
control. Most existing methods require complete knowledge of the network topol-
ogy and path performance metric calculation formula, which is unrealistic in many
real-world practices where network topology and path performance metrics are not
well observable. More recently, a few deep learning methods went to the opposite
extreme, i.e., turning to data-driven solutions for end-to-end prediction without
considering network topology and knowledge of PPMs. In this paper, we argue
that a good network tomography requires synergizing the knowledge from both
data and appropriate inductive bias from (partial) prior knowledge. To see this,
we propose Deep Network Tomography (DeepNT), a new framework that learns
a path-centric graph neural network for predicting path performance metrics. The
path-centric graph neural network learns the path embedding by inferring and ag-
gregating the embeddings of the sequence of nodes that compose this path. Train-
ing path-centric graph neural networks requires learning the network topology and
neural network parameters, which motivates us to design a learning objective that
imposes connectivity and sparsity constraints on topology and path performance
triangle inequality over PPMs. Extensive experiments on real-world and synthetic
datasets demonstrate the superiority of DeepNT in predicting performance metrics
and inferring graph topology compared to state-of-the-art methods.

1 INTRODUCTION

Figure 1: An illustration of network tomography in a sample net-
work, where the end-to-end latency needs to be predicted when
the network topology is not available.

Network tomography seeks to infer unobserved net-
work characteristics using those that are observed.
More specifically, one may observe path perfor-
mance metrics (PPMs), such as path delay and ca-
pacity, by measuring the two endpoints of the path.
Hence, network tomography can use the observa-
tions of the PPMs of some pairs of endpoints to
infer those of the remaining pairs, because many
PPMs can be written as aggregations of correspond-
ing measures on the edges which are typically far
fewer the paths they can make up. Network tomogra-
phy plays a crucial role in applications such as route
selection (Ikeuchi et al., 2022; Tao et al., 2024), fault diagnosis (Qiao et al., 2020; Ramanan et al.,
2015), and traffic control (Lev-Ari et al., 2023; Pan et al., 2020; Zhang et al., 2018). In real-world
applications, many network internal characteristics are not fully accessible. For instance, in scenar-
ios where a local area network is connected to the Internet, the internal computers of the local area
network remain hidden from the Internet due to predefined security policies (Fig. 1). This highlights
the need to use network tomography to help infer path-related network states such as latency and
congestion levels (Cao & Sun, 2012). Similar needs appear in many other fields, such as inferring
estimated time of arrival and traffic conditions in transportation networks Zhang et al. (2018), and
inferring obscured connections in social networks (Xing et al., 2009).
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Network tomography is very challenging since the PPM values of a pair of nodes are jointly deter-
mined by the specific path in a particular network topology under a certain PPM type. To make this
problem solvable, traditional network tomography approaches rely on the observed network topol-
ogy and predefined, hand-crafted PPM calculations, focusing on either additive metrics, where the
combined metric over a path is the sum of the involved link metrics (e.g., delay), or non-additive
metrics, where the path performance is a nonlinear combination of link metrics (Feng et al., 2020;
Xue et al., 2022). Other prescribed methods depend on assumptions like rare simultaneous failures
(Carter & Crovella, 1996; Jain & Dovrolis, 2002; Lai & Baker, 2000), minimal sets of network fail-
ures (Duffield, 2003; 2006; Kompella et al., 2007), or sparse performance metrics (Firooz & Roy,
2010; Xu et al., 2011; Zhang et al., 2009). These methods rely heavily on human-defined heuristics
and rules, making their inference limited and biased by human domain knowledge, especially for
many areas where we do not know what PPMs best model the network process. For instance, a
heuristic rule that assumes rare simultaneous network failures may be effective for localizing net-
work bottlenecks in a computer network, but would not be suitable for environments like cloud
computing or distributed systems, where performance degradation often involves multiple simulta-
neous disruptions across different nodes or links. More recently, dynamic routing (Sartzetakis &
Varvarigos, 2023; Tagyo et al., 2021) and deep learning approaches (Ma et al., 2020; Sartzetakis &
Varvarigos, 2022; Tao & Silvestri, 2023) have attempted to bypass the need for prior knowledge on
PPMs by directly learning end-to-end models from data (e.g., predicting PPMs given the path’s two
endpoints). Hence, although they avoided traditional methods’ heavy dependency on the observed
network topology and prior knowledge of PPMs, they went to the other extreme, by typically com-
pletely overlooking the prior knowledge of the PPMs and the intrinsic relation between paths and
edges.

To overcome the complementary drawbacks of traditional and deep learning-based methods, we pur-
sue our method, Deep Network Tomography (DeepNT), which can infer the network topology and
how it determines the PPMs, by deeply characterizing the network process by eliciting and syner-
gizing the knowledge from both training data and partial knowledge of the inductive bias of PPMs.
More concretely, we propose a new path-centric graph neural network that can infer the PPMs values
of a path by learning its path embedding composed by the inferred sequence of node embeddings
along this path. Training path-centric graph neural networks requires learning the network topology
and neural network parameters, which motivates us to design a learning objective that imposes con-
nectivity and sparsity constraints on topology and path performance triangle inequality over PPMs.
DeepNT addresses two key problems in generic network tomography.

In summary, our primary contributions are as follows:

• Problem. We formulate the learning-based network tomography problem as learning representa-
tions for end-node pairs to simplify the optimization and identify unique challenges that arise in
its real-world applications.

• Framework. We propose a novel model for inferring unavailable adjacency matrices and metrics
of unmeasured paths, learning end-node pair representations in an end-to-end manner.

• Adaptivity. We introduce a novel constrained optimization objective function to infer adjacency
matrices by imposing a graph structure constraint and a triangle inequality constraint.

• Evaluation. Extensive experiments on real-world and synthetic datasets demonstrate the out-
standing performance of DeepNT. DeepNT outperforms other state-of-the-art models in predicting
different path performance metrics as well as reconstructing network adjacency matrices.

2 RELATED WORK

Network Tomography involves inferring internal network characteristics using performance met-
rics, which can be broadly classified as additive or non-additive. Additive metrics frame the network
tomography problem as a linear inverse problem, often assuming a known network topology and
link-path relationships (Chen et al., 2010; Gurewitz & Sidi, 2001; Liang & Yu, 2003). Statisti-
cal methods such as Maximum Likelihood Estimation (MLE) (Teng et al., 2024; Wandong et al.,
2011), Expectation Maximization (EM) (Bu et al., 2002; Wandong et al., 2011; Wei et al., 2007),
and Bayesian estimation (Wandong et al., 2011; Zhang, 2006) are employed to solve this problem.
Algebraic approaches, such as System of Linear Equations (SLE) (Bejerano & Rastogi, 2003; Chen
et al., 2003; Gopalan & Ramasubramanian, 2011) and Singular Value Decomposition (SVD) (Chua
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et al., 2005; Song et al., 2008), that rely on traceroute work well in certain scenarios but are often
blocked by network providers to maintain the confidentiality of their routing strategies. When link
performance metrics are sparse, compressive sensing techniques are used to identify all sparse link
metrics (Firooz & Roy, 2010; Xu et al., 2011). Furthermore, studies have explored the sufficient
and necessary conditions to identify all link performance metrics with minimal measurements (Alon
et al., 2014; Gopalan & Ramasubramanian, 2011). Non-additive metrics, such as boolean metrics,
introduce additional complexity and constraints. These studies often assume that multiple simul-
taneous failures are rare, focusing on identifying network bottlenecks (Bejerano & Rastogi, 2003;
Horton & López-Ortiz, 2003). However, the assumption of rare simultaneous failures is not always
valid. Some works address this by identifying the minimum set of network failures or reducing the
number of measurements required (Duffield, 2006; Ikeuchi et al., 2022; Zeng et al., 2012). Addition-
ally, several papers have proposed conditions and algorithms to efficiently detect network failures
(Bartolini et al., 2020; Galesi & Ranjbar, 2018; He, 2018; Ibraheem et al., 2023), and some studies
have attempted to apply deep learning to this field (Ma et al., 2020; Sartzetakis & Varvarigos, 2022;
Tao & Silvestri, 2023). However, most existing works rely on hand-crafted rules and specific as-
sumptions, making them specialized for certain applications and unsuitable where prior knowledge
of network properties or topology is unavailable.

GNNs for Graph Structure Learning can be classified into approaches for learning discrete graph
structures (i.e., binary adjacency matrices) and weighted graph structures (i.e., weighted adjacency
matrices). Discrete graph structure approaches typically sample discrete structures from learned
probabilistic adjacency matrices and subsequently feed these graphs into GNN models. Notable
methods in this category include variational inference (Chen et al., 2018), bilevel optimization
(Franceschi et al., 2019), and reinforcement learning (Kazemi et al., 2020). However, the non-
differentiability of discrete graph structures poses significant challenges, leading to the adoption of
weighted graph structures, which encode richer edge information. A common approach involves
establishing graph similarity metrics based on the assumption that node embeddings during training
will resemble those during inference. Popular similarity metrics include cosine similarity (Nguyen
& Bai, 2010), radial basis function (RBF) kernel (Yeung & Chang, 2007), and attention mecha-
nisms (Chorowski et al., 2015). While graph similarity techniques are applied in fully-connected
graphs, graph sparsification techniques explicitly enforce sparsity to better reflect the characteristics
of real-world graphs (Chen et al., 2020b; Jin et al., 2020). Additionally, graph regularization is em-
ployed in GNN models to enhance generalization and robustness (Chen et al., 2020a). In this work,
we leverage GNNs to learn end-node pair representations, enabling simultaneous prediction of path
performance metrics and inference of the network topology.

3 PRELIMINARIES

Graphs. A connected network G is defined as G = (V,E), where V and E ⊆ V × V represent the
node set and edge set, respectively, let A denote the adjacency matrix of G.

Path Performance Metrics (PPMs). Given a graph G = (V,E), let Puv = {pnuv}Nn=1 represent the
set of all possible paths from node u to v, where u, v ∈ V , and N denotes the number of possible
paths between u and v. Let ye be the performance metric value of an individual edge, where e ∈ E.
The path performance metric value is defined as the cumulative performance of all edges on a path,
where the cumulative calculation depends on the type of metric being considered. The unified path
performance metric is defined as follows:

ynuv =
⊗

ei∈pn
uv

yei , where
⊗

∈ {
∑

,
∏

,
∧

,
∨

,min,max, · · · }, (1)

where
⊗

represents an operator that varies based on the type of path performance metrics, such as
additive, multiplicative, boolean, min/max, etc. The optimal path performance between two nodes is
defined as yuv = {ynuv | ynuv ≧⃝ ykuv, ∀pkuv ̸= pnuv ∈ Puv}, where ≧⃝ indicates better performance,
depending on the specific type of path performance metric. For instance, in the case of additive
metrics such as latency, the operator

⊗
=

∑
and ≧⃝ =≤, meaning the path performance metric

is the sum of latencies along the edges of the path, with lower values indicating better performance.
Alternatively, for min metrics like capacity,

⊗
= min and ≧⃝ = max, where the overall path

performance is determined by the minimum capacity along the path, and higher values represent
better performance.
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Figure 2: Overall framework of DeepNT. The network topology is unknown, with only end-to-end additive path performance for some node
pairs being observed. We leverage graph neural networks followed by a path aggregation layer to learn the path-centric end-node pair repre-
sentation. The training of GNNs and the learning of the graph structure are jointly optimized.

Network Tomography. Define T = {⟨u, v⟩}u̸=v∈V as the set of all node pairs, where |T | =
(|V |

2

)
.

Let S ⊂ T be a subset of node pairs for which the end-to-end optimal PPMs are measured. The
exact path information between any two nodes is unknown. Network tomography aims to use the
measured PPMs values in S to predict the end-to-end optimal PPMs value of unmeasured node pairs
in T \ S. The optimal path between two nodes is typically determined by the Best Performance
Routing (BPR). For instance, in a computer network, with measured end-to-end transmission delays
for certain node pairs S ⊂ T , the goal of network tomography is to infer the minimum delays for
the unmeasured pairs in T \S, when the exact path information for node pairs in T \S is unknown.

4 DEEP NETWORK TOMOGRAPHY

Overview. Network tomography is very challenging since the PPM values of a pair of nodes are
jointly determined by the specific path in a particular network topology under a certain PPM type.
Hence, we propose a DeepNT to jointly infer network topology, consider path candidates, and learn
path performance metrics, in order to effectively predict the PPM values of a node pair as shown in
Fig. 2. Specifically, we propose a path-centric graph neural network to learn the candidate paths’
embedding from the embeddings of the nodes on them and then aggregate them into node pair
embedding for the final PPM value prediction, as illustrated in Fig. 2(b) and detailed in Section 4.1.
To infer the network topology, DeepNT introduces a learning objective that updates the adjacency
matrix of the network by imposing constraints on connectivity and sparsity, as detailed in Section
4.3. This allows for the simultaneous prediction of PPM values and inference of network structure.
Moreover, to leverage the inductive bias inherent in different types of PPMs, we introduce path
performance triangle inequalities that further refine our predictions, as outlined in Section 4.2.

4.1 PATH-CENTRIC GRAPH NEURAL NETWORK

Candidate paths’ information elicitation and encoding. Since the actual path to measure the
PPMs between two nodes is unknown due to partially unknown network topology and process,
we aggregate information of multiple promising paths to capture such context. To be specific, for
each node pair, e.g., ⟨u, v⟩, we leverage BPR to sample N loopless paths between them based on
the adjacent matrix Ã, denoted as PL

uv = {p(n)uv }n∈[1,N ], ensuring that the lengths do not exceed L.
Then, the node embeddings of u and v are updated with a path aggregation layer with a permutation-
invariant readout function as,

e(n)vz = σ(r⊤[(hv, h
(n)
z ]) =⇒ α(n)

vz = softmax(e(n)vz ),where z ∈ p(n)uv , (2)

ĥ(n)
v = hv + σ(

∑
z∈p

(n)
uv

α(n)
vz · h(n)

z ) =⇒ ĥv = READOUT({ĥ(n)
v , p(n)uv ∈ PL

uv}), (3)

where σ indicates the activation function, r is a predefined vector. ĥu is obtained in the same
way. This path-centric embedding aggregates the local neighborhood information of the end-node
pair as well as the information in potential optimal paths connecting them. Finally, the concatenated
representation of the end-node pair is passed through a projection module to predict the performance
metric value ŷuv via fθ : (u, v, Ã) → ŷuv . The objective function can be formulated as,

min
θ,Ã

LGNN (θ, Ã, Y ) =
∑

u,v∈V

l(fθ(u, v, Ã), yuv), s.t., Ã ∈ A, (4)

where θ indicates the parameters of f(θ), l(·, ·) is to measure the difference between the prediction
fθ(u, v, Ã) and the target value yuv , e.g., cross entropy for boolean metrics and l2 norm for additive
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metrics. Another objective will be introduced in following Section 4.3 to infer a optimal symmetric
adjacency matrix Ã ∈ A where A represents the set of valid adjacency matrices specified in Section
4.3. We then introduce a training penalty that constrains the DeepNT model with a path performance
triangle inequality, applicable to any type of path performance metric.

4.2 PATH PERFORMANCE TRIANGLE INEQUALITY

Since PPM is for the optimal path among all the paths between the node pairs, the performance of
any path between these two nodes cannot exceed the performance of the observed optimal path. For
each pair of nodes u and v, and for any other node z on the path, the following triangle inequality
must hold: yuv ≧⃝ (yuz

⊗
yzv) because yuv , corresponding to the best path between < u, v >,

should be no worse than yuz
⊗

yzv , the best path between < u, v > going through z. Here, ≧⃝
is a generalized inequality relation that will be specified according to the type of PPM of interest.
For example, when the performance metric is delay (where better performance corresponds to lower
values), ≧⃝ becomes ≤. Thus, we will only punish the violation of the above generalized inequality,
resulting in the following generalized ReLU style loss given fθ(u, v) = ŷu,v:

min
θ,Ã

LM (θ, Ã, Y ) =
∑

u,v∈V

lM (fθ(u, v, Ã), yuz
⊗

yzv), s.t. Ã ∈ A, (5)

where z is a random node in p
(n)
uv , and p

(n)
uv is the path with the optimal performance in PL

uv .
The function lM computes a penalty enforcing that the predicted performance does not exceed the
bounded value, defined as lM (ŷ, y) = max(0, ŷ ⊖ y), where ⊖ is also chosen adaptively based
on the type of path performance metric. As a result, the estimated performance metric is always
bounded by the optimal performance among the observed paths.

4.3 GRAPH STRUCTURE COMPLETION

Real-world networks, such as social networks, transportation networks, and information networks,
are often naturally sparse, noisy, connected, and (partially) unobservable (Fan & Li, 2017; Zhou
et al., 2013), which defines the domain A as specified in the following. To tackle this, we propose
to infer the complete graph structure with the graph adjacency matrix Ã ∈ [0, 1]|V |×|V | as follows:

min
Ã

LS = ∥M ⊙ (Ã−A)∥2F + α∥Ã∥1, s.t., λ2(L(Ã)) > ϵ, Ã ∈ A, (6)

where M ∈ {0, 1}|V |×|V | is a matrix with the same size as A, a cell of M is equal to 1 if its
corresponding edge connectivity (or not) is observed; and 0, otherwise. ∥·∥2F indicates the Frobenius
norm to ensure the new adjacency matrix be close to the observed one, ∥ · ∥1 indicates the l1 norm to
remain the new adjacency matrix sparse. α controls the contribution from the sparsity constraint. ϵ
is small positive constant. Network tomography requires the network is connected to ensure that any
node within the graph remains reachable from any other node, thus maintaining the graph’s utility
in representing a communicative or information transfer network (Zhao et al., 2019). Incorporating
the connectivity term directly into the objective function introduces non-convexity, complicating
optimization by potentially leading to multiple local minima (Ghosh & Boyd, 2006; Kumar et al.,
2019). Therefore, we impose it as a constraint to maintain a convex objective function while ensuring
global graph connectivity, allowing for more efficient and stable optimization. λ2(L(Ã)) indicates
the second smallest eigenvalue of the Laplacian matrix of Ã, which is used to ensure the connectivity
(Fiedler, 1973; Zhou et al., 2006).

4.4 OPTIMIZATION FOR DEEPNT

We jointly learn the GNN model and the adjacency matrix to infer the optimal network topology for
the GNN model on the given task. The final objective function of DeepNT is given as,

argmin
θ,Ã

L = LGNN + LS + γLM , s.t., λ2(L(Ã)) > ϵ, Ã ∈ A, (7)

where γ is a predefined parameter. Jointly optimizing θ and Ã is challenging because it involves nav-
igating a highly non-convex optimization landscape with interdependent variables. The optimization
problem in DeepNT is formulated as follows:

F = min
θ,Ã

g(θ, Ã) + α||Ã||1, (8)
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where g(θ, Ã) = LGNN + γLM + ∥M ⊙ (Ã− A)∥2F . Then the proximal gradient algorithm with
extrapolation algorithm is shown in Algorithm 1, where ω > 0 is a learning rate, and proxλ∥·∥1

(f) =

Sλ(f) = argminx
(
1
2∥x− f∥2F + λ∥x∥1

)
is the soft-thresholding operator.

Algorithm 1: Optimization of DeepNT

Require: S, y, ω.
Ensure: Parameters θ of DeepNT, inferred adjacency matrix Ã.

Initialize Ã−1 = Ã0 = 0, θ−1 = θ0 = 0.
while Stopping condition is not met do

θ
k ← θk + (1− ω)(θk − θk−1)

A
k ← Ãk + (1− ω)(Ãk − Ãk−1).

θk+1 ← θ
k − ω∇g(θk, Ak

).
Ãk+1 ← argminÃ(1/2)∥Ã− (A

k−ω∇g(θk, Ak
))∥2F +α∥Ã∥1 = proxωα∥·∥1(A

k−ω∇g(θk, Ak
)).

if λ2(L(Ã
k+1)) < ϵ then

Ãk+1 ← Ãk+1 + ϵ
end if

end while
return θ and Ã.

Theorem 4.1. Assume g(θ, Ã) is Lipschitz continuous with coefficient l > 0, and its gradient

∇g(θ, Ã) is Lipschitz continuous with coefficient L > 0. Let 1
L ≤ ω ≤

√
L

L+l , and let {(θk, Ãk)}
be a sequence generated by Algorithm 1, then any of its limit point (θ∗, Ã∗) is a stationary point of
equation 8.

This theorem guarantees the convergence of our optimization algorithm. The proof to this theorem
is proved in Appendix A.3.

5 EXPERIMENT

In this section, we evaluate the effectiveness of DeepNT and compare our approach with state-of-
the-art network tomography methods. In addition to the performance in path performance metric
prediction, we will also discuss the performance of DeepNT in topology reconstruction.

5.1 DATASETS

We conduct experiments on three real-world datasets. These networks include transportation net-
works, social networks, and computer networks, each with different path performance metrics.
Transportation networks are collected from different cities. The social network dataset collects
interactions between people on different online social platforms, including Epinions, Facebook and
Twitter. The Internet dataset consists of networks with raw IPv6 or IPv4 probe data. The statistics
of the real-world datasets are shown in Table 1. Details of data processing and path performance
metrics of each dataset are in Appendix A.1.

Table 1: Dataset Statistics: the number of networks, (average) nodes and edges. − indicates the dataset has a singe network.

Statistics Internet Social Network Transportation
IPV4 IPV6 Epinions Twitter Facebook Anaheim Winnipeg Terrassa Barcelona Gold Cost

Graphs 10 10 - - - - - - - -
Nodes 2866.0 1895.7 75,879 81,306 4,039 416 1,057 1,609 1,020 4,807
Edges 3119.6 2221.7 508,837 1768,149 88,234 914 2,535 3,264 2,522 11,140

In addition, we use a synthetic dataset to test the comprehensive performance of our model on net-
works of different sizes and properties, exploring the robustness and scalability of our model. Syn-
thetic networks are generated using the Erdős-Rényi, Watts-Strogatz and Barabási–Albert models.
For network sizes in 50i50i=1, each graph generation algorithm is used to generate 10 networks with
varying edge probabilities for each network size (the edge probability represents the likelihood that
any given pair of nodes in the network is directly connected by an edge). We focus on monitor-based
sampling scenarios, where some nodes are randomly selected as monitors and the end-to-end path
performance between the monitors and other nodes are sampled as training data. We set different
sampling rates δ ∈ {10%, 20%, 30%} to simulate the real network detection scenario (Ma et al.,
2020). The sampled path performance is used as training data, that is, δ of total node pairs are used
as training data and the rest of node pairs are used for testing.

6
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Table 2: Mean Absolute Percentage Error (MAPE ↓) and Mean Squared Error (MSE ↓) for Additive Metrics on real-world datasets. The best
results are highlighted in bold. The second best results are underlined. − indicates the model is not able to handle the large network.

|S|
|T | Method Internet Social Network Transportation Synthetic

MAPE ↓ MSE ↓ MAPE ↓ MSE ↓ MAPE ↓ MSE ↓ MAPE ↓ MSE ↓

10%

MMP+DAIL 0.9411 143.9463 - - 0.7642 41.0764 0.6755 318.3382
BoundNT 0.9250 126.2529 - - 0.7183 28.4639 0.6229 244.3805

Subito 0.9368 129.8293 - - 0.7809 39.9722 0.6047 236.2874
PAINT 0.9337 130.6045 - - 0.6508 27.8604 0.3493 136.8139
MPIP 0.9274 125.7296 - - 0.7294 28.0741 0.6246 253.4835

NeuTomography 0.8118 97.0785 1.3872 21.5816 0.6948 30.2343 0.3629 133.9919
DeepNT 0.6907 84.4514 0.8172 12.6533 0.6342 24.0135 0.2520 79.3843

20%

MMP+DAIL 0.8892 124.0720 - - 0.6982 32.4886 0.6324 261.3459
BoundNT 0.8935 120.4519 - - 0.6507 27.9272 0.5587 196.9912

Subito 0.9008 122.5825 - - 0.6757 30.7168 0.5571 194.0589
PAINT 0.8638 112.4626 - - 0.5983 25.1261 0.3091 113.6392
MPIP 0.8901 118.9798 - - 0.6419 27.1587 0.5663 202.6942

NeuTomography 0.7547 90.1461 1.2211 18.1076 0.6175 25.4259 0.3315 119.6274
DeepNT 0.6299 76.5168 0.7593 12.0193 0.5543 21.6331 0.2168 66.5215

30%

MMP+DAIL 0.8219 104.2967 - - 0.5839 28.1040 0.5702 218.5386
BoundNT 0.8593 110.3346 - - 0.5124 20.6403 0.4772 170.3272

Subito 0.8466 107.0691 - - 0.5493 20.6268 0.4966 169.6914
PAINT 0.8108 102.0409 - - 0.4629 20.0037 0.2916 92.2561
MPIP 0.8532 109.7416 - - 0.4905 20.1655 0.4712 171.0216

NeuTomography 0.7276 84.2087 1.1378 16.3775 0.4433 19.1260 0.3025 97.6045
DeepNT 0.5842 71.0797 0.7119 10.8074 0.3794 18.6551 0.1935 59.0406

5.2 EVALUATION

Comparison Methods. To evaluate the effectiveness of DeepNT, we compare it with the state-of-
the-art network tomography methods. Details of the implementation can be found in Appendix A.2.

MMP+DAIL (Ma et al., 2013) optimizes additive performance metrics under the assumption of a
known network topology and manageable, loop-free routing. ANMI (Ma et al., 2015) locates prob-
lematic network links by employing a tunable threshold parameter and, given precise metric distri-
butions, further estimates fine-grained link metrics. AMPR (Ikeuchi et al., 2022) identifies network
states in probabilistic routing environments by adaptively selecting measurements that maximize
mutual information. BoundNT (Feng et al., 2020) derives upper and lower bounds for unidentifi-
able links, using natural value bounds to constrain the solution space of the linear system. Subito
(Tao et al., 2024) formulates a linear system and uses network tomography to estimate link delays
with reinforcement learning. PAINT (Xue et al., 2022) iteratively estimates and refines link-level
performance metrics, minimizing least square errors and discrepancies between estimated and ob-
served shortest paths. MPIP (Li et al., 2023) uses graph decomposition techniques and an iterative
placement strategy to optimize monitor locations for improved inference of path metrics. NeuTo-
mography (Ma et al., 2020) learns the non-linear relationships between node pairs and the unknown
underlying topological and routing properties by path augmentation and topology reconstruction.

5.2.1 MAIN RESULTS OF PATH PERFORMANCE METRIC PREDICTION

The topological incompleteness is 0.2 (i.e., 20% of the edges are replaced by non-existent edges).
For the deep learning models, all experiments are performed 10 times and we report the average
accuracy. For the linear system based methods, we adopt the solution from the authors’ original
implementation. Table 2, Table 3, Table 4 and Table 5 report the results of predicting additive,
multiplicative, min/max and boolean path performance metrics, respectively. |S|

|T | means how many
node pairs’ end-to-end path performance metric values are measured and used for training.

For all types of path performance metrics, DeepNT consistently outperforms all other comparison
methods. For additive metrics, although NeuTomography provides the second-best performance in
both MAPE (0.8118) and MSE (97.0785) on Internet dataset at the 10% sampling rate, DeepNT sig-
nificantly outperforms it with a MAPE of 0.6907 and an MSE of 84.4514. The same pattern persists
across the 20% and 30% sampling rates. DeepNT exhibits exceptional robustness when faced with
different types of network structures (e.g., social, transportation, and synthetic networks), which
current models are not well-equipped to handle. For multiplicative metrics, DeepNT’s performance
remains stable across varying levels of network sparsity, as evidenced by its consistent top rankings
in all scenarios. DeepNT achieves a MAPE of 0.0509 and an MSE of 0.0093 on large-scale social
networks at sampling rate of 30%, which is much better than NeuTomography’s MAPE of 0.0813
and MSE of 0.0226, while other models cannot handle these large-scale networks.

Scalability Analysis. As the network size increases, DeepNT shows superior scalability compared
to the comparison models. For instance, for additional metrics on small datasets (e.g., the transporta-
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Table 3: Mean Absolute Percentage Error (MAPE ↓) and Mean Squared Error (MSE ↓) for Multiplicative Metrics on real-world datasets.
The best results are highlighted in bold. The second best results are underlined. * indicates logarithmic transformations are used to convert
multiplicative metrics to additive metrics, as these methods are designed for additive metrics.

|S|
|T | Method Internet Social Network Synthetic

MAPE ↓ MSE ↓ MAPE ↓ MSE ↓ MAPE ↓ MSE ↓

10%

BoundNT (*) 0.3930 14.4673 - - 0.0783 0.3651
MPIP (*) 0.4007 16.4387 - - 0.0791 0.3583

NeuTomography 0.0632 0.4216 0.0988 0.0357 0.0347 0.0969
DeepNT 0.0243 0.0438 0.0620 0.1247 0.0182 0.0154

20%

BoundNT (*) 0.3797 13.0014 - - 0.0787 0.3301
MPIP (*) 0.3835 12.5421 - - 0.0803 0.3498

NeuTomography 0.0587 0.3493 0.0939 0.0341 0.0291 0.0664
DeepNT 0.0207 0.0257 0.0571 0.1094 0.0136 0.0087

30%

BoundNT (*) 0.3606 10.9892 - - 0.0740 0.3125
MPIP (*) 0.3588 12.8381 - - 0.0753 0.3216

NeuTomography 0.0526 0.2409 0.0813 0.0226 0.0243 0.0381
DeepNT 0.0169 0.0093 0.0509 0.0093 0.0112 0.0083

Table 4: Mean Absolute Percentage Error (MAPE ↓) and Mean Squared Error (MSE ↓) for Min or Max Metrics on real-world datasets. The
best results are highlighted in bold. The second best results are underlined.

|S|
|T | Method Internet Transportation Synthetic

MAPE ↓ MSE ↓ MAPE ↓ MSE (×106) ↓ MAPE ↓ MSE ↓

10%
ANMI 0.0907 52.2783 1.0674 83.3370 0.0975 70.4885

NeuTomography 0.0741 37.8309 1.1983 114.1017 0.0770 51.1739
DeepNT 0.0640 34.4012 0.4744 38.1392 0.0585 29.7446

20%
ANMI 0.0929 50.2317 1.1205 87.6417 0.0973 67.7634

NeuTomography 0.0596 28.8063 0.9016 73.8099 0.0633 33.1365
DeepNT 0.0517 22.7196 0.5216 28.5838 0.0431 21.7088

30%
ANMI 0.0944 52.5456 1.0233 84.9310 0.0911 70.6701

NeuTomography 0.0552 21.2428 0.8278 55.4812 0.0468 18.2206
DeepNT 0.0396 14.2014 0.4863 22.5173 0.0332 12.9561

Table 5: Accuracy (ACC in % ↑) and F1 Score ↑ for Boolean Metrics on real-world datasets. The best results are highlighted in bold. The
second best results are underlined. − means that the method cannot handle the network.

|S|
|T | Method Social Network Transportation Synthetic

ACC ↑ F1 ↑ ACC ↑ F1 ↑ ACC ↑ F1 ↑

10%
AMPR - - 0.7059 0.6184 0.6299 0.6178

NeuTomography 0.6429 0.6838 0.7858 0.7493 0.6784 0.7226
DeepNT 0.6854 0.7122 0.8144 0.8003 0.7383 0.7709

20%
AMPR - - 0.7517 0.6361 0.6497 0.6246

NeuTomography 0.6826 0.7148 0.8092 0.7652 0.6980 0.7837
DeepNT 0.7045 0.7273 0.8317 0.8117 0.7726 0.8163

30%
AMPR - - 0.7696 0.6605 0.6707 0.6422

NeuTomography 0.7213 0.7484 0.8551 0.7795 0.7426 0.7932
DeepNT 0.7539 0.7691 0.8784 0.8450 0.8063 0.8361

tion dataset), comparison methods achieve comparable performance to DeepNT. At 10% sampling,
NeuTomography achieves a MAPE of 0.6948, close to DeepNT’s 0.6342, while PAINT records a
MAPE of 0.6508. This shows that on small networks, traditional models can be comparable to
DeepNT. However, as the network size increases, such as on social network and Internet datasets,
the performance gap between DeepNT and these comparison methods becomes obvious. On the
Internet dataset at 30% sampling rate, DeepNT achieves a MAPE of 0.5842, while NeuTomography
lags behind with a MAPE of 0.7276. PAINT only achieves a MAPE of 0.8108 on the same dataset.

5.2.2 CASE STUDY OF NETWORK TOPOLOGY RECONSTRUCTION

We further analyze the performance of network topology reconstruction given limited path informa-
tion. We present a case study demonstrating the effectiveness of our proposed method for recon-
structing network topology. For a network with 1,000 nodes and 2,521 edges with a topological error
rate of 0.2, we visualize the heatmap of adjacency matrices where each block contains 50 nodes.

(a) True topology (b) Difference between observed topol-
ogy and real one

(c) Difference between learned topology
by DeepNT and real one

(d) Difference between learned topology
by NeurTomography and real one

Figure 3: Heatmap of (a) the true adjacency matrix; heatmap of the difference between the true adjacency matrix and (b) the observed
incomplete adjacency matrix, (c) the adjacency matrix learned by DeepNT, and (d) the adjacency matrix learned by NeurTomography, for a
synthetic network with 1,000 nodes and 2,521 edges, with a topological error rate of 0.2 and path performance metrics, i.e., bandwidth.

The path performance metric is the min/max metric, i.e., bandwidth, and |S|/|T | = 30%. As
shown in Fig. 3, DeepNT successfully recovers most of the true topology with minimal deviation
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in topology reconstruction. The heatmaps in Figs 3b, 3c, 3d demonstrate that the adjacency matrix
learned by DeepNT is closer to the true adjacency matrix than the observed adjacency matrix and
the adjacency matrix learned by NeuTomography. In particular, the denser and more complex parts
of the network are more accurately recovered by DeepNT, which leads to smaller differences with
the true adjacency matrix.

5.3 ABLATION STUDY

To better understand how different components help our model predict various path performance
metrics with incomplete network topology, we conduct ablation studies under different topology
error rates ∆ when |S|/|T | = 30%. There are two key predefined parameters, i.e., α and γ, which
control the contributions for sparsity and path performance bounds, respectively. We set the value
of one parameter to one and the others to zero, and examine how the performance changes to show
the impact of each component.

Table 6: Ablation study results.

∆ Method Regression Classification
MAPE ↓ ACC ↑ F1 ↑

10%
DeepNT 0.0741 0.8124 0.8043
DeepNT-α 0.1236 0.6909 0.7341
DeepNT-γ 0.1014 0.7375 0.7582

20%
DeepNT 0.0852 0.7701 0.8041
DeepNT-α 0.1305 0.6628 0.6733
DeepNT-γ 0.1187 0.7081 0.7336

30%
DeepNT 0.1129 0.7226 0.7636
DeepNT-α 0.1368 0.6490 0.6827
DeepNT-γ 0.1212 0.6905 0.7294

Figure 4: Distribution of the ground truth and predicted
min/max path performance metric value by DeepNT, i.e., band-
width in an IPV4 network under |S|/|T | = 10%.

Accordingly, two model variants, DeepNT-α and
DeepNT-γ, are introduced. DeepNT-α sets α to 10−4

and γ to 0, while DeepNT-γ sets γ to 1 and α to 0.
We average the results of 500 Erdős-Rényi networks
of the synthetic dataset for various tasks. Regression
represents the average results for predicting additive,
multiplicative, and min/max path performance met-
rics, while Classification reports the average results
for predicting boolean path performance metrics. As
shown in Table 6, when the sparsity (α) or path per-
formance bound (γ) constraints are removed, the per-
formance significantly drops, demonstrating the im-
portance of sparsity and boundary constraints under
incomplete topological information. When the topol-
ogy error rate ∆ is small, DeepNT-γ does not signifi-
cantly improve the prediction performance. However,
when ∆ becomes larger, DeepNT-γ (i.e., the path per-
formance bound) can effectively reduce the impact of
incorrect topology on prediction because it utilizes
the possible correct path information to reconstruct
the topology. Additionally, as ∆ increases, the perfor-
mance gap between DeepNT-α and DeepNT-γ nar-
rows, suggesting that maintaining sparsity in the adjacency matrix improves the model’s perfor-
mance lower bound.

To further demonstrate the impact of removing constraints on performance, we present the distri-
bution of ground truth and predicted values for the min/max path performance metric (bandwidth)
in an IPv4 network with a topological error rate of 30% and |S|/|T | = 10%. As shown in Fig. 4,
even under a high topology error rate and limited path information, the probability distribution of
predicted path performance metrics by DeepNT closely aligns with the true distribution, highlight-
ing the model’s effectiveness. Moreover, the predictions by DeepNT with constraints are closer to
the true distribution compared to the variant without constraints, demonstrating the effectiveness of
our training framework.

6 CONCLUSION

In this paper, we introduce DeepNT, a novel framework for network tomography that addresses key
challenges in predicting path performance metrics and network topology inference under incomplete
and noisy observations. Through comprehensive experiments on real-world and synthetic datasets,
DeepNT consistently outperforms state-of-the-art methods across a variety of path performance met-
rics, including additive, multiplicative, min/max, and boolean metrics. DeepNT demonstrates strong
scalability and robustness, particularly as the network size and complexity increase, where tradi-
tional methods struggle to maintain performance. Additionally, the ablation studies validate the crit-
ical role of the proposed constraints on improving prediction accuracy, especially in high-topology
error scenarios. Future work will focus on enhancing the adaptability of DeepNT to more complex
performance metrics and network environments, including dynamic and multi-layered networks.
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A APPENDIX

A.1 DATASETS

For the initialization representation of nodes, if the source data already contains node features, we
use them as the initialization node representations, otherwise we use binary encoding to convert the
node identifier (e.g., node index) into a binary representation. For path performance metrics, we use
the edge labels of the source data to generate the path labels. In addition, we generate random edge
labels of other path performance metric types for some networks, and then generate the path labels.
Path performance metrics of each dataset are shown in the Table 7.
Table 7: Properties of datasets. ✓ of binary encoding indicates that the original data has no node features, and we use binary encoding to
generate the initial node representation. ✗ means that binary encoding is not used, but the node features of the original data are used. For
the path performance metrics, ✓ for one metric indicates that the network has the true edge (link) labels of that metric, while ✓ indicates that
random edge labels are generated for that performance metric.

Properties Internet1 Social Network2 Transportation 3

IPV4 IPV6 Epinions Twitter Facebook Anaheim Winnipeg Terrassa Barcelona Gold Cost
Binary Enc. ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Additive Path Performance Metrics
Delay ✓ ✓ ✓
RTT ✓ ✓
Distance ✓ ✓ ✓
Flow Time ✓ ✓ ✓ ✓ ✓

Multiplicative Path Performance Metrics
Reliability ✓ ✓
Trust Decay ✓ ✓ ✓

Min or Max Path Performance Metrics
Bandwidth ✓ ✓
Capacity ✓ ✓ ✓ ✓ ✓

Boolean Path Performance Metrics
Is Trustworthy ✓
Is Secure ✓ ✓ ✓ ✓ ✓

For the synthetic dataset, we utilize the Erdos-Renyi algorithm to generate networks of different
sizes. Then, we generate random edge labels for all the above path performance metrics. When
generating random edge labels for all datasets, for the addition and min/max metrics, the random
labels are in [1, 100], and for the multiplication metric, the random labels are in [0.9, 0.999]. For the
Boolean metrics, each edge is randomly assigned a state of 0 or 1, where path labels are controlled
to be balanced (the number of positive and negative labels will not less than 30%).

A.2 IMPLEMENTATION

The training data for each dataset depends on the sampling rate, i.e., |S|
|T | which indicates how many

node pairs’ end-to-end path performance metric values are used for training. Half of node pairs in S
is used as training data, and the other half is used as the validation set. That is, the number of node
pairs actually used as training data is |S|

2 . The rest of node pairs in T \ S are used as test data.

To train DeepNT, we use CrossEntropyLoss as the loss function for classification tasks (Boolean
metric) and MSELoss as the loss function for regression tasks (additive, multiplicative, and min/max
metrics). Adam optimizer is used to optimize the model. The learning rate is set to 1e-4 across all
tasks and models. The training batch is set to 1024 and the test batch is 2048 for all datasets. We use
GCN as the GNN backbone, and the number of layers of GCN is 2. We use the mean pooling as the
READOUT function. An one-layer MLP is used to make predictions. All models are trained for a
maximum of 500 epochs using an early stop scheme with the patience of 10. The hidden dimension
is set to 256. The hyperparameters we tune include the number of sampled shortest paths N in 1, 2,
3, the sparsity parameter α in 10e-5, 10e-4, 10e-3, 10e-2, and the path performance bound parameter
γ in 0.1, 0.25, 0.5, 1, 2, 4, 8, 16.

For the comparison methods, we follow the original settings provided by the authors. In particular,
the ANMI threshold ratio is reported as 30%. AMPR requires multiple probe tests, and we set the
number of probe tests to the number of placed monitors, since each monitor tests the end-to-end
path performance with other nodes.

1https://publicdata.caida.org/datasets/topology/ark
2https://snap.stanford.edu/data
3https://github.com/bstabler/TransportationNetworks
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A.3 PROOF OF THEOREM 4.1

Proof. With the chosen step size satisfying 1
L ≤ ω ≤

√
L

L+l , the proximal gradient algorithm
ensures:

F(θk+1, Ãk+1) ≤ F(θk, Ãk).

This implies that the sequence {F(θk, Ãk)} is non-increasing. Since F(θ, Ã) is bounded below
(due to the coercivity of the ℓ1-regularization term α∥Ã∥1), the sequence {F(θk, Ãk)} converges to
a finite value.

The boundedness of F(θk, Ãk) ensures that the sequence {(θk, Ãk)} is bounded, which means
{(θk, Ãk)} has at least one limit point (θ∗, Ã∗).

Since ∥(θk+1, Ãk+1)− (θk, Ãk)∥ → 0, and ∇g is Lipschitz continuous, it follows that:

∥∇g(θk+1, Ãk+1)−∇g(θk, Ãk)∥ → 0.

Therefore, the gradients ∇g(θk, Ãk) converge to ∇g(θ∗, Ã∗) as k → ∞.

The update for θ in Algorithm 1 is:

θk+1 − θ
k
= −ω∇θg(θ

k
, A

k
).

As k → ∞, θ
k → θ∗, θk+1 − θ

k → 0 and ∇θg(θ
k
, A

k
) → ∇θg(θ

∗, Ã∗). Then, it follows that:

∇θg(θ
∗, Ã∗) = 0.

The update for Ã in Algorithm 1 involves solving the proximal operator:

Ãk+1 = argmin
Ã

(
1

2

∥∥∥Ã−
(
A

k − ω∇Ãg(θ
k
, A

k
)
)∥∥∥2

F
+ ωα∥Ã∥1

)
.

This optimization is equivalent to applying the proximal mapping:

Ãk+1 = proxωα∥·∥1

(
A

k − ω∇Ãg(θ
k
, A

k
)
)
,

where proxλ∥·∥1
(f) = Sλ(f) is the soft-thresholding operator. The proximal mapping satisfies the

optimality condition:

0 ∈ Ãk+1 −
(
A

k − ω∇Ãg(θ
k
, A

k
)
)
+ ωα∂∥Ãk+1∥1.

Rearranging this condition gives:

0 ∈ ∇Ãg(θ
k
, A

k
) +

1

ω
(Ãk+1 −A

k
) + α∂∥Ãk+1∥1.

As k → ∞, the extrapolated sequence A
k → Ã∗ and the proximal updates Ãk+1 → Ã∗. Conse-

quently, the term (Ãk+1 −A
k
)/ω → 0. Thus, the limit point Ã∗ satisfies:

0 ∈ ∇Ãg(θ
∗, Ã∗) + α∂∥Ã∗∥1.

We conclude that (θ∗, Ã∗) is a stationary point of the optimization problem since both optimality
conditions are satisfied:

0 ∈ ∇θg(θ
∗, Ã∗), 0 ∈ ∇Ãg(θ

∗, Ã∗) + α∂∥Ã∗∥1.

If λ2(L(Ã
k+1)) < ϵ, the algorithm adjusts Ãk+1 to ensure connectivity. This adjustment does

not violate convergence guarantees because it is a bounded perturbation that preserves the descent
property.

Therefore, the sequence {(θk, Ãk)} converges to the stationary point (θ∗, Ã∗): limk→∞(θk, Ãk) =

(θ∗, Ã∗). This establishes the convergence of the algorithm and completes the proof.
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