

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING AND IMPROVING SHAMPOO AND SOAP VIA KULLBACK–LEIBLER MINIMIZATION

Anonymous authors

Paper under double-blind review

## ABSTRACT

Shampoo and its efficient, Adam-stabilized variant SOAP, employ structured second-moment estimation and have received growing attention for their effectiveness. In practice, Shampoo requires step-size grafting with Adam to achieve competitive performance. SOAP mitigates this by applying Adam in Shampoo’s eigenbasis and further reducing per-iteration runtime. However, reliance on Adam introduces additional memory overhead in both methods. Prior theoretical interpretations have primarily examined their estimation schemes using the Frobenius norm. Motivated by the natural correspondence between the second moment and a covariance matrix, we reinterpret the estimation procedures in Shampoo and SOAP as instances of covariance estimation through the lens of Kullback–Leibler (KL) divergence minimization. This perspective reveals a previously overlooked theoretical limitation and motivates principled improvements to their design. Building on the KL perspective, we propose practical estimation schemes—**KL-Shampoo** and **KL-SOAP**—that match or exceed the performance of Shampoo and SOAP for pre-training a range of neural network models while maintaining SOAP-level per-iteration runtime. Notably, KL-Shampoo does not rely on Adam to achieve superior performance, thereby avoiding the associated memory overhead. Surprisingly, KL-Shampoo consistently outperforms the other methods in our experiments.

## 1 INTRODUCTION

Optimizers Shampoo (Gupta et al., 2018) and SOAP (Vyas et al., 2025a) have received significant attention (Anil et al., 2020; Shi et al., 2023; Morwani et al., 2025; Eschenhagen et al., 2025; An et al., 2025; Xie et al., 2025) due to their strong performance in training a wide range of neural network (NN) models (Dahl et al., 2023; Kasimbeg et al., 2025). In practice, Shampoo does not perform well and requires step-size grafting with Adam to achieve competitive performance (Agarwal et al., 2020; Anil et al., 2020; Shi et al., 2023; Eschenhagen et al., 2025). SOAP addresses this by applying Adam in Shampoo’s eigenbasis and further reducing per-iteration runtime. However, reliance on Adam introduces additional memory overhead in both methods. Prior work (Morwani et al., 2025; Eschenhagen et al., 2025; An et al., 2025; Xie et al., 2025) has investigated their structural preconditioner schemes—which approximate the flattened gradient 2<sup>nd</sup> moment (Duchi et al., 2011)—through the Frobenius norm. However, few studies have examined these schemes from the perspective of Kullback–Leibler (KL) divergence. Compared to the Frobenius norm, the KL divergence between zero-mean Gaussian covariance matrices is more appropriate for interpreting Shampoo’s and SOAP’s preconditioners as Gaussian covariance estimators (Amari, 2016; Minh & Murino, 2017), since the second moment they approximate can be viewed as the covariance matrix of a zero-mean Gaussian. A similar KL perspective has provided a unified framework to interpret (Fletcher, 1991; Waldrip & Niven, 2016) and extend (Kanamori & Ohara, 2013a;b) structural preconditioner estimation in quasi-Newton methods such as BFGS and DFP—something the Frobenius norm does not. Moreover, the KL divergence intrinsically respects the symmetric positive-definite constraint (Amari, 2016; Minh & Murino, 2017) that preconditioners in Shampoo and SOAP must satisfy as adaptive (preconditioned) methods (Nesterov et al., 2018)—a property the Frobenius norm lacks. This constraint implies that the entries of the preconditioning matrix do not play equivalent roles and therefore should not be treated equally (Pennec et al., 2006; Bhatia, 2007)—a point the Frobenius norm ignores.

In this work, we introduce a KL perspective that interprets the estimation schemes of Shampoo and SOAP as solutions to KL-minimization problems for covariance estimation. Our approach naturally

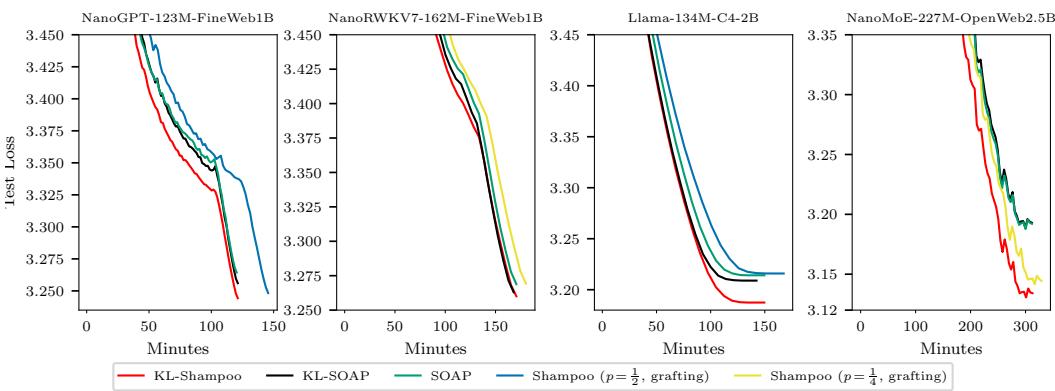


Figure 1: Empirical results (random search using 150 runs for each method) on language models demonstrate the advantages of KL-based methods over Shampoo and SOAP while matching SOAP’s per-iteration runtime. All methods take the same number of iterations in these experiments. Surprisingly, KL-Shampoo also outperforms KL-SOAP. We include the best Shampoo run based on a state-of-the-art implementation from Meta (Shi et al., 2023) in the plots.

extends to tensor-valued settings, where some existing theoretical interpretations may not apply. This perspective reveals a key limitation obscured under the Frobenius-norm view: the Kronecker-structured estimators used by Shampoo and SOAP do not adequately solve the corresponding KL-minimization problem. This limitation, in turn, opens new opportunities for improvement. Leveraging this insight, we refine the estimation rules of Shampoo and SOAP and develop practical KL-based schemes—KL-Shampoo and KL-SOAP—that meet or exceed the performance of Shampoo and SOAP for NN (pre-)training while maintaining SOAP-level per-iteration runtime. Notably, KL-Shampoo does not rely on Adam to achieve superior performance, thereby avoiding Adam’s additional memory overhead (Table 1). Empirically (see Fig. 1), we show that KL-based methods are competitive for training a range of NNs and remain as flexible as Shampoo and SOAP for tensor-valued weights. Surprisingly, KL-Shampoo consistently outperforms the other methods in our experiments.

## 2 BACKGROUND

**Notation** For presentation simplicity, we focus on matrix-valued weights and the optimization update for a single parameter matrix  $\Theta \in \mathcal{R}^{d_a \times d_b}$ , rather than a set of weight matrices for NN training. We use  $\text{Mat}(\cdot)$  to unflatten its input vector into a matrix and  $\text{vec}(\cdot)$  to flatten its input matrix into a vector. For example,  $\theta := \text{vec}(\Theta)$  is the flattened weight vector and  $\Theta \equiv \text{Mat}(\theta)$  is the original (unflattened) weight matrix. Vector  $g$  is a (flattened) gradient vector for the weight matrix. We denote  $\gamma$ ,  $\beta_2$  and  $S$  to be a step size, a weight for moving average, and a preconditioning matrix for an adaptive method, respectively.  $\text{Diag}(\cdot)$  returns a diagonal matrix whose diagonal entries are given by its input vector, whilst  $\text{diag}(\cdot)$  extracts the diagonal entries of its input matrix as a vector.

**Shampoo** Given a matrix gradient  $G$  and the flattened gradient  $g = \text{vec}(G)$ , the original Shampoo method (Gupta et al., 2018) considers a *Kronecker-factored* approximation,  $(S_a)^{2p} \otimes (S_b)^{2p}$ , of the flattened gradient second moment,  $\mathbb{E}_g[gg^\top]$ , where  $p$  denotes a matrix power,  $S_a := \mathbb{E}_g[GG^\top]$ ,  $S_b := \mathbb{E}_g[G^\top G]$ , and  $\otimes$  denotes a Kronecker product. In practice, we often approximate the expectation,  $\mathbb{E}_g[gg^\top]$ , with an exponentially moving average (EMA) on the outer product (Morwani et al., 2025). The original Shampoo method uses the  $1/4$  power (i.e.,  $p = 1/4$ ) and other works (Anil et al., 2020; Shi et al., 2023; Morwani et al., 2025) suggest using the  $1/2$  power (i.e.,  $p = 1/2$ ). At each iteration, Shampoo follows this update rule with EMA on  $S_a$  and  $S_b$ :

$$\begin{aligned} S_a &\leftarrow (1 - \beta_2)S_a + \beta_2GG^\top, \quad S_b \leftarrow (1 - \beta_2)S_b + \beta_2G^\top G \quad (\text{Kronecker 2}^{\text{nd}} \text{ moment est.}), \\ \theta &\leftarrow \theta - \gamma S^{-1/2}g \iff \Theta \leftarrow \Theta - \gamma S_a^{-p}GS_b^{-p} \quad (\text{Preconditioning}), \end{aligned} \quad (1)$$

where  $S := S_a^{2p} \otimes S_b^{2p}$  is Shampoo’s preconditioning matrix, and we leverage the Kronecker structure of  $S$  to move from the left expression to the right expression in the second line.

**Shampoo’s implementation employs eigendecomposition.** Shampoo is typically implemented by using the eigendecomposition of  $S_k$ , such as  $Q_k \text{Diag}(\lambda_k)Q_k^\top = \text{eigen}(S_k)$ , for

108       $k \in \{a, b\}$ , every few steps and storing  $\mathbf{Q}_k$  and  $\boldsymbol{\lambda}_k$  (Anil et al., 2020; Shi et al., 2023).  
 109      Therefore, the power of  $\mathbf{S}_k$  is computed using an elementwise power in  $\boldsymbol{\lambda}_k$  such as  
 110       $\mathbf{S}_k^{-p} = \mathbf{Q}_k \text{Diag}(\boldsymbol{\lambda}_k^{\odot -p}) \mathbf{Q}_k^\top$ , where  $\cdot^{\odot p}$  denotes elementwise  $p$ -th power. This computa-  
 111      tion becomes an approximation if the decomposition is not performed at every step.

112      **Using Adam for Shampoo’s stabilization increases memory usage.** If the eigendecomposition is  
 113      applied infrequently to reduce iteration cost, Shampoo has to apply step-size grafting with  
 114      Adam to maintain performance (Agarwal et al., 2020; Shi et al., 2023) as empirically shown  
 115      in Fig. 2. Unfortunately, this increases its memory usage introduced by Adam (see Table 1).

116      **SOAP**    SOAP improves Shampoo with the  $p = 1/2$  power by running Adam in the eigenbasis  
 117      of Shampoo’s preconditioner  $(\mathbf{S}_a)^{2p} \otimes (\mathbf{S}_b)^{2p} = \mathbf{S}_a \otimes \mathbf{S}_b$ . Notably, SOAP reuses Shampoo’s  
 118      Kronecker estimation rule for computing the eigenbasis  $\mathbf{Q} := \mathbf{Q}_a \otimes \mathbf{Q}_b$  and incorporates Adam’s  
 119      2<sup>nd</sup> moment, denoted by  $\mathbf{d}$ , for preconditioning, where  $\mathbf{Q}_k$  is Shampoo’s Kronecker eigenbasis  $\mathbf{S}_k$   
 120      for  $k \in \{a, b\}$  defined above. As a result, SOAP effectively employs an *augmented* preconditioner,  
 121       $\mathbf{S} := \mathbf{Q} \text{Diag}(\mathbf{d}) \mathbf{Q}^\top$ , which cannot be expressed as a Kronecker product of any two matrices with  
 122      the same shape as  $\mathbf{S}_a$  and  $\mathbf{S}_b$ . Because we omit momentum (i.e. let Adam’s  $\beta_1 = 0$ ), SOAP takes the  
 123      following step with the Adam update becoming an RMSProp update (Tieleman & Hinton, 2012):

$$\begin{aligned} 124 \quad \mathbf{S}_a &\leftarrow (1 - \beta_2) \mathbf{S}_a + \beta_2 \mathbf{G} \mathbf{G}^\top, \quad \mathbf{S}_b \leftarrow (1 - \beta_2) \mathbf{S}_b + \beta_2 \mathbf{G}^\top \mathbf{G} \quad (\text{Shampoo’s 2}^{\text{nd}} \text{ moment est.}), \\ 125 \quad \mathbf{d} &\leftarrow (1 - \beta_2) \mathbf{d} + \beta_2 \hat{\mathbf{g}}^{\odot 2} \quad (\text{RMSProp’s diagonal 2}^{\text{nd}} \text{ moment est. in the eigenbasis}), \\ 126 \quad \boldsymbol{\theta} &\leftarrow \boldsymbol{\theta} - \gamma \mathbf{S}^{-\frac{1}{2}} \mathbf{g} \iff \boldsymbol{\Theta} \leftarrow \boldsymbol{\Theta} - \gamma \mathbf{Q}_a^\top \text{Mat} \left( \frac{\hat{\mathbf{g}}}{\sqrt{\mathbf{d}}} \right) \mathbf{Q}_b \quad (\text{Preconditioning}), \end{aligned} \quad (2)$$

127      where  $\hat{\mathbf{g}} := \mathbf{Q}^\top \mathbf{g} = \text{vec}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b)$  is a “projected” gradient vector in eigenbasis  $\mathbf{Q}$  and recall  
 128      that  $\mathbf{S} := \mathbf{Q} \text{Diag}(\mathbf{d}) \mathbf{Q}^\top$  is SOAP’s preconditioner. Here, we leverage the Kronecker structure and  
 129      orthogonality of the eigenbasis to move from the left to the right in the last line of Eq. (2). Note that  
 130      this EMA weight  $\beta_2$  is defined as  $1 - \beta_2^{(\text{Adam})}$ , where  $\beta_2^{(\text{Adam})}$  is Adam’s (RMSProp’s)  $\beta_2$ . We use  
 131      this definition rather than Adam’s because we want to further interpret this moving-average scheme  
 132      through the lens of our KL perspective.

133      **SOAP’s implementation utilizes QR decomposition.** SOAP requires only the eigenbasis, which  
 134      can be approximated via a QR decomposition, whereas Shampoo requires an eigendecom-  
 135      position to compute both the eigenbasis and the eigenvalues. Vyas et al. (2025a) therefore  
 136      suggest replacing the slower eigendecomposition with the faster QR decomposition, such as  
 137       $\mathbf{Q}_k \leftarrow \text{qr}(\mathbf{S}_k \mathbf{Q}_k)$  for  $k \in \{a, b\}$ . This makes SOAP more computationally efficient than  
 138      Shampoo.

139      **Running Adam in the eigenbasis increases memory usage.** Introducing Adam’s (RMSProp’s) 2<sup>nd</sup>  
 140      moment estimation increases SOAP’s memory consumption (see Table 1). This is because  
 141      this estimation,  $\mathbf{d} \in \mathcal{R}^{d_a d_b \times 1}$ , uses extra memory and cannot be expressed as a Kronecker  
 142      product of any two vectors, such as  $\mathbf{d} \neq \mathbf{r}_a \otimes \mathbf{r}_b$ , where  $\mathbf{r}_a \in \mathcal{R}^{d_a \times 1}$  and  $\mathbf{r}_b \in \mathcal{R}^{d_b \times 1}$ .

143      The original Shampoo’s Kronecker estimation rule ( $p = 1/4$ ) (Gupta et al., 2018; Duvvuri et al., 2024)  
 144      is proposed based on a matrix Loewner bound (Löwner, 1934), while recent estimation rules ( $p = 1/2$ )  
 145      (Morwani et al., 2025; Eschenhagen et al., 2025) focus on bounds induced by the Frobenius norm.  
 146      SOAP reuses Shampoo’s Kronecker estimation rule and additionally introduces Adam’s (RMSProp’s)  
 147      2<sup>nd</sup>-moment estimation rule in the eigenbasis (Vyas et al., 2025a). None of these works interpret or  
 148      motivate their estimation rules as covariance estimation, thereby missing the opportunity to introduce  
 149      the KL perspective.

### 150      3 SECOND MOMENT ESTIMATION VIA KULLBACK–LEIBLER MINIMIZATION

151      We first focus on Shampoo with  $p = 1/2$  and show that its second-moment estimation can be viewed  
 152      as a structured covariance estimation problem solved via Kullback–Leibler (KL) minimization. This  
 153      perspective reflects the natural connection between the flattened gradient second moment (Duchi  
 154      et al., 2011) that Shampoo approximates and a covariance matrix. From the KL perspective, we  
 155      reveal a previously unrecognized limitation of Shampoo’s estimation rule: the Kronecker-structured  
 156      estimators used by Shampoo and SOAP do not adequately solve the corresponding KL-minimization  
 157      problem. This limitation, in turn, opens new opportunities for improvement. Building on this insight,  
 158      we propose a KL-based estimation scheme for Shampoo, which we term the idealized **KL-Shampoo**.

|                                                                                                           | Shampoo         | SOAP            | KL-Shampoo      | KL-SOAP         |
|-----------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| Kronecker factors ( $S_a, S_b$ )                                                                          | $d_a^2 + d_b^2$ | $d_a^2 + d_b^2$ | $d_a^2 + d_b^2$ | $d_a^2 + d_b^2$ |
| Kronecker factors' eigenbasis ( $Q_a, Q_b$ )                                                              | $d_a^2 + d_b^2$ | $d_a^2 + d_b^2$ | $d_a^2 + d_b^2$ | $d_a^2 + d_b^2$ |
| Kronecker factors' eigenvalues ( $\lambda_a, \lambda_b$ )                                                 | $d_a + d_b$     | N/A             | $d_a + d_b$     | $d_a + d_b$     |
| Adam's 2 <sup>nd</sup> moment in the eigenbasis ( $d$ )<br>(interpreted as augmented eigenvalues, Sec. 5) | N/A             | $d_a d_b$       | N/A             | $d_a d_b$       |
| Momentum                                                                                                  | $d_a d_b$       | $d_a d_b$       | $d_a d_b$       | $d_a d_b$       |
| Step-size grafting with Adam                                                                              | $d_a d_b$       | N/A             | N/A             | N/A             |

Table 1: Memory usage of each method considered in this work. Note that SOAP’s and KL-SOAP’s preconditioners,  $Q\text{Diag}(d)Q^\top$ , can not be expressed as a Kronecker product due to the augmented eigenvalues  $d$ , while Shampoo’s and KL-Shampoo’s preconditioners,  $Q\text{Diag}(\lambda_a \otimes \lambda_b)Q^\top$ , can, where  $Q := Q_a \otimes Q_b$ .

**KL Minimization** For simplicity, we begin by introducing a KL perspective in a matrix-valued case and drop subscripts when referring to the flattened gradient 2<sup>nd</sup> moment, like  $\mathbb{E}[gg^\top] := \mathbb{E}_g[gg^\top]$ , where  $g = \text{vec}(G)$  is a flattened gradient vector of a matrix-valued gradient  $G \in \mathcal{R}^{d_a \times d_b}$ . The goal is to estimate a Kronecker-structured preconditioning matrix,  $S = S_a \otimes S_b$ , that closely approximates the 2<sup>nd</sup> moment, where  $S_a \in \mathcal{R}^{d_a \times d_a}$  and  $S_b \in \mathcal{R}^{d_b \times d_b}$  are both symmetric positive-definite (SPD). Motivated by the natural connection between the second moment and a covariance matrix, we treat these as covariance matrices of zero-mean Gaussian distributions and achieve this goal by minimizing the KL divergence between the two distributions,

**KL Perspective for Covariance Estimation**

$$\begin{aligned} \text{KL}(\mathbb{E}[gg^\top], S) &:= D_{\text{KL}}(\mathcal{N}(\mathbf{0}, \mathbb{E}[gg^\top] + \kappa I) \parallel \mathcal{N}(\mathbf{0}, S)) \\ &= \frac{1}{2} (\log \det(S) + \text{Tr}((\mathbb{E}[gg^\top] + \kappa I)S^{-1})) + \text{const}, \end{aligned} \quad (3)$$

where  $\mathbb{E}[gg^\top]$  and  $S$  are considered as Gaussian’s covariance,  $\det(\cdot)$  denotes the matrix determinant of its input, and  $\kappa \geq 0$  is a damping weight to ensure the positive-definiteness of  $\mathbb{E}[gg^\top] + \kappa I$  if necessary. Mathematically, this KL divergence coincides (up to a factor of  $1/2$ ) with the log-determinant divergence widely used in matrix optimization (Dhillon & Tropp, 2008; Kulis et al., 2009; Sra, 2016), which is defined for any pair of SPD matrices and does not require a zero-mean assumption. This additional zero-mean Gaussian viewpoint provides a probabilistic interpretation of this SPD-aware “distance”, even when the target matrix is not itself a second moment, such as the curvature matrix used in quasi-Newton methods (Fletcher, 1991; Waldrip & Niven, 2016). Moreover, the KL divergence naturally extends to tensor-valued cases, such as a 3D tensor gradient,  $G \in \mathcal{R}^{d_a \times d_b \times d_c}$ , by considering a structured preconditioner  $S = S_a \otimes S_b \otimes S_c$  to approximate the flattened gradient second moment,  $\mathbb{E}[gg^\top]$ , where matrix  $S_k \in \mathcal{R}^{d_k \times d_k}$  is SPD for  $k \in \{a, b, c\}$ .

**Justification of using the KL divergence** Many existing works (Morwani et al., 2025; Eschenhagen et al., 2025; An et al., 2025; Xie et al., 2025) primarily focus on matrix-valued weights and interpret Shampoo’s and SOAP’s estimation rules from the Frobenius-norm perspective. However, this norm does not account for the SPD constraint implicitly imposed on Shampoo’s and SOAP’s preconditioners, which ensures that the preconditioned gradient direction is a descent direction (Nesterov et al., 2018). As emphasized in the literature (Pennec et al., 2006; Bhatia, 2007), it is more appropriate to consider a “distance” that respects this constraint. We adopt the KL divergence because it naturally incorporates the SPD constraint, is widely used for covariance estimation (Amari, 2016; Minh & Murino, 2017), and provides a unified framework for reinterpreting and improving Shampoo’s estimation—even in tensor-valued settings where existing interpretations based on singular value decomposition (Van Loan & Pitsianis, 1993) may not apply. In numerical optimization, the KL divergence, known as a merit function (Byrd & Nocedal, 1989), offers a unifying interpretation (Fletcher, 1991; Waldrip & Niven, 2016) and extension (Kanamori & Ohara, 2013a;b) of the low-rank estimation schemes of BFGS and DFP. In contrast, the standard Frobenius norm cannot recover these updates without additional weighting (see Sec. 6.1 of Nocedal & Wright (2006)). In statistical estimation and inference, this KL divergence is also preferred over the Frobenius norm (James et al., 1961; Kivinen & Warmuth, 1999; Khan & Lin, 2017; Lin et al., 2019; Kunstner et al., 2021).

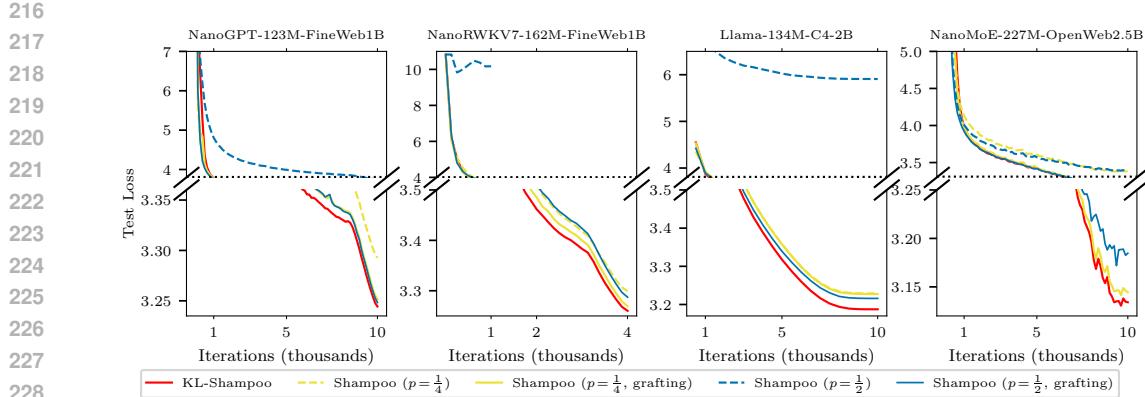


Figure 2: Empirical results (random search using 150 runs for each method) on language models demonstrate that KL-Shampoo does not rely on step-size grafting with Adam to perform well. Shampoo without grafting does not perform well, even when using the state-of-the-art implementation (Shi et al., 2023). In particular, Shampoo with power  $p = 1/2$  fails to train the RWKV7 model in all 150 runs when grafting is disabled.

### 3.1 INTERPRETING SHAMPOO’S ESTIMATION AS COVARIANCE ESTIMATION

Similar to existing works (Morwani et al., 2025; Eschenhagen et al., 2025; Vyas et al., 2025a), we first disable the moving average (i.e., let  $\beta_2 = 1$ ) for our descriptions and focus on Shampoo with power  $p = 1/2$ , presenting a KL perspective and interpreting its estimation rule from this perspective. We will show that Shampoo’s estimation can be obtained by solving a KL minimization problem.

**Claim 1. (Shampoo’s Kronecker-based covariance estimation)** *The optimal solution of KL minimization  $\min_{S_a} \text{KL}(\mathbb{E}[gg^\top], S)$  with a one-sided preconditioner  $S = (1/d_b S_a) \otimes I_b$  is  $S_a^* = \mathbb{E}[GG^\top]$ , where  $d_k$  is the dimension of matrix  $S_k \in \mathbb{R}^{d_k \times d_k}$  for  $k \in \{a, b\}$  and  $G = \text{Mat}(g)$ .*

*Likewise, we can obtain the estimation rule for  $S_b$  by considering  $S = I_a \otimes (1/d_a S_b)$ .*

**Shampoo’s estimation rule as Kronecker-based covariance estimation** According to Claim 1 (proof in Sec. A), Shampoo’s estimation rule with power  $p = 1/2$  in Eq. (1) can be viewed as the optimal solution of a KL minimization problem (up to a constant scalar) when one Kronecker factor is updated independently and the other is fixed as the identity, which is known as a one-sided preconditioner (An et al., 2025; Xie et al., 2025). In practice, Shampoo further approximates the required expectations using the EMA scheme in Eq. (1).

### 3.2 IMPROVING SHAMPOO’S ESTIMATION: IDEALIZED KL-SHAMPOO

Our KL perspective reveals a key **limitation**—empirically demonstrated in Fig. 5—of Shampoo’s Kronecker estimation with  $p = 1/2$  as a one-sided approach: it does not adequately solve the KL-minimization problem when both factors are learned jointly. Motivated by this observation, we design an improved estimation rule that updates the two factors simultaneously. We refer to this scheme as *idealized KL-Shampoo*, which is a two-sided approach.

**Claim 2. (Idealized KL-Shampoo’s covariance estimation for  $S_a$  and  $S_b$ )** *The optimal solution of KL minimization  $\min_{S_a, S_b} \text{KL}(\mathbb{E}[gg^\top], S)$  with a two-sided preconditioner  $S = S_a \otimes S_b$  should satisfy the following condition.*

$$S_a^* = \frac{1}{d_b} \mathbb{E}[G(S_b^*)^{-1} G^\top], \quad S_b^* = \frac{1}{d_a} \mathbb{E}[G^\top (S_a^*)^{-1} G]. \quad (4)$$

**Idealized KL-Shampoo’s estimation** Claim 2 (proof in Sec. B) establishes a closed-form condition (see Eq. (4)) when simultaneously learning both Kronecker factors to minimize the KL problem. This condition corresponds to the maximum-likelihood estimator (MLE) of a zero-mean matrix Gaussian (Dutilleul, 1999) when  $\mathbb{E}[gg^\top]$  is considered as a finite average  $\frac{1}{N} \sum_{i=1}^N g_i g_i^\top$ . This is because MLE is equivalent to minimizing the KL divergence:  $\text{KL}(\frac{1}{N} \sum_{i=1}^N g_i g_i^\top, S) = -\frac{1}{N} \sum_{i=1}^N \log \mathcal{N}(g_i; 0, S) + \text{const}$ , where  $g_i$  is considered as a sample generated from  $\mathcal{N}(0, S)$ . In

270 machine learning, Lin et al. (2019; 2024) treated this condition as a theoretical example of a multilinear  
 271 exponential-family (Sec. 5 of Lin et al. (2019)) for Kronecker-based optimization, while Vyas  
 272 et al. (2025b) considered a similar condition motivated heuristically by gradient whitening. However,  
 273 we cannot directly use this condition due to the *correlation* between  $S_a^*$  and  $S_b^*$ . For example, solving  
 274  $S_a^*$  requires knowing  $S_b^*$  in Eq. (4) or vice versa. In practice, this condition is unachievable because  
 275 the expectations in Eq. (4) must be approximated. Thus, we consider an estimated  $S_k$  to approximate  
 276  $S_k^*$  for  $k \in \{a, b\}$  and propose an exponential moving average (EMA) scheme:

$$277 \quad S_a \leftarrow (1 - \beta_2)S_a + \frac{\beta_2}{d_b} G \mathbf{S}_b^{-1} G^\top, \quad S_b \leftarrow (1 - \beta_2)S_b + \frac{\beta_2}{d_a} G^\top \mathbf{S}_a^{-1} G. \quad (5)$$

280 Our KL perspective allows us to further justify this EMA scheme as a stochastic proximal-gradient  
 281 step (see Claim 3 and a proof in Sec. C) and establish a formal connection to Lin et al. (2019;  
 282 2024). Notably, our approach uses  $S^{-1/2}$  for preconditioning (Eq. (1)), following Shampoo, whereas  
 283 Lin et al. (2019; 2024) propose using  $S^{-1}$ . A straightforward implementation of our scheme is  
 284 computationally expensive, since it requires additional matrix inversions (highlighted in red in Eq. (5))  
 285 and the slow eigendecomposition for Shampoo-type preconditioning (e.g.,  $S^{-1/2}$ ). However, these  
 286 issues can be alleviated—in Sec. 4 we propose an efficient implementation.

287 **Claim 3. (KL-Shampoo’s moving average scheme)** *The moving average scheme for  $S_k$  (Eq. (5))  
 288 in idealized KL-Shampoo is a stochastic proximal-gradient step with step-size  $\beta_2$  to solve the KL  
 289 minimization problem in Eq. (3), for  $k \in \{a, b\}$ . Recall that this  $\beta_2$  in Eq. (5) is closely related to  
 290 Adam’s  $\beta_2$  as  $\beta_2 = 1 - \beta_2^{(Adam)}$ , where  $\beta_2^{(Adam)}$  is Adam’s  $\beta_2$ .*

292 **Distinction between Shampoo with trace scaling and KL-Shampoo** Another variant, often  
 293 discussed in the literature (Morwani et al., 2025; Vyas et al., 2025a; Eschenhagen et al., 2025),  
 294 is Shampoo with trace scaling. Vyas et al. (2025a) established that Shampoo with trace scaling  
 295 is equivalent to running Adafactor (Shazeer & Stern, 2018) in Shampoo’s eigenbasis. In contrast,  
 296 KL-Shampoo is not equivalent to running Adafactor in its eigenbasis. To clarify this distinction, we  
 297 make the theoretical connection between Shampoo and Adafactor more explicit: Shampoo with trace  
 298 scaling is exactly a matrix generalization of Adafactor obtained by minimizing the von Neumann  
 299 (VN) divergence (Tsuda et al., 2005; Dhillon & Tropp, 2008) and recovers Adafactor when its  
 300 Kronecker factors are restricted to be diagonal, as we establish in Claim 6 (Sec. F). By contrast,  
 301 KL-Shampoo minimizes the KL divergence instead of the VN divergence. While a straightforward  
 302 implementation of Shampoo with trace scaling—referred to as idealized VN-Shampoo—performs  
 303 poorly in practice, the techniques we develop for KL-Shampoo in Sec. 4 can be adapted (see Fig. 6,  
 304 Sec. H) to substantially improve its performance, as shown in Fig. 7 (Sec. H).

305 A natural question then arises: which divergence is more suitable? Theoretically, the KL divergence  
 306 is broadly applicable to arbitrary SPD matrices (Bhatia, 2007; Boumal et al., 2014) and is widely  
 307 used for covariance matrices (Minh & Murino, 2017), whereas VN divergence is primarily motivated,  
 308 studied, and applied for unit-trace SPD matrices (Tsuda et al., 2005; Nielsen & Chuang, 2010).  
 309 Empirically, adopting the KL divergence yields larger improvements than the VN divergence for  
 310 designing Shampoo’s estimation (Fig. 10, Sec. H) and in other applications (Kulis et al., 2009).

## 312 4 EFFICIENT IMPLEMENTATION: KL-SHAMPOO WITH QR DECOMPOSITION

314 We develop techniques that enable KL-Shampoo to match SOAP-level per-iteration runtime and  
 315 to achieve competitive performance without step-size grafting, all without relying on eigende-  
 316 composition. Vyas et al. (2025a) demonstrated that the eigendecomposition used in Shampoo’s  
 317 implementation (Shi et al., 2023) is more computationally expensive than QR decomposition. Moti-  
 318 vated by this result, we aim to improve KL-Shampoo’s computational efficiency by replacing the  
 319 eigendecomposition with QR decomposition. However, incorporating QR decomposition into KL-  
 320 Shampoo is non-trivial because the eigenvalues of the Kronecker factors are required, and QR does  
 321 not directly provide them without a significant overhead. Specifically, the eigenvalues are essential  
 322 for a reduction in the computational cost of KL-Shampoo in two reasons: (1) they remove the need to  
 323 compute the matrix  $^{-1/2}$  power,  $S^{-1/2} = (Q_a \text{Diag}(\lambda_a^{\odot -1/2}) Q_a^\top) \otimes (Q_b \text{Diag}(\lambda_b^{\odot -1/2}) Q_b^\top)$ , used  
 for KL-Shampoo’s preconditioning; (2) they eliminate expensive matrix inversions in its Kronecker

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><b>(Original) Shampoo with power <math>p=1/2</math> versus Our idealized KL-Shampoo</b></p> <p>1: Gradient Computation <math>\mathbf{g} := \nabla \ell(\theta)</math><br/> <math>\mathbf{G} := \text{Mat}(\mathbf{g}) \in \mathbb{R}^{d_a \times d_b}</math></p> <p>2: Covariance Estimation (each iter)<br/> <math>\begin{pmatrix} \mathbf{S}_a \\ \mathbf{S}_b \end{pmatrix} \leftarrow (1 - \beta_2) \begin{pmatrix} \mathbf{S}_a \\ \mathbf{S}_b \end{pmatrix} + \beta_2 \begin{pmatrix} \Delta_a \\ \Delta_b \end{pmatrix}</math></p> <p><math>\Delta_a := \begin{cases} \mathbf{G}\mathbf{G}^\top &amp; (\text{Orig.}) \\ \mathbf{G}\mathbf{Q}_b \text{Diag}(\boldsymbol{\lambda}_b^{\odot-1})\mathbf{Q}_b^\top \mathbf{G}^\top / d_b &amp; (\text{KL}) \end{cases}</math></p> <p><math>\Delta_b := \begin{cases} \mathbf{G}^\top \mathbf{G} &amp; (\text{Orig.}) \\ \mathbf{G}^\top \mathbf{Q}_a \text{Diag}(\boldsymbol{\lambda}_a^{\odot-1})\mathbf{Q}_a^\top \mathbf{G} / d_a &amp; (\text{KL}) \end{cases}</math></p> <p>3: Eigendecomposition (every <math>T \geq 1</math> iters)<br/> <math>\boldsymbol{\lambda}_k, \mathbf{Q}_k \leftarrow \text{eig}(\mathbf{S}_k)</math> for <math>k \in \{a, b\}</math></p> <p>4: Preconditioning using <math>\mathbf{Q} := \mathbf{Q}_a \otimes \mathbf{Q}_b</math><br/> <math>\theta \leftarrow \theta - \gamma(\mathbf{Q} \text{Diag}(\boldsymbol{\lambda}_a \otimes \boldsymbol{\lambda}_b)^{-1/2} \mathbf{Q}^\top) \mathbf{g}</math></p> | <p><b>Replacing the slow eigendecomposition with more efficient QR updates (replace Step 3)</b></p> <p>3a: Eigenvalue Estimation with EMA (each iter) (Kronecker Diagonal Vector <math>\boldsymbol{\lambda}_a \otimes \boldsymbol{\lambda}_b</math> as eigenvalues)<br/> <math>\begin{pmatrix} \boldsymbol{\lambda}_a \\ \boldsymbol{\lambda}_b \end{pmatrix} \leftarrow (1 - \beta_2) \begin{pmatrix} \boldsymbol{\lambda}_a \\ \boldsymbol{\lambda}_b \end{pmatrix} + \beta_2 \begin{pmatrix} \text{diag}(\mathbf{Q}_a^\top \Delta_a \mathbf{Q}_a) \\ \text{diag}(\mathbf{Q}_b^\top \Delta_b \mathbf{Q}_b) \end{pmatrix}</math></p> <p>3b: Infrequent Eigenbasis Estimation using QR (every <math>T \geq 1</math> iters)<br/> <math>\mathbf{Q}_k \leftarrow \text{qr}(\mathbf{S}_k \mathbf{Q}_k)</math> for <math>k \in \{a, b\}</math></p>                                                                                                                                                                                                                                                            |
| <p>Figure 3: <i>Left:</i> Simplified Shampoo-based schemes without momentum. Our KL-Shampoo only differs (red) from the original in its choice of <math>\Delta</math>. <i>Top Right:</i> For computational efficiency, we replace the eigen step with our EMA scheme to estimate eigenvalues and infrequent eigenbasis estimation using QR. <i>Bottom Right:</i> SOAP-based schemes without momentum. Note KL-SOAP needs estimation of <math>\boldsymbol{\lambda}_k</math> from Step 3a to compute the eigenbasis <math>\mathbf{Q}</math>, whereas SOAP does not. We view RMSProp’s 2<sup>nd</sup> moment in the eigenbasis as an augmented eigenvalue, highlighted in blue.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <p><b>SOAP (uses Shampoo’s eigenbasis) versus Our KL-SOAP (uses KL-Shampoo’s eigenbasis): Using augmented preconditioners and QR updates (replace Step 4)</b></p> <p>4a: <b>Augmented</b> Eigenvalue Estimation with EMA (each iter) (Full Diagonal Vector <math>\mathbf{d}</math> as eigenvalues)<br/> <math>\mathbf{d} \leftarrow (1 - \beta_2)\mathbf{d} + \beta_2 \hat{\mathbf{g}}^{\odot 2}</math> (RMSProp’s 2<sup>nd</sup> moment)<br/> <math>\hat{\mathbf{g}} := \mathbf{Q}^\top \mathbf{g} = \text{vec}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b)</math></p> <p>4b: Preconditioning using Augmented Eigenvalues with Eigenbasis <math>\mathbf{Q} := \mathbf{Q}_a \otimes \mathbf{Q}_b</math><br/> <math>\theta \leftarrow \theta - \gamma(\mathbf{Q} \text{Diag}(\mathbf{d})^{-1/2} \mathbf{Q}^\top) \mathbf{g}</math><br/> <i>Equivalent to running RMSProp in Eigenbasis:</i><br/> <math>\text{Mat}(\theta) \leftarrow \text{Mat}(\theta) - \gamma \mathbf{Q}_a \underbrace{\text{Mat}\left(\frac{\hat{\mathbf{g}}}{\sqrt{\mathbf{d}}}\right)}_{\text{RMSProp}} \mathbf{Q}_b^\top</math></p> |

estimation rule (Eq. (5)), such as  $\mathbf{S}_b^{-1} = \mathbf{P}_b := \mathbf{Q}_b \text{Diag}(\boldsymbol{\lambda}_b^{\odot-1}) \mathbf{Q}_b^\top$  in the update for  $\mathbf{S}_a$ :

$$\mathbf{S}_a \leftarrow (1 - \beta_2) \mathbf{S}_a + \frac{\beta_2}{d_b} \mathbf{G} \mathbf{S}_b^{-1} \mathbf{G}^\top = (1 - \beta_2) \mathbf{S}_a + \frac{\beta_2}{d_b} \mathbf{G} \mathbf{P}_b \mathbf{G}^\top, \quad (6)$$

where  $\mathbf{Q}_k$  and  $\boldsymbol{\lambda}_k$  are eigenbasis and eigenvalues of  $\mathbf{S}_k$  for  $k \in \{a, b\}$ , respectively.

**KL-based estimation rule for the eigenvalues  $\boldsymbol{\lambda}_a$  and  $\boldsymbol{\lambda}_b$  using an outdated eigenbasis** We aim to estimate the eigenvalues using an outdated eigenbasis and replace the slow eigendecomposition with a fast QR decomposition in KL-Shampoo. [Eschenhagen et al. \(2025\)](#) propose estimating the eigenvalues from a Frobenius-norm perspective, using an instantaneous scheme:  $\boldsymbol{\lambda}_k^{(\text{inst})} := \text{diag}(\mathbf{Q}_k^\top \mathbf{S}_k \mathbf{Q}_k)$  for  $k \in \{a, b\}$ . However, our empirical results (Fig. 4) indicate that this approach becomes suboptimal when an outdated eigenbasis  $\mathbf{Q}_k$  is reused to reduce the frequency and cost of QR decompositions. In contrast, our KL perspective (see Claim 4 and its proof in Sec. D) provides a principled alternative, allowing us to use an outdated eigenbasis. Building on this claim, we introduce an exponential moving average (EMA) scheme (Step 3a of Fig. 3) for eigenvalue estimation, which can be justified as a stochastic proximal-gradient step under our KL perspective, similar to Claim 3. This scheme updates the eigenvalues *at every iteration* while updating the eigenbasis less frequently through an efficient QR-based procedure, similar to SOAP. Since it naturally scales the eigenvalues by the dimensions of the Kronecker factors, step-size grafting should not be necessary for KL-Shampoo, as argued by [Eschenhagen et al. \(2025\)](#) and confirmed by our empirical results (Fig. 2). Furthermore, applying this scheme enables other Shampoo variants to be competitive and even outperform SOAP, as demonstrated in Fig. 7 and Fig. 10 of Sec. H. These empirical results underscore the importance of our EMA scheme on eigenvalues.

**Claim 4. (Covariance estimation for eigenvalues  $\boldsymbol{\lambda}_a$  and  $\boldsymbol{\lambda}_b$ )** *The optimal solution of KL minimization  $\min_{\boldsymbol{\lambda}_a, \boldsymbol{\lambda}_b} \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S})$  with preconditioner  $\mathbf{S} = (\mathbf{Q}_a \text{Diag}(\boldsymbol{\lambda}_a) \mathbf{Q}_a^\top) \otimes (\mathbf{Q}_b \text{Diag}(\boldsymbol{\lambda}_b) \mathbf{Q}_b^\top)$*

378 should satisfy the following condition.  
 379

$$380 \quad \lambda_a^* = \frac{1}{d_b} \text{diag}(\mathbf{Q}_a^\top \mathbb{E}[\mathbf{G} \mathbf{P}_b^* \mathbf{G}^\top] \mathbf{Q}_a), \quad \lambda_b^* = \frac{1}{d_a} \text{diag}(\mathbf{Q}_b^\top \mathbb{E}[\mathbf{G}^\top \mathbf{P}_a^* \mathbf{G}] \mathbf{Q}_b), \quad (7)$$

382 where  $\mathbf{P}_k^* := \mathbf{Q}_k \text{Diag}((\lambda_k^*)^{\odot -1}) \mathbf{Q}_k^\top$  is also defined in Eq. (6) and considered as an approximation  
 383 of  $\mathbf{S}_k^{-1}$  for  $k \in \{a, b\}$  when using an outdated eigenbasis  $\mathbf{Q} = \mathbf{Q}_a \otimes \mathbf{Q}_b$  precomputed by QR.  
 384

## 385 5 INTERPRETING AND IMPROVING SOAP VIA KL MINIMIZATION

388 We extend the KL perspective to better understand and improve the estimation scheme used in SOAP.  
 389

390 **Interpreting SOAP’s estimation as covariance estimation** Recall that SOAP (Eq. (2)) applies  
 391 Shampoo’s scheme to estimate its Kronecker factors and then performs RMSProp updates in the  
 392 eigenbasis of these factors. Consequently, the interpretation of SOAP’s Kronecker factor estimation  
 393 is identical to that of Shampoo. RMSProp’s second-moment estimation in the eigenbasis can itself be  
 394 interpreted as the optimal solution to a separate KL divergence minimization problem, as established  
 395 in Claim 5 (see Sec. E for a proof). The KL perspective—distinct from the Frobenius-norm viewpoint  
 396 (George et al., 2018; Eschenhagen et al., 2025)—provides a new lens for understanding RMSProp’s  
 397 estimation in the eigenbasis as the estimation of augmented eigenvalues of a covariance matrix  
 398 under KL divergence. When an outdated eigenbasis is used, RMSProp’s scheme (Step 4a of Fig. 3)  
 399 for eigenvalue estimation can be viewed as a correction in an augmented (full-diagonal) space,  
 400  $\mathbf{Q} \text{Diag}(\mathbf{d}) \mathbf{Q}^\top$ , analogous in spirit to the Frobenius-norm interpretation but derived under the KL  
 401 framework. This perspective also highlights a close similarity to KL-Shampoo’s estimation scheme:  
 402 recall that we introduced a comparable correction (Step 3a of Fig. 3) for KL-Shampoo, but in the  
 403 original Kronecker-factored diagonal space,  $\mathbf{Q} \text{Diag}(\lambda_a \otimes \lambda_b) \mathbf{Q}^\top$ .  
 404

405 **Claim 5. (SOAP and KL-SOAP’s covariance estimation for augmented eigenvalues  $\mathbf{d}$ )** The  
 406 optimal solution of KL minimization:  $\min_{\mathbf{d}} \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S})$  with preconditioner  $\mathbf{S} = \mathbf{Q} \text{Diag}(\mathbf{d}) \mathbf{Q}^\top$   
 407 is  $\mathbf{d}^* = \mathbb{E}[(\text{vec}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b))^{\odot 2}] = \mathbb{E}[\hat{\mathbf{g}}^{\odot 2}]$ , where  $\mathbf{d} \in \mathcal{R}^{d_a d_b \times 1}$  is viewed as an augmented  
 408 eigenvalue vector;  $\hat{\mathbf{g}} = \mathbf{Q}^\top \mathbf{g}$  is defined at the update of SOAP (see Eq. (2)), and  $\mathbf{Q} = \mathbf{Q}_a \otimes \mathbf{Q}_b$  can  
 409 be an outdated eigenbasis of (KL-)Shampoo’s preconditioner.  
 410

411 **Improving SOAP’s estimation** Similar to SOAP, we propose KL-SOAP, which utilizes KL-  
 412 Shampoo’s estimation to update Kronecker factors and additionally employs Adam (RMSProp) in  
 413 KL-Shampoo’s eigenbasis. Our unified KL perspective enables us to reuse Claim 5 to justify the use  
 414 of Adam’s (RMSProp’s) 2<sup>nd</sup> moment estimation as augmented eigenvalue estimation in KL-SOAP.  
 415

## 416 6 EXPERIMENTAL SETUP AND EMPIRICAL EVALUATIONS

417 We consider four sets of experiments to demonstrate the benefits of using the KL divergence and the  
 418 effectiveness of KL-based methods. See Sec. H for additional experiments.  
 419

420 **Experimental Setup** In all the experiments, we consider training four language models based on  
 421 existing implementations: NanoGPT (Jordan, 2024) (123 M), NanoRWKV7 (Bo, 2024) (162 M),  
 422 Llama (Glentis, 2025) (134 M), and NanoMoE (Wolfe, 2025) (227 M). We consider NanoMoE,  
 423 as it contains 3D weight tensors. This model provides a natural testbed for evaluating a tensor  
 424 extension of KL-Shampoo and KL-SOAP, derived directly from our KL perspective. In doing so,  
 425 we demonstrate that our methods retain the same flexibility as Shampoo and SOAP in handling  
 426 tensor-valued weights without reshaping them into matrices. We train NanoGPT and NanoRWKV7  
 427 using a subset of FineWeb (1 B tokens), Llama using a subset of C4 (2 B tokens), and NanoMoE  
 428 using a subset of OpenWebText (2.5 B tokens). All models except NanoMoE are trained using  
 429 mini-batches with a batch size of 0.5 M. We use a batch size of 0.25 M to train NanoMoE to reduce  
 430 the run time. We use the default step-size schedulers from the source implementations; NanoGPT  
 431 and NanoRWKV7: linear warmup + constant step-size + linear cooldown; Llama and NanoMoE:  
 432 linear warmup + cosine step-size. We tune all available hyperparameters for each method—including  
 433 step-size, moving average, weight decay, damping, and momentum—using random search with 150

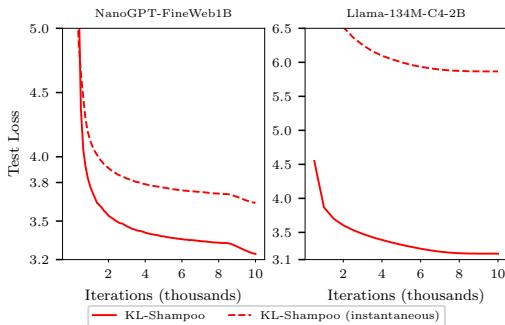


Figure 4: Empirical results (random search, 150 runs per method) demonstrate that our EMA scheme for the eigenvalue estimation makes KL-Shampoo competitive when using an outdated eigenbasis. Without this scheme, KL-Shampoo performs poorly under an outdated eigenbasis  $Q_k$  even when employing the instantaneous eigenvalue estimation  $\lambda_k^{(\text{inst})} = \text{diag}(Q_k^\top S_k Q_k)$  at every iteration, as suggested by [Eschenhagen et al. \(2025\)](#) for  $k \in \{a, b\}$ . Adapting the EMA scheme also makes the trace-scaled Shampoo competitive (Fig. 7, Sec. H) and allows it to outperform SOAP (Fig. 10, Sec. H).

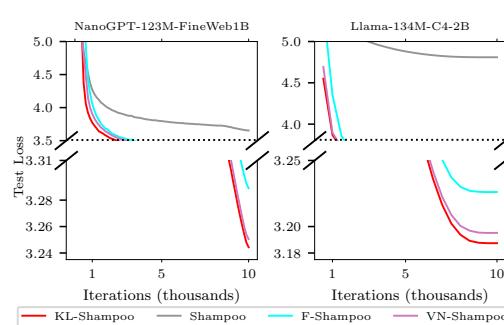


Figure 5: Empirical results (random search, 150 runs per method) demonstrate the advantages of KL-Shampoo’s (two-sided) estimation over other Shampoo variants under comparable settings, including Shampoo with  $p = 1/2$  (no grafting, Eq. (1)), F-Shampoo (two-sided, Frobenius-norm-based, Fig. 8), and VN-Shampoo (trace scaling, two-sided von-Neumann-divergence-based, Fig. 6). We make these variants practical by incorporating a QR step and an EMA scheme for eigenvalue estimation (Fig. 3). See Fig. 10 (Sec. H) for more detailed comparison between KL-Shampoo and VN-Shampoo.

runs. Our hyperparameter search follows a two-stage strategy, with 75 runs in each stage. In the first stage, we search over a wider range of hyperparameters. In the second stage, we refine the search space based on the results from the first stage and focus on a narrower range. In our experiments, Shampoo by default performs eigendecomposition every 10 steps, while SOAP, KL-Shampoo, and KL-SOAP perform QR decomposition every 10 steps, as suggested by [Vyas et al. \(2025a\)](#).

In the first set of experiments, we demonstrate that our KL-based perspective enables a principled redesign of Shampoo, resulting in KL-Shampoo, and achieves superior performance without step-size grafting. We evaluate Shampoo with matrix powers  $p = 1/2$  and  $p = 1/4$ , using a state-of-the-art implementation ([Shi et al., 2023](#)). As shown in Fig. 2, Shampoo requires step-size grafting to perform well, whereas KL-Shampoo performs robustly without it. Moreover, KL-Shampoo outperforms Shampoo with grafting—even in terms of step-wise progress—even when Shampoo is equipped with eigendecomposition and step-size grafting via Adam.

In the second set of experiments, we demonstrate that our QR-based scheme enables KL-Shampoo and KL-SOAP to achieve the same pre-iteration runtime as SOAP. We use the official SOAP implementation for comparison. As shown in Fig. 1, KL-Shampoo and KL-SOAP outperform SOAP. Remarkably, KL-Shampoo also consistently surpasses KL-SOAP while using less memory.

In the third set of experiments, we underscore the importance of using our EMA scheme for the eigenvalue estimation when working with an outdated eigenbasis. As shown in Fig. 4, the EMA scheme enables KL-Shampoo to perform well in practice, even under stale eigenbases. Moreover, this scheme can be adapted to strengthen the trace scaling variant of Shampoo (Fig. 7, Sec. H), enabling it to outperform SOAP (Fig. 10, Sec. H).

In the last set of experiments, we evaluate the benefits of using the two-sided estimation scheme under our KL perspective. Specifically, we compare the two-sided approach (KL-Shampoo) against the original Shampoo in a comparable setting. To ensure fairness and eliminate implementation bias, we use our own implementation of Shampoo aligned closely with that of KL-Shampoo. For this comparison, we extend Shampoo with a QR-based step and our EMA scheme for eigenvalue estimation, as described in Fig. 3. Similarly, we also consider two more Shampoo variants based on the Frobenius norm and von Neumann divergence. As shown in Fig. 5, KL-Shampoo consistently outperforms other Shampoo variants, even when these variants employ a similar QR-based estimation rule and an EMA scheme for eigenvalue estimation .

486  
487  

## 7 CONCLUSION

488  
489  
490  
491  
492  
493  
494  
495  
We introduced a KL perspective for interpreting Shampoo's and SOAP's structured second-moment  
estimation schemes. This perspective uncovers a previously unrecognized limitation of Shampoo,  
motivates an alternative estimation strategy to overcome it, enables a practical implementation of our  
approach, and extends naturally to tensor-valued estimation. Our empirical results demonstrate the  
effectiveness of our approach for improving Shampoo's and SOAP's estimation schemes.496  
497  
498  

## REFERENCES

499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling  
adaptive gradient methods from learning rates. *arXiv preprint arXiv:2002.11803*, 2020.  
doi:[10.48550/arxiv.2002.11803](https://doi.org/10.48550/arxiv.2002.11803).  
Shun-ichi Amari. *Information geometry and its applications*, volume 194. Springer, 2016. ISBN  
9784431559788. doi:[10.1007/978-4-431-55978-8](https://doi.org/10.1007/978-4-431-55978-8).  
Kang An, Yuxing Liu, Rui Pan, Yi Ren, Shiqian Ma, Donald Goldfarb, and Tong Zhang.  
ASGO: Adaptive structured gradient optimization. *arXiv preprint arXiv:2503.20762*, 2025.  
doi:[10.48550/arxiv.2503.20762](https://doi.org/10.48550/arxiv.2503.20762).  
Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable  
second order optimization for deep learning. *arXiv preprint arXiv:2002.09018*, 2020.  
doi:[10.48550/arxiv.2002.09018](https://doi.org/10.48550/arxiv.2002.09018).  
Rajendra Bhatia. *Positive definite matrices*. Princeton University Press, 2007. ISBN 9780691129181.  
URL <http://www.jstor.org/stable/j.ctt7rxv2>.  
Peng Bo. RWKV-7: Surpassing GPT. <https://github.com/BlinkDL/modded-nanogpt-rwkv>, 2024. Accessed: 2025-06.  
Nicolas Boumal, Bamdev Mishra, P.-A. Absil, and Rodolphe Sepulchre. Manopt, a matlab toolbox  
for optimization on manifolds. *Journal of Machine Learning Research*, 15(42):1455–1459, 2014.  
URL <http://jmlr.org/papers/v15/boumal14a.html>.  
Lev M Bregman. The relaxation method of finding the common point of convex sets and its application  
to the solution of problems in convex programming. *USSR computational mathematics and  
mathematical physics*, 7(3):200–217, 1967. ISSN 0041-5553. doi:[10.1016/0041-5553\(67\)90040-7](https://doi.org/10.1016/0041-5553(67)90040-7).  
Richard H Byrd and Jorge Nocedal. A tool for the analysis of quasi-Newton methods with application  
to unconstrained minimization. *SIAM Journal on Numerical Analysis*, 26(3):727–739, 1989.  
doi:[10.1137/0726042](https://doi.org/10.1137/0726042).  
George E Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,  
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, et al.  
Benchmarking neural network training algorithms. *arXiv preprint arXiv:2306.07179*, 2023.  
doi:[10.48550/arxiv.2306.07179](https://doi.org/10.48550/arxiv.2306.07179).  
Jan de Boer, Victor Godet, Jani Kastikainen, and Esko Keski-Vakkuri. Quantum information  
geometry of driven CFTs. *Journal of High Energy Physics*, 2023(9):1–89, 2023.  
doi:[10.1007/JHEP09\(2023\)087](https://doi.org/10.1007/JHEP09(2023)087).  
Inderjit S Dhillon and Joel A Tropp. Matrix nearness problems with Bregman divergences. *SIAM  
Journal on Matrix Analysis and Applications*, 29(4):1120–1146, 2008. doi:[10.1137/060649021](https://doi.org/10.1137/060649021).  
John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and  
stochastic optimization. *Journal of Machine Learning Research*, 12(61):2121–2159, 2011. URL  
<http://jmlr.org/papers/v12/duchilla.html>.  
Pierre Dutilleul. The MLE algorithm for the matrix normal distribution. *Journal of Statistical  
Computation and Simulation*, 64(2):105–123, 1999. doi:[10.1080/00949659908811970](https://doi.org/10.1080/00949659908811970).

540 Sai Surya Duvvuri, Fnu Devvrit, Rohan Anil, Cho-Jui Hsieh, and Inderjit S Dhillon. Combining axes  
 541 preconditioners through Kronecker approximation for deep learning. In *The Twelfth International*  
 542 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=8j9hz8DVi8>.

543

544 Runa Eschenhagen, Aaron Defazio, Tsung-Hsien Lee, Richard E Turner, and Hao-Jun Michael Shi.  
 545 Purifying Shampoo: Investigating Shampoo’s heuristics by decomposing its preconditioner. *arXiv*  
 546 *preprint arXiv:2506.03595*, 2025. doi:[10.48550/arxiv.2506.03595](https://doi.org/10.48550/arxiv.2506.03595).

547

548 Roger Fletcher. A new variational result for quasi-Newton formulae. *SIAM Journal on Optimization*,  
 549 1(1):18–21, 1991. doi:[10.1137/0801002](https://doi.org/10.1137/0801002).

550

551 Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast  
 552 approximate natural gradient descent in a kronecker factored eigenbasis. In S. Bengio,  
 553 H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Ad-*  
 554 *vances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,  
 555 2018. URL [https://proceedings.neurips.cc/paper\\_files/paper/2018/file/48000647b315f6f00f913caa757a70b3-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2018/file/48000647b315f6f00f913caa757a70b3-Paper.pdf).

556

557 Athanasios Glentis. A minimalist optimizer design for LLM pretraining. [https://github.com/OptimAI-Lab/Minimalist\\_LLM\\_Pretraining](https://github.com/OptimAI-Lab/Minimalist_LLM_Pretraining), 2025. Accessed: 2025-06.

558

559 Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor op-  
 560 timization. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International*  
 561 *Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*,  
 562 pp. 1842–1850. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/gupta18a.html>.

563

564 William James, Charles Stein, et al. Estimation with quadratic loss. In *Proceedings of the fourth*  
 565 *Berkeley symposium on mathematical statistics and probability*, volume 1, pp. 361–379. University  
 566 of California Press, 1961.

567

568 Keller Jordan. NanoGPT (124M) in 3 minutes. <https://github.com/KellerJordan/modded-nanogpt>, 2024. Accessed: 2025-06.

569

570 Takafumi Kanamori and Atsumi Ohara. A Bregman extension of quasi-Newton updates I: an  
 571 information geometrical framework. *Optimization Methods and Software*, 28(1):96–123, 2013a.  
 572 doi:[10.1080/10556788.2011.613073](https://doi.org/10.1080/10556788.2011.613073).

573

574 Takafumi Kanamori and Atsumi Ohara. A Bregman extension of quasi-Newton updates II: Analysis  
 575 of robustness properties. *Journal of computational and applied mathematics*, 253:104–122, 2013b.  
 576 doi:[10.1016/j.cam.2013.04.005](https://doi.org/10.1016/j.cam.2013.04.005).

577

578 Priya Kasimbeg, Frank Schneider, Runa Eschenhagen, Juhan Bae, Chandramouli Shama Sastry,  
 579 Mark Saroufim, Boyuan Fend, Less Wright, Edward Z Yang, Zachary Nado, et al. Accelerating  
 580 neural network training: An analysis of the AlgoPerf competition. In *The Thirteenth International*  
 581 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=CtM5xjRSfm>.

582

583 Mohammad Khan and Wu Lin. Conjugate-computation variational inference: Converting variational  
 584 inference in non-conjugate models to inferences in conjugate models. In Aarti Singh and Jerry Zhu  
 585 (eds.), *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*,  
 586 volume 54 of *Proceedings of Machine Learning Research*, pp. 878–887. PMLR, 20–22 Apr 2017.  
 587 URL <https://proceedings.mlr.press/v54/khan17a.html>.

588

589 Mohammad Emtiyaz Khan, Reza Babanezhad, Wu Lin, Mark Schmidt, and Masashi Sugiyama. Faster  
 590 stochastic variational inference using proximal-gradient methods with general divergence functions.  
 591 In *Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence*, pp.  
 592 319–328. AUAI Press, 2016. URL <https://www.auai.org/uai2016/proceedings/papers/218.pdf>.

593

594 Jyrki Kivinen and Manfred K. Warmuth. Boosting as entropy projection. In *Proceedings of the*  
 595 *Twelfth Annual Conference on Computational Learning Theory*, pp. 134–144, New York, NY, USA,  
 596 1999. Association for Computing Machinery. ISBN 1581131674. doi:[10.1145/307400.307424](https://doi.org/10.1145/307400.307424).

594 Brian Kulis, Mátyás A Sustik, and Inderjit S Dhillon. Low-rank kernel learning with Bregman matrix  
 595 divergences. *Journal of Machine Learning Research*, 10(2), 2009.

596

597 Frederik Kunstner, Raunak Kumar, and Mark Schmidt. Homeomorphic-invariance of EM: Non-  
 598 asymptotic convergence in KL divergence for exponential families via mirror descent. In Arindam  
 599 Banerjee and Kenji Fukumizu (eds.), *Proceedings of The 24th International Conference on Artifi-  
 600 cial Intelligence and Statistics*, volume 130 of *Proceedings of Machine Learning Research*, pp.  
 601 3295–3303. PMLR, 13–15 Apr 2021. URL <https://proceedings.mlr.press/v130/kunstner21a.html>.

602

603 Wu Lin, Mohammad Emtiyaz Khan, and Mark Schmidt. Fast and simple natural-gradient variational  
 604 inference with mixture of exponential-family approximations. In *International Conference on Ma-  
 605 chine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 3992–4002. PMLR,  
 606 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/lin19b.html>.

607

608 Wu Lin, Valentin Duruisseaux, Melvin Leok, Frank Nielsen, Mohammad Emtiyaz Khan, and  
 609 Mark Schmidt. Simplifying momentum-based positive-definite submanifold optimization with  
 610 applications to deep learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara  
 611 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International  
 612 Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp.  
 613 21026–21050. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/lin23c.html>.

614

615 Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard E Turner, and Alireza Makhzani. Can  
 616 we remove the square-root in adaptive gradient methods? A second-order perspective. In Ruslan  
 617 Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and  
 618 Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*,  
 619 volume 235 of *Proceedings of Machine Learning Research*, pp. 29949–29973. PMLR, 21–27 Jul  
 620 2024. URL <https://proceedings.mlr.press/v235/lin24e.html>.

621

622 Karl Löwner. Über monotone matrixfunktionen. *Mathematische Zeitschrift*, 38(1):177–216, 1934.  
 623 doi:[10.1007/BF01170633](https://doi.org/10.1007/BF01170633).

624

625 Hà Quang Minh and Vittorio Murino. Covariances in computer vision and machine learning. *Synthesis  
 626 Lectures on Computer Vision*, 7(4):1–170, 2017. ISSN 2153-1056. doi:[10.1007/978-3-031-01820-6](https://doi.org/10.1007/978-3-031-01820-6).

627

628 Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham M Kakade, and Lucas Janson. A new  
 629 perspective on Shampoo’s preconditioner. In *The Thirteenth International Conference on Learning  
 630 Representations*, 2025. URL <https://openreview.net/forum?id=c6zI3Cp8c6>.

631

632 Yurii Nesterov et al. *Lectures on convex optimization*, volume 137. Springer Cham, 2018. ISBN  
 9783319915784. doi:[10.1007/978-3-319-91578-4](https://doi.org/10.1007/978-3-319-91578-4).

633

634 Michael A Nielsen and Isaac L Chuang. *Quantum computation and quantum information*. Cambridge  
 635 university press, 2010.

636

637 Jorge Nocedal and Stephen J Wright. *Numerical optimization*. Springer, 2006. ISBN 978-0-387-  
 40065-5. doi:[10.1007/978-0-387-40065-5](https://doi.org/10.1007/978-0-387-40065-5).

638

639 Neal Parikh and Stephen Boyd. Proximal algorithms. *Foundations and trends in Optimization*, 1(3):  
 640 127–239, 2014. doi:[10.1561/2400000003](https://doi.org/10.1561/2400000003).

641

642 Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for tensor com-  
 643 puting. *International Journal of Computer Vision*, 66(1):41–66, Jan 2006. ISSN 1573-1405.  
 644 doi:[10.1007/s11263-005-3222-z](https://doi.org/10.1007/s11263-005-3222-z).

645

646 Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.  
 647 In *Proceedings of the 35th International Conference on Machine Learning*, pp. 4596–4604. PMLR,  
 2018. URL <https://proceedings.mlr.press/v80/shazeer18a.html>.

648 Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li, Kaushik  
 649 Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel PyTorch  
 650 implementation of the distributed Shampoo optimizer for training neural networks at-scale. *arXiv*  
 651 preprint [arXiv:2309.06497](https://arxiv.org/abs/2309.06497), 2023. doi:[10.48550/arxiv.2309.06497](https://doi.org/10.48550/arxiv.2309.06497).

652 Suvrit Sra. Positive definite matrices and the s-divergence. *Proceedings of the American Mathematical  
 653 Society*, 144(7):2787–2797, 2016.

654 Tijmen Tieleman and Geoffrey Hinton. RMSProp: Divide the gradient by a running average of its  
 655 recent magnitude. *Coursera*, 2012.

656 Koji Tsuda, Gunnar Rätsch, and Manfred K Warmuth. Matrix exponentiated gradient updates for  
 657 on-line learning and Bregman projection. *Journal of Machine Learning Research*, 6(34):995–1018,  
 658 2005. URL <https://jmlr.org/papers/v6/tsuda05a.html>.

659 C. F. Van Loan and N. Pitsianis. *Approximation with Kronecker Products*, pp. 293–314. Springer  
 660 Netherlands, Dordrecht, 1993. ISBN 978-94-015-8196-7. doi:[10.1007/978-94-015-8196-7\\_17](https://doi.org/10.1007/978-94-015-8196-7_17).

661 Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,  
 662 and Sham M Kakade. SOAP: Improving and stabilizing Shampoo using Adam for language  
 663 modeling. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL  
 664 <https://openreview.net/forum?id=IDxZhXrpNf>.

665 Nikhil Vyas, Rosie Zhao, Depen Morwani, Mujin Kwun, and Sham Kakade. Improving SOAP using  
 666 iterative whitening and Muon. [https://nikhilvyas.github.io/SOAP\\_Muon.pdf](https://nikhilvyas.github.io/SOAP_Muon.pdf),  
 667 2025b.

668 Steven H Waldrip and Robert K Niven. Maximum entropy derivation of quasi-Newton methods.  
 669 *SIAM Journal on Optimization*, 26(4):2495–2511, 2016. doi:[10.1137/15M1027668](https://doi.org/10.1137/15M1027668).

670 Cameron R. Wolfe. An extension of the NanoGPT repository for training small MOE models.  
 671 <https://github.com/wolfecameron/nanoMoE>, 2025. Accessed: 2025-06.

672 Shuo Xie, Tianhao Wang, Sashank J Reddi, Sanjiv Kumar, and Zhiyuan Li. Structured preconditioners  
 673 in adaptive optimization: A unified analysis. In *Forty-second International Conference on Machine  
 674 Learning*, 2025. URL <https://openreview.net/forum?id=GzS6b5Xvvu>.

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

|     |                                                                            |           |
|-----|----------------------------------------------------------------------------|-----------|
| 702 | APPENDIX                                                                   |           |
| 703 |                                                                            |           |
| 704 |                                                                            |           |
| 705 | <b>A Proof of Claim 1</b>                                                  | <b>15</b> |
| 706 |                                                                            |           |
| 707 | <b>B Proof of Claim 2</b>                                                  | <b>15</b> |
| 708 |                                                                            |           |
| 709 | <b>C Proof of Claim 3</b>                                                  | <b>16</b> |
| 710 |                                                                            |           |
| 711 | <b>D Proof of Claim 4</b>                                                  | <b>18</b> |
| 712 |                                                                            |           |
| 713 | <b>E Proof of Claim 5</b>                                                  | <b>19</b> |
| 714 |                                                                            |           |
| 715 | <b>F Key Distinction between Shampoo with trace scaling and KL-Shampoo</b> | <b>20</b> |
| 716 |                                                                            |           |
| 717 |                                                                            |           |
| 718 | <b>G Two-sided Shampoo Scheme based on Frobenius norm</b>                  | <b>22</b> |
| 719 |                                                                            |           |
| 720 | <b>H Additional Experiments</b>                                            | <b>24</b> |
| 721 |                                                                            |           |
| 722 |                                                                            |           |
| 723 |                                                                            |           |
| 724 |                                                                            |           |
| 725 |                                                                            |           |
| 726 |                                                                            |           |
| 727 |                                                                            |           |
| 728 |                                                                            |           |
| 729 |                                                                            |           |
| 730 |                                                                            |           |
| 731 |                                                                            |           |
| 732 |                                                                            |           |
| 733 |                                                                            |           |
| 734 |                                                                            |           |
| 735 |                                                                            |           |
| 736 |                                                                            |           |
| 737 |                                                                            |           |
| 738 |                                                                            |           |
| 739 |                                                                            |           |
| 740 |                                                                            |           |
| 741 |                                                                            |           |
| 742 |                                                                            |           |
| 743 |                                                                            |           |
| 744 |                                                                            |           |
| 745 |                                                                            |           |
| 746 |                                                                            |           |
| 747 |                                                                            |           |
| 748 |                                                                            |           |
| 749 |                                                                            |           |
| 750 |                                                                            |           |
| 751 |                                                                            |           |
| 752 |                                                                            |           |
| 753 |                                                                            |           |
| 754 |                                                                            |           |
| 755 |                                                                            |           |

756 A PROOF OF CLAIM 1  
757

758 We will show that the optimal solution of KL minimization  $\min_{\mathbf{S}_a} \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S})$  with a one-sided  
759 preconditioner  $\mathbf{S} = (1/d_b \mathbf{S}_a) \otimes \mathbf{I}_b$  is  $\mathbf{S}_a^* = \mathbb{E}[\mathbf{G}\mathbf{G}^\top]$ .  
760

761 By definition in Eq. (3) and substituting  $\mathbf{S} = (1/d_b \mathbf{S}_a) \otimes \mathbf{I}_b$ , we can simplify the objective function as  
762

$$\begin{aligned}
 \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}) &= \frac{1}{2} (\log \det(\mathbf{S}) + \text{Tr}(\mathbf{S}^{-1} \mathbb{E}[\mathbf{g}\mathbf{g}^\top])) + \text{const.} \\
 &= \frac{1}{2} \left( d_b \log \det\left(\frac{1}{d_b} \mathbf{S}_a\right) + \text{Tr}(\mathbf{S}^{-1} \mathbb{E}[\mathbf{g}\mathbf{g}^\top]) \right) + \text{const.} \quad (\text{Kronecker identity for matrix det.}) \\
 &= \frac{1}{2} (d_b \log \det(\mathbf{S}_a) + \text{Tr}(\mathbf{S}^{-1} \mathbb{E}[\mathbf{g}\mathbf{g}^\top])) + \text{const.} \quad (\text{identity for a log-determinant}) \\
 &= \frac{1}{2} (d_b \log \det(\mathbf{S}_a) + \mathbb{E}[\text{Tr}(\mathbf{S}^{-1} \mathbf{g}\mathbf{g}^\top)]) + \text{const.} \quad (\text{linearity of the expectation}) \\
 &= \frac{1}{2} (d_b \log \det(\mathbf{S}_a) + \mathbb{E}[\text{Tr}(d_b \mathbf{S}_a^{-1} \mathbf{G} \mathbf{I}_b \mathbf{G}^\top)]) + \text{const.} \quad (\text{identity for a Kronecker vector product}) \\
 &= \frac{d_b}{2} (\log \det(\mathbf{S}_a) + \mathbb{E}[\text{Tr}(\mathbf{S}_a^{-1} \mathbf{G}\mathbf{G}^\top)]) + \text{const.} \\
 &= \frac{d_b}{2} (-\log \det(\mathbf{P}_a) + \mathbb{E}[\text{Tr}(\mathbf{P}_a \mathbf{G}\mathbf{G}^\top)]) + \text{const.}, \tag{8}
 \end{aligned}$$

778 where  $\mathbf{G} = \text{Mat}(\mathbf{g})$  and  $\mathbf{P}_a := \mathbf{S}_a^{-1}$ .  
779

780 If we achieve the optimal solution, the gradient stationary condition must be satisfied regardless of  
781 the gradient with respect to  $\mathbf{S}_a$  or  $\mathbf{S}_a^{-1} \equiv \mathbf{P}_a$ , such as  
782

$$\begin{aligned}
 \mathbf{0} &= \partial_{\mathbf{S}_a^{-1}} \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}) \\
 &= \partial_{\mathbf{P}_a} \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}) \\
 &= \frac{d_b}{2} (-\mathbf{P}_a^{-1} + \mathbb{E}[\mathbf{G}\mathbf{G}^\top]) \quad (\text{use Eq. (8) and matrix calculus identities}) \\
 &= \frac{d_b}{2} (-\mathbf{S}_a + \mathbb{E}[\mathbf{G}\mathbf{G}^\top]). \tag{8}
 \end{aligned}$$

789 Notice that the KL divergence is unbounded above. Thus, the optimal (minimal) solution exists. It  
790 must be  $\mathbf{S}_a^* = \mathbb{E}[\mathbf{G}\mathbf{G}^\top]$  to satisfy this stationary condition.  
791

792 B PROOF OF CLAIM 2  
793

794 We will show that the optimal solution of KL minimization  $\min_{\mathbf{S}_a, \mathbf{S}_b} \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S})$  with a two-sided  
795 preconditioner  $\mathbf{S} = \mathbf{S}_a \otimes \mathbf{S}_b$  should satisfy this condition:  $\mathbf{S}_a^* = \frac{1}{d_b} \mathbb{E}[\mathbf{G}(\mathbf{S}_b^*)^{-1} \mathbf{G}^\top]$  and  
796  $\mathbf{S}_b^* = \frac{1}{d_a} \mathbb{E}[\mathbf{G}^\top (\mathbf{S}_a^*)^{-1} \mathbf{G}]$ .  
797

798 Similar to the proof of Claim 1 in Sec. A, we can simplify the objective function as  
799

$$\begin{aligned}
 \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}) &= \frac{1}{2} (\log \det(\mathbf{S}) + \mathbb{E}[\text{Tr}(\mathbf{S}^{-1} \mathbf{g}\mathbf{g}^\top)]) + \text{const.} \\
 &= \frac{1}{2} (d_b \log \det(\mathbf{S}_a) + d_a \log \det(\mathbf{S}_b) + \mathbb{E}[\text{Tr}(\mathbf{S}^{-1} \mathbf{g}\mathbf{g}^\top)]) + \text{const.} \quad (\text{identity for a log-determinant}) \\
 &= \frac{1}{2} (d_b \log \det(\mathbf{S}_a) + d_a \log \det(\mathbf{S}_b) + \mathbb{E}[\text{Tr}(\mathbf{S}_a^{-1} \mathbf{G} \mathbf{S}_b^{-1} \mathbf{G}^\top)]) + \text{const.} \quad (\text{identity for a Kronecker-vector-product}) \\
 &= \frac{1}{2} (-d_b \log \det(\mathbf{P}_a) - d_a \log \det(\mathbf{P}_b) + \mathbb{E}[\text{Tr}(\mathbf{P}_a \mathbf{G} \mathbf{P}_b \mathbf{G}^\top)]) + \text{const.}, \tag{9}
 \end{aligned}$$

800 where  $\mathbf{P}_k := \mathbf{S}_k^{-1}$  for  $k \in \{a, b\}$ .  
801

The optimal solution must satisfy the gradient stationarity condition with respect to  $\{\mathbf{S}_a, \mathbf{S}_b\}$ . Notice that the gradient with respect to  $\{\mathbf{S}_a^{-1}, \mathbf{S}_b^{-1}\}$  can be expressed in terms of the gradient with respect to  $\{\mathbf{S}_a, \mathbf{S}_b\}$  as  $\partial_{\mathbf{S}_a^{-1}} \text{KL} = -\mathbf{S}_a (\partial_{\mathbf{S}_a} \text{KL}) \mathbf{S}_a$  and  $\partial_{\mathbf{S}_b^{-1}} \text{KL} = -\mathbf{S}_b (\partial_{\mathbf{S}_b} \text{KL}) \mathbf{S}_b$ . Thus, the optimal solution must satisfy the following gradient stationary condition with respect to  $\{\mathbf{S}_a^{-1}, \mathbf{S}_b^{-1}\}$ :

$$0 = \partial_{\mathbf{S}_a^{-1}} \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}), \quad 0 = \partial_{\mathbf{S}_b^{-1}} \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}).$$

Using Eq. (9) and simplifying the left expression

$$\begin{aligned} 0 &= \partial_{\mathbf{S}_a^{-1}} \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}) \\ &= \partial_{\mathbf{P}_a} \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}) \\ &= \frac{1}{2} (-d_b \mathbf{P}_a^{-1} + \mathbb{E}[\mathbf{G}\mathbf{P}_b\mathbf{G}^\top]) \end{aligned} \quad (10)$$

gives us this equation

$$0 = \frac{1}{2} (-d_b \mathbf{S}_a^* + \mathbb{E}[\mathbf{G}(\mathbf{S}_b^*)^{-1} \mathbf{G}^\top])$$

that the optimal solution must satisfy.

This naturally leads to the following expression:

$$\mathbf{S}_a^* = \frac{1}{d_b} \mathbb{E}[\mathbf{G}(\mathbf{S}_b^*)^{-1} \mathbf{G}^\top].$$

Likewise, we can obtain the following expression by simplifying the right expression of the gradient stationary condition.

$$\mathbf{S}_b^* = \frac{1}{d_a} \mathbb{E}[\mathbf{G}^\top (\mathbf{S}_a^*)^{-1} \mathbf{G}].$$

## C PROOF OF CLAIM 3

To simplify the notation, we define  $\mathbf{H} := \mathbb{E}[\mathbf{g}\mathbf{g}^\top]$ , and re-express the objective function in the KL minimization problem as  $\mathcal{L}(\mathbf{S}) := \text{KL}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}) = \text{KL}(\mathbf{H}, \mathbf{S})$ . We now introduce the proximal-gradient framework (Parikh & Boyd, 2014; Khan et al., 2016) to formally state and prove Claim 3. We assume that an estimated  $\mathbf{S}^{(t)}$  is given at iteration  $t$ . We use a non-negative function,  $f(\mathbf{S}^{(t)}, \mathbf{S}^{(t+1)})$ , to measure the closeness between the current and the next iteration. Function  $f(\cdot, \cdot)$  is known as a proximal function. A (unconstrained) proximal-gradient step at iteration  $t+1$  with a given proximal function,  $f(\cdot, \cdot)$ , is defined as the optimal solution of another minimization problem,

$$\mathbf{S}^{(t+1)} := \arg \min_{\mathbf{X}} \langle \nabla_{\mathbf{S}} \mathcal{L} \big|_{\mathbf{S}=\mathbf{S}^{(t)}}, \mathbf{X} \rangle + \frac{1}{\beta_2} f(\mathbf{S}^{(t)}, \mathbf{X}),$$

at every iteration with step-size  $\beta_2$  based on the linearization of the objective function  $\mathcal{L}$ .

We consider a weighted quadratic function as the proximal function.

$$f(\mathbf{S}^{(t)}, \mathbf{X}) := \frac{1}{2} \|\mathbf{X} - \mathbf{S}^{(t)}\|_{\mathbf{W}}^2 = \frac{1}{2} \text{vec}(\mathbf{X} - \mathbf{S}^{(t)})^\top \mathbf{W} \text{vec}(\mathbf{X} - \mathbf{S}^{(t)})$$

where  $\mathbf{W}$  is a given weight matrix. For example,  $\mathbf{W}$  is the Hessian of the KL divergence  $\mathbf{W} := \nabla_{\text{vec}(\mathbf{Y})}^2 \text{KL}(\mathbf{S}^{(t)}, \mathbf{Y}) \big|_{\mathbf{Y}=\mathbf{S}^{(t)}} = \frac{-1}{2} \left( \frac{\partial \text{vec}(\mathbf{S}^{-1})}{\partial \text{vec}(\mathbf{S})} \right) \big|_{\mathbf{S}=\mathbf{S}^{(t)}}$ . This matrix is also known as the Fisher-Rao Riemannian metric for a zero-mean Gaussian (Amari, 2016). Note that this proximal function has been used in the quasi-Newton literature (Nocedal & Wright, 2006). Indeed, we can show that this proximal function is exactly a second-order Taylor approximation of the KL divergence,  $\text{KL}(\mathbf{S}^{(t)}, \mathbf{X})$ , at  $\mathbf{X} = \mathbf{S}^{(t)}$ .

When  $\mathbf{S} = \mathbf{S}_a \otimes \mathbf{S}_b$  admits a Kronecker product, we can specify this weight matrix  $\mathbf{W}$  so that this proximal function can be separated into two terms:

$$\begin{aligned} \frac{1}{2} \|\mathbf{X}_a \otimes \mathbf{X}_b - \mathbf{S}^{(t)}\|_{\mathbf{W}}^2 &= \frac{1}{2} \|\mathbf{X}_a \otimes \mathbf{X}_b - \mathbf{S}_a^{(t)} \otimes \mathbf{S}_b^{(t)}\|_{\mathbf{W}}^2 \\ &= \frac{1}{2} \|\mathbf{X}_a - \mathbf{S}_a^{(t)}\|_{\mathbf{W}_a}^2 + \frac{1}{2} \|\mathbf{X}_b - \mathbf{S}_b^{(t)}\|_{\mathbf{W}_b}^2 \end{aligned}$$

864 Here, we define the weight matrix as the block-diagonal Hessian of the KL divergence, such as  
 865  $\mathbf{W} := \begin{bmatrix} \mathbf{W}_a & \mathbf{0} \\ \mathbf{0} & \mathbf{W}_b \end{bmatrix}$  by setting the cross-block terms highlighted in red to zero, where  $\mathbf{W}_k :=$   
 866  $\partial_{\text{vec}(\mathbf{Y}_k)}^2 \text{KL}(\mathbf{S}^{(t)}, \mathbf{Y}_a \otimes \mathbf{Y}_b) \Big|_{\mathbf{Y}=\mathbf{S}_a^{(t)} \otimes \mathbf{S}_b^{(t)}}$  for  $k \in \{a, b\}$ . We can show that this weight matrix is  
 867 exactly the block-diagonal approximation of the Fisher-Rao matrix for a zero-mean matrix Gaussian  
 868 considered by Lin et al. (2019; 2024).  
 869

870 Now, we can formally state the claim and provide proof of it.

871 **Claim 3. (formal version)** The moving average scheme for  $\mathbf{S} := \mathbf{S}_a \otimes \mathbf{S}_b$  in idealized KL-Shampoo  
 872 is a proximal-gradient step at iteration  $t + 1$ ,  
 873

$$876 \mathbf{S}_a^{(t+1)}, \mathbf{S}_b^{(t+1)} := \arg \min_{\text{vec}(\mathbf{X}_a), \text{vec}(\mathbf{X}_b)} \langle \nabla_{\mathbf{S}_a} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}, \mathbf{X}_a \rangle + \langle \nabla_{\mathbf{S}_b} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}, \mathbf{X}_b \rangle + \frac{1}{2\beta_2} \|\mathbf{X}_a \otimes \mathbf{X}_b - \mathbf{S}^{(t)}\|_{\mathbf{W}}^2, \\ 877 \iff \mathbf{S}_a^{(t+1)} = (1 - \beta_2) \mathbf{S}_a^{(t)} + \beta_2 \mathbb{E}[\mathbf{G}(\mathbf{S}_b^{(t)})^{-1} \mathbf{G}^\top], \quad \mathbf{S}_b^{(t+1)} = (1 - \beta_2) \mathbf{S}_b^{(t)} + \beta_2 \mathbb{E}[\mathbf{G}^\top (\mathbf{S}_a^{(t)})^{-1} \mathbf{G}]$$

880  
 881 with step-size  $\beta_2$  to solve the KL minimization problem in Eq. (3), if we use a proximal function  
 882 using the weight matrix,  $\mathbf{W}$ , defined above.  
 883

884 In mini-batch cases, we approximate the expectations using a current batch gradient (Morwani et al.,  
 885 2025) (see Eq. (5)), which leads to a stochastic proximal-gradient step.  
 886  
 887  
 888  
 889

890 *Proof.* Because the weight matrix  $\mathbf{W}$  is block-diagonal, we can slice this objective function for the  
 891 proximal step into two terms.  
 892

$$893 \\ 894 \langle \nabla_{\mathbf{S}_a} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}, \mathbf{X}_a \rangle + \langle \nabla_{\mathbf{S}_b} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}, \mathbf{X}_b \rangle + \frac{1}{2\beta_2} \|\mathbf{X}_a \otimes \mathbf{X}_b - \mathbf{S}^{(t)}\|_{\mathbf{W}}^2 \\ 895 = \underbrace{\langle \nabla_{\mathbf{S}_a} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}, \mathbf{X}_a \rangle + \frac{1}{2\beta_2} \|\mathbf{X}_a - \mathbf{S}_a^{(t)}\|_{\mathbf{W}_a}^2}_{(\text{block } \mathbf{X}_a)} + \underbrace{\langle \nabla_{\mathbf{S}_b} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}, \mathbf{X}_b \rangle + \frac{1}{2\beta_2} \|\mathbf{X}_b - \mathbf{S}_b^{(t)}\|_{\mathbf{W}_b}^2}_{(\text{block } \mathbf{X}_b)}$$

900  
 901 Importantly,  $\mathbf{W}_a$  and  $\mathbf{W}_b$  are independent of  $\mathbf{X}_a$  and  $\mathbf{X}_b$ . Thus, we solve this objective by indepen-  
 902 dently for each  $\mathbf{X}_k$  for  $k \in \{a, b\}$ .  
 903

904 We now show that solving this proximal problem gives rise to the estimation rule for  $\mathbf{S}_a^{(t+1)}$  at iteration  
 905  $t + 1$ . We focus on the first term since the second term does not depend on  $\mathbf{X}_a$ . We can show that  $\mathbf{W}_a$   
 906 can be expressed as  $\mathbf{W}_a = \partial_{\text{vec}(\mathbf{Y}_a)}^2 \text{KL}(\mathbf{S}^{(t)}, \mathbf{Y}_a \otimes \mathbf{Y}_b) \Big|_{\mathbf{Y}=\mathbf{S}_a^{(t)} \otimes \mathbf{S}_b^{(t)}} = -\frac{d_b}{2} \left( \frac{\partial \text{vec}(\mathbf{S}_a^{-1})}{\partial \text{vec}(\mathbf{S}_a)} \right) \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}$ .  
 907 This matrix  $\mathbf{W}_a$  is also considered in Lin et al. (2024). Importantly,  $\mathbf{W}_a$  is invertible and  $\mathbf{W}_a^{-1} =$   
 908  $\frac{-2}{d_b} \left( \frac{\partial \text{vec}(\mathbf{S}_a)}{\partial \text{vec}(\mathbf{S}_a^{-1})} \right) \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}$ . With this result, the optimal solution of  $\mathbf{X}_a$  must satisfy the following  
 909 stationarity condition, where  $\|\mathbf{X}_a - \mathbf{S}_a^{(t)}\|_{\mathbf{W}_a}^2 := \text{vec}(\mathbf{X}_a - \mathbf{S}_a^{(t)})^\top \mathbf{W}_a \text{vec}(\mathbf{X}_a - \mathbf{S}_a^{(t)})$ .  
 910

$$911 \\ 912 \\ 913 0 = \partial_{\text{vec}(\mathbf{X}_a)} (\langle \nabla_{\mathbf{S}_a} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}, \mathbf{X}_a \rangle + \frac{1}{2\beta_2} \|\mathbf{X}_a - \mathbf{S}_a^{(t)}\|_{\mathbf{W}_a}^2) \\ 914 = \nabla_{\text{vec}(\mathbf{S}_a)} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}} + \frac{1}{\beta_2} \mathbf{W}_a \text{vec}(\mathbf{X}_a - \mathbf{S}_a^{(t)}) \quad (\text{note: } \langle \nabla_{\mathbf{S}_a} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}, \mathbf{X}_a \rangle := (\nabla_{\text{vec}(\mathbf{S}_a)} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}})^\top \text{vec}(\mathbf{X}_a)) \\ 915 \\ 916 \iff \text{vec}(\mathbf{X}_a) = \text{vec}(\mathbf{S}_a^{(t)}) - \beta_2 \mathbf{W}_a^{-1} \nabla_{\text{vec}(\mathbf{S}_a)} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}$$

918 It is easy to see that the optimal solution of the proximal step is  
 919  
 920  
 921

$$\begin{aligned}
 \text{vec}(\mathbf{S}_a^{(t+1)}) &:= \text{vec}(\mathbf{X}_a^*) = \text{vec}(\mathbf{S}_a^{(t)}) - \beta_2 \mathbf{W}_a^{-1} \nabla_{\text{vec}(\mathbf{S}_a)} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}} \\
 &= \text{vec}(\mathbf{S}_a^{(t)}) - \beta_2 \underbrace{\left( \frac{-2}{d_b} \frac{\partial \text{vec}(\mathbf{S}_a)}{\partial \text{vec}(\mathbf{S}_a^{-1})} \Big|_{\mathbf{S}=\mathbf{S}_a^{(t)}} \right)}_{=\mathbf{W}_a^{-1}} \nabla_{\text{vec}(\mathbf{S}_a)} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}} \\
 &= \text{vec}(\mathbf{S}_a^{(t)}) + \frac{2\beta_2}{d_b} \nabla_{\text{vec}(\mathbf{S}_a^{-1})} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}} \text{ (use the chain rule and utilize the Jacobian matrix contained in } \mathbf{W}_a^{-1} \text{ )} \\
 &= \text{vec}(\mathbf{S}_a^{(t)}) + \frac{2\beta_2}{d_b} \underbrace{\text{vec}\left(\left(\frac{1}{2}(-d_b \mathbf{S}_a^{(t)} + \mathbb{E}[\mathbf{G}(\mathbf{S}_b^{(t)})^{-1} \mathbf{G}^\top])\right)}_{=\nabla_{\mathbf{S}_a^{-1}} \mathcal{L} \Big|_{\mathbf{S}=\mathbf{S}^{(t)}}} \text{ (recall the definition of } \mathcal{L} \text{ and use Eq. (10))} \\
 &= (1 - \beta_2) \text{vec}(\mathbf{S}_a^{(t)}) + \frac{\beta_2}{d_b} \text{vec}(\mathbb{E}[\mathbf{G}(\mathbf{S}_b^{(t)})^{-1} \mathbf{G}^\top]),
 \end{aligned}$$

932  
 933  
 934  
 935  
 936  
 937  
 938 which is equivalent to the moving average scheme in Eq. (5) for updating  $\mathbf{S}_a$  at iteration  $t + 1$ .  
 939

940 Likewise, we can obtain the moving average scheme for  $\mathbf{S}_b$ .  $\square$   
 941  
 942  
 943  
 944

## D PROOF OF CLAIM 4

945  
 946  
 947  
 948 We will show that the optimal solution of KL minimization  $\min_{\lambda_a, \lambda_b} \text{KL}(\mathbb{E}[gg^\top], \mathbf{S})$  with a  
 949 two-sided preconditioner  $\mathbf{S} = (\mathbf{Q}_a \text{Diag}(\lambda_a) \mathbf{Q}_a^\top) \otimes (\mathbf{Q}_b \text{Diag}(\lambda_b) \mathbf{Q}_b^\top)$  should satisfy this con-  
 950 dition:  $\lambda_a^* = \frac{1}{d_b} \text{diag}(\mathbf{Q}_a^\top \mathbb{E}[\mathbf{G} \mathbf{P}_b^* \mathbf{G}^\top] \mathbf{Q}_a)$  and  $\lambda_b^* = \frac{1}{d_a} \text{diag}(\mathbf{Q}_b^\top \mathbb{E}[\mathbf{G}^\top \mathbf{P}_a^* \mathbf{G}] \mathbf{Q}_b)$ , where  $\mathbf{P}_k^* :=$   
 951  $\mathbf{Q}_k \text{Diag}((\lambda_k^*)^{\odot-1}) \mathbf{Q}_k^\top$ , and  $\mathbf{Q}_k$  is known and precomputed by QR for  $k \in \{a, b\}$ .  
 952

953 Let  $\mathbf{S}_k := \mathbf{Q}_k \text{Diag}(\lambda_k) \mathbf{Q}_k^\top$  for  $k \in \{a, b\}$ . Because  $\mathbf{Q}_k$  is orthogonal, it is easy to see that  
 954  $\mathbf{S}_k^{-1} := \mathbf{Q}_k \text{Diag}((\lambda_k)^{\odot-1}) \mathbf{Q}_k^\top$ .  
 955

956 Similar to the proof of Claim 2 in Sec. B, we can simplify the following objective function by  
 957 substituting  $\mathbf{S}_a$  and  $\mathbf{S}_b$ . Here, we also utilize the orthogonality of  $\mathbf{Q}_k$  for  $k \in \{a, b\}$ .  
 958  
 959  
 960

$$\text{KL}(\mathbb{E}[gg^\top], \mathbf{S})$$

$$\begin{aligned}
 &= \frac{1}{2} (d_b \log \det(\mathbf{S}_a) + d_a \log \det(\mathbf{S}_b) + \mathbb{E}[\text{Tr}(\mathbf{S}_a^{-1} \mathbf{G} \mathbf{S}_b^{-1} \mathbf{G}^\top)]) + \text{const.} \\
 &= \frac{1}{2} (d_b \log \det(\mathbf{Q}_a \text{Diag}(\lambda_a) \mathbf{Q}_a^\top) + d_a \log \det(\mathbf{Q}_b \text{Diag}(\lambda_b) \mathbf{Q}_b^\top) + \mathbb{E}[\text{Tr}(\mathbf{S}_a^{-1} \mathbf{G} \mathbf{S}_b^{-1} \mathbf{G}^\top)]) + \text{const.} \\
 &= \frac{1}{2} \left( (d_b \sum_i \log(\lambda_a^{(i)})) + (d_a \sum_j \log(\lambda_b^{(j)})) + \mathbb{E}[\text{Tr}(\mathbf{S}_a^{-1} \mathbf{G} \mathbf{S}_b^{-1} \mathbf{G}^\top)] \right) + \text{const.} \text{ (use the orthogonality of } \mathbf{Q}_a \text{ and } \mathbf{Q}_b \text{ )} \\
 &= \frac{1}{2} \left( (d_b \sum_i \log(\lambda_a^{(i)})) + (d_a \sum_j \log(\lambda_b^{(j)})) + \mathbb{E}[\text{Tr}(\underbrace{\mathbf{Q}_a \text{Diag}(\lambda_a^{\odot-1}) \mathbf{Q}_a^\top}_{=\mathbf{S}_a^{-1}} \mathbf{G} \underbrace{\mathbf{Q}_b \text{Diag}(\lambda_b^{\odot-1}) \mathbf{Q}_b^\top}_{=\mathbf{S}_b^{-1}} \mathbf{G}^\top)] \right) + \text{const.} \tag{11}
 \end{aligned}$$

972 The optimal  $\lambda_a$  and  $\lambda_b$  should satisfy the gradient stationary condition.  
 973

$$\begin{aligned}
 974 \quad 0 &= \partial_{\lambda_a} \text{KL}(\mathbb{E}[gg^\top], S) \\
 975 \\
 976 \quad &= \frac{1}{2} \left( d_b \lambda_a^{\odot-1} + \partial_{\lambda_a} \mathbb{E}[\text{Tr}(\mathbf{Q}_a \text{Diag}(\lambda_a^{\odot-1}) \mathbf{Q}_a^\top \mathbf{G} \overbrace{\mathbf{Q}_b \text{Diag}(\lambda_b^{\odot-1}) \mathbf{Q}_b^\top \mathbf{G}^\top}^{=P_b}]) \right) \text{ (use Eq. (11))} \\
 977 \\
 978 \quad &= \frac{1}{2} \left( d_b \lambda_a^{\odot-1} + \partial_{\lambda_a} \mathbb{E}[\text{Tr}(\text{Diag}(\lambda_a^{\odot-1}) \mathbf{Q}_a^\top \mathbf{G} \mathbf{P}_b \mathbf{G}^\top \mathbf{Q}_a)] \right) \\
 979 \\
 980 \quad &= \frac{1}{2} \left( d_b \lambda_a^{\odot-1} + \partial_{\lambda_a} \mathbb{E}[\lambda_a^{\odot-1} \odot \text{diag}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{P}_b \mathbf{G}^\top \mathbf{Q}_a)] \right) \text{ (utilize the trace and the diagonal structure)} \\
 981 \\
 982 \quad &= \frac{1}{2} \left( d_b \lambda_a^{\odot-1} - \mathbb{E}[\lambda_a^{\odot-2} \odot \text{diag}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{P}_b \mathbf{G}^\top \mathbf{Q}_a)] \right) \\
 983 \\
 984 \quad &= \frac{1}{2} \left( d_b \lambda_a^{\odot-1} - \lambda_a^{\odot-2} \odot \text{diag}(\mathbf{Q}_a^\top \mathbb{E}[\mathbf{G} \mathbf{P}_b \mathbf{G}^\top] \mathbf{Q}_a) \right) \\
 985 \\
 986 \quad \iff 0 &= d_b \lambda_a - \text{diag}(\mathbf{Q}_a^\top \mathbb{E}[\mathbf{G} \mathbf{P}_b \mathbf{G}^\top] \mathbf{Q}_a)
 \end{aligned}$$

987 We obtain the optimal solution by solving this equation.  
 988

$$\lambda_a^* = \frac{1}{d_b} \text{diag}(\mathbf{Q}_a^\top \mathbb{E}[\mathbf{G} \mathbf{P}_b^* \mathbf{G}^\top] \mathbf{Q}_a)$$

991 Similarly, we can obtain the other expression.  
 992

## 993 E PROOF OF CLAIM 5

995 This proof is similar to the proof of Claim 4 in Sec. D. We will show that the optimal solution of  
 996  $\text{KL} \min_d \text{KL}(\mathbb{E}[gg^\top], S)$  with an augmented preconditioner  $S = (Q \text{Diag}(d) Q^\top)$   
 997 is  $d^* = \mathbb{E}[(\text{vec}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b))^{\odot 2}]$ , where  $d \in \mathcal{R}^{d_a d_b \times 1}$  is an augmented eigenvalue vector,  $Q :=$   
 998  $\mathbf{Q}_a \otimes \mathbf{Q}_b$ , and  $Q_k$  is given and precomputed by QR for  $k \in \{a, b\}$ .  
 999

1000 We can simplify the objective function by substituting  $S$ . Here, we also utilize the orthogonality of  
 1001  $Q_k$  for  $k \in \{a, b\}$ .  
 1002

$$\begin{aligned}
 1003 \quad &\text{KL}(\mathbb{E}[gg^\top], S) \\
 1004 \quad &= \frac{1}{2} \left( \log \det(Q \text{Diag}(d) Q^\top) + \text{Tr}(Q \text{Diag}(d^{\odot-1}) Q^\top \mathbb{E}[gg^\top]) \right) + \text{const.} \\
 1005 \\
 1006 \quad &= \frac{1}{2} \left( \sum_i \log(d_i) + \text{Tr}(Q \text{Diag}(d^{\odot-1}) Q^\top \mathbb{E}[gg^\top]) \right) + \text{const.} \quad (Q = \mathbf{Q}_a \otimes \mathbf{Q}_b \text{ is orthogonal}) \\
 1007 \\
 1008 \quad &= \frac{1}{2} \left( \sum_i \log(d_i) + \mathbb{E}[\text{Tr}(Q \text{Diag}(d^{\odot-1}) Q^\top gg^\top)] \right) + \text{const.} \text{ (linearity of the expectation)} \\
 1009 \\
 1010 \quad &= \frac{1}{2} \left( \sum_i \log(d_i) + \mathbb{E}[\text{Tr}((\text{vec}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b))^\top \text{Diag}(d^{\odot-1}) \text{vec}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b))] \right) + \text{const.} \text{ (identity of Kronecker-vector product)} \\
 1011 \\
 1012 \quad &= \frac{1}{2} \left( \sum_i \log(d_i) + \mathbb{E}[\text{sum}(d^{\odot-1} \odot (\text{vec}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b))^{\odot 2})] \right) + \text{const.} \text{ (leverage trace and diagonal struct.)} \\
 1013 \\
 1014 \quad &= \frac{1}{2} \left( \sum_i \log(d_i) + \mathbb{E}[\text{sum}(d^{\odot-1} \odot (\text{vec}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b))^{\odot 2})] \right) + \text{const.} \quad (12)
 1015 \\
 1016 \\
 1017 \quad &\text{The optimal } d \text{ should satisfy the gradient stationary condition.}
 1018
 \end{aligned}$$

$$\begin{aligned}
 1019 \quad 0 &= \partial_d \text{KL}(\mathbb{E}[gg^\top], S) \\
 1020 \quad &= \frac{1}{2} (d^{\odot-1} - \mathbb{E}[d^{\odot-2} \odot \text{vec}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b)^{\odot 2}]) \text{ (use Eq. (12) and compute its derivative)} \\
 1021 \\
 1022 \quad \iff 0 &= \frac{1}{2} (d - \mathbb{E}[\text{vec}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b)^{\odot 2}])
 1023
 \end{aligned}$$

1024 Notice that the KL divergence is unbounded above. Thus, the optimal (minimal) solution exists and it  
 1025 must be  $d^* = \mathbb{E}[\text{vec}(\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b)^{\odot 2}]$  to satisfy the condition.

1026 **F KEY DISTINCTION BETWEEN SHAMPOO WITH TRACE SCALING AND**  
 1027 **KL-SHAMPOO**  
 1028

1029 We will show that Shampoo’s estimation with trace scaling is a generalization of Adafactor. Our inter-  
 1030 pretation of Shampoo’s update is grounded in a generalization of the divergence used in Adafactor—  
 1031 quantum relative entropy (Tsuda et al., 2005)—a Bregman divergence (Bregman, 1967) defined on  
 1032 the trace of the matrix logarithm. This new view of Shampoo’s estimation is distinct from the existing  
 1033 Frobenius-norm perspective. By contrast, KL-Shampoo’s update is based on the KL divergence  
 1034 (classical relative entropy)—another Bregman divergence, but one defined on the (scalar) logarithm  
 1035 of the matrix determinant.

1036 We now introduce the definition of a Bregman divergence (Bregman, 1967) to formally discuss the  
 1037 distinction between Shampoo with trace scaling and KL-Shampoo. Given a strictly convex and  
 1038 differentiable (scalar) function  $F(\cdot)$ , the Bregman divergence based on this function is defined as  
 1039

$$\mathcal{B}_F(\mathbf{X}, \mathbf{Y}) := F(\mathbf{X}) - F(\mathbf{Y}) - \text{Tr}([\nabla F(\mathbf{Y})](\mathbf{X} - \mathbf{Y})).$$

1040 As an example, the KL divergence (classical relative entropy)  $\text{KL}(\mathbf{X}, \mathbf{Y})$  is a Bregman divergence  
 1041 with convex function  $F(\mathbf{M}) := -\frac{1}{2} \log \det(\mathbf{M})$ .  
 1042

$$\begin{aligned} \mathcal{B}_F(\mathbf{X}, \mathbf{Y}) &= F(\mathbf{X}) - F(\mathbf{Y}) - \text{Tr}([\nabla F(\mathbf{Y})](\mathbf{X} - \mathbf{Y})) \\ &= \frac{1}{2}(-\log \det(\mathbf{X}) + \log \det(\mathbf{Y}) + \text{Tr}(\mathbf{Y}^{-1}(\mathbf{X} - \mathbf{Y}))) \quad (\text{defn. of function } F(\cdot)) \\ &= \frac{1}{2}(\log \det(\mathbf{Y}) - \log \det(\mathbf{X}) + \text{Tr}(\mathbf{Y}^{-1}\mathbf{X}) - \dim(\mathbf{X})) = \text{KL}(\mathbf{X}, \mathbf{Y}) \end{aligned}$$

1043 where  $\nabla F(\mathbf{M}) = -\frac{1}{2}\mathbf{M}^{-1}$ . The KL divergence is also known as the log-determinant divergence  
 1044 because function  $F$  is defined as the logarithm of the matrix determinant. Notably, the Hessian of  
 1045 this  $F(\cdot)$  gives rise to the Fisher-Rao metric, which is also known as the affine-invariant metric (up to  
 1046 a constant scalar) (Lin et al., 2023).  
 1047

1048 Now, we introduce quantum relative entropy, which is also known as von Neumann (VN) divergence,  
 1049 to show that Shampoo with trace scaling is a generalization of Adafactor. The VN divergence  
 1050  $\text{VN}(\mathbf{X}, \mathbf{Y})$  is defined as a Bregman divergence with convex function  $F(\mathbf{M}) := \text{Tr}(\mathbf{M}\text{LogM}(\mathbf{M}) -$   
 1051  $\mathbf{M})$ :  
 1052

$$\begin{aligned} \text{VN}(\mathbf{X}, \mathbf{Y}) &:= \mathcal{B}_F(\mathbf{X}, \mathbf{Y}) \\ &= F(\mathbf{X}) - F(\mathbf{Y}) - \text{Tr}([\nabla F(\mathbf{Y})](\mathbf{X} - \mathbf{Y})) \\ &= \text{Tr}(\mathbf{X}\text{LogM}(\mathbf{X}) - \mathbf{X} - \mathbf{Y}\text{LogM}(\mathbf{Y}) + \mathbf{Y} - \text{LogM}(\mathbf{Y})(\mathbf{X} - \mathbf{Y})) \quad (\text{defn. of function } F(\cdot)) \\ &= \text{Tr}(\mathbf{X}\text{LogM}(\mathbf{X}) - \mathbf{X} - \text{LogM}(\mathbf{Y})\mathbf{Y} + \mathbf{Y} - \text{LogM}(\mathbf{Y})(\mathbf{X} - \mathbf{Y})) \quad (\text{property of the trace}) \\ &= \text{Tr}(\mathbf{X}\text{LogM}(\mathbf{X}) - \mathbf{X} + \mathbf{Y} - \text{LogM}(\mathbf{Y})\mathbf{X}) \\ &= \text{Tr}(\mathbf{X}[\text{LogM}(\mathbf{X}) - \text{LogM}(\mathbf{Y})]) - \text{Tr}(\mathbf{X}) + \text{Tr}(\mathbf{Y}), \end{aligned}$$

1053 where  $\text{LogM}(\cdot)$  is the matrix logarithm function and Tsuda et al. (2005) show that  $\nabla F(\mathbf{M}) =$   
 1054  $\text{LogM}(\mathbf{M})$ . The Hessian of this  $F(\cdot)$  gives rise to the Bogoliubov-Kubo-Mori (BKM) metric in  
 1055 quantum physics (de Boer et al., 2023).  
 1056

1057 **Claim 6. (Shampoo’s estimation scheme with trace scaling)** *The optimal solution of von Neumann  
 1058 (VN) divergence (quantum relative entropy) minimization  $\min_{\mathbf{S}_a, \mathbf{S}_b} \text{VN}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}) := \text{Tr}(\mathbf{S}) -$   
 1059  $\text{Tr}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top]\text{LogM}(\mathbf{S})) + \text{const.}$  with a two-sided preconditioner  $\mathbf{S} = \mathbf{S}_a \otimes \mathbf{S}_b$  should satisfy the  
 1060 following condition.*  
 1061

$$\mathbf{S}_a^* = \frac{1}{\text{Tr}(\mathbf{S}_b^*)} \mathbb{E}[\mathbf{G}\mathbf{G}^\top], \quad \mathbf{S}_b^* = \frac{1}{\text{Tr}(\mathbf{S}_a^*)} \mathbb{E}[\mathbf{G}^\top\mathbf{G}], \quad (13)$$

1062 where  $\text{LogM}(\cdot)$  is the matrix logarithm function.  
 1063

1064 The optimal solutions is Shampoo’s estimation rule (power  $p = \frac{1}{2}$ ) with trace scaling:  
 1065

$$\mathbf{S}_a^* = \mathbb{E}[\mathbf{G}\mathbf{G}^\top], \quad \mathbf{S}_b^* = \frac{\mathbb{E}[\mathbf{G}^\top\mathbf{G}]}{\text{Tr}(\mathbb{E}[\mathbf{G}\mathbf{G}^\top])}$$

1080  
 1081   **Idealized VN-Shampoo: Improving**  
 1082   **Shampoo ( $p = 1/2$ ) with trace scaling**  
 1083   1: Gradient Computation  $\mathbf{g} := \nabla \ell(\theta)$   
 1084     $\mathbf{G} := \text{Mat}(\mathbf{g}) \in \mathbb{R}^{d_a \times d_b}$   
 1085   2: Covariance Estimation (each iter)  
 1086     $\begin{pmatrix} \mathbf{S}_a \\ \mathbf{S}_b \end{pmatrix} \leftarrow (1 - \beta_2) \begin{pmatrix} \mathbf{S}_a \\ \mathbf{S}_b \end{pmatrix} + \beta_2 \begin{pmatrix} \Delta_a \\ \Delta_b \end{pmatrix}$   
 1087     $\Delta_a := \begin{cases} \mathbf{G}\mathbf{G}^\top \text{ (variant 1)} \\ \mathbf{G}\mathbf{G}^\top / \sum(\lambda_b) \text{ (variant 2)} \end{cases}$   
 1088     $\Delta_b := \begin{cases} \mathbf{G}^\top \mathbf{G} \text{ (variant 1)} \\ \mathbf{G}^\top \mathbf{G} / \sum(\lambda_a) \text{ (variant 2)} \end{cases}$   
 1089   3: Eigendecomposition (every  $T \geq 1$  iters)  
 1090     $\lambda_k, \mathbf{Q}_k \leftarrow \text{eig}(\mathbf{S}_k)$  for  $k \in \{a, b\}$   
 1091   4: Preconditioning using  $\mathbf{Q} := \mathbf{Q}_a \otimes \mathbf{Q}_b$   
 1092     $\theta \leftarrow \theta - \gamma(\mathbf{Q} \text{Diag}(\lambda_a \otimes \lambda_b)^{-1/2} \mathbf{Q}^\top) \mathbf{g}$   
 1093     $\tau := \begin{cases} 1/\sqrt{\text{Tr}(\mathbf{S}_a) \text{Tr}(\mathbf{S}_b)} \text{ (variant 1)} \\ 1 \text{ (variant 2)} \end{cases}$

1094  
 1095   **VN-Shampoo: Replacing the slow eigen step**  
 1096   **with a more efficient QR step (replace Step 3)**  
 1097   3a: **Frequent** Eigenvalue Estimation with EMA (each  
 1098    iter)  
 1099     $\begin{pmatrix} \lambda_a \\ \lambda_b \end{pmatrix} \leftarrow (1 - \beta_2) \begin{pmatrix} \lambda_a \\ \lambda_b \end{pmatrix} + \beta_2 \begin{pmatrix} \text{diag}(\mathbf{Q}_a^\top \Delta_a \mathbf{Q}_a) \\ \text{diag}(\mathbf{Q}_b^\top \Delta_b \mathbf{Q}_b) \end{pmatrix}$   
 1100   3b: Infrequent Eigenbasis Estimation using QR  
 1101    (every  $T \geq 1$  iters)  
 1102     $\mathbf{Q}_k \leftarrow \text{qr}(\mathbf{S}_k \mathbf{Q}_k)$  for  $k \in \{a, b\}$

Figure 6: *Left:* Simplified VN-Shampoo schemes motivated by Claim 6 to incorporate trace scaling. We consider two variants to incorporate trace scaling into the original Shampoo. Variant 1 is inspired by Adafactor’s update scheme, while Variant 2 is similar to KL-Shampoo’s update scheme. Note that Variant 1 of the idealized VN-Shampoo is known as Shampoo with trace scaling in the literature. *Right:* Adapting our exponential moving average (EMA) approach enables VN-Shampoo to use the faster QR procedure and makes it competitive, as empirically shown in Fig. 7 and Fig. 10.

1102   If we force  $\mathbf{S}_a$  and  $\mathbf{S}_b$  to be diagonal matrices and solve the minimization problem, we obtain  
 1103   Adafactor’s update as shown below.

1104  
 1105    $\mathbf{S}_a^* = \text{Diag}(\mathbb{E}[\mathbf{G}\mathbf{G}^\top]) = \text{Diag}(\mathbb{E}[\mathbf{G}^{\odot 2}\mathbf{1}])$   
 1106    $\mathbf{S}_b^* = \text{Diag}\left(\frac{\mathbb{E}[\mathbf{G}^\top \mathbf{G}]}{\text{Tr}(\mathbb{E}[\mathbf{G}\mathbf{G}^\top])}\right) = \frac{\text{Diag}(\mathbb{E}[\mathbf{1}^\top \mathbf{G}^{\odot 2}])}{\text{Tr}(\mathbb{E}[\mathbf{1}^\top \mathbf{G}^{\odot 2}\mathbf{1}])} = \frac{\text{Diag}(\mathbb{E}[\mathbf{1}^\top \mathbf{G}^{\odot 2}])}{\sqrt{\text{Tr}(\mathbb{E}[\mathbf{1}^\top \mathbf{G}^{\odot 2}]) \text{Tr}(\mathbb{E}[\mathbf{G}^{\odot 2}\mathbf{1}])}}$

1109  
 1110   **Remark:** If the expectations are not computed exactly, the resulting update scheme is not the  
 1111   optimal solution. For example, Adafactor’s update scheme is not optimal due to the EMA scheme on  
 1112   the diagonal Kronecker factors.

1113  
 1114   *Proof.* We will show that Shampoo’s update scheme with trace scaling is an optimal solution to this  
 1115   minimization problem. We first simplify the objective function when  $\mathbf{S} = \mathbf{S}_a \otimes \mathbf{S}_b$ . We will use this  
 1116   (Kronecker sum) identity,  $\text{LogM}(\mathbf{S}_a \otimes \mathbf{S}_b) = \text{LogM}(\mathbf{S}_a) \otimes \mathbf{I}_b + \mathbf{I}_a \otimes \text{LogM}(\mathbf{S}_b)$ , to simplify the  
 1117   matrix logarithm.

1118  
 1119    $\text{VN}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}) = \text{Tr}(\mathbf{S}) - \text{Tr}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top] \text{LogM}(\mathbf{S})) + \text{const.}$   
 1120     $= \text{Tr}(\mathbf{S}_a) \text{Tr}(\mathbf{S}_b) - \text{Tr}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top] \text{LogM}(\mathbf{S})) + \text{const.}$   
 1121     $= \text{Tr}(\mathbf{S}_a) \text{Tr}(\mathbf{S}_b) - \text{Tr}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top](\text{LogM}(\mathbf{S}_a) \otimes \mathbf{I}_b + \mathbf{I}_a \otimes \text{LogM}(\mathbf{S}_b))) + \text{const.}$   
 1122     $= \text{Tr}(\mathbf{S}_a) \text{Tr}(\mathbf{S}_b) - \text{Tr}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top](\text{LogM}(\mathbf{S}_a) \otimes \mathbf{I}_b) + \text{Tr}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top](\mathbf{I}_a \otimes \text{LogM}(\mathbf{S}_b)))) + \text{const.}$   
 1123     $= \text{Tr}(\mathbf{S}_a) \text{Tr}(\mathbf{S}_b) - \mathbb{E}[\text{Tr}(\mathbf{g}\mathbf{g}^\top (\text{LogM}(\mathbf{S}_a) \otimes \mathbf{I}_b))] - \mathbb{E}[\text{Tr}(\mathbf{g}\mathbf{g}^\top (\mathbf{I}_a \otimes \text{LogM}(\mathbf{S}_b)))] + \text{const.}$   
 1124     $= \text{Tr}(\mathbf{S}_a) \text{Tr}(\mathbf{S}_b) - \mathbb{E}[\text{Tr}(\mathbf{G}^\top \text{LogM}(\mathbf{S}_a) \mathbf{G} \mathbf{I}_b)] - \mathbb{E}[\text{Tr}(\mathbf{G}^\top \mathbf{I}_a \mathbf{G} \text{LogM}(\mathbf{S}_b))] + \text{const.}$   
 1125     $= \text{Tr}(\mathbf{S}_a) \text{Tr}(\mathbf{S}_b) - \mathbb{E}[\text{Tr}(\mathbf{G}^\top \text{LogM}(\mathbf{S}_a) \mathbf{G})] - \mathbb{E}[\text{Tr}(\mathbf{G}^\top \mathbf{G} \text{LogM}(\mathbf{S}_b))] + \text{const.}$   
 1126     $= \text{Tr}(\mathbf{S}_a) \text{Tr}(\mathbf{S}_b) - \mathbb{E}[\text{Tr}(\mathbf{G}^\top \mathbf{G} \text{LogM}(\mathbf{S}_a))] - \mathbb{E}[\text{Tr}(\mathbf{G}^\top \mathbf{G} \text{LogM}(\mathbf{S}_b))] + \text{const.}$   
 1127     $= \text{Tr}(\mathbf{S}_a) \text{Tr}(\mathbf{S}_b) - \mathbb{E}[\text{Tr}(\mathbf{G}^\top \mathbf{G} \text{LogM}(\mathbf{S}_a))] - \mathbb{E}[\text{Tr}(\mathbf{G}^\top \mathbf{G} \text{LogM}(\mathbf{S}_b))] + \text{const.}$   
 1128     $= \text{Tr}(\text{ExpM}(\mathbf{P}_a)) \text{Tr}(\text{ExpM}(\mathbf{P}_b)) - \mathbb{E}[\text{Tr}(\mathbf{G}\mathbf{G}^\top \mathbf{P}_a)] - \mathbb{E}[\text{Tr}(\mathbf{G}\mathbf{G}^\top \mathbf{P}_b)] + \text{const.}$  (14)

1131  
 1132   where  $\mathbf{P}_k := \text{LogM}(\mathbf{S}_k)$  for  $k \in \{a, b\}$  and  $\text{ExpM}(\cdot)$  is the matrix exponential function.

1133  
 Notice that the optimal solution should satisfy the gradient stationary condition. We consider the  
 gradient with respect to  $\mathbf{P}_k$  because this condition must be satisfied regardless of  $\mathbf{S}_k$  and  $\mathbf{P}_k$  for

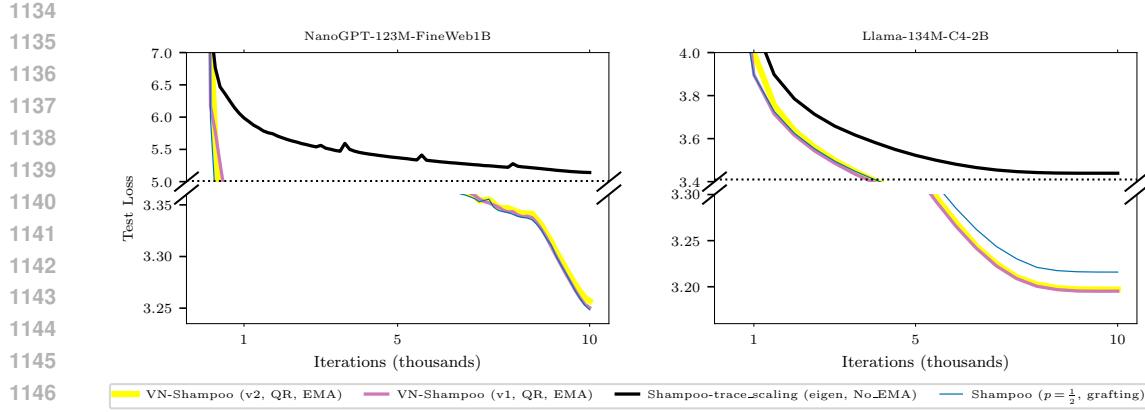


Figure 7: Empirical results from a random search with 150 runs per method on language models demonstrate that our exponential moving average (EMA) scheme for eigenvalue estimation, as described in Fig. 6, makes Shampoo with trace scaling—referred to as Variant 1 of idealized VN-Shampoo—practical and enables it to match or exceed the performance of Shampoo with step-size grafting. Without this scheme, Shampoo with trace scaling performs poorly in practice, as shown in the figure. We implement VN-Shampoo (i.e., Shampoo with trace scaling) ourselves, as it is not available in existing implementations, including the state-of-the-art version from Meta (Shi et al., 2023). As a reference, we also include the best Shampoo run with power  $p = 1/2$  and grafting based on the implementation from Meta.

$k \in \{a, b\}$ . The condition for the derivative of Eq. (14) with respect to  $\mathbf{P}_a$  is

$$0 = \partial_{\mathbf{P}_a} \text{VN}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}) = \underbrace{\text{ExpM}(\mathbf{P}_a)}_{=S_a} \underbrace{\text{Tr}(\text{ExpM}(\mathbf{P}_b)) - \mathbb{E}[\mathbf{G}\mathbf{G}^\top]}_{=\text{Tr}(\mathbf{S}_b)}$$

where Tsuda et al. (2005) show that  $\partial_{\mathbf{P}_k} \text{Tr}(\text{ExpM}(\mathbf{P}_k)) = \text{ExpM}(\mathbf{P}_k)$ .

Thus, we can see that the optimal solution must satisfy this condition

$$\mathbf{S}_a^* = \frac{\mathbb{E}[\mathbf{G}\mathbf{G}^\top]}{\text{Tr}(\mathbf{S}_b^*)}$$

Similarly, we can obtain the second condition.

$$\mathbf{S}_b^* = \frac{\mathbb{E}[\mathbf{G}\mathbf{G}^\top]}{\text{Tr}(\mathbf{S}_a^*)}$$

We can verify that the following solution satisfies these conditions.

$$\mathbf{S}_a^* = \mathbb{E}[\mathbf{G}\mathbf{G}^\top], \quad \mathbf{S}_b^* = \frac{\mathbb{E}[\mathbf{G}^\top \mathbf{G}]}{\text{Tr}(\mathbb{E}[\mathbf{G}\mathbf{G}^\top])}$$

Notice that the optimal  $\mathbf{S}_a$  and  $\mathbf{S}_b$  are not unique. However, their Kronecker, which is  $\mathbf{S}^* = \mathbf{S}_a^* \otimes \mathbf{S}_b^*$ , is unique. Prior studies (Morwani et al., 2025; Vyas et al., 2025a; Eschenhagen et al., 2025) have shown that this solution is an optimal Kronecker approximation of the flattened gradient second moment under the Frobenius norm.

In the Adafactor case, the result can be similarly derived when considering  $\mathbf{S}_k$  to be a diagonal matrix for  $k \in \{a, b\}$ . □

## G TWO-SIDED SHAMPOO SCHEME BASED ON FROBENIUS NORM

**Frobenius norm (F-Shampoo)** Morwani et al. (2025) consider a two-sided Shampoo variant based on the Frobenius norm and derive the optimal solution via rank-1 singular value decomposition

1188  
 1189  
 1190  
 1191  
 1192  
 1193  
 1194  
 1195  
 1196  
 1197  
 1198  
 1199  
 1200  
 1201  
 1202  
 1203  
 1204  
 1205  
 1206  
 1207  
 1208  
 1209

**Idealized F-Shampoo: two-sided Shampoo based on Frobenius norm ( $p=1/2$ )**

- 1: Gradient Computation  $\mathbf{g} := \nabla \ell(\boldsymbol{\theta})$   
 $\mathbf{G} := \text{Mat}(\mathbf{g}) \in \mathbb{R}^{d_a \times d_b}$
- 2: Covariance Estimation (each iter)  

$$\begin{pmatrix} \mathbf{S}_a \\ \mathbf{S}_b \end{pmatrix} \leftarrow (1 - \beta_2) \begin{pmatrix} \mathbf{S}_a \\ \mathbf{S}_b \end{pmatrix} + \beta_2 \begin{pmatrix} \Delta_a \\ \Delta_b \end{pmatrix}$$

$$\Delta_a := \begin{cases} \mathbf{G} \mathbf{S}_b \mathbf{G}^\top / \text{Tr}(\mathbf{S}_b^2) & (\text{v1}) \\ \mathbf{G} \mathbf{Q}_b \text{Diag}(\boldsymbol{\lambda}_b) \mathbf{Q}_b^\top \mathbf{G}^\top / \sum(\boldsymbol{\lambda}_b^2) & (\text{v2}) \end{cases}$$

$$\Delta_b := \begin{cases} \mathbf{G}^\top \mathbf{S}_a \mathbf{G} / \text{Tr}(\mathbf{S}_a^2) & (\text{v1}) \\ \mathbf{G}^\top \mathbf{Q}_a \text{Diag}(\boldsymbol{\lambda}_a) \mathbf{Q}_a^\top \mathbf{G} / \sum(\boldsymbol{\lambda}_a^2) & (\text{v2}) \end{cases}$$
- 3: Eigendecomposition (every  $T \geq 1$  iters)  
 $\boldsymbol{\lambda}_k, \mathbf{Q}_k \leftarrow \text{eig}(\mathbf{S}_k)$  for  $k \in \{a, b\}$
- 4: Preconditioning using  $\mathbf{Q} := \mathbf{Q}_a \otimes \mathbf{Q}_b$   
 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \gamma(\mathbf{Q} \text{Diag}(\boldsymbol{\lambda}_a \otimes \boldsymbol{\lambda}_b)^{-1/2} \mathbf{Q}^\top) \mathbf{g}$

**F-Shampoo: Replacing the slow eigen step with a more efficient QR step (replace Step 3)**

- 3a: **Frequent** Eigenvalue Estimation with EMA (each iter)  

$$\begin{pmatrix} \boldsymbol{\lambda}_a \\ \boldsymbol{\lambda}_b \end{pmatrix} \leftarrow (1 - \beta_2) \begin{pmatrix} \boldsymbol{\lambda}_a \\ \boldsymbol{\lambda}_b \end{pmatrix} + \beta_2 \begin{pmatrix} \text{diag}(\mathbf{Q}_a^\top \Delta_a \mathbf{Q}_a) \\ \text{diag}(\mathbf{Q}_b^\top \Delta_b \mathbf{Q}_b) \end{pmatrix}$$
- 3b: **Infrequent** Eigenbasis Estimation using QR (every  $T \geq 1$  iters)  
 $\mathbf{Q}_k \leftarrow \text{qr}(\mathbf{S}_k \mathbf{Q}_k)$  for  $k \in \{a, b\}$

Figure 8: *Left:* Simplified two-sided Shampoo schemes based on the Frobenius norm without momentum. We consider two variants. Variant 1 is inspired by Claim 7, while Variant 2 is similar to KL-Shampoo’s update scheme, which utilizes eigenvalues. Note that Variant 1 of the idealized F-Shampoo is known as the two-sided Shampoo in the literature (Morwani et al., 2025). *Right:* Adapting our exponential moving average (EMA) approach enables F-Shampoo to use the faster QR procedure and makes it more competitive, as empirically shown in Fig. 9.

(SVD) of the second moment  $\mathbb{E}[\mathbf{g}\mathbf{g}^\top]$  (Van Loan & Pitsianis, 1993). However, this solution is often unattainable in practice and is computationally expensive for two reasons: (1) the expectation  $\mathbb{E}[\mathbf{g}\mathbf{g}^\top]$  must be approximated; and (2) performing the SVD is costly—yielding complexity  $(O(d_a^2 d_b^2))$  in general even for rank-1 SVD—which is higher than the eigen decompositions with complexity  $(O(d_k^3))$  for  $k \in \{a, b\}$  that we aim to avoid. Instead, we analyze the stationarity conditions (Claim 7) and derive a new variant, idealized F-Shampoo (Fig. 8), that is structurally similar to KL-Shampoo. While a straightforward implementation of F-Shampoo performs poorly in practice, the techniques (Sec. 4) we develop for KL-Shampoo can be adapted to improve its performance (Fig. 9).

**Claim 7. (Shampoo’s estimation scheme based on Frobenius norm)** *The optimal solution of the Frobenius norm minimization  $\min_{\mathbf{S}_a, \mathbf{S}_b} \text{Frob}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top], \mathbf{S}) := \|\mathbb{E}[\mathbf{g}\mathbf{g}^\top] - \mathbf{S}\|_{\text{Frob}}$  with a two-sided preconditioner  $\mathbf{S} = \mathbf{S}_a \otimes \mathbf{S}_b$  should satisfy the following condition.*

$$\mathbf{S}_a^* = \frac{1}{\text{Tr}((\mathbf{S}_b^*)^2)} \mathbb{E}[\mathbf{G} \mathbf{S}_b^* \mathbf{G}^\top], \quad \mathbf{S}_b^* = \frac{1}{\text{Tr}((\mathbf{S}_a^*)^2)} \mathbb{E}[\mathbf{G}^\top \mathbf{S}_a^* \mathbf{G}], \quad (15)$$

**Remark:** *Although the solution can be obtained via rank-1 singular value decomposition (SVD) (Van Loan & Pitsianis, 1993) on this outer product,  $\mathbb{E}[\mathbf{g}\mathbf{g}^\top]$ , it can be computationally expensive to compute the solution due to the high dimensionality of the product. Moreover, the optimal solution is only achievable when the expectation of the outer product is computed exactly. Obtaining the optimal solution using SVD is even more expensive in tensor-valued cases.*

*Proof.* To simplify the proof, we will consider the square of the objective function, as the optimal solution remains unchanged. We simplify the square of the objective function by substituting  $\mathbf{S}$ . Here, we utilize the definition of the norm and re-express the norm using the matrix trace.

$$\begin{aligned} & \|\mathbb{E}[\mathbf{g}\mathbf{g}^\top] - \mathbf{S}_a \otimes \mathbf{S}_b\|_{\text{Frob}}^2 \\ &= \text{Tr}((\mathbb{E}[\mathbf{g}\mathbf{g}^\top] - \mathbf{S}_a \otimes \mathbf{S}_b)^\top (\mathbb{E}[\mathbf{g}\mathbf{g}^\top] - \mathbf{S}_a \otimes \mathbf{S}_b)) \quad (\text{an equivalent definition of the square of the norm}) \\ &= \text{Tr}(\mathbf{S}_a^2 \otimes \mathbf{S}_b^2 - 2\mathbb{E}[\mathbf{g}\mathbf{g}^\top](\mathbf{S}_a \otimes \mathbf{S}_b)) + \text{const.} \quad (\mathbf{S}_k \text{ is symmetric for } k \in \{a, b\}) \\ &= \text{Tr}(\mathbf{S}_a^2) \text{Tr}(\mathbf{S}_b^2) - 2\text{Tr}(\mathbb{E}[\mathbf{g}\mathbf{g}^\top](\mathbf{S}_a \otimes \mathbf{S}_b)) + \text{const.} \quad (\text{Property of a Kronecker product}) \\ &= \text{Tr}(\mathbf{S}_a^2) \text{Tr}(\mathbf{S}_b^2) - 2\mathbb{E}[\text{Tr}((\mathbf{g}\mathbf{g}^\top)(\mathbf{S}_a \otimes \mathbf{S}_b))] + \text{const.} \quad (\text{Linearity of the expectation}) \\ &= \text{Tr}(\mathbf{S}_a^2) \text{Tr}(\mathbf{S}_b^2) - 2\mathbb{E}[\text{Tr}(\mathbf{g}^\top \text{vec}(\mathbf{S}_a \mathbf{G} \mathbf{S}_b))] + \text{const.} \quad (\text{Property of a Kronecker product}) \\ &= \text{Tr}(\mathbf{S}_a^2) \text{Tr}(\mathbf{S}_b^2) - 2\mathbb{E}[\text{Tr}(\mathbf{G}^\top \mathbf{S}_a \mathbf{G} \mathbf{S}_b)] + \text{const.} \quad (\text{Property of a trace}) \end{aligned}$$

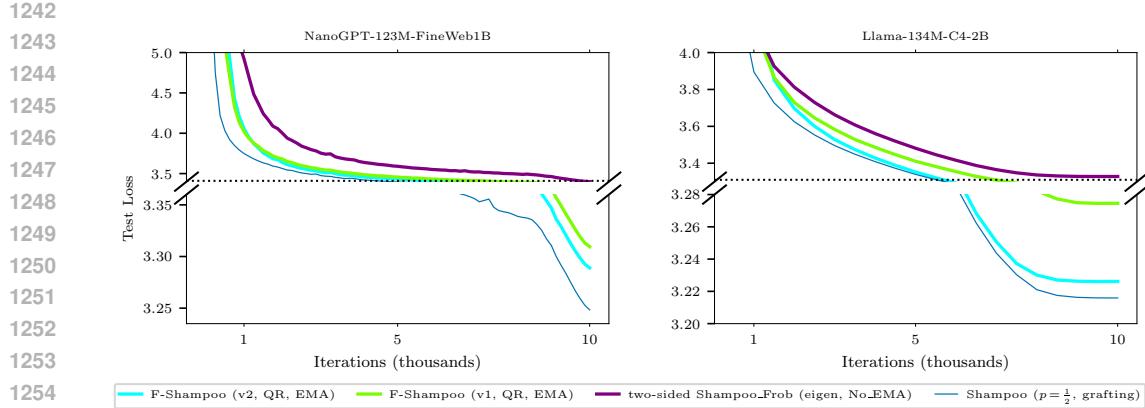


Figure 9: Empirical results from a random search with 150 runs per method on language models demonstrate that our exponential moving average (EMA) scheme for eigenvalue estimation, as described in Fig. 8, improves the performance of the two-sided Shampoo based on Frobenius norm (see Eq. 4 of Morwani et al. (2025) and Claim 7)—referred to as Variant 1 of idealized F-Shampoo. All these methods perform QR or eigen decomposition at every 10 iterations. Note that F-Shampoo cannot match the performance of Shampoo with step-size grafting. This also illustrates using the Frobenius norm for preconditioner estimation is not ideal. To ensure a fair comparison and eliminate implementation bias, we use our own implementation of F-Shampoo, aligned closely with that of KL-Shampoo. As a reference, we also include the best Shampoo run with power  $p = 1/2$  and grafting based on the state-of-the-art version from Meta (Shi et al., 2023).

We can simplify the stationarity condition with respect to  $\mathbf{S}_a$  as below.

$$\begin{aligned} 0 &= \partial_{\mathbf{S}_a} \|\mathbb{E}[\mathbf{g}\mathbf{g}^\top] - \mathbf{S}_a \otimes \mathbf{S}_b\|_{\text{Frob}}^2 \\ &= \partial_{\mathbf{S}_a} (\text{Tr}(\mathbf{S}_a^2) \text{Tr}(\mathbf{S}_b^2) - 2\mathbb{E}[\text{Tr}(\mathbf{G}^\top \mathbf{S}_a \mathbf{G} \mathbf{S}_b)]) + \text{const.} \\ &= 2(\text{Tr}(\mathbf{S}_b^2)\mathbf{S}_a - \mathbb{E}[\mathbf{G}\mathbf{S}_b\mathbf{G}^\top]) \end{aligned}$$

Thus, the optimal solution should satisfy this condition  $\mathbf{S}_a^* = \frac{1}{\text{Tr}((\mathbf{S}_b^*)^2)} \mathbb{E}[\mathbf{G}\mathbf{S}_b^*\mathbf{G}^\top]$ . Similarly, we can obtain the other condition. Morwani et al. (2025) also consider a similar condition (see Eq. 4 of their paper).  $\square$

## H ADDITIONAL EXPERIMENTS

We conduct three additional sets of experiments, following the same experimental setup as described in the main text, to further evaluate our approach. Due to limited computational resources, we focus on two language models—NanoGPT (123M) and Llama (134M)—in these additional experiments.

In the first additional experiment, we evaluate the two-sided Shampoo based on Frobenius norm (Morwani et al., 2025; Eschenhagen et al., 2025)—referred to as idealized F-Shampoo—and find that it performs poorly in practice even when we improve its performance using QR and EMA on the eigenvalues, as shown in Fig. 9. This indicates using the Frobenius norm for preconditioner estimation is not ideal.

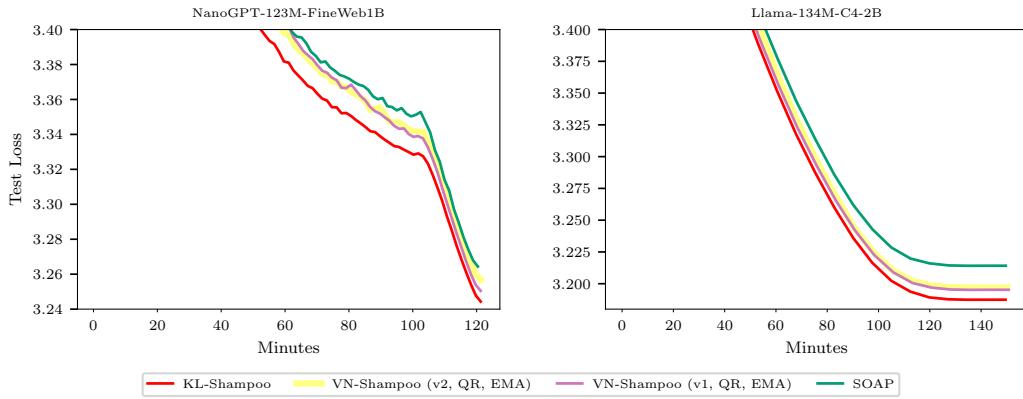
In the second additional experiment, we evaluate Shampoo with trace scaling (Morwani et al., 2025; Vyas et al., 2025a; Eschenhagen et al., 2025)—referred to as idealized VN-Shampoo—and find that it performs poorly in practice even when using eigendecomposition. By contrast, incorporating our moving-average scheme enables it to perform well and use the fast QR decomposition, as demonstrated in Fig. 7.

In the third additional experiment, we evaluate the suitability of KL versus VN divergence for refining Shampoo’s estimation rule in a comparable setting, where both variants outperform SOAP while matching SOAP-level pre-iteration runtime. As shown in Fig. 10, KL-Shampoo consistently outperforms VN-Shampoo, even when VN-Shampoo is made practical and competitive using similar

1296 techniques to those employed in KL-Shampoo. These results underscore the advantages of the KL  
 1297 divergence over the VN divergence.  
 1298

1299

1300

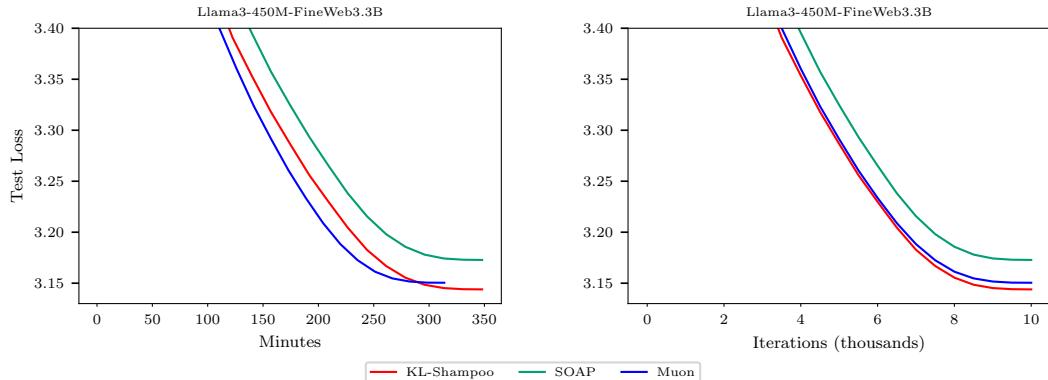


1311

1312

1313 Figure 10: Empirical results (random search using 150 runs for each method) demonstrate that  
 1314 the advantages of KL-Shampoo over VN-Shampoo under comparable settings. In particular, we  
 1315 strengthen VN-Shampoo (i.e., Shampoo with trace scaling) by incorporating the QR step and the EMA  
 1316 scheme for eigenvalue estimation, as described in Fig. 6, to achieve SOAP-level pre-iteration runtime.  
 1317 To ensure a fair comparison and eliminate implementation bias, we use our own implementation of  
 1318 VN-Shampoo, aligned closely with that of KL-Shampoo. For runtime comparison, we include the  
 1319 best SOAP run as a reference. All methods take the same number of iterations in these experiments.  
 1320

1321



1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1336  
 1337  
 1338  
 1339  
 1340  
 1341  
 1342  
 1343  
 1344  
 1345  
 1346  
 1347  
 1348  
 1349 Figure 11: Empirical results (random search using 100 runs for each method) demonstrate that the  
 1340 performance of KL-Shampoo on a larger model. We do not tune the frequency for performing QR to  
 1341 optimize KL-Shampoo’s runtime.

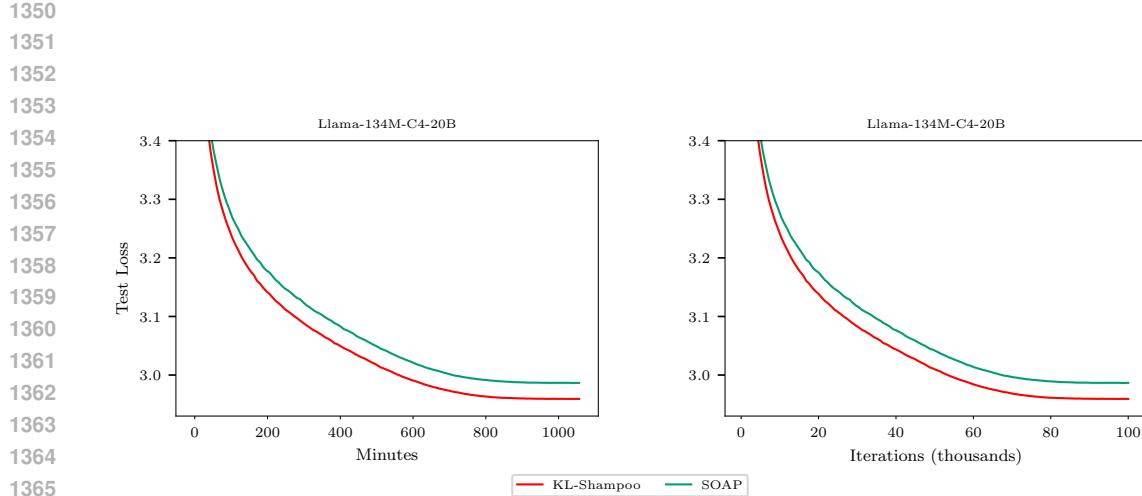


Figure 12: Empirical results demonstrate that the performance of KL-Shampoo using larger training steps. As we can see that, KL-Shampoo consistently outperforms SOAP when using more training tokens.

### Practical version of KL-Shampoo

- 1a: Gradient Computation  $\mathbf{g} := \nabla \ell(\theta)$   
 $\mathbf{G} := \text{Mat}(\mathbf{g}) \in \mathbb{R}^{d_a \times d_b}$
- 1b: Use Gradient Momentum  
 $\mathbf{M} \leftarrow (1 - \beta_1)\mathbf{M} + \beta_1 \mathbf{G}$
- 2: Covariance Estimation (each iter)  

$$\begin{pmatrix} \mathbf{S}_a \\ \mathbf{S}_b \end{pmatrix} \leftarrow (1 - \beta_2) \begin{pmatrix} \mathbf{S}_a \\ \mathbf{S}_b \end{pmatrix} + \beta_2 \begin{pmatrix} \Delta_a \\ \Delta_b \end{pmatrix}$$

$$\Delta_a := \mathbf{G} \mathbf{Q}_b \text{Diag}(\boldsymbol{\lambda}_b^{\odot -1}) \mathbf{Q}_b^\top \mathbf{G}^\top / \mathbf{d}_b = \frac{1}{d_b} [\mathbf{G} \mathbf{Q}_b \text{Diag}(\boldsymbol{\lambda}_b^{\odot -1/2})] [\mathbf{G} \mathbf{Q}_b \text{Diag}(\boldsymbol{\lambda}_b^{\odot -1/2})]^\top$$

$$\Delta_b := \mathbf{G}^\top \mathbf{Q}_a \text{Diag}(\boldsymbol{\lambda}_a^{\odot -1}) \mathbf{Q}_a^\top \mathbf{G} / \mathbf{d}_a = \frac{1}{d_a} [\mathbf{G}^\top \mathbf{Q}_a \text{Diag}(\boldsymbol{\lambda}_a^{\odot -1/2})] [\mathbf{G}^\top \mathbf{Q}_a \text{Diag}(\boldsymbol{\lambda}_a^{\odot -1/2})]^\top$$
- 3a: Eigenvalue Estimation with EMA (each iter)  

$$\begin{pmatrix} \boldsymbol{\lambda}_a \\ \boldsymbol{\lambda}_b \end{pmatrix} \leftarrow (1 - \beta_2) \begin{pmatrix} \boldsymbol{\lambda}_a \\ \boldsymbol{\lambda}_b \end{pmatrix} + \beta_2 \begin{pmatrix} \text{diag}(\mathbf{Q}_a^\top \Delta_a \mathbf{Q}_a) \\ \text{diag}(\mathbf{Q}_b^\top \Delta_b \mathbf{Q}_b) \end{pmatrix} = \begin{pmatrix} (1 - \beta_2) \boldsymbol{\lambda}_a + \beta_2 \mathbf{l}_a \\ (1 - \beta_2) \boldsymbol{\lambda}_b + \beta_2 \mathbf{l}_b \end{pmatrix}$$

$$\mathbf{l}_a := \frac{1}{d_b} \text{sum}([\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b \text{Diag}(\boldsymbol{\lambda}_b^{\odot -1/2})]^{\odot 2}, 1) = \text{mean}([\mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b \text{Diag}(\boldsymbol{\lambda}_b^{\odot -1/2})]^{\odot 2}, 1)$$

$$\mathbf{l}_b := \frac{1}{d_a} \text{sum}([\mathbf{Q}_b^\top \mathbf{G}^\top \mathbf{Q}_a \text{Diag}(\boldsymbol{\lambda}_a^{\odot -1/2})]^{\odot 2}, 1) = \text{mean}([\text{Diag}(\boldsymbol{\lambda}_a^{\odot -1/2}) \mathbf{Q}_a^\top \mathbf{G} \mathbf{Q}_b]^{\odot 2}, 0)$$
- 3b: Infrequent Eigenbasis Estimation using QR (every  $T \geq 1$  iters)  
 $\mathbf{Q}_k \leftarrow \text{qr}(\mathbf{S}_k \mathbf{Q}_k)$  for  $k \in \{a, b\}$
- 4a: Add weight decay  
 $\theta \leftarrow \theta - \gamma \lambda \theta$
- 4b: Preconditioning using  $\mathbf{Q} := \mathbf{Q}_a \otimes \mathbf{Q}_b$   
 $\theta \leftarrow \theta - \gamma (\mathbf{Q} \text{Diag}(\boldsymbol{\lambda}_a \otimes \boldsymbol{\lambda}_b)^{-1/2} \mathbf{Q}^\top) \text{vec}(\mathbf{M})$

Figure 13: A practical version of KL-Shampoo with momentum  $\beta_1$  and weight decay  $\lambda$ . In practice, we also use either damping or pseudo-inverse when computing  $\boldsymbol{\lambda}_k^{\odot -1/2}$  for  $k \in \{a, b\}$ . In original Shampoo,  $\mathbf{S}_k$  is initialized by a non-zero matrix to keep eigenvalues  $\boldsymbol{\lambda}_k$  non-zero. In KL-Shampoo, we directly initialize  $\boldsymbol{\lambda}_k$  to be non-zero (e.g., 0.1) while keeping  $\mathbf{S}_k$  to be zero for  $k \in \{a, b\}$ .