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ABSTRACT

Shampoo and its efficient, Adam-stabilized variant SOAP, employ structured
second-moment estimation and have received growing attention for their effec-
tiveness. In practice, Shampoo requires step-size grafting with Adam to achieve
competitive performance. SOAP mitigates this by applying Adam in Shampoo’s
eigenbasis and further reducing per-iteration runtime. However, reliance on Adam
introduces additional memory overhead in both methods. Prior theoretical inter-
pretations have primarily examined their estimation schemes using the Frobenius
norm. Motivated by the natural correspondence between the second moment and a
covariance matrix, we reinterpret the estimation procedures in Shampoo and SOAP
as instances of covariance estimation through the lens of Kullback–Leibler (KL)
divergence minimization. This perspective reveals a previously overlooked theo-
retical limitation and motivates principled improvements to their design. Building
on the KL perspective, we propose practical estimation schemes—KL-Shampoo
and KL-SOAP—that match or exceed the performance of Shampoo and SOAP
for pre-training a range of neural network models while maintaining SOAP-level
per-iteration runtime. Notably, KL-Shampoo does not rely on Adam to achieve
superior performance, thereby avoiding the associated memory overhead. Surpris-
ingly, KL-Shampoo consistently outperforms the other methods in our experiments.

1 INTRODUCTION

Optimizers Shampoo (Gupta et al., 2018) and SOAP (Vyas et al., 2025a) have received significant
attention (Anil et al., 2020; Shi et al., 2023; Morwani et al., 2025; Eschenhagen et al., 2025; An
et al., 2025; Xie et al., 2025) due to their strong performance in training a wide range of neural
network (NN) models (Dahl et al., 2023; Kasimbeg et al., 2025). In practice, Shampoo does not
perform well and requires step-size grafting with Adam to achieve competitive performance (Agarwal
et al., 2020; Anil et al., 2020; Shi et al., 2023; Eschenhagen et al., 2025). SOAP addresses this
by applying Adam in Shampoo’s eigenbasis and further reducing per-iteration runtime. However,
reliance on Adam introduces additional memory overhead in both methods. Prior work (Morwani
et al., 2025; Eschenhagen et al., 2025; An et al., 2025; Xie et al., 2025) has investigated their structural
preconditioner schemes—which approximate the flattened gradient 2nd moment (Duchi et al., 2011)—
through the Frobenius norm. However, few studies have examined these schemes from the perspective
of Kullback–Leibler (KL) divergence. Compared to the Frobenius norm, the KL divergence between
zero-mean Gaussian covariance matrices is more appropriate for interpreting Shampoo’s and SOAP’s
preconditioners as Gaussian covariance estimators (Amari, 2016; Minh & Murino, 2017), since the
second moment they approximate can be viewed as the covariance matrix of a zero-mean Gaussian.
A similar KL perspective has provided a unified framework to interpret (Fletcher, 1991; Waldrip &
Niven, 2016) and extend (Kanamori & Ohara, 2013a;b) structural preconditioner estimation in quasi-
Newton methods such as BFGS and DFP—something the Frobenius norm does not. Moreover, the
KL divergence intrinsically respects the symmetric positive-definite constraint (Amari, 2016; Minh &
Murino, 2017) that preconditioners in Shampoo and SOAP must satisfy as adaptive (preconditioned)
methods (Nesterov et al., 2018)—a property the Frobenius norm lacks. This constraint implies that
the entries of the preconditioning matrix do not play equivalent roles and therefore should not be
treated equally (Pennec et al., 2006; Bhatia, 2007)—a point the Frobenius norm ignores.

In this work, we introduce a KL perspective that interprets the estimation schemes of Shampoo and
SOAP as solutions to KL-minimization problems for covariance estimation. Our approach naturally
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Figure 1: Empirical results (random search using 150 runs for each method) on language models
demonstrate the advantages of KL-based methods over Shampoo and SOAP while matching SOAP’s
per-iteration runtime. All methods take the same number of iterations in these experiments. Sur-
prisingly, KL-Shampoo also outperforms KL-SOAP. We include the best Shampoo run based on a
state-of-the-art implementation from Meta (Shi et al., 2023) in the plots.

extends to tensor-valued settings, where some existing theoretical interpretations may not apply.
This perspective reveals a key limitation obscured under the Frobenius-norm view: the Kronecker-
structured estimators used by Shampoo and SOAP do not adequately solve the corresponding KL-
minimization problem. This limitation, in turn, opens new opportunities for improvement. Leveraging
this insight, we refine the estimation rules of Shampoo and SOAP and develop practical KL-based
schemes—KL-Shampoo and KL-SOAP—that meet or exceed the performance of Shampoo and SOAP
for NN (pre-)training while maintaining SOAP-level per-iteration runtime. Notably, KL-Shampoo
does not rely on Adam to achieve superior performance, thereby avoiding Adam’s additional memory
overhead (Table 1). Empirically (see Fig. 1), we show that KL-based methods are competitive for
training a range of NNs and remain as flexible as Shampoo and SOAP for tensor-valued weights.
Surprisingly, KL-Shampoo consistently outperforms the other methods in our experiments.

2 BACKGROUND

Notation For presentation simplicity, we focus on matrix-valued weights and the optimization
update for a single parameter matrix Θ ∈ Rda×db , rather than a set of weight matrices for NN
training. We use Mat(·) to unflatten its input vector into a matrix and vec(·) to flatten its input matrix
into a vector. For example, θ := vec(Θ) is the flattened weight vector and Θ ≡ Mat(θ) is the
original (unflattened) weight matrix. Vector g is a (flattened) gradient vector for the weight matrix.
We denote γ, β2 and S to be a step size, a weight for moving average, and a preconditioning matrix
for an adaptive method, respectively. Diag(·) returns a diagonal matrix whose diagonal entries are
given by its input vector, whilst diag(·) extracts the diagonal entries of its input matrix as a vector.

Shampoo Given a matrix gradient G and the flattened gradient g = vec(G), the original Shampoo
method (Gupta et al., 2018) considers a Kronecker-factored approximation, (Sa)

2p ⊗ (Sb)
2p, of the

flattened gradient second moment, Eg[gg
⊤], where p denotes a matrix power, Sa := Eg[GG⊤],

Sb := Eg[G
⊤G], and ⊗ denotes a Kronecker product. In practice, we often approximate the

expectation, Eg[gg
⊤], with an exponentially moving average (EMA) on the outer product (Morwani

et al., 2025). The original Shampoo method uses the 1/4 power (i.e., p = 1/4) and other works (Anil
et al., 2020; Shi et al., 2023; Morwani et al., 2025) suggest using the 1/2 power (i.e., p = 1/2). At
each iteration, Shampoo follows this update rule with EMA on Sa and Sb:

Sa ← (1− β2)Sa + β2GG⊤, Sb ← (1− β2)Sb + β2G
⊤G (Kronecker 2nd moment est.),

θ ← θ − γS−1/2g ⇐⇒ Θ← Θ− γS−p
a GS−p

b (Preconditioning), (1)

where S := S2p
a ⊗S

2p
b is Shampoo’s preconditioning matrix, and we leverage the Kronecker structure

of S to move from the left expression to the right expression in the second line.

Shampoo’s implementation employs eigendecomposition. Shampoo is typically implemented
by using the eigendecomposition of Sk, such as QkDiag(λk)Q

⊤
k = eigen(Sk), for

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

k ∈ {a, b}, every few steps and storing Qk and λk (Anil et al., 2020; Shi et al., 2023).
Therefore, the power of Sk is computed using an elementwise power in λk such as
S−p
k = QkDiag

(
λ⊙−p
k

)
Q⊤

k , where ·⊙p denotes elementwise p-th power. This compu-
tation becomes an approximation if the decomposition is not performed at every step.

Using Adam for Shampoo’s stabilization increases memory usage. If the eigendecomposition is
applied infrequently to reduce iteration cost, Shampoo has to apply step-size grafting with
Adam to maintain performance (Agarwal et al., 2020; Shi et al., 2023) as empirically shown
in Fig. 2. Unfortunately, this increases its memory usage introduced by Adam (see Table 1).

SOAP SOAP improves Shampoo with the p = 1/2 power by running Adam in the eigenbasis
of Shampoo’s preconditioner (Sa)

2p ⊗ (Sb)
2p = Sa ⊗ Sb. Notably, SOAP reuses Shampoo’s

Kronecker estimation rule for computing the eigenbasis Q := Qa ⊗Qb and incorporates Adam’s
2nd moment, denoted by d, for preconditioning, where Qk is Shampoo’s Kronecker eigenbasis Sk

for k ∈ {a, b} defined above. As a result, SOAP effectively employs an augmented preconditioner,
S := QDiag(d)Q⊤, which cannot be expressed as a Kronecker product of any two matrices with
the same shape as Sa and Sb. Because we omit momentum (i.e. let Adam’s β1 = 0), SOAP takes the
following step with the Adam update becoming an RMSProp update (Tieleman & Hinton, 2012):

Sa ← (1− β2)Sa + β2GG⊤, Sb ← (1− β2)Sb + β2G
⊤G (Shampoo’s 2nd moment est.),

d← (1− β2)d+ β2ĝ
⊙2 (RMSProp’s diagonal 2nd moment est. in the eigenbasis),

θ ← θ − γS− 1
2 g ⇐⇒ Θ← Θ− γQ⊤

a Mat

(
ĝ√
d

)
Qb (Preconditioning), (2)

where ĝ := Q⊤g = vec(Q⊤
a GQb) is a “projected” gradient vector in eigenbasis Q and recall

that S := QDiag(d)Q⊤ is SOAP’s preconditioner. Here, we leverage the Kronecker structure and
orthogonality of the eigenbasis to move from the left to the right in the last line of Eq. (2). Note that
this EMA weight β2 is defined as 1 − β(Adam)

2 , where β(Adam)
2 is Adam’s (RMSProp’s) β2. We use

this definition rather than Adam’s because we want to further interpret this moving-average scheme
through the lens of our KL perspective.

SOAP’s implementation utilizes QR decomposition. SOAP requires only the eigenbasis, which
can be approximated via a QR decomposition, whereas Shampoo requires an eigendecom-
position to compute both the eigenbasis and the eigenvalues. Vyas et al. (2025a) therefore
suggest replacing the slower eigendecomposition with the faster QR decomposition, such as
Qk ← qr(SkQk) for k ∈ {a, b}. This makes SOAP more computationally efficient than
Shampoo.

Runing Adam in the eigenbasis increases memory usage. Introducing Adam’s (RMSProp’s) 2nd

moment estimation increases SOAP’s memory consumption (see Table 1). This is because
this estimation, d ∈ Rdadb×1, uses extra memory and cannot be expressed as a Kronecker
product of any two vectors, such as d ̸= ra ⊗ rb, where ra ∈ Rda×1 and rb ∈ Rdb×1.

The original Shampoo’s Kronecker estimation rule (p = 1/4) (Gupta et al., 2018; Duvvuri et al., 2024)
is proposed based on a matrix Loewner bound (Löwner, 1934), while recent estimation rules (p = 1/2)
(Morwani et al., 2025; Eschenhagen et al., 2025) focus on bounds induced by the Frobenius norm.
SOAP reuses Shampoo’s Kronecker estimation rule and additionally introduces Adam’s (RMSProp’s)
2nd-moment estimation rule in the eigenbasis (Vyas et al., 2025a). None of these works interpret or
motivate their estimation rules as covariance estimation, thereby missing the opportunity to introduce
the KL perspective.

3 SECOND MOMENT ESTIMATION VIA KULLBACK–LEIBLER MINIMIZATION

We first focus on Shampoo with p = 1/2 and show that its second-moment estimation can be viewed
as a structured covariance estimation problem solved via Kullback–Leibler (KL) minimization. This
perspective reflects the natural connection between the flattened gradient second moment (Duchi
et al., 2011) that Shampoo approximates and a covariance matrix. From the KL perspective, we
reveal a previously unrecognized limitation of Shampoo’s estimation rule: the Kronecker-structured
estimators used by Shampoo and SOAP do not adequately solve the corresponding KL-minimization
problem. This limitation, in turn, opens new opportunities for improvement. Building on this insight,
we propose a KL-based estimation scheme for Shampoo, which we term the idealized KL-Shampoo.

3
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Shampoo SOAP KL-Shampoo KL-SOAP

Kronecker factors (Sa, Sb) d2a + d2b d2a + d2b d2a + d2b d2a + d2b
Kronecker factors’ eigenbasis (Qa, Qb) d2a + d2b d2a + d2b d2a + d2b d2a + d2b
Kronecker factors’ eigenvalues (λa, λb) da + db N/A da + db da + db
Adam’s 2nd moment in the eigenbasis (d)
(interpreted as augmented eigenvalues, Sec. 5)

N/A dadb N/A dadb

Momentum dadb dadb dadb dadb
Step-size grafting with Adam dadb N/A N/A N/A

Table 1: Memory usage of each method considered in this work. Note that SOAP’s and KL-SOAP’s
preconditioners, QDiag(d)Q⊤, can not be expressed as a Kronecker product due to the augmented
eigenvalues d, while Shampoo’s and KL-Shampoo’s preconditioners, QDiag(λa ⊗ λb)Q

⊤, can,
where Q := Qa ⊗Qb.

KL Minimization For simplicity, we begin by introducing a KL perspective in a matrix-valued case
and drop subscripts when referring to the flattened gradient 2nd moment, like E[gg⊤] := Eg[gg

⊤],
where g = vec(G) is a flattened gradient vector of a matrix-valued gradient G ∈ Rda×db . The goal
is to estimate a Kronecker-structured preconditioning matrix, S = Sa⊗Sb, that closely approximates
the 2nd moment, where Sa ∈ Rda×da and Sb ∈ Rdb×db are both symmetric positive-definite (SPD).
Motivated by the natural connection between the second moment and a covariance matrix, we treat
these as covariance matrices of zero-mean Gaussian distributions and achieve this goal by minimizing
the KL divergence between the two distributions,

KL Perspective for Covariance Estimation

KL(E[gg⊤],S) := DKL(N (0,E[gg⊤] + κI) ∥ N (0,S))

=
1

2

(
log det(S)+Tr((E[gg⊤]+κI)S−1)

)
+ const, (3)

where E[gg⊤] and S are considered as Gaussian’s covariance, det(·) denotes the matrix determinant
of its input, and κ ≥ 0 is a damping weight to ensure the positive-definiteness of E[gg⊤]+κI
if necessary. Mathematically, this KL divergence coincides (up to a factor of 1/2) with the log-
determinant divergence widely used in matrix optimization (Dhillon & Tropp, 2008; Kulis et al.,
2009; Sra, 2016), which is defined for any pair of SPD matrices and does not require a zero-mean
assumption. This additional zero-mean Gaussian viewpoint provides a probabilistic interpretation
of this SPD-aware “distance”, even when the target matrix is not itself a second moment, such
as the curvature matrix used in quasi-Newton methods (Fletcher, 1991; Waldrip & Niven, 2016).
Moreover, the KL divergence naturally extends to tensor-valued cases, such as a 3D tensor gradient,
G ∈ Rda×db×dc , by considering a structured preconditioner S = Sa ⊗ Sb ⊗ Sc to approximate the
flattened gradient second moment, E[gg⊤], where matrix Sk ∈ Rdk×dk is SPD for k ∈ {a, b, c}.

Justification of using the KL divergence Many existing works (Morwani et al., 2025; Eschen-
hagen et al., 2025; An et al., 2025; Xie et al., 2025) primarily focus on matrix-valued weights and
interpret Shampoo’s and SOAP’s estimation rules from the Frobenius-norm perspective. However,
this norm does not account for the SPD constraint implicitly imposed on Shampoo’s and SOAP’s
preconditioners, which ensures that the preconditioned gradient direction is a descent direction
(Nesterov et al., 2018). As emphasized in the literature (Pennec et al., 2006; Bhatia, 2007), it is
more appropriate to consider a “distance” that respects this constraint. We adopt the KL divergence
because it naturally incorporates the SPD constraint, is widely used for covariance estimation (Amari,
2016; Minh & Murino, 2017), and provides a unified framework for reinterpreting and improving
Shampoo’s estimation—even in tensor-valued settings where existing interpretations based on singu-
lar value decomposition (Van Loan & Pitsianis, 1993) may not apply. In numerical optimization, the
KL divergence, known as a merit function (Byrd & Nocedal, 1989), offers a unifying interpretation
(Fletcher, 1991; Waldrip & Niven, 2016) and extension (Kanamori & Ohara, 2013a;b) of the low-rank
estimation schemes of BFGS and DFP. In contrast, the standard Frobenius norm cannot recover
these updates without additional weighting (see Sec. 6.1 of Nocedal & Wright (2006)). In statistical
estimation and inference, this KL divergence is also preferred over the Frobenius norm (James et al.,
1961; Kivinen & Warmuth, 1999; Khan & Lin, 2017; Lin et al., 2019; Kunstner et al., 2021).
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Figure 2: Empirical results (random search using 150 runs for each method) on language models
demonstrate that KL-Shampoo does not rely on step-size grafting with Adam to perform well.
Shampoo without grafting does not perform well, even when using the state-of-the-art implementation
(Shi et al., 2023). In particular, Shampoo with power p = 1/2 fails to train the RWKV7 model in all
150 runs when grafting is disabled.

3.1 INTERPRETING SHAMPOO’S ESTIMATION AS COVARIANCE ESTIMATION

Similar to existing works (Morwani et al., 2025; Eschenhagen et al., 2025; Vyas et al., 2025a), we
first disable the moving average (i.e., let β2 = 1) for our descriptions and focus on Shampoo with
power p = 1/2, presenting a KL perspective and interpreting its estimation rule from this perspective.
We will show that Shampoo’s estimation can be obtained by solving a KL minimization problem.

Claim 1. (Shampoo’s Kronecker-based covariance estimation) The optimal solution of KL minimiza-
tion minSa

KL
(
E[gg⊤],S

)
with a one-sided preconditioner S = (1/dbSa)⊗ Ib is S∗

a = E[GG⊤],
where dk is the dimension of matrix Sk ∈ Rdk×dk for k ∈ {a, b} and G = Mat(g).

Likewise, we can obtain the estimation rule for Sb by considering S = Ia ⊗ (1/daSb).

Shampoo’s estimation rule as Kronecker-based covariance estimation According to Claim 1
(proof in Sec. A), Shampoo’s estimation rule with power p = 1/2 in Eq. (1) can be viewed as
the optimal solution of a KL minimization problem (up to a constant scalar) when one Kronecker
factor is updated independently and the other is fixed as the identity, which is known as a one-sided
preconditioner (An et al., 2025; Xie et al., 2025). In practice, Shampoo further approximates the
required expectations using the EMA scheme in Eq. (1).

3.2 IMPROVING SHAMPOO’S ESTIMATION: IDEALIZED KL-SHAMPOO

Our KL perspective reveals a key limitation—empirically demonstrated in Fig. 5—of Shampoo’s
Kronecker estimation with p = 1/2 as a one-sided approach: it does not adequately solve the KL-
minimization problem when both factors are learned jointly. Motivated by this observation, we design
an improved estimation rule that updates the two factors simultaneously. We refer to this scheme as
idealized KL-Shampoo, which is a two-sided approach.

Claim 2. (Idealized KL-Shampoo’s covariance estimation for Sa and Sb) The optimal solution
of KL minimization minSa,Sb

KL
(
E[gg⊤],S

)
with a two-sided precontioner S = Sa ⊗ Sb should

satisfy the following condition.

S∗
a =

1

db
E[G

(
S∗
b

)−1
G⊤], S∗

b =
1

da
E[G⊤(S∗

a

)−1
G]. (4)

Idealized KL-Shampoo’s estimation Claim 2 (proof in Sec. B) establishes a closed-form con-
dition (see Eq. (4)) when simultaneously learning both Kronecker factors to minimize the KL
problem. This condition corresponds to the maximum-likelihood estimator (MLE) of a zero-mean
matrix Gaussian (Dutilleul, 1999) when E[gg⊤] is considered as a finite average 1

N

∑N
i=1 gig

⊤
i .

This is because MLE is equivalent to minimizing the KL divergence: KL( 1
N

∑N
i=1 gig

⊤
i ,S) =

− 1
N

∑N
i=1 logN (gi; 0,S) + const, where gi is considered as a sample generated from N (0,S). In

5
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machine learning, Lin et al. (2019; 2024) treated this condition as a theoretical example of a multilin-
ear exponential-family (Sec. 5 of Lin et al. (2019)) for Kronecker-based optimization, while Vyas
et al. (2025b) considered a similar condition motivated heuristically by gradient whitening. However,
we cannot directly use this condition due to the correlation between S∗

a and S∗
b . For example, solving

S∗
a requires knowing S∗

b in Eq. (4) or vice versa. In practice, this condition is unachievable because
the expectations in Eq. (4) must be approximated. Thus, we consider an estimated Sk to approximate
S∗
k for k ∈ {a, b} and propose an exponential moving average (EMA) scheme:

Sa ← (1− β2)Sa +
β2

db
GS−1

b G⊤, Sb ← (1− β2)Sb +
β2

da
G⊤S−1

a G. (5)

Our KL perspective allows us to further justify this EMA scheme as a stochastic proximal-gradient
step (see Claim 3 and a proof in Sec. C) and establish a formal connection to Lin et al. (2019;
2024). Notably, our approach uses S−1/2 for preconditioning (Eq. (1)), following Shampoo, whereas
Lin et al. (2019; 2024) propose using S−1. A straightforward implementation of our scheme is
computationally expensive, since it requires additional matrix inversions (highlighted in red in Eq. (5))
and the slow eigendecomposition for Shampoo-type preconditioning (e.g., S−1/2). However, these
issues can be alleviated—in Sec. 4 we propose an efficient implementation.

Claim 3. (KL-Shampoo’s moving average scheme) The moving average scheme for Sk (Eq. (5))
in idealized KL-Shampoo is a stochastic proximal-gradient step with step-size β2 to solve the KL
minimization problem in Eq. (3), for k ∈ {a, b}. Recall that this β2 in Eq. (5) is closely related to
Adam’s β2 as β2 = 1− β(Adam)

2 , where β(Adam)
2 is Adam’s β2 .

Distinction between Shampoo with trace scaling and KL-Shampoo Another variant, often
discussed in the literature (Morwani et al., 2025; Vyas et al., 2025a; Eschenhagen et al., 2025),
is Shampoo with trace scaling. Vyas et al. (2025a) established that Shampoo with trace scaling
is equivalent to running Adafactor (Shazeer & Stern, 2018) in Shampoo’s eigenbasis. In contrast,
KL-Shampoo is not equivalent to running Adafactor in its eigenbasis. To clarify this distinction, we
make the theoretical connection between Shampoo and Adafactor more explicit: Shampoo with trace
scaling is exactly a matrix generalization of Adafactor obtained by minimizing the von Neumann
(VN) divergence (Tsuda et al., 2005; Dhillon & Tropp, 2008) and recovers Adafactor when its
Kronecker factors are restricted to be diagonal, as we establish in Claim 6 (Sec. F). By contrast,
KL-Shampoo minimizes the KL divergence instead of the VN divergence. While a straightforward
implementation of Shampoo with trace scaling—referred to as idealized VN-Shampoo—performs
poorly in practice, the techniques we develop for KL-Shampoo in Sec. 4 can be adapted (see Fig. 6,
Sec. H) to substantially improve its performance, as shown in Fig. 7 (Sec. H).

A natural question then arises: which divergence is more suitable? Theoretically, the KL divergence
is broadly applicable to arbitrary SPD matrices (Bhatia, 2007; Boumal et al., 2014) and is widely
used for covariance matrices (Minh & Murino, 2017), whereas VN divergence is primarily motivated,
studied, and applied for unit-trace SPD matrices (Tsuda et al., 2005; Nielsen & Chuang, 2010).
Empirically, adopting the KL divergence yields larger improvements than the VN divergence for
designing Shampoo’s estimation (Fig. 10, Sec. H) and in other applications (Kulis et al., 2009).

4 EFFICIENT IMPLEMENTATION: KL-SHAMPOO WITH QR DECOMPOSITION

We develop techniques that enable KL-Shampoo to match SOAP-level per-iteration runtime and
to achieve competitive performance without step-size grafting, all without relying on eigende-
composition. Vyas et al. (2025a) demonstrated that the eigendecomposition used in Shampoo’s
implementation (Shi et al., 2023) is more computationally expensive than QR decomposition. Moti-
vated by this result, we aim to improve KL-Shampoo’s computational efficiency by replacing the
eigendecomposition with QR decomposition. However, incorporating QR decomposition into KL-
Shampoo is non-trivial because the eigenvalues of the Kronecker factors are required, and QR does
not directly provide them without a significant overhead. Specifically, the eigenvalues are essential
for a reduction in the computational cost of KL-Shampoo in two reasons: (1) they remove the need to
compute the matrix −1/2 power, S−1/2 = (QaDiag(λ

⊙−1/2
a )Q⊤

a )⊗ (QbDiag(λ
⊙−1/2
b )Q⊤

b ), used
for KL-Shampoo’s preconditioning; (2) they eliminate expensive matrix inversions in its Kronecker
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(Original) Shampoo with power p=1/2
versus Our idealized KL-Shampoo

1: Gradient Computation g := ∇ℓ(θ)
G := Mat(g) ∈ Rda×db

2: Covariance Estimation (each iter)(
Sa

Sb

)
← (1− β2)

(
Sa

Sb

)
+ β2

(
∆a

∆b

)
∆a :=

{
GG⊤ (Orig.)
GQbDiag(λ⊙−1

b )Q⊤
b G

⊤/db (KL)

∆b :=

{
G⊤G (Orig.)
G⊤Qa Diag(λ⊙−1

a )Q⊤
a G/da (KL)

3: Eigendecomposition (every T ≥ 1 iters)
λk,Qk ← eig(Sk) for k ∈ {a, b}

4: Preconditioning using Q := Qa ⊗Qb

θ ← θ − γ(QDiag(λa ⊗ λb)
−1/2Q⊤)g

Figure 3: Left: Simplified Shampoo-based
schemes without momentum. Our KL-
Shampoo only differs (red) from the orig-
inal in its choice of ∆. Top Right: For
computational efficiency, we replace the
eigen step with our EMA scheme to es-
timate eigenvalues and infrequent eigen-
basis estimation using QR. Bottom Right:
SOAP-based schemes without momentum.
Note KL-SOAP needs estimation of λk

from Step 3a to compute the eigenbasis Q,
whereas SOAP does not. We view RM-
SProp’s 2nd moment in the eigenbasis as an
augmented eigenvalue, highlighted in blue.

Replacing the slow eigendecomposition with more
efficient QR updates (replace Step 3)
3a: Eigenvalue Estimation with EMA (each iter) (Kro-

necker Diagonal Vector λa ⊗ λb as eigenvalues)(
λa

λb

)
← (1−β2)

(
λa

λb

)
+ β2

(
diag(Q⊤

a ∆aQa)
diag(Q⊤

b ∆bQb)

)
3b: Infrequent Eigenbasis Estimation using QR

(every T ≥ 1 iters)
Qk ← qr(SkQk) for k ∈ {a, b}

SOAP (ues Shampoo’s eigenbasis) versus
Our KL-SOAP (uses KL-Shampoo’s eigenbasis):
Using augmented preconditioners and QR up-
dates (replace Step 4)
4a: Augmented Eigenvalue Estimation with EMA (each

iter) (Full Diagonal Vector d as eigenvalues)
d← (1− β2)d+ β2ĝ

⊙2 (RMSProp’s 2nd moment)
ĝ := Q⊤g = vec

(
Q⊤

a GQb

)
4b: Preconditioning using Augmented Eigenvalues

with Eigenbasis Q := Qa ⊗Qb

θ ← θ − γ
(
QDiag(d)−

1/2Q⊤)g
Equivalent to running RMSProp in Eigenbasis:

Mat(θ)← Mat(θ)− γQa Mat

(
ĝ√
d

)
︸ ︷︷ ︸
RMSProp

Q⊤
b

estimation rule (Eq. (5)), such as S−1
b = Pb := QbDiag(λ⊙−1

b )Q⊤
b in the update for Sa:

Sa ← (1− β2)Sa +
β2

db
GS−1

b G⊤ = (1− β2)Sa +
β2

db
GPbG

⊤, (6)

where Qk and λk are eigenbasis and eigenvalues of Sk for k ∈ {a, b}, respectively.

KL-based estimation rule for the eigenvalues λa and λb using an outdated eigenbasis We aim to
estimate the eigenvalues using an outdated eigenbasis and replace the slow eigendecomposition with a
fast QR decomposition in KL-Shampoo. Eschenhagen et al. (2025) propose estimating the eigenvalues
from a Frobenius-norm perspective, using an instantaneous scheme: λ(inst)

k := diag(Q⊤
k SkQk) for

k ∈ {a, b}. However, our empirical results (Fig. 4) indicate that this approach becomes suboptimal
when an outdated eigenbasis Qk is reused to reduce the frequency and cost of QR decompositions.
In contrast, our KL perspective (see Claim 4 and its proof in Sec. D) provides a principled alternative,
allowing us to use an outdated eigenbasis. Building on this claim, we introduce an exponential
moving average (EMA) scheme (Step 3a of Fig. 3) for eigenvalue estimation, which can be justified
as a stochastic proximal-gradient step under our KL perspective, similar to Claim 3. This scheme
updates the eigenvalues at every iteration while updating the eigenbasis less frequently through
an efficient QR-based procedure, similar to SOAP. Since it naturally scales the eigenvalues by the
dimensions of the Kronecker factors, step-size grafting should not be necessary for KL-Shampoo, as
argued by Eschenhagen et al. (2025) and confirmed by our empirical results (Fig. 2). Furthermore,
applying this scheme enables other Shampoo variants to be competitive and even outperform SOAP,
as demonstrated in Fig. 7 and Fig. 10 of Sec. H. These empirical results underscore the importance of
our EMA scheme on eigenvalues.

Claim 4. (Covariance estimation for eigenvalues λa and λb) The optimal solution of KL minimiza-
tion minλa,λb

KL
(
E[gg⊤],S

)
with preconditioner S=(QaDiag(λa)Q

⊤
a )⊗(QbDiag(λb)Q

⊤
b )
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should satisfy the following condition.

λ∗
a =

1

db
diag

(
Q⊤

a E[GP ∗
b G

⊤]Qa

)
, λ∗

b =
1

da
diag

(
Q⊤

b E[G⊤P ∗
aG]Qb

)
, (7)

where P ∗
k := QkDiag

(
(λ∗

k)
⊙−1

)
Q⊤

k is also defined in Eq. (6) and considered as an approximation
of S−1

k for k ∈ {a, b} when using an outdated eigenbasis Q = Qa ⊗Qb precomputed by QR.

5 INTERPRETING AND IMPROVING SOAP VIA KL MINIMIZATION

We extend the KL perspective to better understand and improve the estimation scheme used in SOAP.

Interpreting SOAP’s estimation as covariance estimation Recall that SOAP (Eq. (2)) applies
Shampoo’s scheme to estimate its Kronecker factors and then performs RMSProp updates in the
eigenbasis of these factors. Consequently, the interpretation of SOAP’s Kronecker factor estimation
is identical to that of Shampoo. RMSProp’s second-moment estimation in the eigenbasis can itself be
interpreted as the optimal solution to a separate KL divergence minimization problem, as established
in Claim 5 (see Sec. E for a proof). The KL perspective—distinct from the Frobenius-norm viewpoint
(George et al., 2018; Eschenhagen et al., 2025)—provides a new lens for understanding RMSProp’s
estimation in the eigenbasis as the estimation of augmented eigenvalues of a covariance matrix
under KL divergence. When an outdated eigenbasis is used, RMSProp’s scheme (Step 4a of Fig. 3)
for eigenvalue estimation can be viewed as a correction in an augmented (full-diagonal) space,
QDiag(d)Q⊤, analogous in spirit to the Frobenius-norm interpretation but derived under the KL
framework. This perspective also highlights a close similarity to KL-Shampoo’s estimation scheme:
recall that we introduced a comparable correction (Step 3a of Fig. 3) for KL-Shampoo, but in the
original Kronecker-factored diagonal space, QDiag(λa ⊗ λb)Q

⊤.

Claim 5. (SOAP and KL-SOAP’s covariance estimation for augmented eigenvalues d) The
optimal solution of KL minimization: mind KL

(
E[gg⊤],S

)
with preconditioner S = QDiag(d)Q⊤

is d∗ = E
[(
vec(Q⊤

a GQb)
)⊙2
]
= E

[
ĝ⊙2

]
, where d ∈ Rdadb×1 is viewed as an augmented

eigenvalue vector, ĝ = Q⊤g is defined at the update of SOAP (see Eq. (2)), and Q = Qa ⊗Qb can
be an outdated eigenbasis of (KL-)Shampoo’s preconditioner.

Improving SOAP’s estimation Similar to SOAP, we propose KL-SOAP, which utilizes KL-
Shampoo’s estimation to update Kronecker factors and additionally employs Adam (RMSProp) in
KL-Shampoo’s eigenbasis. Our unified KL perspective enables us to reuse Claim 5 to justify the use
of Adam’s (RMSProp’s) 2nd moment estimation as augmented eigenvalue estimation in KL-SOAP.

6 EXPERIMENTAL SETUP AND EMPIRICAL EVALUATIONS

We consider four sets of experiments to demonstrate the benefits of using the KL divergence and the
effectiveness of KL-based methods. See Sec. H for additional experiments.

Experimental Setup In all the experiments, we consider training four language models based on
existing implementations: NanoGPT (Jordan, 2024) (123 M), NanoRWKV7 (Bo, 2024) (162 M),
Llama (Glentis, 2025) (134 M), and NanoMoE (Wolfe, 2025) (227 M). We consider NanoMoE,
as it contains 3D weight tensors. This model provides a natural testbed for evaluating a tensor
extension of KL-Shampoo and KL-SOAP, derived directly from our KL perspective. In doing so,
we demonstrate that our methods retain the same flexibility as Shampoo and SOAP in handling
tensor-valued weights without reshaping them into matrices. We train NanoGPT and NanoRWKV7
using a subset of FineWeb (1 B tokens), Llama using a subset of C4 (2 B tokens), and NanoMoE
using a subset of OpenWebText (2.5 B tokens). All models except NanoMoE are trained using
mini-batches with a batch size of 0.5 M. We use a batch size of 0.25 M to train NanoMoE to reduce
the run time. We use the default step-size schedulers from the source implementations; NanoGPT
and NanoRWKV7: linear warmup + constant step-size + linear cooldown; Llama and NanoMoE:
linear warmup + cosine step-size. We tune all available hyperparameters for each method—including
step-size, moving average, weight decay, damping, and momentum—using random search with 150
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3.1

Llama-134M-C4-2B

KL-Shampoo KL-Shampoo (instantaneous)

Figure 4: Empirical results (random search,
150 runs per method) demonstrate that our EMA
scheme for the eigenvalue estimation makes KL-
Shampoo competitive when using an outdated
eigenbasis. Without this scheme, KL-Shampoo
performs poorly under an outdated eigenbasis
Qk even when employing the instantaneous
eigenvalue estimation λ(inst)

k = diag(Q⊤
k SkQk)

at every iteration, as suggested by Eschenhagen
et al. (2025) for k ∈ {a, b}. Adapting the EMA
scheme also makes the trace-scaled Shampoo
competitive (Fig. 7, Sec. H) and allows it to out-
perform SOAP (Fig. 10, Sec. H).

3.5

4.0

4.5

5.0
NanoGPT-123M-FineWeb1B

4.0

4.5

5.0
Llama-134M-C4-2B

1051

Iterations (thousands)
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3.28

3.26

3.24

a
a

1051

Iterations (thousands)

3.25
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3.18

T
e
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L
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KL-Shampoo Shampoo F-Shampoo VN-Shampoo

Figure 5: Empirical results (random search, 150
runs per method) demonstrate the advantages
of KL-Shampoo’s (two-sided) estimation over
other Shampoo variants under comparable set-
tings, including Shampoo with p = 1/2 (no graft-
ing, Eq. (1)), F-Shampoo (two-sided, Frobenius-
norm–based, Fig. 8), and VN-Shampoo (trace
scaling, two-sided von-Neumann-divergence-
based, Fig. 6). We make these variants practical
by incorporating a QR step and an EMA scheme
for eigenvalue estimation (Fig. 3). See Fig. 10
(Sec. H) for more detailed comparison between
KL-Shampoo and VN-Shampoo.

runs. Our hyperparameter search follows a two-stage strategy, with 75 runs in each stage. In the first
stage, we search over a wider range of hyperparameters. In the second stage, we refine the search
space based on the results from the first stage and focus on a narrower range. In our experiments,
Shampoo by default performs eigendecomposition every 10 steps, while SOAP, KL-Shampoo, and
KL-SOAP perform QR decomposition every 10 steps, as suggested by Vyas et al. (2025a).

In the first set of experiments, we demonstrate that our KL-based perspective enables a principled
redesign of Shampoo, resulting in KL-Shampoo, and achieves superior performance without step-size
grafting. We evaluate Shampoo with matrix powers p = 1/2 and p = 1/4, using a state-of-the-art
implementation (Shi et al., 2023). As shown in Fig. 2, Shampoo requires step-size grafting to perform
well, whereas KL-Shampoo performs robustly without it. Moreover, KL-Shampoo outperforms
Shampoo with grafting—even in terms of step-wise progress—even when Shampoo is equipped with
eigendecomposition and step-size grafting via Adam.

In the second set of experiments, we demonstrate that our QR-based scheme enables KL-Shampoo
and KL-SOAP to achieve the same pre-iteration runtime as SOAP. We use the official SOAP im-
plementation for comparison. As shown in Fig. 1, KL-Shampoo and KL-SOAP outperform SOAP.
Remarkably, KL-Shampoo also consistently surpasses KL-SOAP while using less memory.

In the third set of experiments, we underscore the importance of using our EMA scheme for the
eigenvalue estimation when working with an outdated eigenbasis. As shown in Fig. 4, the EMA
scheme enables KL-Shampoo to perform well in practice, even under stale eigenbases. Moreover, this
scheme can be adapted to strengthen the trace scaling variant of Shampoo (Fig. 7, Sec. H), enabling
it to outperform SOAP (Fig. 10, Sec. H).

In the last set of experiments, we evaluate the benefits of using the two-sided estimation scheme
under our KL perspective. Specifically, we compare the two-sided approach (KL-Shampoo) against
the original Shampoo in a comparable setting. To ensure fairness and eliminate implementation
bias, we use our own implementation of Shampoo aligned closely with that of KL-Shampoo. For
this comparison, we extend Shampoo with a QR-based step and our EMA scheme for eigenvalue
estimation, as described in Fig. 3. Similarly, we also consider two more Shampoo variants based on
the Frobenius norm and von Neumann divergence. As shown in Fig. 5, KL-Shampoo consistently
outperforms other Shampoo variants, even when these variants employ a similar QR-based estimation
rule and an EMA scheme for eigenvalue estimation .
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7 CONCLUSION

We introduced a KL perspective for interpreting Shampoo’s and SOAP’s structured second-moment
estimation schemes. This perspective uncovers a previously unrecognized limitation of Shampoo,
motivates an alternative estimation strategy to overcome it, enables a practical implementation of our
approach, and extends naturally to tensor-valued estimation. Our empirical results demonstrate the
effectiveness of our approach for improving Shampoo’s and SOAP’s estimation schemes.
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A PROOF OF CLAIM 1

We will show that the optimal solution of KL minimization minSa
KL
(
E[gg⊤],S

)
with a one-sided

preconditioner S = (1/dbSa)⊗ Ib is S∗
a = E[GG⊤].

By definition in Eq. (3) and substituting S = (1/dbSa)⊗Ib, we can simplify the objective function as

KL
(
E[gg⊤],S

)
=

1

2

(
log det(S) + Tr(S−1E[gg⊤])

)
+ const.

=
1

2

(
db log det(

1

db
Sa) + Tr(S−1E[gg⊤])

)
+ const. (Kronecker identity for matrix det.)

=
1

2

(
db log det(Sa) + Tr(S−1E[gg⊤])

)
+ const. (identity for a log-determinant)

=
1

2

(
db log det(Sa) + E[Tr(S−1gg⊤)]

)
+ const. (linearity of the expectation)

=
1

2

(
db log det(Sa) + E[Tr(dbS−1

a GIbG
⊤)]
)
+ const. (identity for a Kronecker vector product)

=
db
2

(
log det(Sa) + E[Tr(S−1

a GG⊤)]
)
+ const.

=
db
2

(
− log det(Pa) + E[Tr(PaGG⊤)]

)
+ const., (8)

where G = Mat(g) and Pa := S−1
a .

If we achieve the optimal solution, the gradient stationary condition must be satisfied regardless of
the gradient with respect to Sa or S−1

a ≡ Pa, such as

0 = ∂S−1
a

KL
(
E[gg⊤],S

)
= ∂PaKL

(
E[gg⊤],S

)
=

db
2

(
− P−1

a + E[GG⊤]
)

(use Eq. (8) and matrix calculus identities)

=
db
2

(
− Sa + E[GG⊤]

)
.

Notice that the KL divergence is unbounded above. Thus, the optimal (minimal) solution exists. It
must be S∗

a = E[GG⊤] to satisfy this stationary condition.

B PROOF OF CLAIM 2

We will show that the optimal solution of KL minimization minSa,Sb
KL
(
E[gg⊤],S

)
with a two-

sided preconditioner S = Sa ⊗ Sb should satisfy this condition: S∗
a = 1

db
E[G

(
S∗
b

)−1
G⊤] and

S∗
b = 1

da
E[G⊤(S∗

a

)−1
G].

Similar to the proof of Claim 1 in Sec. A, we can simplify the objective function as

KL
(
E[gg⊤],S

)
=

1

2

(
log det(S) + E[Tr(S−1gg⊤)]

)
+ const.

=
1

2

(
db log det(Sa) + da log det(Sb) + E[Tr(S−1gg⊤)]

)
+ const. (identity for a log-determinant)

=
1

2

(
db log det(Sa) + da log det(Sb) + E[Tr(S−1

a GS−1
b G⊤)]

)
+ const. (identity for a Kronecker-vector-product)

=
1

2

(
− db log det(Pa)− da log det(Pb) + E[Tr(PaGPbG

⊤)]
)
+ const., (9)

where Pk := S−1
k for k ∈ {a, b}.
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The optimal solution must satisfy the gradient stationarity condition with respect to {Sa,Sb}. Notice
that the gradient with respect to {S−1

a ,S−1
b } can be expressed in terms of the gradient with respect

to {Sa,Sb} as ∂S−1
a

KL = −Sa

(
∂Sa

KL
)
Sa and ∂S−1

b
KL = −Sb

(
∂Sb

KL
)
Sb. Thus, the optimal

solution must satisfy the following gradient stationary condition with respect to {S−1
a ,S−1

b }:
0 = ∂S−1

a
KL
(
E[gg⊤],S

)
, 0 = ∂S−1

b
KL
(
E[gg⊤],S

)
.

Using Eq. (9) and simplifying the left expression

0 = ∂S−1
a

KL
(
E[gg⊤],S

)
= ∂PaKL

(
E[gg⊤],S

)
=

1

2

(
− dbP

−1
a + E[GPbG

⊤]
)

(10)

gives us this equation

0 =
1

2
(−dbS∗

a + E[G
(
S∗
b

)−1
G⊤])

that the optimal solution must satisfy.

This naturally leads to the following expression:

S∗
a =

1

db
E[G

(
S∗
b

)−1
G⊤].

Likewise, we can obtain the following expression by simplifying the right expression of the gradient
stationary condition.

S∗
b =

1

da
E[G⊤(S∗

a

)−1
G].

C PROOF OF CLAIM 3

To simplify the notation, we define H := E[gg⊤], and re-express the objective function in the KL
minimization problem as L(S) := KL(E[gg⊤],S) = KL(H,S). We now introduce the proximal-
gradient framework (Parikh & Boyd, 2014; Khan et al., 2016) to formally state and prove Claim 3. We
assume that an estimated S(t) is given at iteration t. We use a non-negative function, f(S(t),S(t+1)),
to measure the closeness between the current and the next iteration. Function f(·, ·) is known as a
proximal function. A (unconstrained) proximal-gradient step at iteration t+ 1 with a given proximal
function, f(·, ·), is defined as the optimal solution of another minimization problem,

S(t+1) := argmin
X
⟨∇SL

∣∣
S=S(t) , X⟩+

1

β2
f(S(t),X),

at every iteration with step-size β2 based on the linearization of the objective function L.

We consider a weighted quadratic function as the proximal function.

f(S(t),X) :=
1

2
∥X − S(t)∥2W =

1

2
vec
(
X − S(t)

)⊤
W vec

(
X − S(t)

)
where W is a given weight matrix. For example, W is the Hessian of the KL divergence W :=

∇2
vec(Y )KL(S(t),Y )

∣∣
Y =S(t) = −1

2

(∂ vec(S−1)
∂ vec(S)

)∣∣
S=S(t) . This matrix is also known as the Fisher-

Rao Riemannian metric for a zero-mean Gaussian (Amari, 2016). Note that this proximal function
has been used in the quasi-Newton literature (Nocedal & Wright, 2006). Indeed, we can show
that this proximal function is exactly a second-order Taylor approximation of the KL divergence,
KL(S(t),X), at X = S(t).

When S = Sa ⊗ Sb admits a Kronecker product, we can specify this weight matrix W so that this
proximal function can be separated into two terms:

1

2
∥Xa ⊗Xb − S(t)∥2W =

1

2
∥Xa ⊗Xb − S(t)

a ⊗ S
(t)
b ∥

2
W

=
1

2
∥Xa − S(t)

a ∥2Wa
+

1

2
∥Xb − S

(t)
b ∥

2
Wb
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Here, we define the weight matrix as the block-diagonal Hessian of the KL divergence, such as

W :=

[
Wa 0
0 Wb

]
by setting the cross-block terms highlighted in red to zero, where Wk :=

∂2
vec(Yk)

KL(S(t),Ya ⊗ Yb)
∣∣
Y =S

(t)
a ⊗S

(t)
b

for k ∈ {a, b}. We can show that this weight matrix is
exactly the block-diagonal approximation of the Fisher-Rao matrix for a zero-mean matrix Gaussian
considered by Lin et al. (2019; 2024).

Now, we can formally state the claim and provide proof of it.

Claim 3. (formal version) The moving average scheme for S := Sa ⊗Sb in idealized KL-Shampoo
is a proximal-gradient step at iteration t+ 1,

S(t+1)
a ,S

(t+1)
b := arg min

vec(Xa),vec(Xb)
⟨∇Sa

L
∣∣
S=S(t) , Xa⟩+ ⟨∇Sb

L
∣∣
S=S(t) , Xb⟩+

1

2β2
∥Xa ⊗Xb − S(t)∥2W ,

⇐⇒ S(t+1)
a = (1− β2)S

(t)
a + β2E[G

(
S

(t)
b

)−1
G⊤], S

(t+1)
b = (1− β2)S

(t)
b + β2E[G⊤(S(t)

a

)−1
G]

with step-size β2 to solve the KL minimization problem in Eq. (3), if we use a proximal function
using the weight matrix, W , defined above.

In mini-batch cases, we approximate the expectations using a current batch gradient (Morwani et al.,
2025) (see Eq. (5)), which leads to a stochastic proximal-gradient step.

Proof. Because the weight matrix W is block-diagonal, we can slice this objective function for the
proximal step into two terms.

⟨∇Sa
L
∣∣
S=S(t) , Xa⟩+ ⟨∇Sb

L
∣∣
S=S(t) , Xb⟩+

1

2β2
∥Xa ⊗Xb − S(t)∥2W

= ⟨∇Sa
L
∣∣
S=S(t) , Xa⟩+

1

2β2
∥Xa − S(t)

a ∥2Wa︸ ︷︷ ︸
(block Xa)

+ ⟨∇Sb
L
∣∣
S=S(t) , Xb⟩+

1

2β2
∥Xb − S

(t)
b ∥

2
Wb︸ ︷︷ ︸

(block Xb)

Importantly, Wa and Wb are independent of Xa and Xb. Thus, we solve this objective by indepen-
dently for each Xk for k ∈ {a, b}.

We now show that solving this proximal problem gives rise to the estimation rule for S(t+1)
a at iteration

t+1. We focus on the first term since the second term does not depend on Xa. We can show that Wa

can be expressed as Wa = ∂2
vec(Ya)

KL(S(t),Ya ⊗ Yb)
∣∣
Y =S

(t)
a ⊗S

(t)
b

= −db

2

(∂ vec(S−1
a )

∂ vec(Sa)

)∣∣
S=S(t) .

This matrix Wa is also considered in Lin et al. (2024). Importantly, Wa is invertible and W−1
a =

−2
db

( ∂ vec(Sa)

∂ vec(S−1
a )

)∣∣
S=S(t) With this result, the optimal solution of Xa must satisfy the following

stationarity condition, where ∥Xa − S
(t)
a ∥2Wa

:= vec(Xa − S
(t)
a )⊤Wavec(Xa − S

(t)
a ).

0 = ∂vec(Xa)

(
⟨∇Sa

L
∣∣
S=S(t) , Xa⟩+

1

2β2
∥Xa − S(t)

a ∥2Wa

)
= ∇vec(Sa)L

∣∣
S=S(t) +

1

β2
Wavec(Xa − S(t)

a ) (note: ⟨∇Sa
L
∣∣
S=S(t) , Xa⟩ :=

(
∇vec(Sa)L

∣∣
S=S(t)

)⊤
vec(Xa))

⇐⇒ vec(Xa) = vec(S(t)
a )− β2W

−1
a ∇vec(Sa)L

∣∣
S=S(t)
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It is easy to see that the optimal solution of the proximal step is

vec(S(t+1)
a ) := vec(X∗

a) = vec(S(t)
a )− β2W

−1
a ∇vec(Sa)L

∣∣
S=S(t)

= vec(S(t)
a )− β2

(−2
db

(
∂ vec(Sa)

∂ vec(S−1
a )

∣∣
S=S

(t)
a
)
)

︸ ︷︷ ︸
=W−1

a

∇vec(Sa)L
∣∣
S=S(t)

= vec(S(t)
a ) +

2β2

db
∇vec(S−1

a )L
∣∣
S=S(t) (use the chain rule and utlize the Jacobian matrix contained in W−1

a )

= vec(S(t)
a ) +

2β2

db
vec
( (1

2
(−dbS(t)

a + E[G
(
S

(t)
b

)−1
G⊤])

)
︸ ︷︷ ︸

=∇
S
−1
a

L
∣∣
S=S(t)

)
(recall the definition of L and use Eq. (10))

= (1− β2)vec(S
(t)
a ) +

β2

db
vec(E[G

(
S

(t)
b

)−1
G⊤]),

which is equivalent to the moving average scheme in Eq. (5) for updating Sa at iteration t+ 1.

Likewise, we can obtain the moving average scheme for Sb.

D PROOF OF CLAIM 4

We will show that the optimal solution of KL minimization minλa,λb
KL
(
E[gg⊤],S

)
with a

two-sided preconditioner S = (QaDiag(λa)Q
⊤
a ) ⊗ (QbDiag(λb)Q

⊤
b ) should satisfy this con-

dition: λ∗
a = 1

db
diag

(
Q⊤

a E[GP ∗
b G

⊤]Qa

)
and λ∗

b = 1
da
diag

(
Q⊤

b E[G⊤P ∗
aG]Qb

)
, where P ∗

k :=

QkDiag
(
(λ∗

k)
⊙−1

)
Q⊤

k , and Qk is known and precomputed by QR for k ∈ {a, b}.

Let Sk := QkDiag(λk)Q
⊤
k for k ∈ {a, b}. Because Qk is orthogonal, it is easy to see that

S−1
k := QkDiag(

(
λk

)⊙−1
)Q⊤

k .

Similar to the proof of Claim 2 in Sec. B, we can simplify the following objective function by
substituting Sa and Sb. Here, we also utilize the orthogonality of Qk for k ∈ {a, b}.

KL
(
E[gg⊤],S

)
=

1

2

(
db log det(Sa) + da log det(Sb) + E[Tr(S−1

a GS−1
b G⊤)]

)
+ const.

=
1

2

(
db log det(QaDiag(λa)Q

⊤
a ) + da log det(QbDiag(λb)Q

⊤
b ) + E[Tr(S−1

a GS−1
b G⊤)]

)
+ const.

=
1

2

(
(db
∑
i

log(λ(i)
a )) + (da

∑
j

log(λ
(j)
b )) + E[Tr(S−1

a GS−1
b G⊤)]

)
+ const. (use the orthogonality of Qa and Qb )

=
1

2

(
(db
∑
i

log(λ(i)
a )) + (da

∑
j

log(λ
(j)
b )) + E[Tr(QaDiag(λ⊙−1

a )Q⊤
a︸ ︷︷ ︸

=S−1
a

GQbDiag(λ⊙−1
b )Q⊤

b︸ ︷︷ ︸
=S−1

b

G⊤)]
)
+ const.

(11)
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The optimal λa and λb should satisfy the gradient stationary condition.

0 = ∂λaKL
(
E[gg⊤],S

)
=

1

2

(
dbλ

⊙−1
a + ∂λa

E[Tr(QaDiag(λ⊙−1
a )Q⊤

a G

=Pb︷ ︸︸ ︷
QbDiag(λ⊙−1

b )Q⊤
b G⊤)]

)
(use Eq. (11))

=
1

2

(
dbλ

⊙−1
a + ∂λa

E[Tr(Diag(λ⊙−1
a )Q⊤

a GPbG
⊤Qa)]

)
=

1

2

(
dbλ

⊙−1
a + ∂λa

E[λ⊙−1
a ⊙ diag

(
Q⊤

a GPbG
⊤Qa

)
]
)

(utilize the trace and the diagonal structure)

=
1

2

(
dbλ

⊙−1
a − E[λ⊙−2

a ⊙ diag
(
Q⊤

a GPbG
⊤Qa

)
]
)

=
1

2

(
dbλ

⊙−1
a − λ⊙−2

a ⊙ diag
(
Q⊤

a E[GPbG
⊤]Qa

))
⇐⇒ 0 = dbλa − diag

(
Q⊤

a E[GPbG
⊤]Qa

))
We obtain the optimal solution by solving this equation.

λ∗
a =

1

db
diag

(
Q⊤

a E[GP ∗
b G

⊤]Qa

))
Similarly, we can obtain the other expression.

E PROOF OF CLAIM 5

This proof is similar to the proof of Claim 4 in Sec. D. We will show that the optimal solution of
KL minimization mind KL

(
E[gg⊤],S

)
with an augmented preconditioner S = (QDiag(d)Q⊤)

is d∗ = E
[(
vec(Q⊤

a GQb)
)⊙2
]
, where d ∈ Rdadb×1 is an augmented eigenvalue vector, Q :=

Qa ⊗Qb, and Qk is given and precomputed by QR for k ∈ {a, b}.
We can simplify the objective function by substituting S. Here, we also utilize the orthogonality of
Qk for k ∈ {a, b}.

KL
(
E[gg⊤],S

)
=

1

2

(
log det(QDiag(d)Q⊤) + Tr(QDiag(d⊙−1)Q⊤E[gg⊤])

)
+ const.

=
1

2

(∑
i

log(di)) + Tr(QDiag(d⊙−1)Q⊤E[gg⊤])
)
+ const. (Q = Qa ⊗Qb is orthogonal)

=
1

2

(∑
i

log(di)) + E
[
Tr(QDiag(d⊙−1)Q⊤gg⊤)

)]
+ const. (linearity of the expectation)

=
1

2

(∑
i

log(di)) + E
[
Tr((vec(Q⊤

a GQb))
⊤Diag(d⊙−1)vec(Q⊤

a GQb)
]
+ const. (identity of Kronecker-vector product)

=
1

2

(∑
i

log(di)) + E
[
sum(d⊙−1 ⊙ (vec(Q⊤

a GQb))
⊙2
]
+ const. (leverage trace and diagonal struct.)

(12)

The optimal d should satisfy the gradient stationary condition.

0 = ∂dKL
(
E[gg⊤],S

)
=

1

2

(
d⊙−1 − E

[
d⊙−2 ⊙ vec(Q⊤

a GQb)
⊙2
)])

(use Eq. (12) and compute its derivative)

⇐⇒ 0 =
1

2

(
d− E

[
vec(Q⊤

a GQb)
⊙2
)])

Notice that the KL divergence is unbounded above. Thus, the optimal (minimal) solution exists and it
must be d∗ = E

[
vec(Q⊤

a GQb)
⊙2
]

to satisfy the condition.
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F KEY DISTINCTION BETWEEN SHAMPOO WITH TRACE SCALING AND
KL-SHAMPOO

We will show that Shampoo’s estimation with trace scaling is a generalization of Adafactor. Our inter-
pretation of Shampoo’s update is grounded in a generalization of the divergence used in Adafactor—
quantum relative entropy (Tsuda et al., 2005)—a Bregman divergence (Bregman, 1967) defined on
the trace of the matrix logarithm. This new view of Shampoo’s estimation is distinct from the existing
Frobenius-norm perspective. By contrast, KL-Shampoo’s update is based on the KL divergence
(classical relative entropy)—another Bregman divergence, but one defined on the (scalar) logarithm
of the matrix determinant.

We now introduce the definition of a Bregman divergence (Bregman, 1967) to formally discuss the
distinction between Shampoo with trace scaling and KL-Shampoo. Given a strictly convex and
differentiable (scalar) function F (·), the Bregman divergence based on this function is defined as

BF (X,Y ) := F (X)− F (Y )− Tr
(
[∇F (Y )](X − Y )

)
.

As an example, the KL divergence (classical relative entropy) KL(X,Y ) is a Bregman divergence
with convex function F (M) := −1

2 log det(M).

BF (X,Y ) = F (X)− F (Y )− Tr
(
[∇F (Y )](X − Y )

)
=

1

2

(
− log det(X) + log det(Y ) + Tr(Y −1(X − Y )

)
(defn. of function F (·))

=
1

2

(
log det(Y )− log det(X) + Tr(Y −1X)− dim(X)

)
= KL(X,Y )

where ∇F (M) = − 1
2M

−1. The KL divergence is also known as the log-determinant divergence
because function F is defined as the logarithm of the matrix determinant. Notably, the Hessian of
this F (·) gives rise to the Fisher-Rao metric, which is also known as the affine-invariant metric (up to
a constant scalar) (Lin et al., 2023).

Now, we introduce quantum relative entropy, which is also known as von Neumann (VN) divergence,
to show that Shampoo with trace scaling is a generalization of Adafactor. The VN divergence
VN(X,Y ) is defined as a Bregman divergence with convex function F (M) := Tr

(
MLogM(M)−

M
)
:

VN(X,Y ) := BF (X,Y )

= F (X)− F (Y )− Tr
(
[∇F (Y )](X − Y )

)
= Tr

(
XLogM(X)−X − Y LogM(Y ) + Y − LogM(Y )(X − Y )

)
(defn. of function F (·))

= Tr
(
XLogM(X)−X − LogM(Y )Y + Y − LogM(Y )(X − Y )

)
(property of the trace)

= Tr
(
XLogM(X)−X + Y − LogM(Y )X

)
= Tr

(
X[LogM(X)− LogM(Y )]

)
− Tr(X) + Tr(Y ),

where LogM(·) is the matrix logarithm function and Tsuda et al. (2005) show that ∇F (M) =
LogM(M). The Hessian of this F (·) gives rise to the Bogoliubov-Kubo-Mori (BKM) metric in
quantum physics (de Boer et al., 2023).
Claim 6. (Shampoo’s estimation scheme with trace scaling) The optimal solution of von Neumann
(VN) divergence (quantum relative entropy) minimization minSa,Sb

VN
(
E[gg⊤],S

)
:= Tr(S) −

Tr
(
E[gg⊤]LogM(S)

)
+ const. with a two-sided precontioner S = Sa ⊗ Sb should satisfy the

following condition.

S∗
a =

1

Tr(S∗
b )

E[GG⊤], S∗
b =

1

Tr(S∗
a)

E[G⊤G], (13)

where LogM(·) is the matrix logarithm function.

The optimal solutions is Shampoo’s estimation rule (power p = 1
2 ) with trace scaling:

S∗
a = E[GG⊤], S∗

b =
E[G⊤G]

Tr(E[GG⊤])
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Idealized VN-Shampoo: Improving
Shampoo (p=1/2) with trace scaling

1: Gradient Computation g := ∇ℓ(θ)
G := Mat(g) ∈ Rda×db

2: Covariance Estimation (each iter)(
Sa

Sb

)
← (1− β2)

(
Sa

Sb

)
+ β2

(
∆a

∆b

)
∆a :=

{
GG⊤ (variant 1)
GG⊤/

∑
(λb) (variant 2)

∆b :=

{
G⊤G (variant 1)
G⊤G/

∑
(λa) (variant 2)

3: Eigendecomposition (every T ≥ 1 iters)
λk,Qk ← eig(Sk) for k ∈ {a, b}

4: Preconditioning using Q := Qa ⊗Qb

θ ← θ− γ(QDiag(τλa ⊗λb)
−1/2Q⊤)g

τ :=

{
1/

√
Tr(Sa)Tr(Sb) (variant 1)

1 (variant 2)

VN-Shampoo: Replacing the slow eigen step
with a more efficient QR step (replace Step 3)
3a: Frequent Eigenvalue Estimation with EMA (each

iter)(
λa

λb

)
← (1−β2)

(
λa

λb

)
+ β2

(
diag(Q⊤

a ∆aQa)
diag(Q⊤

b ∆bQb)

)
3b: Infrequent Eigenbasis Estimation using QR

(every T ≥ 1 iters)
Qk ← qr(SkQk) for k ∈ {a, b}

Figure 6: Left: Simplified VN-Shampoo schemes
motivated by Claim 6 to incorporate trace scaling.
We consider two variants to incorporate trace scaling
into the original Shampoo. Variant 1 is inspired by
Adafactor’s update scheme, while Variant 2 is similar
to KL-Shampoo’s update scheme. Note that Variant 1
of the idealized VN-Shampoo is known as Shampoo
with trace scaling in the literature. Right: Adapting
our exponential moving average (EMA) approach en-
ables VN-Shampoo to use the faster QR procedure
and makes it competitive, as empirically shown in
Fig. 7 and Fig. 10.

If we force Sa and Sb to be diagonal matrices and solve the minimization problem, we obtain
Adafactor’s update as shown below.

S∗
a = Diag

(
E[GG⊤]

)
= Diag

(
E[G⊙21]

)
S∗
b = Diag

(
E[G⊤G]

Tr
(
E[GG⊤]

)) =
Diag

(
E[1⊤G⊙2]

)
Tr
(
E[1⊤G⊙21]

) =
Diag

(
E[1⊤G⊙2]

)√
Tr
(
E[1⊤G⊙2

)
Tr
(
E[G⊙21]

)
Remark: If the expectations are not computed exactly, the resulting update scheme is not the
optimal solution. For example, Adafactor’s update scheme is not optimal due to the EMA scheme on
the diagonal Kronecker factors.

Proof. We will show that Shampoo’s update scheme with trace scaling is an optimal solution to this
minimization problem. We first simplify the objective function when S = Sa ⊗ Sb. We will use this
(Kronecker sum) identity, LogM(Sa ⊗ Sb) = LogM(Sa)⊗ Ib + Ia ⊗ LogM(Sb), to simplify the
matrix logarithm.

VN(E[gg⊤],S) = Tr(S)− Tr
(
E[gg⊤]LogM(S)

)
+ const.

= Tr(Sa) Tr(Sb)− Tr
(
E[gg⊤]LogM(S)

)
+ const.

= Tr(Sa) Tr(Sb)− Tr
(
E[gg⊤]

(
LogM(Sa)⊗ Ib + Ia ⊗ LogM(Sb)

))
+ const.

= Tr(Sa) Tr(Sb)− Tr
(
E[gg⊤]

(
LogM(Sa)⊗ Ib

)
+Tr

(
E[gg⊤]

(
Ia ⊗ LogM(Sb)

))
+ const.

= Tr(Sa) Tr(Sb)− E
[
Tr
(
gg⊤(LogM(Sa)⊗ Ib

)]
− E

[
Tr
(
gg⊤(Ia ⊗ LogM(Sb)

))]
+ const.

= Tr(Sa) Tr(Sb)− E
[
Tr
(
G⊤LogM(Sa)GIb

)]
− E

[
Tr
(
G⊤IaGLogM(Sb)

)]
+ const.

= Tr(Sa) Tr(Sb)− E
[
Tr
(
G⊤LogM(Sa)G

)]
− E

[
Tr
(
G⊤GLogM(Sb)

)]
+ const.

= Tr(Sa) Tr(Sb)− E
[
Tr
(
GG⊤LogM(Sa)

)]
− E

[
Tr
(
G⊤GLogM(Sb)

)]
+ const.

= Tr(ExpM(Pa)) Tr(ExpM(Pb))− E
[
Tr
(
GG⊤Pa

)]
− E

[
Tr
(
G⊤GPb

)]
+ const. (14)

where Pk := LogM(Sk) for k ∈ {a, b} and ExpM(·) is the matrix exponential function.

Notice that the optimal solution should satisfy the gradient stationary condition. We consider the
gradient with respect to Pk because this condition must be satisfied regardless of Sk and Pk for
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2
, grafting)

Figure 7: Empirical results from a random search with 150 runs per method on language models
demonstrate that our exponential moving average (EMA) scheme for eigenvalue estimation, as
described in Fig. 6, makes Shampoo with trace scaling—referred to as Variant 1 of idealized VN-
Shampoo—practical and enables it to match or exceed the performance of Shampoo with step-size
grafting. Without this scheme, Shampoo with trace scaling performs poorly in practice, as shown
in the figure. We implement VN-Shampoo (i.e., Shampoo with trace scaling) ourselves, as it is not
available in existing implementations, including the state-of-the-art version from Meta (Shi et al.,
2023). As a reference, we also include the best Shampoo run with power p = 1/2 and grafting based
on the implementation from Meta.

k ∈ {a, b}. The condition for the derivative of Eq. (14) with respect to Pa is

0 = ∂Pa
VN(E[gg⊤],S) = ExpM(Pa)︸ ︷︷ ︸

=Sa

Tr(ExpM(Pb))︸ ︷︷ ︸
=Tr
(
Sb

) −E
[
GG⊤]

where Tsuda et al. (2005) show that ∂Pk
Tr(ExpM(Pk)) = ExpM(Pk).

Thus, we can see that the optimal solution must satisfy this condition

S∗
a =

E
[
GG⊤]

Tr(S∗
b )

Similarly, we can obtain the second condition.

S∗
b =

E
[
GG⊤]

Tr(S∗
a)

We can verify that the following solution satisfies these conditions.

S∗
a = E

[
GG⊤], S∗

b =
E
[
G⊤G

]
Tr(E

[
GG⊤

]
)

Notice that the optimal Sa and Sb are not unique. However, their Kronecker, which is S∗ = S∗
a⊗S∗

b ,
is unique. Prior studies (Morwani et al., 2025; Vyas et al., 2025a; Eschenhagen et al., 2025) have
shown that this solution is an optimal Kronecker approximation of the flattened gradient second
moment under the Frobenius norm.

In the Adafactor case, the result can be similarly derived when considering Sk to be a diagonal matrix
for k ∈ {a, b}.

G TWO-SIDED SHAMPOO SCHEME BASED ON FROBENIUS NORM

Frobenius norm (F-Shampoo) Morwani et al. (2025) consider a two-sided Shampoo variant based
on the Frobenius norm and derive the optimal solution via rank-1 singular value decomposition
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Idealized F-Shampoo: two-sided Shampoo
based on Frobenius norm (p=1/2)

1: Gradient Computation g := ∇ℓ(θ)
G := Mat(g) ∈ Rda×db

2: Covariance Estimation (each iter)(
Sa

Sb

)
← (1− β2)

(
Sa

Sb

)
+ β2

(
∆a

∆b

)
∆a :=

{
GSbG

⊤/Tr(S2
b ) (v1)

GQbDiag(λb)Q
⊤
b G

⊤/
∑

(λ2
b) (v2)

∆b :=

{
G⊤SaG/Tr(S2

a) (v1)
G⊤QaDiag(λa)Q

⊤
a G/

∑
(λ2

a) (v2)
3: Eigendecomposition (every T ≥ 1 iters)

λk,Qk ← eig(Sk) for k ∈ {a, b}
4: Preconditioning using Q := Qa ⊗Qb

θ ← θ − γ(QDiag(λa ⊗ λb)
−1/2Q⊤)g

F-Shampoo: Replacing the slow eigen step with
a more efficient QR step (replace Step 3)
3a: Frequent Eigenvalue Estimation with EMA (each

iter)(
λa

λb

)
←(1−β2)

(
λa

λb

)
+β2

(
diag(Q⊤

a ∆aQa)
diag(Q⊤

b ∆bQb)

)
3b: Infrequent Eigenbasis Estimation using QR

(every T ≥ 1 iters)
Qk ← qr(SkQk) for k ∈ {a, b}

Figure 8: Left: Simplified two-sided Shampoo
schemes based on the Frobenius norm without mo-
mentum. We consider two variants. Variant 1 is in-
spired by Claim 7, while Variant 2 is similar to KL-
Shampoo’s update scheme, which utilizes eigenval-
ues. Note that Variant 1 of the idealized F-Shampoo
is known as the two-sided Shampoo in the litera-
ture (Morwani et al., 2025). Right: Adapting our
exponential moving average (EMA) approach en-
ables F-Shampoo to use the faster QR procedure and
makes it more competitive, as empirically shown in
Fig. 9.

(SVD) of the second moment E[gg⊤] (Van Loan & Pitsianis, 1993). However, this solution is often
unattainable in practice and is computationally expensive for two reasons: (1) the expectation E[gg⊤]
must be approximated; and (2) performing the SVD is costly—yielding complexity (O(d2ad

2
b)) in

general even for rank-1 SVD—which is higher than the eigen decompositions with complexity
(O(d3k)) for k ∈ {a, b} that we aim to avoid. Instead, we analyze the stationarity conditions (Claim 7)
and derive a new variant, idealized F-Shampoo (Fig. 8), that is structurally similar to KL-Shampoo.
While a straightforward implementation of F-Shampoo performs poorly in practice, the techniques
(Sec. 4) we develop for KL-Shampoo can be adapted to improve its performance (Fig. 9).
Claim 7. (Shampoo’s estimation scheme based on Frobenius norm) The optimal solution of the
Frobenius norm minimization minSa,Sb

Frob
(
E[gg⊤],S

)
:= ∥E[gg⊤] − S∥Frob with a two-sided

precontioner S = Sa ⊗ Sb should satisfy the following condition.

S∗
a =

1

Tr((S∗
b )

2)
E[GS∗

bG
⊤], S∗

b =
1

Tr((S∗
a)

2)
E[G⊤S∗

aG], (15)

Remark: Although the solution can be obtained via rank-1 singular value decomposition (SVD)
(Van Loan & Pitsianis, 1993) on this outer product, E[gg⊤], it can be computationally expensive to
compute the solution due to the high dimensionality of the product. Moreover, the optimal solution is
only achievable when the expectation of the outer product is computed exactly. Obtaining the optimal
solution using SVD is even more expensive in tensor-valued cases.

Proof. To simplify the proof, we will consider the square of the objective function, as the optimal
solution remains unchanged. We simplify the square of the objective function by substituting S.
Here, we utilize the definition of the norm and re-express the norm using the matrix trace.

∥E[gg⊤]− Sa ⊗ Sb∥2Frob

= Tr
(
(E[gg⊤]− Sa ⊗ Sb)

⊤(E[gg⊤]− Sa ⊗ Sb)
)

(an equivalent definition of the square of the norm)

= Tr
(
S2
a ⊗ S2

b − 2E[gg⊤](Sa ⊗ Sb)
)
+ const. (Sk is symmetric for k ∈ {a, b})

= Tr
(
S2
a

)
Tr
(
S2
b

)
− 2Tr

(
E[gg⊤](Sa ⊗ Sb)

)
+ const. (Property of a Kronecker product)

= Tr
(
S2
a

)
Tr
(
S2
b

)
− 2E

[
Tr
(
(gg⊤)(Sa ⊗ Sb)

)]
+ const. (linearity of the expectation)

= Tr
(
S2
a

)
Tr
(
S2
b

)
− 2E

[
Tr
(
g⊤vec(SaGSb)

)]
+ const. (Property of a Kronecker product)

= Tr
(
S2
a

)
Tr
(
S2
b

)
− 2E

[
Tr
(
G⊤SaGSb

)]
+ const. (Property of a trace)
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Figure 9: Empirical results from a random search with 150 runs per method on language models
demonstrate that our exponential moving average (EMA) scheme for eigenvalue estimation, as
described in Fig. 8, improves the performance of the two-sided Shampoo based on Frobenius norm
(see Eq. 4 of Morwani et al. (2025) and Claim 7)—referred to as Variant 1 of idealized F-Shampoo.
All these methods perform QR or eigen decompostion at every 10 iterations. Note that F-shampoo
cannot match the performance of Shampoo with step-size grafting. This also illustrates using the
Frobenius norm for preconditioner estimation is not ideal. To ensure a fair comparison and eliminate
implementation bias, we use our own implementation of F-Shampoo, aligned closely with that of
KL-Shampoo. As a reference, we also include the best Shampoo run with power p = 1/2 and grafting
based on the state-of-the-art version from Meta (Shi et al., 2023).

We can simplify the stationarity condition with respect to Sa as below.

0 = ∂Sa
∥E[gg⊤]− Sa ⊗ Sb∥2Frob

= ∂Sa

(
Tr
(
S2
a

)
Tr
(
S2
b

)
− 2E

[
Tr
(
G⊤SaGSb

)]
+ const.

)
= 2
(
Tr(S2

b )Sa − E[GSbG
⊤]
)

Thus, the optimal solution should satisfy this condition S∗
a = 1

Tr
(
(S∗

b )
2
)E[GS∗

bG
⊤]. Similarly, we

can obtain the other condition. Morwani et al. (2025) also consider a similar condition (see Eq. 4 of
their paper).

H ADDITIONAL EXPERIMENTS

We conduct three additional sets of experiments, following the same experimental setup as described
in the main text, to further evaluate our approach. Due to limited computational resources, we focus
on two language models—NanoGPT (123M) and Llama (134M)—in these additional experiments.

In the first additional experiment, we evaluate the two-sided Shampoo based on Frobenius norm
(Morwani et al., 2025; Eschenhagen et al., 2025)—referred to as idealized F-Shampoo—and find
that it performs poorly in practice even when we improve its performance using QR and EMA on
the eigenvalues, as shown in Fig. 9. This indicates using the Frobenius norm for preconditioner
estimation is not ideal.

In the second additional experiment, we evaluate Shampoo with trace scaling (Morwani et al., 2025;
Vyas et al., 2025a; Eschenhagen et al., 2025)—referred to as idealized VN-Shampoo—and find
that it performs poorly in practice even when using eigendecomposition. By contrast, incorporating
our moving-average scheme enables it to perform well and use the fast QR decomposition, as
demonstrated in Fig. 7.

In the third additional experiment, we evaluate the suitability of KL versus VN divergence for
refining Shampoo’s estimation rule in a comparable setting, where both variants outperform SOAP
while matching SOAP-level pre-iteration runtime. As shown in Fig. 10, KL-Shampoo consistently
outperforms VN-Shampoo, even when VN-Shampoo is made practical and competitive using similar
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techniques to those employed in KL-Shampoo. These results underscore the advantages of the KL
divergence over the VN divergence.
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Figure 10: Empirical results (random search using 150 runs for each method) demonstrate that
the advantages of KL-Shampoo over VN-Shampoo under comparable settings. In particular, we
strengthen VN-Shampoo (i.e., Shampoo with trace scaling) by incorporating the QR step and the EMA
scheme for eigenvalue estimation, as described in Fig. 6, to achieve SOAP-level pre-iteration runtime.
To ensure a fair comparison and eliminate implementation bias, we use our own implementation of
VN-Shampoo, aligned closely with that of KL-Shampoo. For runtime comparison, we include the
best SOAP run as a reference. All methods take the same number of iterations in these experiments.
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Figure 11: Empirical results (random search using 100 runs for each method) demonstrate that the
performance of KL-Shampoo on a larger model. We do not tune the frequency for performing QR to
optimize KL-Shampoo’s runtime.
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Figure 12: Empirical results demonstrate that the performance of KL-Shampoo using larger training
steps. As we can see that, KL-Shampoo consistently outperforms SOAP when using more training
tokens.

Practical version of KL-Shampoo
1a: Gradient Computation g := ∇ℓ(θ)

G := Mat(g) ∈ Rda×db

1b: Use Gradient Momentum
M ← (1− β1)M + β1G

2: Covariance Estimation (each iter)(
Sa

Sb

)
← (1− β2)

(
Sa

Sb

)
+ β2

(
∆a

∆b

)
∆a :=GQbDiag(λ⊙−1

b )Q⊤
b G

⊤/db =
1
db
[GQb Diag(λ

⊙−1/2
b )][GQb Diag(λ

⊙−1/2
b )]⊤

∆b :=G⊤Qa Diag(λ⊙−1
a )Q⊤

a G/da = 1
da

[G⊤Qa Diag(λ
⊙−1/2
a )][G⊤Qa Diag(λ

⊙−1/2
a )]⊤

3a: Eigenvalue Estimation with EMA (each iter)(
λa

λb

)
← (1−β2)

(
λa

λb

)
+ β2

(
diag(Q⊤

a ∆aQa)
diag(Q⊤

b ∆bQb)

)
=

(
(1−β2)λa + β2la
(1−β2)λb + β2lb

)
la := 1

db
sum([Q⊤

a GQb Diag(λ
⊙−1/2
b )]⊙2, 1) = mean([Q⊤

a GQb Diag(λ
⊙−1/2
b )]⊙2, 1)

lb :=
1
da

sum([Q⊤
b G

⊤Qa Diag(λ
⊙−1/2
a )]⊙2, 1) = mean([Diag(λ

⊙−1/2
a )Q⊤

a GQb]
⊙2, 0)

3b: Infrequent Eigenbasis Estimation using QR (every T ≥ 1 iters)
Qk ← qr(SkQk) for k ∈ {a, b}

4a: Add weight decay
θ ← θ − γλθ

4b: Preconditioning using Q := Qa ⊗Qb

θ ← θ − γ(QDiag(λa ⊗ λb)
−1/2Q⊤)vec(M)

Figure 13: A practical version of KL-Shampoo with momentum β1 and weight decay λ. In
practice, we also use either damping or pseudo-inverse when computing λ

⊙−1/2
k for k ∈ {a, b}.

In original Shampoo, Sk is initialized by a non-zero matrix to keep eigenvalues λk non-zero. In
KL-Shampoo, we directly initialize λk to be non-zero (e.g., 0.1) while keeping Sk to be zero
for k ∈ {a, b}.
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