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Abstract001

Sensorial language — the language connected002
to our senses including vision, sound, touch,003
taste, smell, and interoception — plays a fun-004
damental role in how we communicate expe-005
riences and perceptions. We explore the rela-006
tionship between sensorial language and tra-007
ditional stylistic features, like those measured008
by LIWC, using a novel Reduced-Rank Ridge009
Regression (R4) approach. We demonstrate010
that low-dimensional latent representations of011
LIWC features (r = 24) effectively capture012
stylistic information for sensorial language pre-013
diction compared to the full feature set (r =014
74). We introduce Stylometrically Lean Inter-015
pretable Models (SLIM-LLMs), which model016
non-linear relationships between these style di-017
mensions. Evaluated across five genres, SLIM-018
LLMs with low-rank LIWC features match019
the performance of full-scale language mod-020
els while reducing parameters by up to 80%.021

1 Introduction022

Linguistic style includes traditional stylistic fea-023

tures like sentence length, language complexity,024

sentiment, and syntactic structure. It also includes025

patterns in the language used to describe sensory026

experiences — sensorial style, a phenomenon that027

has only recently received attention in the stylomet-028

rics literature.029

Consider that a person might describe her feel-030

ings by using the word ‘sad’ or she could use the031

more complex word ‘melancholic’ to describe the032

same feelings. If she uses complex language fre-033

quently and consistently, it may be considered a034

part of her linguistic style. The same person hav-035

ing a cup of coffee, might focus on the taste of036

the coffee and describe it as ‘bitter’ or she might037

instead focus on its warmth and can describe it038

as ‘hot’. This emphasis on one sensory modal-039

ity over another would reflect her sensorial style.040

Alternatively, she might engage with multiple sen-041

sory aspects equally, describing both the coffee’s042

temperature and its taste - this balanced sensory at- 043

tention would also characterize her sensorial style. 044

Sensorial linguistics investigates the relationship 045

between sensory perception and language, study- 046

ing how different experiences and perceptions are 047

represented using linguistic units (Winter, 2016). 048

Sensorial style is a relatively new area of research 049

and is informed by ideas from sensorial linguis- 050

tics and holds significant potential for providing 051

insights into human cognition. 052

Standard stylometric lexicons, such as LIWC 053

(Pennebaker et al., 2007), do include some senso- 054

rial terms. However since the primary focus of 055

LIWC is on psychological and cognitive aspects, 056

the sensorial terms are generally distributed across 057

different LIWC subcategories and LIWC’s cover- 058

age of the sensorial language space is sparse1. The 059

same is true for other lexicons like ANEW (Bradley 060

and Lang, 1999). 061

Understanding how traditional stylometric fea- 062

tures relate to sensorial language could provide 063

insights into human cognition and language pro- 064

cessing. This relationship is particularly important 065

given cognitive science theories suggesting that lin- 066

guistic processes are closely tied to the brain’s per- 067

ceptual, motor, and introspective systems (Barsa- 068

lou, 2008). Just as we know that depression can 069

directly impact how people perceive colors (Bubl 070

et al., 2010), changes in psychological states might 071

systematically affect how people use sensory lan- 072

guage. Thus, our goal is to investigate the rela- 073

tionship between these two major dimensions of 074

linguistic style to better understand how our minds 075

integrate sensory and psychological experiences in 076

language use. 077

Our motivation for studying this relationship 078

stems from theories in cognitive science. The inter- 079

action between different dimensions of linguistic 080

1The LIWC 2015 (Pennebaker et al., 2015) lexicon only
covers 29% of the sensorial vocabulary, defined by Khalid and
Srinivasan
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style can be modeled using cognitive frameworks081

similar to the ‘mental lexicon’ proposed by Levelt082

(1992), which posits a central repository of lin-083

guistic knowledge that mediates various aspects of084

language processing. Just as the mental lexicon pro-085

vides a unified architecture for understanding how086

different linguistic components interact in human087

cognition, language models can serve as compu-088

tational analogues that allow us to systematically089

explore the relationships between traditional stylo-090

metric features and sensorial style.091

Our work aims adds to the stylometric literature092

by computationally modeling the relationship be-093

tween traditional style features and sensorial style.094

We introduce Stylometrically Lean Interpretable095

Models (SLIM-LLMs), that provide a more inter-096

pretable lens to study the relationship between tra-097

ditional linguistic style and sensorial style. We use098

SLIM-LLMs to test if reduced models still bene-099

fit from LIWC features. In particular, we ask the100

following questions:101

• RQ 1: When predicting sensorial language102

use from traditional stylistic features (like103

LIWC), can these style features be effectively104

represented in a lower-dimensional space105

while maintaining their predictive power for106

sensorial word prediction?107

We model the interactions between LIWC-style and108

sensorial style using Reduced-Rank Ridge Regres-109

sion (R4). We use R4 to identify low-rank group110

structures within LIWC-style.111

• RQ 2: Can SLIM-LLMs models match the112

performance of full-scale models in predicting113

sensorial language use?114

We conduct large-scale analysis across diverse text115

genres, providing empirical support for theoreti-116

cal claims about the interaction between different117

aspects of linguistic style.118

2 Related Works119

The study of sensorial style is a relatively new area120

of research. There are no directly comparable stud-121

ies examining sensorial style and its relation to122

traditional styles. Instead, we review works from123

allied fields — stylometry and sensorial linguistics124

— that intersect with our work.125

2.1 Stylometry126

Stylometry focuses on analyzing linguistic style127

use through various computational and statistical128

techniques. While much of stylometric research129

has centered on author attribution (Overdorf and 130

Greenstadt, 2016), more recently stylometrics have 131

been used to analyze emotional and psychological 132

dimensions of language use. 133

One of the primary stylometric methods that 134

focus on psycholinguistics is Linguistic Inquiry 135

and Word Count (LIWC) (Pennebaker et al., 2007). 136

LIWC measures various linguistic features, includ- 137

ing emotional tone, cognitive processes, and per- 138

sonal concerns. It has been widely used for tasks 139

ranging from author attribution to modeling psy- 140

chological states such as depression (De Choud- 141

hury et al., 2013). 142

Similarly, ANEW (Bradley and Lang, 1999), 143

provides a set of normative emotional ratings for 144

around 1000 English words. VADER (Hutto and 145

Gilbert, 2014) has emerged as a rule-based sen- 146

timent analysis tool that combines a lexicon and 147

rule-based approach to measure sentiment. 148

In addition to these emotion-focused measures, 149

stylometric features have traditionally included a 150

range of measures like Readability and n-gram us- 151

age (Potthast et al., 2017) that represent different 152

dimensions of linguistic style. 153

Recently LLMs have been increasingly utilized 154

to represent linguistic style. Li et al. (2019) and 155

Sousa et al. (2019) have demonstrated the effec- 156

tiveness of LLMs like BERT, in modeling vari- 157

ous aspects of linguistic style, including sentiment. 158

However, while these LLM-based approaches have 159

shown impressive results, they often lack inter- 160

pretability. Additionally, there has been a limited 161

focus on understanding sensorial style in these ap- 162

proaches. 163

2.2 Sensorial Linguistics 164

Sensorial linguistics has traditionally focused on 165

the five classical senses: visual, auditory, olfactory, 166

gustatory, and haptic. However, recent research has 167

expanded this model to include interoception as a 168

sixth sense (Lynott et al., 2020). 169

Winter et al. (2018) analyzed the distribution of 170

sensorial language across different parts of speech 171

(nouns, adjectives, and verbs) and found that vi- 172

sual language dominates across all categories. This 173

aligns with Viberg (1983)’s proposed universal hier- 174

archy of the senses, with vision at the top, followed 175

by hearing, touch, smell, and taste. 176

Lynott et al. (2020) introduced the Sensorimotor 177

Lexicon, a comprehensive resource containing sen- 178

sory ratings for around 40,000 concepts across six 179

sensory dimensions, including interoception. 180
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2.3 Sensorial Style181

Recently, methods have been proposed to analyze182

sensorial style. Kernot et al. (2016) proposed a183

method to analyze sensorial style by measuring the184

use of sensory adjectives. Khalid and Srinivasan185

(2022) introduced a method to measure sensorial186

style based on synaesthesia, or the propensity to187

replace one sensorial modality with another.188

Prior works have focused on analyzing tradi-189

tional stylometry and sensorial style independently,190

and there remains a gap in understanding how these191

two aspects of linguistic style interact. Our work192

aims to bridge this gap by proposing a novel ap-193

proach that models the relationship between tradi-194

tional linguistic style (as captured by LIWC fea-195

tures) and sensorial style.196

3 Methods197

3.1 Representing Sensorial Style198

Sensorial style can be modeled and represented199

across a range of granularities. A synaesthesia-200

based approach has been used to model sensorial201

style at a high level (Khalid and Srinivasan, 2022)202

that focuses on patterns of sensory language-use203

across broader linguistic units or entire texts, rather204

than on individual words. In contrast, we model205

sensorial style at the word-level, which focuses on206

individual sensorial words and their relationships207

to other linguistic style features.208

We represent a sensorial sentence as a one-hot209

encoding of the sensorial vocabulary. Khalid and210

Srinivasan (2022) have defined the sensorial vocab-211

ulary V as a subset of 18,749 words from the Lan-212

caster Sensorimotor Lexicon (Lynott et al., 2020).213

They consider a sentence to be sensorial if it has214

one or more sensorial words in it. We use this crite-215

rion and consider a sensorial sentence to have just216

one sensorial term. For example, ‘it is a noisy room’217

has two sensorial words, the auditory ‘noisy’ and218

the visual ‘room’. Assuming ‘noisy’ and ‘room’219

are the second and fourth words in the sensorial220

vocabulary, this sentence constitutes two sensorial221

sentences represented as [0, 1, 0, 0, . . . , 0] for222

‘noisy’ and [0, 0, 0, 1, . . . , 0] for ‘room’. The223

length of the two vectors equals the size of our224

sensorial vocabulary; that is, |V | = 18, 749.225

We formalize the previous idea as follows. Let226

V = {w1, w2, ..., wn} be the sensorial vocabulary227

of size n. For a given sensorial word w in a sen-228

tence, we represent it as a vector y ∈ {0, 1}n,229

where yi = 1 if w = wi and 0 otherwise. A sen-230

tence S with m sensorial words is represented as 231

a set of m n-vectors and S = {y1,y2, ...,ym}, 232

where yj (j = 1, . . . ,m) corresponds to the one 233

hot encoding of the jth sensorial sentence. 234

We represent each sensorial sentence as a 235

vector based on the LIWC-style. Let X = 236

{x1, x2, ..., xm} be the set of m LIWC categories. 237

For a given sensorial sentence S, we exclude the 238

sensorial term ws and represent the style of the 239

remaining sentence as a vector s ∈ Rm. Each ele- 240

ment si of this vector corresponds to the proportion 241

of words in S excluding ws that belong to the ith 242

LIWC category xi: si = (
∣∣{w ∈ S \ {ws} : w ∈ 243

xi}
∣∣)/(|S| − 1). 244

For example, given the sentence ‘it is a noisy 245

room’ with two sensorial words ‘noisy’ and ‘room’, 246

we create two style vectors. For ‘room’, the style 247

vector will be based on [‘it’, ‘is’, ‘a’, ‘noisy’], and 248

for ‘noisy’ the style vector will be based on [‘it’, 249

‘is’, ‘a’, ‘room’]. Given there are 4 words in the 250

sentence, the style vectors for both sentences would 251

have a value of 0.75 in the function word dimension 252

corresponding to ‘it’, ‘is’ and ‘a’. 253

3.2 Linear Models for Style Interactions 254

We use regression to model the relation between 255

traditional style and sensorial style. Let the style 256

features of a sentence S be the LIWC vector 257

x = (x1, . . . xm) and let y = (y1, y2 . . . yn) be the 258

one-hot sensorial vector of the sentence, where m 259

is the number of style features and n is the size of 260

the sensorial vocabulary S . Then, y⊤ = x⊤B+e⊤ 261

models the relation between linguistic style x and 262

sensorial language use y, with e denoting the er- 263

rors independent of x. The regression coefficient 264

matrix is B ∈ Rm×n, and the element bij is the 265

mean increase in the sensorial word yj for a unit 266

increase in style feature xi, given other features in 267

x remain unchanged. The linear regression model 268

is equivalent to a sensorial-word-prediction prob- 269

lem, where we predict the sensorial word ws in a 270

sentence from the linguistic style of the remain- 271

ing text. This method is analogous to the masked 272

word prediction task used to train LLMs like BERT 273

(Devlin, 2018). 274

We fit the regression model to the training data as 275

follows. For a set of k sentences, the ith sentence 276

has sensorial vector yi = (yi1, . . . , yin), and its 277

corresponding style vector is xi = (xi1, . . . , xim). 278

The training data are represented as the k × n 279

matrix Y = [y1, . . . ,yk]
⊤ and k × m matrix 280

X = [x1, . . . ,xk]
⊤. For a sufficiently large k, 281
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the least squares estimate of B is (X⊤X)−1X⊤Y282

(Qian et al., 2022). Previous works have shown that283

LIWC features have a low-rank structure (Geng284

et al., 2020). However, the standard least squares285

approach fails to capture this structure and the la-286

tent dependencies between the sensorial features287

and LIWC-style features, which correspond to the288

columns of Y and X. This limitation is particularly289

significant because not all LIWC features capture290

the same amount of information. For example, the291

function words category is more informative than292

categories like fillers. Additionally, LIWC cate-293

gories exhibit hierarchical relationships and over-294

lapping memberships. For instance, in the LIWC295

features, first person singular is a subcategory of296

personal pronouns, whereas the ingestion category297

contains words like ‘eat’ that also belong to the298

verb category.299

3.3 Reduced-Rank Ridge Regression300

We circumvent the previous limitations by assum-301

ing that B is a low-rank matrix. This assump-302

tion implies that the previous linear model be-303

comes a reduced-rank regression model (Ander-304

son, 1951), which assumes that B has a rank r and305

r ≪ min{m,n}. In a sparse B, a large fraction306

of the entries are 0, where bij = 0 denotes that xi307

and yj are not associated. Similarly, a row sparse308

B has bij = 0 for j = 1, . . . , n for many is. If the309

ith row of B is zero, then xi is not associated with310

any sensorial word. To model a rank-r B, we set311

B = UV⊤, where U = (u1, u2 . . . ur) ∈ Rm×r312

and V = (v1, v2 . . . vr) ∈ Rn×r. By assuming row313

sparsity of B, we can effectively select a subset of314

LIWC features that have the strongest associations315

with sensorial words across different contexts. This316

assumption is more appropriate for our goals of317

identifying the most influential LIWC features that318

contribute to sensorial language use.319

Consider a reduced-rank model for regressing320

Y on X. For a rank r, Chen and Huang (2012)321

propose a (row) sparse reduced-rank regression322

(SRRR) of B via U and V estimates as323

Ûs, V̂s = argmin
U∈Rm×r

V⊤V=Ir

{1

2
∥Y −XUV⊤∥2F324

+ λ

m∑
j=1

∥Uj∥2
}

(1)325

where B̂s is the SRRR estimate of B, Ir is an r×r326

identity matrix, ∥ · ∥F is the Frobenius norm, and327

∥Uj∥2 is the group lasso penalty on the jth row of 328

U (Yuan and Lin, 2006). Qian et al. (2022) develop 329

an efficient alternative minimization algorithm for 330

estimating U and V, which estimates U given V 331

and vice versa. The group lasso norm on U rows 332

implies that some of the Bs rows are zeros, but the 333

estimation algorithm suffers from computational 334

bottlenecks particularly when k and m are in the 335

order of ten thousand. 336

We propose Reduced-Rank Ridge Regression 337

(R4) as an efficient alternative to SRRR. The B ma- 338

trix in our problem is not sparse because all stylistic 339

features are associated with sensorial words, even 340

when their magnitudes are small; therefore, we re- 341

place the group lasso penalty on the B rows by a 342

ridge penalty to obtain the R4 estimates of U and 343

V as 344

Û, V̂ = argmin
U∈Rm×r

V⊤V=Ir

{1

2
∥Y −XUV⊤∥2F 345

+ λ

m∑
j=1

∥Uj∥22
}
, 346

B̂ = ÛV̂⊤ (2) 347

where B̂ is the R4 estimate of B and is obtained by 348

a slight modification of the alternative minimiza- 349

tion algorithm in Qian et al. (2022). The estima- 350

tion algorithm of V given U remains the same in 351

equation 1, but the estimation of U given V uses 352

ridge regression. Unlike Bs in equation 1, B̂ is 353

not sparse but has better predictive performance 354

(Hastie, 2020). The columns of Û represent the 355

latent factors or components that capture the shared 356

structure between LIWC and sensorial features. 357

By reducing LIWC features to rank r ≪ 358

min{m,n}, we can identify if a small set of la- 359

tent dimensions captures key stylistic information. 360

3.4 Modeling Non-Linear Style Interactions 361

The R4 model in equation 2 assumes a linear associ- 362

ation between LIWC-style and sensorial style. The 363

associations, however, are not linear from linguis- 364

tic and cognitive perspectives. We model the rela- 365

tionship between LIWC-style and sensorial style 366

using LLMs as a proxy. LLMs, trained on vast 367

corpora of human language, encapsulate general 368

language norms and patterns. They capture the 369

complex interactions mediated by our broader lin- 370

guistic knowledge and cognitive processes (Man- 371

ning et al., 2020). 372
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To model this interaction, we represent tradi-373

tional stylistic features of a sentence using our374

LIWC-based representation. We then use an LLM375

for a masked language modeling task on the orig-376

inal sentence, with the sensorial words masked.377

Finally, we use the LLM’s predictions for masked378

sensorial words, combined with the LIWC-style,379

to predict sensorial style. Formally, let S be the380

original sentence, and m(S) be the sentence with381

sensorial words masked. Let f be the function382

represented by the LLM that takes the masked sen-383

tence m(S) and returns the encoder embedding rep-384

resentation of the masked word. Then, the model385

relating sensorial words and LLM’s encoder em-386

beddings of the masked word is387

yi = g(f(m(Si));xi) + ei, ei ∈ Rn (3)388

where Si is the ith sentence, yi and xi remain389

the same as in equation 2, ei is the ith error vector,390

and g is a classifier function that predicts sensorial391

language use from the combination of the LLM’s392

encoder embeddings and the original stylistic fea-393

tures.394

3.5 Stylometrically Lean Interpretable395

Models (SLIM-LLMs)396

LLMs like BERT are often overparameterized397

(Matton and de Oliveira, 2019) and may learn398

LIWC-like features implicitly. By reducing pa-399

rameters, we can test if explicit LIWC features still400

provide complementary information, suggesting401

they capture fundamental style dimensions. We402

propose using dimensionality reduction techniques403

to create Stylometrically Lean Interpretable Models404

(SLIM-LLMs). SLIM-LLMs are reduced versions405

of standard LLMs that aim to reveal the underly-406

ing relationships between LIWC-style and senso-407

rial style more clearly. We create SLIM-LLMs408

using Singular Value Decomposition (SVD). Let409

E ∈ Rk×d be the encoder embedding matrix of our410

LLM, where d is the dimension of the hidden state411

and k is the number of sentences in our dataset.412

The SLIM-LLM retain only the top r singular413

values and their corresponding singular vectors for414

the SVD of E and are denoted as Eslim. Specifi-415

cally, let E = UΣV⊤ be the SVD of E, where416

U ∈ Rk×k and V ∈ Rd×d are the left and right417

orthonormal matrices. Then, Eslim = UrΣrV
⊤
r ,418

where Ur ∈ Rk×r, Σr ∈ Rr×r, and Vr ∈ Rd×r.419

The nonlinear classification model relating senso-420

rial words and LLMs in equation 3 is now rewritten421

for SLIM-LLMs as 422

yi = g(fslim(m(Si));xi) + eslimi, eslimi ∈ Rn

(4)
423

where eslimi is the ith error term, fslim is the func- 424

tion represented by our SLIM-LLM that takes the 425

masked sentence m(Si) as input and outputs a 426

dimension-reduced embedding of xi, and g is a 427

classifier function that predicts sensorial language 428

use from the combination of the SLIM-LLM’s re- 429

duced encoder embeddings and the original stylis- 430

tic features. In this formulation, fslim(m(Si)) repre- 431

sents the projection of the masked sentence m(Si) 432

onto the reduced-dimensional space defined by 433

Ur so that fslim(m(Si)) = U⊤
r f(m(Si)), where 434

f(m(Si)) is the original LLM’s encoder embed- 435

ding for the masked sentence m(Si). By reducing 436

the dimensionality of the encoder embeddings, we 437

aim to maintain the benefits of using LLMs as prox- 438

ies for the mental lexicon while revealing more 439

interpretable relationships between the different 440

aspects of linguistic style. 441

The choice of r, the number of singular values to 442

retain, represents a trade-off between model com- 443

plexity and interpretability. A smaller r results in a 444

more interpretable model, but may lose some nu- 445

anced relationships, while a larger r retains more 446

information but may be less interpretable. The opti- 447

mal value of r can be determined through empirical 448

analysis. 449

4 Datasets 450

We study the style of 5 different text genres us- 451

ing use BERT-base (Devlin, 2018)2. This section 452

details the datasets used in our study. 453

Each genre represents a distinct way in which 454

language is employed to achieve specific commu- 455

nicative goals or to serve particular purposes. 456

Critical Language: Reviews from the Yelp 457

Dataset Challenge (2005-2013), encompassing ap- 458

proximately 42,000 businesses. 459

Literary Language: English novels from 460

Project Gutenberg’s Domestic fiction category, 461

spanning works from 18th century author Regina 462

Maria Roche to 20th century writer Lucy Maud 463

Montgomery. 464

Poetic Language: Lyrics of songs featured on 465

the Billboard Hot 100 charts (1963-2021), obtained 466

2Experiments using BERT-large, DistilBERT (Sanh et al.,
2019) and RoBERTa-base (Liu, 2019) gave comparable results
(See: Appendix A.3), thus we only report BERT-base results.
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Figure 1: Mean Squared Error (MSE) for the five language aspect datasets (Articles, Advertisements, Novels,
Business Reviews, and Music Lyrics) plotted against the number of latent dimensions (r) in the Reduced-Rank Ridge
Regression (R4) model. The plot shows the decrease in reconstruction error as the number of latent dimensions
increases from 1 to 74.

via the Genius API. This chart is widely regarded467

as the music industry benchmark (Whitburn, 2010).468

Persuasive Language: Airbnb property descrip-469

tions (2008-2022), showcasing accommodations,470

amenities, and local attractions to potential guests.471

Informative Language: Wikipedia articles, col-472

lected in July 2024. Unlike other datasets, these473

entries are subject to continuous updates, preclud-474

ing precise dating.475

Table 1 (Appendix A.1) presents an overview of476

our text collections and genres, along with the spe-477

cific number of sensorial sentences extracted from478

each collection. For our experiments, we randomly479

select a sample of 300,000 sensorial sentences from480

each set to ensure consistency across all genres.481

5 Results482

5.1 Latent Representation of LIWC-Style483

We investigate the relationship between the la-484

tent representation of LIWC-style and sensorial485

style. To find the optimal number of latent dimen-486

sions that best capture LIWC-style, we solve the487

Reduced-Rank Ridge Regression (R4) for a range488

of r values from 1 to 74.489

We calculate the mean squared error (MSE) of490

the reconstructed B = UV⊤ for this range of r on491

the test data. Figure 1 shows the MSE for the five492

datasets across different values of r.493

While the reconstruction errors vary in absolute494

terms between the five genres, we observe a general495

trend across all datasets. On average, we see the496

greatest decrease in the reconstruction error within497

the first 20 dimensions. The error rate begins to498

asymptote for values of r > 20.499

Based on this observation and the diminishing re-500

turns in error reduction, we empirically determine501

that r ≈ 24 provides an optimal latent dimension 502

representation for LIWC-style. 503

This finding suggests that the relationship be- 504

tween LIWC-style features and sensorial language 505

use can be effectively represented in a relatively 506

low-dimensional latent space across diverse lan- 507

guage genres while maintaining predictive perfor- 508

mance. 509

5.2 Group structure in LIWC-Style 510

In the original formulation of our model, y⊤ = 511

x⊤B+e⊤, all dimensions of the LIWC features are 512

treated as independent. However, our analysis of 513

the U ∈ Rn×r matrix, which represents the latent 514

dimensions of our R4 model, reveals group struc- 515

tures indicating inter-dependencies among LIWC 516

features and their collective relationship with sen- 517

sorial style. 518

Figure 3 illustrates the group structure in the 519

U ∈ R74×24 latent representation for Wikipedia 520

articles. We find similar group structures in the la- 521

tent representations of other genres as well3. From 522

the figure, we note that some latent dimensions 523

appear more influential than others, as indicated 524

by stronger and more widespread contributions 525

across LIWC categories, as an example the Dis- 526

crepancy category ‘discrep’ contributes to both the 527

16th and the 21st dimensions. We also find that re- 528

lated LIWC categories often contribute strongly to 529

the same latent dimensions, forming natural group- 530

ings. An example of this would be the contribu- 531

tion of function words, categories like ‘i’, ‘shehe’, 532

‘we’ (corresponding to 1st, 2nd, and 3rd person pro- 533

nouns respectively) in 17th dimension. 534

3See Appendix A.2 for the representations of
other genres and more detailed visualizations.
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Figure 2: The heatmap shows the contribution of LIWC categories to specific latent dimensions, across three genres:
Business Reviews, Novels, and Advertisements.

In Figure 2, we examine a sample of columns of535

3 other genres. We observe that:536

Business Reviews (Yelp): A group forms around537

categories of LIWC biological processes, including538

words focused on consumption (dimension 1). This539

aligns with the nature of restaurant reviews, where540

descriptions of food and eating experiences are541

central.542

Novels (Gutenberg): We observe a group form-543

ing around informal language use, including cate-544

gories related to fillers, non-fluencies, and netspeak545

(dimension 10). This clustering would reflect the546

author’s attempt to mimic natural, conversational547

speech patterns in dialogue and narration.548

Advertisements (Airbnb): We observe an emer-549

gent group, not apparent in the standard LIWC550
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Figure 3: Heatmap showing the latent representation of
LIWC categories across 24 dimensions for Wikipedia
articles. The intensity indicates the strength of the contri-
bution of each LIWC category to each latent dimension.

classification, that combines elements from dis- 551

parate LIWC categories, specifically gendered 552

words (masculine and feminine) from the social 553

processes category and gendered pronouns (she/he) 554

from the function word category (dimension 2). 555

This would suggest that Airbnb property descrip- 556

tions may employ gender-specific language strate- 557

gies. This finding demonstrates how our approach 558

can reveal latent linguistic structures that are not 559

immediately evident from simple LIWC groupings. 560

We find that these genre-specific group struc- 561

tures, emerging naturally from our latent represen- 562

tation analysis. These latent representations retain 563

the predictive power, while not being constrained 564

by the original independent dimension assumption 565

of full LIWC. 566

5.3 Exploring LIWC-Style using SLIM-BERT 567

We investigate the relationship between linguis- 568

tic style and sensorial language use by using low- 569

dimensional projections of LLMs — SLIM-LLMs 570

model augmented with LIWC features. We use 571

these SLIM-LLMs for the sensorial word predic- 572

tion task described in section 3.4. For each masked 573

sensorial sentence, we extract the SLIM-LLM rep- 574

resentation and use it (along with LIWC representa- 575

tions) as input to a fully connected Multi-Layered 576

Perceptron (MLP) that is trained to predict the 577

masked sensorial word. Figure 4 presents the per- 578

formance of BERT-base for each language aspect. 579

We focus on the first 240 dimensions of the SLIM- 580

BERT model. 581

We compare the performance of three configura- 582

tions of SLIM-BERT: 583

SLIM-BERT+Latent LIWC: SLIM-BERT aug- 584

mented with latent LIWC features. 585

SLIM-BERT+LIWC: SLIM-BERT augmented 586

with raw LIWC features. 587
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Figure 4: Accuracy of sensorial word prediction against the rank (number of dimensions) used in the SLIM-BERT
model for different language aspects

SLIM-BERT: SLIM-BERT without LIWC fea-588

tures.589

For reference, we also show the performance of590

the full BERT-base model and raw LIWC features591

(shown as horizontal lines).592

Across all genres, we observe that augment-593

ing SLIM-BERT with LIWC features (both latent594

and raw) consistently improves performance over595

SLIM-BERT alone. For instance, in Articles, we596

find that SLIM-BERT+Latent LIWC achieves an597

accuracy of 0.380, compared to 0.299 for SLIM-598

BERT alone. This pattern is consistent across other599

categories, with SLIM-BERT+Latent LIWC reach-600

ing accuracies of 0.483 for Advertisements, 0.390601

for Novels, 0.430 for Business Reviews, and 0.545602

for Music Lyrics. These results suggest that lin-603

guistic style, as captured by LIWC, provides com-604

plementary information to the language model for605

predicting sensorial language use.606

The SLIM-BERT with Latent LIWC performs607

as well as or slightly better than SLIM-BERT with608

the raw LIWC features. For Music Lyrics, SLIM-609

BERT+Latent LIWC achieves 0.545 accuracy com-610

pared to 0.543 for SLIM-BERT+LIWC, indicating,611

the latent representation of LIWC features effec-612

tively captures the most relevant aspects of linguis-613

tic style for this task.614

In most cases, our SLIM-BERT+Latent LIWC615

approaches or even exceeds the performance of616

the full BERT model, while using a fraction of617

the parameters. For instance, in Novels, SLIM-618

BERT+Latent LIWC achieves 0.390 accuracy com-619

pared to 0.378 for the full BERT model. Similarly,620

for Business Reviews, SLIM-BERT+Latent LIWC621

reaches 0.430 accuracy, surpassing the full BERT622

model’s 0.416. This demonstrates the effectiveness623

of our dimensionality reduction approach in cap-624

turing the most relevant features for this task. The 625

dimensionality reduction filters out noise and less 626

relevant information, focusing on the most salient 627

features of sensorial language prediction. 628

These results demonstrate the effectiveness of 629

SLIM-BERT in modeling the relationship between 630

linguistic style and sensorial language use. The 631

consistent improvements from LIWC augmenta- 632

tion, particularly using latent LIWC representation, 633

suggest a strong link between stylometric features 634

and sensorial language. 635

6 Conclusion 636

Our work demonstrates that both linguistic style 637

(captured through LIWC features) and sensorial 638

language use can be effectively modeled using 639

dimensionally-reduced representations. 640

We found that traditional stylistic features can 641

indeed be effectively represented in a lower- 642

dimensional space while maintaining predictive 643

power. Our analysis showed that a reduced latent 644

representation with just 24 dimensions effectively 645

captures the key stylometric information from the 646

original 74 LIWC features across different genres 647

of text. This dimensionality reduction not only pre- 648

serves the predictive capabilities but also reveals 649

meaningful groupings of stylistic features. 650

Our approach successfully demonstrated that re- 651

duced language models augmented with LIWC in- 652

formation can match or exceed the performance of 653

full-scale models in predicting sensorial language 654

use, revealing that LIWC features capture funda- 655

mental style information not learned by SLIM- 656

LLMs. 657
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7 Limitations658

The main focus of this work has been on LIWC-659

style features. While our approach can be extended660

to incorporate other stylometric features such as661

ANEW, VADER, and measures of linguistic com-662

plexity like Readability and Hapax Legomenon,663

such extensions would let us not only study the664

relationships between these features and sensorial665

style, but also the interactions with the rest of the666

stylometric features.667

Another limitation of this study is its focus on668

English language texts. Given that sensorial percep-669

tion and its linguistic expression can vary substan-670

tially across cultures and languages, future work671

should explore cross-cultural applications. The di-672

mensionality reduction technique used to create673

SLIM-LLMs is not inherently language-specific674

and is only limited by the underlying LLM’s train-675

ing data. This approach can be extended to other676

languages by creating SLIM versions of language-677

specific or multilingual models, such as SLIM-678

BETO for Spanish (based on the BETO model679

(Cañete et al., 2020)) or SLIM-mBERT (based on680

the multilingual BERT model).681

Like most studies in this domain, our work treats682

linguistic style as static, without accounting for683

temporal evolution. This limitation is particularly684

relevant when analyzing texts published by an indi-685

vidual over extended periods, as stylistic features686

and their relationship to sensorial language might687

shift over time.688

While our model effectively captures relation-689

ships between style features and sensorial language,690

the current implementation of SLIM-LLMs focuses691

on encoder-only transformer architectures. The692

applicability of this approach to decoder-only ar-693

chitectures like GPT remains an open question for694

future research.695

Our evaluation relies primarily on quantitative696

metrics of prediction accuracy. Future work could697

benefit from incorporating qualitative validation698

approaches, including native speaker judgments of699

sensorial language use and style relationships.700

These limitations suggest several promising di-701

rections for future research, including cross-lingual702

studies of sensorial style, investigation of tempo-703

ral dynamics in linguistic style, and extension to704

other model architectures. Addressing these as-705

pects would contribute to a more complete under-706

standing of how different dimensions of linguistic707

style interact with sensorial language use.708
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A Appendix 847

A.1 Summary of the text collections 848

Language Genre Datasets Source Sensorial Sentences
Critical Business Reviews Yelp.com 2,101,603
Literary Novels Project Gutenberg 1,929,260
Poetic Music Lyrics Genius.com 1,107,749
Persuasive Advertisements Airbnb Descriptions 1,442,050
Informative Articles Wikipedia 1,563,888

Table 1: Overview of text collections and genres
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A.2 Latent Representations of LIWC-Style Across Text Genres849
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(a) Music Lyrics
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(b) Novels
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(c) Advertisements
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(d) Business Reviews

Figure 5: Heatmaps showing the latent representation of LIWC categories across 24 dimensions for different text
genres: (a) Music Lyrics, (b) Novels, (c) Advertisements, and (d) Business Reviews. The intensity indicates the
strength of contribution of each LIWC category to each latent dimension.
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(a) Articles

Figure 6: Heatmap showing the latent representation of LIWC categories across 24 dimensions for (e) Articles.
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A.4 Ethical Statement 850

This work aims to advance our comprehension of language patterns and stylistic relationships. From a risk 851

perspective, our research approach minimizes potential negative impacts in several ways. Since we focus 852

on analytical modeling rather than developing deployable systems, there are no direct risks associated 853

with implementation or user-facing applications. The research design deliberately emphasizes theoretical 854

understanding over practical application, reducing the potential for immediate misuse. 855

Our analysis relies entirely on public datasets accessed with appropriate permissions, and we neither col- 856

lect nor process sensitive personal information. The research design explicitly avoids using demographic 857

data or protected-class information, eliminating risks of individual re-identification or discriminatory 858

applications. 859

We acknowledge, however, that any research advancing language understanding could potentially enable 860

more sophisticated analysis tools in the future. These might include enhanced text analysis capabilities, 861

more accurate authorship attribution, or style transfer applications. While these potential developments 862

require significant expertise to implement, we recognize our responsibility to address these possibilities 863

transparently. By maintaining full methodological transparency, we enable community oversight and 864

ongoing ethical discussion. 865

Our risk mitigation strategy centers on three key approaches. First, we maintain complete transparency 866

in our methods, limitations, and data processing. Second, we focus strictly on linguistic patterns rather than 867

individual identification or demographic prediction. Third, we actively engage with ethical considerations 868

through clear documentation and open discussion of potential applications and implications. Overall, we 869

respect the principle of beneficence as outlined by the Belmont report (Beauchamp et al., 2008). 870

A.5 Data Sources and Privacy 871

All data used in this research is publicly available. The Yelp Dataset is a pre-anonymized public dataset. 872

We used official APIs to collect data from Wikipedia and Genius. For Airbnb and Project Gutenberg 873

we developed custom crawlers following ethical web scraping practices. All personally identifiable 874

information (PII) was removed, including but not limited to age, gender, and demographic information. 875

The datasets used in this work consists exclusively of English language content 876

A.6 Data Collection Ethics 877

Our crawls were consistent with typical auditing studies (Sandvig et al., 2014) and are legally permissible 878

(HiQ Labs, Inc. v. LinkedIn Corp.,and Van Buren v. United States). Data collection was conducted in 879

compliance with each platform’s Terms of Service. We adhered to ethical web scraping practices to ensure 880

that our data collection did not interfere with user experience or the platform’s operations. 881

A.7 Data Processing 882

Text preprocessing included lowercasing and punctuation removal for both LIWC prediction and masked 883

language model prediction tasks. Consistent preprocessing was applied across all datasets. 884

A.8 Model Development 885

We utilized embeddings from pre-trained models available on Huggingface, used in accordance with 886

their licenses. No models were trained from scratch. Fine-tuning involved training a fully connected 887

Multi-Layer Perceptron (MLP) on top of pre-trained embeddings. In each experiment we trained the 888

model for 10 epochs on a Single T4 GPU. In addition, we used LIWC to extract stylometric features in 889

accordance with its license. The results reported for language models (as shown in Figure 4) represent 890

averages from 5-fold cross-validation using a sample size of 300,000 examples. 891
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