
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Edge-assisted Real-time Dynamic 3D Point Cloud Rendering for
Multi-party Mobile Virtual Reality

Anonymous Authors

ABSTRACT
Multi-party Mobile Virtual Reality (MMVR) enables multiple mobile
users to share virtual scenes for immersive multimedia experience
in scenarios such as gaming, social interaction, and industrial mis-
sion collaboration. Dynamic 3D Point Cloud (DPCL) is an emerging
representation form of MMVR that can be consumed as a free-
viewpoint video with 6 degrees of freedom. Given that it is challeng-
ing to render DPCL at a satisfying frame rate with limited on-device
resources, offloading rendering tasks to edge servers is recognized
as a practical solution. However, repeated loading of DPCL scenes
with a substantial amount of metadata introduces a significant
redundancy overhead that cannot be overlooked when enabling
multiple edge servers to support the rendering requirements of user
groups. In this paper, we design PoClVR, an edge-assisted DPCL
rendering system for MMVR applications, which breaks down the
rendering process of the complete dynamic scene into multiple
rendering tasks of individual dynamic objects. PoClVR significantly
reduces the repetitive loading overhead of DPCL scenes on edge
servers and periodically adjusts the rendering task allocation for
edge servers during the application running to accommodate ren-
dering requirements. We deploy PoClVR based on a real-world
implementation and the experimental evaluation results show that
PoClVR can reduce GPU utilization by up to 15.1% and increase
rendering frame rate by up to 34.6% compared to other baselines
while ensuring that the image quality viewed by the user is virtually
unchanged.

CCS CONCEPTS
• Information systems→Multimedia information systems; •
Computing methodologies→ Virtual reality.

KEYWORDS
Point cloud rendering, Multi-party mobile virtual reality, Coopera-
tive rendering, Mobile edge computing

1 INTRODUCTION
Multi-party Mobile Virtual Reality (MMVR) is a technology that
allows users to experience and share virtual reality scenes using
portable mobile devices, which is an immersive interaction form
between the human and computer with tremendous potential. With
the increasing demand for social interactions among users, MMVR

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 2 3 4

User-level Splitting

1 2 3 4

Object-level Splitting

3 4

A B A B

User 1 User 2

User 4User 3

Rendered Video Streaming

User 1 User 2

User 4User 3

Rendered Video Streaming

a b

Figure 1. Two offloading schemes of the edge rendering pipeline: a)
each edge server renders the whole dynamic 3D point cloud scene
for a part of users and b) each edge server renders a part of the scene
for all users.

emerged and swiftly secured its position in the market. MMVR has
shown great market potential in the $11.97 billion VR market [6],
such as the products of Zero Latency [4], SpringboardVR [2], and
VRstudios [3]. However, the traditional content representation of
MMVR can not fully meet the user requirements for higher quality
and greater freedom of immersive multimedia experience. In this
evolution, Dynamic 3D Point Cloud (DPCL), an emerging form of
MMVR representation, can provide a free-viewpoint video with 6
degrees of freedom to bring users a more immersive experience
than 360-degree video.

Rendering dynamic 3D point cloud content in real-time requires
high-performance computing resources, placing a barrier to dis-
play it on constrained mobile devices. The mobile edge computing
paradigm provides an intuitive solution to offload rendering tasks
to edge servers equipped with graphics processing capabilities near
users [13, 31]. Given that a single edge server struggles to meet the
concurrent multi-user rendering demands of MMVR applications,
it is often essential to adopt a distributed server scheme to satisfy
the multi-user rendering demands.

As shown in Fig. 1 (a), a traditional method, called the user-level
splitting method, partitions user rendering tasks among multiple
servers to enhance the system’s capacity for supporting a larger
number of simultaneous users. However, rendering DPCL scenes
brings new challenges to the edge-assisted rendering service be-
cause DPCL has a larger amount of data than traditional multimedia
content (e.g., the captured point cloud models for VR content con-
tain more than 100 thousand points, or even 1 million vertices [9]).
Specifically, the above extension scheme requires the loading and
processing of complete VR content metadata on each server, which
results in redundant operations that cannot be ignored. This ob-
servation inspires us to extend the MMVR system by splitting the
DPCL scene instead of the user group. As shown in Fig. 1 (b), we
advocate spreading the DPCL objects across multiple rendering
servers, called the object-level splitting method. Each user takes the
rendering results from one or more rendering servers on demand
and combines them into an expected video stream. This splitting
mode can greatly reduce the computation overhead in edge servers

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

so that the MMVR system can provide higher-quality services of
rendering for more users.

Realizing the object-level splitting method for edge-assisted ren-
dering requires us to overcome two key challenges. First, the render-
ing results provided by the edge server are generally transmitted
directly to a user in the form of a video stream while the user
can not merge them directly. This is because the rendering oper-
ation reduces the data dimension from the three dimensions of a
DPCL frame to the two dimensions of a normal video frame. The
direct overlap of two video frames lacking 3D spatial information
may result in content display errors, seriously affecting the user
Quality of Experience (QoE). Second, the compatibility with the
user-level splitting method needs to be carefully considered, be-
cause it is only appropriate to use the object-level splitting method
when the redundancy overhead of loading is significant. We should
choose the appropriate splitting method based on the computation
resource demand of loading and rendering DPCL objects affected
by the heterogeneous computation resources of edge servers and
the rendering requirements of users.

To address the above challenges, we design a Point Cloud VR
rendering system PoClVR, an edge-assisted DPCL rendering sys-
tem for MMVR applications, which adds the object-level splitting
method. To generate high-quality rendering results, we extract addi-
tional spatial features when edge servers are rendering and design a
video blender in clients to merge the rendering result from multiple
edge servers. To adapt to the heterogeneity of edge resources and
dynamic rendering requirements, we design a task scheduler that
converts a single-step decision into a multi-step decision process
and devises an efficient heuristic algorithm to assign rendering
tasks, which minimizes resource consumption.

We deploy PoClVR in a real-world implementation consisting of
the controlling server, the rendering servers, and the clients. In this
MMVR system, users can view a VR scene from different angles
at the same time, and we evaluate the rendering performance and
system resource utilization of PoClVR under various user require-
ments. The results show that PoClVR can improve rendering frame
rate by up to 34.6% and reduce GPU resource usage by up to 15.1%
compared to baseline methods while ensuring video quality. We
summarize the main contributions of this paper as follows.

• A lightweight collaborative blending algorithm including 3D
information extraction and rendering result blending solves
a part of the visual errors caused by the object-level splitting
approach.
• Adynamic task scheduling scheme effectively that adaptively
optimizes the task allocation tominimize the system resource
utilization while ensuring the user QoE.
• An edge-assisted cooperative rendering system for MMVR
applications based on a real-world implementation, named
PoClVR, and a practical evaluation of the performance and
overhead achieved by an object-level splitting approach.

2 RELATEDWORK
A lot of existing works have implemented virtual reality appli-
cations on mobile devices using edge-assisted rendering. Several
works study how to use edge-assisted rendering to improve the
performance of mobile augmented reality applications from the

A B C D
Scene

0

10

20

30

40

50

60

70

80

G
PU

 U
sa

ge
 (%

)

Loading
Rendering
Encoding

(a)

1 2 3 4 5 6 7 8
The Number of Users

0

20

40

60

80

100

G
PU

 U
sa

ge
 (%

)

Server 1
Server 2

(b)

Figure 2. A case study for the resource consumption of the remote
rendering by using user-level splitting mode. a) the GPU utilization
of each stage in the remote rendering pipeline in 4 different VR
scenes (A: longdress, B: A+loot, C: B+redandblack, D: C+soldier, each
object is from 8iVFB v2 [9]); b) the GPU usage of server 1 and server
2 in scene D while the user number increases.

perspective of system design [16, 20, 21, 23]. Furion [15] designs
a complete phone/server cooperative rendering pipeline that sig-
nificantly reduces the latency of rendering VR scenes in real time.
CloudVR [14] focuses on the interactive MVR application and de-
ploys a cloud-accelerated MVR prototype system. RealVR [29] con-
siders the capture and transmission of a VR scene, which only ren-
ders the scene in the user’s field of view at the edge side. MoVR [5]
and LTE-VR [22] optimize latency from a network perspective to
meet the needs of MVR applications. Besides, some works [7, 11, 26,
27] focus on improving the transmission efficiency of panoramic
video to support MVR applications. However, the above studies do
not consider a rendering system for multi-party sharing scenes.

Most of the existing works on remote rendering for multi-party
sharing scenes focus on how to solve the resource allocation prob-
lem to achieve the best overall QoE [10, 25]. [8, 17, 31] focuses
on the resource allocation problem and proposes their iterative
algorithm to solve it, respectively. [30] considers the overall object
placement problem in multi-edge scenes and the rendering level
selection problem for each user. Note that these work by default to
deploy the rendering service to multiple edge servers using user-
level splitting as shown in Fig. 1 (a). In addition, [28] considers
the load conflict between the rendering task and other tasks in the
MMVR scenario. However, the above studies fail to consider the
impact of the redundant operations introduced by the user-level
splitting method on system performance.

3 MOTIVATION
The fundamental reason we should introduce a new cooperative
rendering method for edge-assisted MMVR systems is that the un-
bearable computational resources occupied by edge servers to load
and manage the metadata of VR contents as VR scenes become
more complex. In this section, we elaborate on this point by con-
ducting a motivational study based on a real-world implementation
to illustrate this overhead.

We deployed an edge-assisted collaborative rendering system
with C++ and OpenGL [1], a foundational component for high-
performance graphics, into two servers (called server 1 and server
2) with the same configuration (NVIDIA TESLA T4 GPU, 2.5G Hz
Intel Xeon Platinum Skylake CPU, 15GB memory), which renders
the VR scene composed of the DPCL objects from 8iVFB v2 [9]. We
use glBufferSubData in OpenGL API to achieve real-time loading.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Edge-assisted Real-time Dynamic 3D Point Cloud Rendering for Multi-party Mobile Virtual Reality ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Client

User

Screen

Decoder

VR

Content

Rendering Server

Feature

Extractor
OpenGL

Context
Depth map

Assign rendering task &

Download VR content

Controlling Server

Application

Logic

Task Scheduler

Benchmark TestResource MonitorResource Monitor

Offline Parse

Video

Encoder

Video Blender

Interaction

Detection

OpenGL

Renderer

Feature

Extractor

Video

EncoderOpenGL

Renderer
Other Client

Figure 3. The system design of PoClVR as an edge-assisted cooperative rendering system for MMAR applications.

The rendering operation is achieved by calling glDrawElements
to perform perspective projection and rasterization. The system
prioritizes server 1 to serve the users. If server 1 is incapable of
handling all rendering services, server 2 is activated to extend
the system capacity as illustrated in Fig. 1 (a). We measured the
correlation between GPU utilization and the number of users when
varying the load of DPCL objects and plotted the result in Fig. 2.

The results illustrate two key issues. First, a single rendering
server has resource bottlenecks. Therefore, we have to use a split-
ting scheme to split the rendering task of a user group into multiple
subtasks and place them on multiple edge servers. Second, the ad-
ditional cost of enabling a new server (when the 5th user joins) is
greater than that of only adding a new user. This is because enabling
a new server requires repeated loading of the same VR scenes. GPU
resources are significantly wasted due to the redundant loading
of scenes, which is evidently not the most optimal decision. This
observation inspired us to decompose the VR scene by rendering a
partial VR scene on each rendering server, as Fig. 1 (b) shows. This
approach will reduce the waste of resources caused by redundant
operations so that the overall system capacity will increase.

4 SYSTEM DESIGN
4.1 Overview
To address the above challenges, we propose PoClVR, an edge-
assisted cooperative rendering system for MMVR applications, as
shown in Fig. 3, including the controlling server, the rendering
servers, and the clients. The controlling server is mainly responsible
for controlling the logic of the MMVR application and responding
to user interaction requests. When the user group makes a request,
the controlling server offloads the rendering task of each required
DPCL object to one or more rendering servers based on the decision
of the task scheduler. The rendering server is located on an edge
server, which is responsible for providing the user with the render-
ing results and feature information. The client renders the video

streaming received from the rendering server to the user. Note that
when enabling multiple rendering servers to provide rendering
services, the client should blend their rendering results by the video
blender to ensure that the user can watch the right content.

PoClVR has three key components: the task scheduler on the
controlling server, the feature extractor on the rendering servers,
and the video blender on the clients. The task scheduler makes an
appropriate task offloading decision based on benchmark rendering
tests of the target object and monitoring of server status when the
user group joins. Based on this decision, the clients establish one
or more connections with their rendering servers decided by the
controlling server. After offloading the rendering task, each render-
ing server will continuously generate a video stream based on the
current rendering mode. The feature extractor extracts the spatial
features when using the object-level splitting mode and combines
these features with the video frame to create a data block. The
rendering servers deliver the data block to the clients as a render-
ing result. The video blender in the clients blends the rendering
results of multiple rendering servers. Note that the feature extractor
and video blender are only enabled when using the object-level
splitting mode. Otherwise, the rendering servers only deliver the
video frame as the rendering result and the clients only need to
decode and show the video frame. In these components, the fea-
ture extractor and video blender achieve cooperative rendering
based on object-level splitting and the task scheduler ensures the
compatibility of PoClVR for simple scenarios.

4.2 Object-level Splitting for Cooperative
Rendering

The feature extractor and video blender are two key components for
achieving object-level splitting. The key challenge of cooperative
rendering based on object-level splitting lies in accurately represent-
ing the relationships (like occlusion, shading, etc.) between objects
on the client. In this paper, we focus on ensuring the occlusion
relationship between DPCL objects is correct under perspective

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

OpenGL FBO

Video frame

OpenGL FBO

Feature map

User Screen

Rendering result

 Decoder

 Decoder

OpenGL

glDrawArrays

OpenGL

glDrawArrays

Rendering Server

OpenGL FBO

Video frame

Spatial feature dataCoded video data

Video Blender

Figure 4. The video blender draws a fusion feature map based on
the spatial features generated by multiple rendering servers into the
frame buffer object (FBO) using OpenGL functions. The rendering
result shown on the user screen is drawn by merging video frames
based on the fusion feature map.

projection, as it is integral to all 3D renderings. To address this
challenge, we propose an efficient depth feature extracting algo-
rithm for the feature extractor to extract the spatial features during
rendering and design an OpenGL-based video blender to quickly
blend video frames on the client.

4.2.1 Feature Extractor. The feature extractor needs an extracting
algorithm to serve the purpose of extracting relevant information
to determine the appearance of the current object within the fi-
nal scene. An intuitive approach is to deliver a compressed depth
map as a spatial feature. This idea is inspired by rendering mul-
tiple objects on the same server, where the rendering engine can
affirm occlusion relationships between different objects based on
depth-buffering techniques [18]. There are two types of compres-
sion methods for depth maps: lossless and lossy compression. The
compression ratio of lossless methods [24] is only about 4x, in con-
trast, the size of the compressed video frame will be much smaller
than the compressed depth map, which is too costly from the per-
spective of bandwidth occupation. Lossy compression methods,
such as the HEVC-based method [19], can lead to sharp edges of
the decoded depth image, making it impossible to mix video frames
of multiple objects properly. Therefore, sending the compressed
depth map as a spatial feature is not feasible due to the inadequacy
of existing compression methods for meeting our requirements.
Another intuitive method is to deliver the average depth value of
the depth map within the user’s field of view. This method may
overlook many details due to the irregularity of object shapes and
the uncertainty of the user’s perspective. We attempt to adopt a
compromise solution that preserves the original 3D features as
much as possible while ignoring some depth details.

To address the challenge of extracting the spatial information, we
propose a feature extraction algorithm (as shown in Algorithm 1)
for PoClVR capable of representing occlusion relationships in col-
laborative rendering with acceptable overheads. This algorithm
traverses the depth map in line scanning mode and merges contigu-
ous pixels with similar depth values into one data segment. Each
data segment is recorded with its starting and ending coordinates,
along with the average depth of pixels within that segment. The
edge server extracts all the depth segment information after render-
ing the video frame and sends it to the client as the spatial feature.

Algorithm 1: Depth Feature Extracting
1 Input: A𝑤 ∗ ℎ depth map of current video frame.
2 Output: A sequence 𝑃 can be sent.
3 Create empty queue 𝑄 to collect triples (𝑙1, 𝑙2, 𝑑);
4 Initialize 𝑙0 = −1, 𝑠𝑡𝑒𝑝 = 4;
5 for Line 𝑖 in {0, 1, . . . , ℎ − 1} do
6 Set column 𝑗 = 0 and 𝑑𝑠𝑢𝑚 = 0;
7 while 𝑗 < 𝑤 − 1 do
8 Calculate the location of these pixels 𝑙 = 𝑖 ∗𝑤 + 𝑗 ;
9 Record the depth value 𝑑𝑠𝑢𝑚+ = 𝑑𝑖, 𝑗 ;

10 if 𝑙0 == −1 and 𝑑𝑖, 𝑗 ≠ 1.0 then
11 Find the start location 𝑙0 between 𝑙 − 𝑠𝑡𝑒𝑝 and 𝑙 ;
12 Record depth value 𝑑𝑠𝑢𝑚+ =

∑
𝑘∈[𝑙0,𝑙) 𝑑𝑖,𝑘 ;

13 Push 𝑙0 to 𝑄 ;
14 Set 𝑠𝑡𝑒𝑝 = 1;
15 else if 𝑎𝑏𝑠 (𝑑𝑖, 𝑗 − 𝑑0) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
16 Push 𝑙 − 1 to 𝑄 ;
17 Push average depth value 𝑑𝑣 = 𝑑𝑠𝑢𝑚/(𝑙 − 𝑙0) to 𝑄 ;
18 Reset 𝑙0 = −1, 𝑠𝑡𝑒𝑝 = 4;
19 end
20 𝑗 = 𝑗 + 𝑠𝑡𝑒𝑝;
21 end
22 if 𝑙0 ≠ −1 then
23 Push 𝑙 = (𝑖 + 1) ∗𝑤 to 𝑄 ;
24 Push average depth value 𝑑𝑣 = 𝑑𝑠𝑢𝑚/(𝑙 − 𝑙0) to 𝑄 ;
25 Reset 𝑙0 = −1;
26 end
27 end
28 Converts the queue 𝑄 into the byte sequence 𝑃 ;

This extracting algorithm effectively reduces data volume through
the following observation: the point cloud object to be rendered
always contains various continuous surfaces, and these surfaces of-
ten have sections with similar depth values regardless of the camera
perspective. Thus, to determine the correct occlusion relationship,
the client can assess the occlusion among these sections using the
average pixel value of them, without requiring the precise depth
value of each pixel.

4.2.2 Video Blender. The workflow of client-side video blending is
shown in Fig. 4. The client receives data blocks from the rendering
servers and divides each block into video data and feature data.
The video data can be quickly decoded as an image by a decoder.
The image will be stored in an OpenGL frame buffer object (FBO)
temporarily. At the same time, the video blender plots the spatial
features as a fusion feature map in an FBO by calling glDrawArray
function. After features have been plotted into the feature FBO,
the video blender blends the color value of each pixel based on the
fusion feature map. The benefit of this feature blending method
based on OpenGL drawing operations is that it can fully utilize the
parallel processing capabilities of mobile GPU. Moreover, the results
obtained can be directly used in subsequent drawing operations,
greatly accelerating the speed of video blending. Note that the
fusion feature map should first be plotted into the FBO whose

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Edge-assisted Real-time Dynamic 3D Point Cloud Rendering for Multi-party Mobile Virtual Reality ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

resolution matches that of raw video, and then scaled into a texture
with the resolution of the user screen. Due to the line scanning
of the extract algorithm, if the FBO resolution during rendering is
smaller than the resolution of the user screen, the fusion feature
map will appear as empty lines.

4.3 Task Scheduling
Note that not all scenarios are suitable to utilize the object-level
mode. The primary duty of the scheduler in PoClVR is to determine
the rendering mode and make the adaptive task offloading deci-
sion based on the task requirements and the remaining amount of
computing resources. Consequently, the scheduler must ascertain
which mode is more suitable for the present user requirements. If
using object-level splitting mode, the scheduler should adjust the
rendering tasks allocation based on the changes in the server state
and user requirement. It performs the scheduling algorithm when
a new user group enters and periodically adjusts the decision to
deal with possible environmental changes.

4.3.1 Task Allocation Problem. Before designing the scheduling al-
gorithm,we first study the task allocation problem in theMMVR sys-
tem which contains a group of users with the common objects and
multiple edge servers.We denote the user set and the edge rendering
server set asU and R, respectively. The users request a rendering
service including multiple tasks denoted as the set T . The first
decision variable is rendering mode𝑚, where𝑚 = 0 means choos-
ing the user-level splitting mode and𝑚 = 1 means choosing the
object-level splitting mode. The second decision variable is the task
offloading matrix, which is defined as X = {𝑥 (𝑡)𝑟 | 𝑟 ∈ R, 𝑡 ∈ T },
where 𝑥 (𝑡)𝑟 = 1means the rendering task 𝑡 is offloaded to the render-
ing server 𝑟 . Besides, since the user connecting additional servers
during the application running may cause unacceptable delays, we
arbitrate a valid server set R′ ⊆ R during the initialization phase,
as the third decision, which ensures a smooth experience.

To characterize the computational resource consumption (mainly
GPU resources for rendering tasks) in PoClVR, we formulate the
total GPU occupation time for rendering server 𝑟 , which includes
rendering time, loading time, encoding time, and additional over-
head for object-level splitting. Specifically, we use 𝑐 (𝑡)𝑟 to denote
the GPU occupation time for rendering task 𝑡 in server 𝑟 , which
depends on the target object in task 𝑡 and the resources of rendering
server 𝑟 . Based on the real-world evaluation, we believe that both
the rendering time and the loading time are relevant to the vertex
count of DPCL objects. Therefore we apply the fitting function 𝑓𝑟 (·)
for rendering server 𝑟 and the vertex count 𝑣𝑡 of task 𝑡 to calculate
the rendering time 𝑐 (𝑡)𝑟 = 𝑓𝑟 (𝑣𝑡). Similar to function 𝑓𝑟 (·), we use
𝑙𝑟 (·) to denote the fitting function of real-time loading time in ren-
dering server 𝑟 . By using 𝑁 = |U| to denote the number of users in
the current user group, the total rendering time and loading time
for server 𝑟 can be calculated as follows:

𝑒𝑟𝑙𝑟 =
∑︁
𝑡 ∈T

(
𝑁 · 𝑐 (𝑡)𝑟 + 𝑙𝑟 (𝑣𝑡)

)
· 𝑥 (𝑡)𝑟 ,∀𝑟 ∈ R . (1)

We further use 𝑒𝑒 to denote the time of encoding a video frame by
GPU for each user, thus the total GPU occupation time 𝑒𝑟 for 𝑟 ∈ R

can be calculated as follows:

𝑒𝑟 = 𝑒𝑟𝑙𝑟 + 𝑁 · 𝑒𝑒 + 𝑁 · 𝑒𝑜𝑟 · I(0 <
∑︁
𝑡 ′∈T

𝑥
(𝑡 ′)
𝑟 < |T |), (2)

where I(·) is the indicator function and 𝑒𝑜𝑟 represents the additional
overhead required by object-level splitting. Therefore, we can now
estimate the total resource consumption 𝐶 as follows:

𝐶 =
∑︁
𝑟 ∈R

𝑒𝑟

𝐸
. (3)

where 𝐸 denotes the sampling time of a single frame (e.g., 1/30s for
a 30-fps video).

As for the performance metric, we use the number of tasks
running on a render that exceeds the performance bottleneck, which
is denoted as 𝐹 and can be calculated as the following equation:

𝐹 =
∑︁
𝑟 ∈R

I(𝑒𝑟 > 𝜖𝑟𝐸) ·
∑︁
𝑡 ∈T

𝑥
(𝑡)
𝑟 , (4)

where 𝜖𝑟 ∈ [0, 1] depends on the available GPU time for rendering
on the physical machine of the server 𝑟 . Specifically, 𝜖𝑟 = 1 when
the rendering process completely occupies the GPU, and 𝜖𝑟 is less
than 1 when other application processes occupy part of the GPU.
Whenever the rendering task is executed on an edge server that
exceeds the bottleneck (i.e., 𝑒𝑟 > 𝜖𝑟𝐸), the FPS experiences a signif-
icant drop. Therefore, 𝐹 is a strongly serious penalty, which means
that we have to bias this value towards 0 when making decisions.

Finally, imaging quality significantly affects the QoE of users.
We use 𝑞𝑢 to represent the imaging quality of user 𝑢, which mainly
depends on the rendering mode𝑚 since object-level splitting comes
with some quality loss of video frames. The average QoE of all users
in the MMVR system can be calculated as follows:

𝑄 =
∑︁
𝑢∈U

𝑞𝑢

𝑁
, (5)

Based on the total resource consumption 𝐶 , performance metric
𝐹 and average QoE 𝑄 , we formulate the optimization problem in
PoClVR as follows:

maximize
𝑚,X,R′

𝑃 (𝑚,X,R′) = 𝑄 − 𝛼𝐶 − 𝛽𝐹 ; (6)

s.t.
∑︁
𝑟 ∈R′

𝑥
(𝑡)
𝑟 = 1,∀𝑡 ∈ T ,𝑚 = 0; (7)

𝑥
(𝑡)
𝑟 = 1,∀𝑟 ∈ R′,∀𝑡 ∈ T ,𝑚 = 1; (8)

𝑥
(𝑡)
𝑟 ∈ {0, 1},∀𝑡 ∈ T ,∀𝑟 ∈ R,∀𝑚 = 0, 1; (9)

where 𝛼 > 0 and 𝛽 > 0 denote the weight coefficients of the
resource consumption and the performance metric. Without loss
of generality, we assume that the system operates in a time-slot
manner, with each slot interval corresponding to a decision period
denoted by 𝐿. The scheduler should solve the above optimization
problem at the beginning of each period and offload the rendering
tasks based on the optimal decision X.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 2: Task Scheduling
1 Input: User setU, rendering server set R, and task set T
2 Initialize available server set R′ = R;
3 𝑃0 ← getUserOptimal(R′); // if m=0

4 𝑃1 ← getObjectOptimal(R′); // if m=1

5 Set𝑚 = argmax𝑚∈{0,1} 𝑃𝑚 ;
6 if 𝑚 = 0 then // user-level splitting mode

7 R′ ← solveUserMode();
8 Offloading all user tasks into server 𝑟 ∈ R′;
9 else // object-level splitting mode

10 while Time interval ≥ 𝐿 do
11 X ← solveObjectMode();
12 Set R′ = {𝑟 |𝑥 (𝑡)𝑟 = 1,∀𝑡 ∈ T } (only on the first loop);
13 Offloading the tasks based on X;
14 end
15 Monitor all rendering servers and update the remaining

available resources 𝐸 − 𝑒𝑟 ,∀𝑟 ∈ R′;
16 end

4.3.2 Estimation and Algorithm. Since the dynamic system infor-
mation, such as the fitting functions 𝑓𝑟 (·), 𝑙𝑟 (·) and the parameters
𝑑𝑒 and 𝑑𝑜𝑟 , are difficult to accurately predict in each decision inter-
val, we estimate initial values by performing benchmark rendering
tests for each rendering target in advance. Benchmark tests can be
done when preparing the DPCL contents so that users do not need
to wait unnecessarily with the system operating. We first render
each object individually with real-time loading, and the camera
faces the object and circles around it within 5s. Then, the rendered
results are encoded into video streams by GPU, and we record the
GPU running time during this process, which can be an estimation
for 𝑒𝑟 . Given the heterogeneous nature of the rendering servers, we
can benchmark them on every available type of GPU across all the
rendering servers.

Relying solely on the initial values to make decisions is insuffi-
cient for adapting to a dynamic environment and rendering require-
ments. Therefore, the scheduler must monitor and update these
estimates throughout the rendering process. To achieve this, we
set a 2-second decision period (i.e., 𝐿 = 2) and employ a moving
average method for updating the estimates. The scheduler needs to
make a decision as soon as possible at the beginning of each period
but directly solving the optimal solution of the above optimiza-
tion problems is difficult. To address this challenge, we propose an
efficient heuristic algorithm as shown in Algorithm 2.

In the initial phase, we set R′ to R and determine the extended
mode variable𝑚. The scheduler finds the optimal decision matrix
X for each mode𝑚 (𝑚 = 0 or𝑚 = 1) and calculates the optimal
objective value 𝑃𝑚 in (6) by the function getUserOptimal and
getObjectOptimal respectively. The mode𝑚 with the larger value
of 𝑃𝑚 is finally selected as the extended mode of the current user
group (line 5). Note that𝑚 and R′ cannot be changed during the
subsequent decision process because switching the connection be-
tween users and servers at any stage other than initialization can
devastate the user experience.

In user-level splitting mode, the scheduler only needs to selectR′
without considering the task allocation. We encapsulate the func-
tion solveUserMode, which sorts the rendering servers according
to the remaining resources (i.e., 𝐸 − 𝑒𝑟) and selects a rendering
server 𝑟 for each user 𝑢 ∈ U to form the set R′. The scheduler then
offloads all the user tasks into the server 𝑟 ∈ R′. In object-level
splitting mode, we design the function solveObjectMode to solve
the optimization problem (6) in each decision period. Specifically,
we first transform the matrix decision X problem into a multi-step
task sequence decision X′ = {𝑥 (𝑡) | 𝑡 ∈ T }, where 𝑥 (𝑡) = 𝑟 means
that task 𝑡 will be offloaded to server 𝑟 . Then, we choose the server
𝑟 for each task 𝑡 in turn based on the penalty value, which can be
calculated as follows:

𝑝𝑟 = Δ𝑄𝑟 + 𝛼Δ𝐶𝑟 + 𝛽Δ𝐹𝑟 + 𝛾
𝐶𝑛𝑜𝑤

𝜖𝑟𝐸
, (10)

where Δ𝑄𝑟 ,Δ𝐶𝑟 ,Δ𝐹𝑟 denote the change of 𝑄,𝐶, 𝐹 affected by al-
location the current task into server 𝑟 respectively. 𝑔𝑎𝑚𝑚𝑎 > 0 is
a weight coefficient similar to 𝛼, 𝛽 . Note that we introduce 𝐶𝑛𝑜𝑤
into this penalty function to incentivize the algorithm to prefer
assigning the task to the rendering server with the most residual
resources, provided that other factors are relatively similar. If the
decision-making process is conducted only once per task based on
this penalty value, the algorithm likely favors filling up a single ren-
dering server before considering object-level splitting. To prevent
such lopsided decisions, it is necessary to implement a secondary
decision-making process during the execution of the algorithm.
This involves attempting to modify one of the current task assign-
ment decisions in the decision matrix sequentially and selecting
the option with the lowest penalty value as the new preference.
This method guarantees an equitable utilization of the rendering
server in situations that require object-level splitting. After the first
decision, we set R′ = {𝑟 | ∑𝑡 ∈T 𝑥

(𝑡)
𝑟 > 0, 𝑟 ∈ R} (line 12), and

operate the offloading decision X.

5 PROTOTYPE IMPLEMENTATION
We design a test MMVR application to render multiple avatars
of dynamic virtual objects and show them to the user. The client
obtains moving and rotating view instructions from users through
tactile sensors. These instructions are sent to edges in real time
to update camera parameters and render new perspectives. Each
client can request to be served by one or more edge servers. Note
that the traditional edge-assisted rendering is used when the client
is served by only one server.

As shown in Fig. 3, we implemented the edge server with 3K
lines of C++ in a server with Nvidia GeForce GTX 1660 SUPER. We
use OpenGL to render point cloud videos from 8iVFB v2 [9] and use
Nvidia Video Codec SDK to accelerate the encoding process with
Nvidia GPU. The edge server will create an EGL context for each
user and draw virtual objects in turn by OpenGL in the rendering
loop. The video streaming generated by the encoder will be sent by
usingWebSocket as the network transport protocol, which is chosen
because it can actively push video streams from the server side in
real time. The feature is extracted after each frame is rendered and
inserted into the encoded video data block in the form of a byte
stream. The client is implemented as an Android APP with 2K lines

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Edge-assisted Real-time Dynamic 3D Point Cloud Rendering for Multi-party Mobile Virtual Reality ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Dynamic Light Middle Heavy
Scene Requirement

0

50

100

150

200

250

Sy
st

em
 G

PU
 U

sa
ge

 (%
)

Single Device
ULSO
OLSO
PoClVR w/o DC
PoClVR

(a) GPU utilization

Dynamic Light Middle Heavy
Scene Requirement

0

10

20

30

40

50

60

Fr
am

e
Pe

r
Se

co
nd

Single Device
ULSO
OLSO
PoClVR w/o DC
PoClVR

(b) Frame rate

Figure 5. Comparison between PoClVR and baselines on (a) GPU
utilization and (b) frame rate.

of JAVA in a Redmi Note 11 Pro with the MediaTek Helio G96 chip.
It establishes a WebSocket connection with each server required
by it to send user interaction data and receive video streams with
the feature. We use the Android Mediacodec hardware decoder to
decode the video stream and store the decoded image temporarily
on SurfaceTexture. At the same time, the feature map is drawn
based on OpenGL ES. The video blender selects the pixel value
from the appropriate texture for each pixel, respectively, according
to the feature map, which is achieved by programming the fragment
shader using OpenGL Shading Language (GLSL). Besides, we also
implement the feature of rendering point cloud videos directly
using raw data by OpenGL ES on the clients. This feature is used
to demonstrate that it is difficult for clients to directly support the
rendering of complex objects.

6 EVALUATION
6.1 Experiment Setup
We deploy the rendering server on two servers with a 16-core Intel
CPU, and NVIDIA Tesla T4 GPU. The controller is only deployed in
a light server with a 2-core Intel CPU to support the task scheduler
and application logic. We build two implementations of the client in
our experiments. 1) Simulation script: a thin client that only requests
the rendering service. 2) Android App: a client is deployed in Redmi
Note 11 Pro running Android 11 with MediaTek Dimensity 920
SoC. First, we simulate multiple user rendering requests using the
simulation script to verify that PoClVR can reduce system compute
resource usage and increase the average render frame rate compared
with baseline algorithms. Second, we evaluate the performance of
the video blender using the Android App to illustrate that PoClVR
can achieve satisfactory video quality and playback frame rate.

We build our DPCL scene by using the DPCL object from 8iVFB
v2[9] datasets, which contain 4 DPCL sequences. In each sequence,
the full body is captured by 42 RGB cameras configured in 14 clus-
ters, at 30 fps, over a 10 s period. We put these 4 virtual objects
together as the VR scene playing at 30 fps and multiple users can
join it at the same time. When each user joins the scene, a virtual
camera is created and it rotates around this scene at a fixed rate. The
content it captures is presented to the user as a video. To quantify
user requirements, we randomly generate user requirements with
DPCL object as the unit. Specifically, the user can choose to load any
of the above four objects 0 or 1 or 2 times and arbitrarily combine
the four objects, which means we have 34 possible requirement.

To simulate VR scenes with different overheads of loading and
rendering, we set up three scenes based on the number of objects

Figure 6. The PoClVR system in a real-world implementation, which
consists of two rendering servers serving two clients. The DPCL
scene has 4 DPCL objects, where each server renders two objects.
The two clients are watching the scene from opposite sides.

the user requires: 1) light loading scene with 1-2 objects, 2) middle
loading scene with 3-5 objects, and 3) heavy loading scene with
6-8 objects. This setting is empirical, as we observe that loading
less than two objects is generally easy for a group of users, while
loading more than six objects is hard.

6.2 Performance Improvement
We compare the performance of PoClVR with three baselines: 1)
User-level splitting only (ULSO), which only uses the user-level
splitting method to support the rendering service for the user group.
2) Object-level splitting only (OLSO), which only uses the object-
level splitting method to support the rendering service for the user
group. 3) PoClVR without dynamic scheduling (PoClVR w/o DC),
which only allocates the objects at the system beginning.

We use GPU usage and average render frame rate as performance
metrics. To simulate different user requests, we randomly generate
20 groups of different user requirements with each set comprising 5
to 10 users. Initially, we set up a rendering requirement for each user
group as mentioned in section 6.1 and reset it twice subsequently
to mimic shifts in user requirements. The simulated users within
each group will submit their requests to the controller and maintain
the rendering process for 30 seconds. Fig. 5 shows that PoClVR
can reduce the GPU usage by up to 15.1% and improve the frame
rate by up to 34.6% in our experiment. Note that the GPU usage
when using a single edge server to render is minimal because it
has no more computing resources available after it reaches the
performance bottleneck. PoClVR can achieve the best performance
because it dynamically considers the changing needs of the user
and chooses the most appropriate rendering method.

We also compare the performance of PoClVR fixed to the three
scenarios mentioned in Section 6.1 respectively. Fig. 5 illustrates
the user-level splitting method is more appropriate for the light
loading scene, as the overhead of the redundant loading operation
is almost negligible. Conversely, the object-level splitting method is
more suitable for the heavy loading scene, where repeated loading
can deplete the edge server’s limited computing resources. The
above results verify that PoClVR can adaptively adjust the task as-
signment method according to different scene requirements. These
experimental results prove that collaborative rendering using the
object-level method in PoCLVR can guarantee almost the same
image quality and acceptable latency as single-server rendering.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

360P 480P 720P 1080P
Resolution

0

10

20

30

40

50

60

70

PS
N
R

No Extract
Value-based
Compression-based
PoClVR

(a)

360P 480P 720P 1080P
Resolution

0

1

2

3

4

5

6

R
el

at
iv

e
D

at
a

Tr
an

sf
er

 S
iz

e No Extract
Value-based
Compression-based
PoClVR

(b)

360P 480P 720P 1080P
Resolution

0

5

10

15

20

25

30

Fr
am

e
G

en
er

at
in

g
Ti

m
e

(m
s) No Extract

Value-based
Compression-based
PoClVR

(c)

Figure 7. The evaluation of our semantic video blending method on different metrics: (a) PSNR, (b) the data size to be transferred, and (c) the
time of generating a frame.

360P 480P 720P 1080P
Resolution

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
en

de
ri

ng
 T

im
e

(m
s)

No Blending
Decoding First
Ours

Figure 8. Rendering time for a single frame in the client with various
blending methods.

6.3 User Experience Assurance
PoClVR should ensure the user experience while it improves the
system efficiency. We design an experiment to verify that its col-
laborative rendering can guarantee a similar user experience to
single-device rendering. We use two mobile phones deployed with
PoClVR client to request a basic scene, whose virtual cameras cap-
ture the DPCL scene from both sides of the scene respectively. As
shown in Fig. 6, we run the client and record the mobile phone
screen to calculate the peak signal-to-noise ratio (PSNR) [12].

First, we compare the image quality generated by edge servers
with four different depth extract methods under various video res-
olutions: 1) no extract, 2) value-based method, which extracts the
depth as an average depth value to indicate the location of render-
ing results, 3) compression-based method, which uses a lossless
compression algorithm (RVL [24])to compress the whole depth map,
and 4) Algorithm 1. Since our feature extraction and video blending
methods are significantly related to video resolution, we conducted
experiments under 4 resolution configurations. Fig. 7 shows that
PoClVR can provide image quality close to that of the single-device
rendering with only about 0.15% difference and acceptable over-
heads. The value-based method requires minimal additional data
to transfer, but the images shown on the user screen usually have
obvious errors in the visual effects, which leads to a serious loss of
image quality. The compression-based method can achieve good
image quality, but it requires transferring 2.3 times the amount
of data, which needs to be avoided for mobile users with costly
network bandwidth resources. Fig. 7(c) illustrates the processing
time of PoClVR’s feature extract algorithm is only 2 milliseconds,
similar to another baseline method.

Table 1. Additional execution time of PoClVR when rendering 4
dynamic 3D point cloud objects as a 1080P video stream.

Processing Execution Time (ms) Location

Extracting 3.32 Rendering server
Blending 4.56 Client
Scheduling 0.0058 Controlling Server

Second, we compare the execution time of video blending in
the clients using three different blending schemes: 1) no blending,
2) decoding first method, which decodes the received feature to a
depth map in the CPU, and 3) our method, which renders a feature
map directly by GPU based on GLSL. Fig. 8 shows that the proposed
blending method needs an average of 6 milliseconds to blend a
frame, which is merely 0.38 times that of the decoding first method.

Third, we record the additional execution time of PoClVR when
rendering 4 dynamic 3D point cloud objects as a 1080P video stream
in Table 1. Since the number of servers and tasks in the scheduling
algorithm is small (Algorithm 2), the overhead of the scheduling al-
gorithm is almost negligible. The extracting algorithm (Algorithm 1)
use 10.0% of a frame interval, which mainly takes up CPU time.
This is acceptable in the system because the CPU is not the main
performance bottleneck. The video blending time of 4.56ms is also
acceptable because the client only needs to decode and blend, as
long as it can be done within one frame interval.

7 CONCLUSION
This paper proposes PoClVR, an edge-assisted cooperative DPCL
rendering system for MMVR applications, which splits complex
DPCL scenes into objects and renders them using multiple edge
servers. We design the feature extractor and video blender to ensure
that the cooperative rendering can accurately represent the rela-
tionships between objects. To adapt to the heterogeneity of edge
resources and the dynamic rendering requirements, we consider a
task allocation problem and propose a heuristic algorithm to solve it.
The experimental evaluation based on a real-world implementation
shows that PoClVR can reduce GPU utilization by up to 15.1% and
increase rendering frame rate by up to 34.6% compared to other
baselines. Besides, the experiment results also show that PoClVR
achieves image quality close to that of single-device rendering with
only up to about 6 milliseconds of additional time.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Edge-assisted Real-time Dynamic 3D Point Cloud Rendering for Multi-party Mobile Virtual Reality ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] [n. d.]. OpenGL. https://www.opengl.org/
[2] [n. d.]. SpringboardVR: VR Content and Management Solutions for Education.

https://springboardvr.com/education
[3] [n. d.]. VRStudios. https://www.vrstudios.com/
[4] [n. d.]. Zero Latency: Make Adventure Your Greatest Venture. https://invest.

zerolatencyvr.com/next-gen
[5] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina Katabi. 2017. Enabling
{high-quality} untethered virtual reality. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17). 531–544.

[6] Thomas Alsop. [n. d.]. Consumer and enterprise virtual reality (VR) market revenue
worldwide from 2021 to 2026. https://www.statista.com/statistics/1221522/virtual-
reality-market-size-worldwide/

[7] Jacob Chakareski, Xavier Corbillon, Gwendal Simon, and Vishwanathan Swami-
nathan. 2022. User Navigation Modeling, Rate-Distortion Analysis, and End-to-
End Optimization for Viewport-Driven 360° Video Streaming. IEEE Transactions
on Multimedia (2022).

[8] Zhiyong Chen, Haoyu Zhu, Li Song, Dazhi He, and Bin Xia. 2022. Wireless mul-
tiplayer interactive virtual reality game systems with edge computing: Modeling
and optimization. IEEE transactions on wireless communications 21, 11 (2022),
9684–9699.

[9] Eugene d’Eon, Bob Harrison, Taos Myers, and Philip A. Chou. 2017. 8i Vox-
elized Full Bodies - A Voxelized Point Cloud Dataset. ISO/IEC JTC1/SC29 Joint
WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M74006.

[10] Jie Feng, Lei Liu, Xiangwang Hou, Qingqi Pei, and Celimuge Wu. 2023. QoE fair-
ness resource allocation in digital twin-enabled wireless virtual reality systems.
IEEE Journal on Selected Areas in Communications (2023).

[11] Ehab Ghabashneh, Chandan Bothra, Ramesh Govindan, Antonio Ortega, and
Sanjay Rao. 2023. Dragonfly: Higher perceptual quality for continuous 360 video
playback. In Proceedings of the ACM SIGCOMM 2023 Conference. 516–532.

[12] Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In
2010 20th international conference on pattern recognition. IEEE, 2366–2369.

[13] Md Farhad Hossain, Abbas Jamalipour, and Kumudu Munasinghe. 2023. A
Survey on Virtual Reality over Wireless Networks: Fundamentals, QoE, Enabling
Technologies, Research Trends and Open Issues. Authorea Preprints (2023).

[14] Teemu Kämäräinen, Matti Siekkinen, Jukka Eerikäinen, and Antti Ylä-Jääski. 2018.
CloudVR: Cloud accelerated interactive mobile virtual reality. In Proceedings of
the 26th ACM international conference on Multimedia. 1181–1189.

[15] Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. 2017. Furion:
Engineering high-quality immersive virtual reality on today’s mobile devices. In
Proceedings of the 23rd Annual International Conference on Mobile Computing and
Networking. 409–421.

[16] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong Zhang,
Lintao Zhang, and Marco Gruteser. 2018. Cutting the cord: Designing a high-
quality untethered vr system with low latency remote rendering. In Proceedings
of the 16th Annual International Conference on Mobile Systems, Applications, and
Services. 68–80.

[17] Yuyin Ma, Kaoru Ota, and Mianxiong Dong. 2024. QoE Optimization for Virtual
Reality Services in Multi-RIS-Assisted Terahertz Wireless Networks. IEEE Journal
on Selected Areas in Communications (2024).

[18] Jaroslaw R. Rossignac and Aristides A.G. Requicha. 1986. Depth-Buffering Dis-
play Techniques for Constructive Solid Geometry. IEEE Computer Graphics and
Applications 6, 9 (1986), 29–39. https://doi.org/10.1109/MCG.1986.276544

[19] Dorsaf Sebai. 2020. Performance analysis of HEVC scalable extension for depth
maps. Journal of Signal Processing Systems 92, 7 (2020), 747–761.

[20] Jianxin Shi, Lingjun Pu, Xinjing Yuan, Qianyun Gong, and Jingdong Xu. 2022.
Sophon: Super-resolution enhanced 360 video streaming with visual saliency-
aware prefetch. In Proceedings of the 30th ACM International Conference on Multi-
media. 3124–3133.

[21] Shu Shi, Varun Gupta, and Rittwik Jana. 2019. Freedom: Fast recovery enhanced
vr delivery over mobile networks. In Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services. 130–141.

[22] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhehan Li, and Songwu Lu.
2018. Supporting mobile VR in LTE networks: How close are we? Proceedings of
the ACM on Measurement and Analysis of Computing Systems 2, 1 (2018), 1–31.

[23] Shibo Wang, Shusen Yang, Hailiang Li, Xiaodan Zhang, Chen Zhou, Chenren Xu,
Feng Qian, Nanbin Wang, and Zongben Xu. 2022. SalientVR: Saliency-driven
mobile 360-degree video streaming with gaze information. In Proceedings of
the 28th Annual International Conference on Mobile Computing And Networking.
542–555.

[24] Andrew DWilson. 2017. Fast lossless depth image compression. In Proceedings of
the 2017 ACM International Conference on Interactive Surfaces and Spaces. 100–105.

[25] Caolu Xu, Zhiyong Chen, Meixia Tao, and Wenjun Zhang. 2023. Edge-Device
Collaborative Rendering for Wireless Multi-User Interactive Virtual Reality in
Metaverse. In GLOBECOM 2023-2023 IEEE Global Communications Conference.
IEEE, 3542–3547.

[26] Abid Yaqoob and Gabriel-MiroMuntean. 2023. Advanced Predictive Tile Selection
Using Dynamic Tiling for Prioritized 360 Video VR Streaming. ACM Transactions
on Multimedia Computing, Communications and Applications 20, 1 (2023), 1–28.

[27] Lei Zhang, Yanyan Suo, Ximing Wu, Feng Wang, Yuchi Chen, Laizhong Cui,
Jiangchuan Liu, and Zhong Ming. 2021. TBRA: Tiling and bitrate adaptation for
mobile 360-degree video streaming. In Proceedings of the 29th ACM International
Conference on Multimedia. 4007–4015.

[28] Lei Zhang, Ximing Wu, Feng Wang, Andy Sun, Laizhong Cui, and Jiangchuan
Liu. 2022. Edge-based video stream generation for multi-party mobile augmented
reality. IEEE Transactions on Mobile Computing (2022).

[29] Qi Zhang, Jianchao Wei, Shanshe Wang, Siwei Ma, and Wen Gao. 2022. RealVR:
Efficient, economical, and quality-of-experience-driven VR video system based
on MPEG OMAF. IEEE Transactions on Multimedia (2022).

[30] Yuan Zhang, Lingjun Pu, Tao Lin, and Jinyao Yan. 2023. QoE-oriented Mobile Vir-
tual Reality Game in Distributed Edge Networks. IEEE Transactions on Multimedia
(2023).

[31] Haoyu Zhu, Yingjiao Li, Zhiyong Chen, and Li Song. 2021. Mobile edge resource
optimization for multiplayer interactive virtual reality game. In 2021 IEEEWireless
Communications and Networking Conference (WCNC). IEEE, 1–6.

https://www.opengl.org/
https://springboardvr.com/education
https://www.vrstudios.com/
https://invest.zerolatencyvr.com/next-gen
https://invest.zerolatencyvr.com/next-gen
https://www.statista.com/statistics/1221522/virtual-reality-market-size-worldwide/
https://www.statista.com/statistics/1221522/virtual-reality-market-size-worldwide/
https://doi.org/10.1109/MCG.1986.276544

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 System Design
	4.1 Overview
	4.2 Object-level Splitting for Cooperative Rendering
	4.3 Task Scheduling

	5 Prototype Implementation
	6 Evaluation
	6.1 Experiment Setup
	6.2 Performance Improvement
	6.3 User Experience Assurance

	7 Conclusion
	References

