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ABSTRACT

Attention-based methods have played an important role in model interpretations,
where the calculated attention weights are expected to highlight the critical parts
of inputs (e.g., keywords in sentences). However, recent research points out that
attention-as-importance interpretations often do not work as well as we expect.
For example, learned attention weights sometimes highlight less meaningful to-
kens like “[SEP]”, “,”, and “.”, and are frequently uncorrelated with other fea-
ture importance indicators like gradient-based measures. Finally, a debate on the
effectiveness of attention-based interpretations has been raised. In this paper, we
reveal that one root cause of this phenomenon can be ascribed to the combinatorial

shortcuts, which stands for that in addition to the highlighted parts, the attention
weights themselves may carry extra information which could be utilized by down-
stream models of attention layers. As a result, the attention weights are no longer
pure importance indicators. We theoretically analyze the combinatorial shortcuts,
design one intuitive experiment to demonstrate their existence, and propose two
methods to mitigate this issue. Empirical studies on attention-based interpreta-
tion models are conducted, and the results show that the proposed methods can
effectively improve the interpretability of attention mechanisms on a variety of
datasets.

1 INTRODUCTION

Interpretation for machine learning models has increasingly gained interest and becomes a neces-
sity as the industry rapidly embraces machine learning technologies. Model interpretation explains
how models make decisions, which is particularly essential in mission-critical domains where the
accountability and transparency of the decision-making process are crucial, such as medicine (Wang
et al., 2019), security (Chakraborti et al., 2019), and criminal justice (Lipton, 2018).

Attention mechanisms have played an important role in model interpretations and have been widely
adopted for interpreting neural networks (Vaswani et al., 2017) and other black-box models (Chen
et al., 2018). In this paper, similar to Vaswani et al. (2017), we assume that we have the query Q and
the key-value pairs hK,V i, then attention mechanisms work in the following way,

Attention(Q,K, V ) = Mask(Q,K)� V 1,

where Mask(·, ·) maps the query and keys to the attention weights (denoted as masks in this paper),
and then the masks filter the information of V . Intuitively, the masks are expected to represent the
importance of different parts of V (e.g., words of a sentence, pixels of an image) and highlight those
the models should focus on to make decisions. Many researchers directly use the masks to provide
interpretability of models (Choi et al., 2016; Vaswani et al., 2017; Wang et al., 2016).

However, recent research suggests that attention mechanisms’ highlighted parts do not necessarily
correlate with greater importance on the final predictions. For example, Clark et al. (2019) find that
a surprisingly large amount of BERT’s attention focuses on less meaningful tokens like “[SEP]”,
“,”, and “.”. Moreover, many researchers provide evidence to support or refute the interpretability
of the attention mechanisms, and a debate on the effectiveness of attention-based interpretations has
been raised (Jain & Wallace, 2019; Serrano & Smith, 2019; Wiegreffe & Pinter, 2019).

1Oftentimes a sum pooling operator is applied after the Hadamard product operator to obtain a single fixed-
length representation. However, sometimes models other than simple pooling are applied (Bang et al., 2019;
Chen et al., 2018; Zhu et al., 2017). So we use the most general form here.
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In this paper, we suggest a root cause that hinders the interpretability of attention mechanisms,
which we refer to as combinatorial shortcuts. As mentioned earlier, we expect that the results of
attention mechanisms mainly contain information from the highlighted parts of V , which is a critical
assumption for attention-based interpretations’ effectiveness. However, as the results are products
of the masks and V , we find that the masks themselves can carry extra information other than the
highlighted parts of V , which could be utilized by the down-stream parts of models. As a result,
the calculated masks may work as another kind of “encoding layers” rather than providing pure
importance measures. For an extreme example, in a (binary) text classification task, the attention
mechanisms could highlight the first word for positive cases and highlight the last word for negative
cases, regardless of the words. The downstream parts of attention layers could then predict the label
by checking whether the first or the last word is highlighted. It may give good accuracy scores,
while completely fail at providing interpretability2.

We further study the effectiveness of attention-based interpretations and dive into the combinatorial
shortcut problem. From the perspective of causal effect estimations, we firstly analyze the difference
between ordinary attention mechanisms and definitive interpretations theoretically, and then show
the existence of combinatorial shortcuts through a representative experiment. Based on this, we
propose two practical methods to mitigate the issue, i.e., random attention pretraining and instance
weighting for mask-neutral learning. Without loss of generality, we examine the effectiveness of
proposed methods upon an end-to-end attention-based model-interpretation method, i.e., L2X (Chen
et al., 2018), which can select a given number of input components to explain arbitrary black-box
models. Experimental results show that the proposed methods can successfully mitigate the adverse
impact of combinatorial shortcuts and improve explanation performance.

2 RELATED WORK

Attention mechanisms for model interpretations Attention mechanisms have been widely
adopted in natural language processing (Bahdanau et al., 2015; Vinyals et al., 2015), computer vi-
sion (Fu et al., 2016; Li et al., 2019), recommendations (Bai et al., 2020; Zhang et al., 2020b) and so
on. Attention mechanisms are believed to explain how models make decisions by exhibiting the im-
portance distribution over inputs (Choi et al., 2016; Martins & Astudillo, 2016; Wang et al., 2016),
which we can regard as a kind of model-specific interpretations. Besides, there are also attention-
based methods for model-agnostic interpretations. For example, L2X (Chen et al., 2018) is a hard
attention model (Xu et al., 2015) that employs Gumbel-softmax (Jang et al., 2017) for instancewise
feature selection. VIBI (Bang et al., 2019) improved L2X to encourage the briefness of the learned
explanation by adding a constraint for the feature scores to a global prior. Liang et al. (2020) and
Yu et al. (2019) improved attention-style model interpretation methods through adversarial training
to encourage the gap between the predictability of selected/unselected features.

However, there has been a debate on the interpretability of attention mechanisms recently. Jain &
Wallace (2019) suggested that “attention is not explanation” by finding that the attention weights are
frequently uncorrelated with other feature importance indicators like gradient-based measures. On
the other side, Wiegreffe & Pinter (2019) argued that “attention is not not-explanation” by challeng-
ing many assumptions underlying (Jain & Wallace, 2019) and suggested that they did not disprove
the usefulness of attention mechanisms for explainability. Serrano & Smith (2019) applied a dif-
ferent analysis based on intermediate representation erasure and found that while attention noisily
predicts input components’ overall importance to a model, it is by no means a fail-safe indicator.

In this work, we take another perspective on this problem called combinatorial shortcuts, and show
that it can provide one root cause of the phenomenon. Liang et al. (2020) and Yu et al. (2019) also
mentioned this phenomenon, and used adversarial training to indirectly mitigate the combinatorial
shortcut problem. However, they did not analyze why combinatorial shortcuts exist, and the adver-
sarial scheme may change the behavioral tendency of models. For example, considering a sample
with features {a, a0, b, b0, noisy features}, where a0 is collinear with a, b0 is collinear with b, and a is
relatively more predictive than b while they are somehow complementary, adversarial methods that

2One may argue that for the most ordinary practice where sum pooling is applied, we lose the positional in-
formation, and as a result, the intuitive case described above may not hold. However, since (1) the distributions
of different positions are not the same, (2) positional encodings (Vaswani et al., 2017) have been used widely,
it is still possible for attention mechanisms to utilize the positional information with sum pooling.
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encourage the gap between the predictability of selected/unselected features may tend to select a
and a0 to maximum the gap, and fail to select a and b which might be more interpretable.
Causal effect estimations Causal effect is an important concept for quantitative empirical analyses.
The causal effect of one treatment, E, over another, C, is defined as the difference between what
would have happened if a particular unit had been exposed to E and what would have happened if
the unit had been exposed to C (Rubin, 1974). Randomized experiments, where the experimental
units across the treatment groups are randomly allocated, play a critical role in causal inference.
However, when randomized experiments are infeasible, researchers have to resort to nonrandom-
ized data from surveys, censuses, and administrative records (Winship & Morgan, 1999), and there
may be some other variables controlling the treatment allocation process in such data. For example,
consider the causal inference between uranium mining and health. Ideally, the treatment (uranium
mining) should be randomly allocated. However, mining workers are usually stronger people among
all humans in the world. If some appropriate measures are absent, we may draw biased conclusions
like “uranium mining has no adverse health impact because the average life span of uranium mine
workers is not shorter than that of ordinary people”. For recovering causal effects form nonrandom-
ized data, instance weighting-based approaches have been used widely (Ertefaie & Stephens, 2010;
Rosenbaum & Rubin, 1983; Winship & Morgan, 1999).

3 COMBINATORIAL SHORTCUTS

In this section, by showing the difference between attention mechanisms and definitive explanations,
we analyze why attention mechanisms become less interpretable from a perspective of causal effect
estimations, and conduct an experiment to demonstrate the existence of combinatorial shortcuts.

3.1 THE DIFFERENCE BETWEEN ATTENTION MECHANISMS AND DEFINITIVE EXPLANATIONS

Firstly, we analyze what definitive explanations would be. Assume that we have samples drawn
independently and identically distributed (i.i.d.) from a distribution with domain X ⇥ Y , where X
is the feature domain, and Y is the label domain3. Additionally, we assume that the mask is drawn
from a distribution with domain M. Usually, M is under some constraints, for example, only being
able to select a fixed number of features, or being non-negative and summing to 1. Given any sample
hx, yi ⇠ X ⇥ Y , for m1 ⇠ M and m2 ⇠ M, if L

�
E(Y |x�m1), y

�
< L

�
E(Y |x�m2), y

�
where

L(·) is the loss function and E(·) calculates the expectation, we say that for this sample, m1 is
superior to m2 in term of interpretability. If an unbiased estimation of E(Y |X�M) is available, the
best mask for sample hx, yi that can select the most informative features can be obtained by solving
argminm L

�
E(Y |x�m), y

�
. As a conclusion, under the definitions above, the definitive explanation

for sample hx, yi is argminm L
�
E(Y |x�m), y

�
with an unbiased estimation of E(Y |X �M).

In practice, we often need to train models to estimate E(Y |X�M). Ideally, if the data (combinations
of X and M , as well as the label Y ) is exhaustive and the model is consistent, we can train a
model to obtain an unbiased estimation of E(Y |X �M) following the empirical risk minimization
principle (Fan et al., 2005; Vapnik, 1992). Nevertheless, in reality, it is not possible to exhaust all
combinations of X and M . Taking a step back, from the perspective of causal effect estimations, we
could consider different m as different treatment, and randomized combinations for X and M can
still be proven to give unbiased estimations on expectations (Rubin, 1974).

However, attention mechanisms do not work in this way. Considering the downstream part of atten-
tion models, i.e., the part estimating the function E(Y |X �M), we can find that it receives highly
selective combinations of X and M . The used mask M during the training procedure is a map-
ping from query and keys, making the used mask for samples highly related to the feature X (and
Y as well). Therefore, the training procedure of attention mechanism produces a nonrandomized
experiment (Shadish et al., 2008). Thus the model cannot learn unbiased E(Y |X � M). In turn,
the attention mechanism will try to select features to adapt the biased estimations, and thus fail to
highlight the essential features. As a result, the attention mechanism and downstream part may co-
operate and find unexpected ways to fit the data, e.g., highlighting the first word for positive cases

3Note that here we use X to represent the features for the convention. X is the same as the value V
introduced in the Introduction. Besides, the labels could be either from the real world for explaining the real
world, or from some specific models for explaining given black-box models.
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and the last word for negative cases, ultimately failing to provide interpretability. In this paper, we
denote the effects of nonrandomized combination for X and M as combinatorial shortcuts, which
hinders the interpretability of attention mechanisms.

3.2 EXPERIMENTAL DEMONSTRATION FOR THE COMBINATORIAL SHORTCUTS

Q
Full text

K(V)
Partial text

with default tokens

I am a big fan of Arnold Vosloo . Finally seeing 
him… the sound effects of the shoot-out were 
pretty bad .

…

EncoderI am a big fan A B C D

Label
Attention

Figure 1: The structure of the model used in this demo experiment. The attention is restrict to the
first five tokens of sentences, as well as four default tokens which appear in all samples.

To intuitively demonstrate the existence of combinatorial shortcuts, we design a simple experiment
on text classification tasks. As Figure 1 shows, we train attention models, where the query of atten-
tion is encoded with the whole sentences. However, we only allow attention to highlight keywords
among the first five tokens and four default tokens, i.e., “A”, “B”, “C”, and “D”. Since the default
tokens appear in all samples and do not carry any useful information, if the attention mechanism can
indeed highlight the critical parts of the inputs, little attention should be paid to them. Moreover, we
could check whether the models put differential attention to the default tokens for different classes,
to show if the information is encoded in the mask due to combinatorial shortcuts.

We use the real-world IMDB dataset (Maas et al., 2011) for experiments and examined different
settings regarding the encoder in Figure 1, i.e., whether the encoder was a simple sum pooling or a
trainable neural network model, i.e., recurrent convolutional neural network (RCNN) proposed by
Lai et al. (2015). We use pre-trained GloVe word embeddings (Pennington et al., 2014) and kept
them fixed to prevent shortcuts through word embeddings. We trained soft attention models for 25
epochs with RMSprop optimizers using default parameters and recorded the averaged results of 10
runs. The results are reported in Table 1.

Table 1: Experiments about how much attention is put to default tokens out of all attention weights.
Note that we report the results on the training set to demonstrate how models fit the data.

No. Encoder Label Attention to default tokens
A B C D Total

(1) Pooling pos 68.0% 0.1% 0.0% 0.2% 68.3%
(2) neg 0.1% 36.6% 38.3% 18.5% 93.5%
(3) RCNN pos 16.1% 0.2% 0.1% 0.6% 17.0%
(4) neg 1.3% 20.2% 50.4% 13.3% 85.2%

As we can see in Table 1, the attention models place more than half of the attention weights to
the default tokens, and the weights for different classes are significantly different. Taking Pooling
encoders as an example, the models put up to 68.0% attention weights to default token “A” for
positive samples, and put 36.6%, 38.3%, and 18.5% attention weights to default token “B”, “C”,
and “D” respectively for negative samples, summing up to 93.4% in total. As for RCNN encoders
which is position-aware, the results are similar. The reason for observing repeatable results on the
default tokens with different initialization may be their slight asymmetry in the GloVe embedding
space. These results suggest that the attention mechanism may not work as expected to highlight
the critical parts of inputs and provide interpretability. Instead, they learn to work as another kind of
“encoding layers”, and utilize the default tokens to fit the data through combinatorial shortcuts.
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4 METHODS FOR MITIGATING COMBINATORIAL SHORTCUTS

In this section, based on the perspective of causal effect estimations introduced in Section 3.1, we
come up with two practical methods, random attention pretraining and mask-neutral learning with

instance weighting, to mitigate combinatorial shortcuts for better interpretability.

4.1 RANDOM ATTENTION PRETRAINING

We first propose a simple and straightforward method to address the issue. As analyzed in Sec-
tion 3.1, the fundamental reason for combinatorial shortcuts of attention mechanisms is the biased
estimation of E(Y |X � M), and random combinations of X and M can give unbiased results in
theory. Inspired by this idea, we can first generate the masks completely at random and train the
downstream part of the attention model. And then, we fix the downstream part, replace the random
attention with a trainable attention layer, and train the attention layer only. As the downstream parts
of neural networks are trained unbiasedly and fixed, training the attention layers solely is solving
argminm L

�
E(Y |x�m), y

�
with an unbiased estimation of E(Y |X�M). Thus the interpretability

is guaranteed.

In theory, this method is complete. However, it may be practically incompetent because there are
countless viable cases of the combinations of X and M . It could be challenging to estimate E(Y |X�
M) well, especially when the dimension of input features is high. Under such cases, the pretraining
procedure may become less efficient as it needs to explore all possible masks evenly, even if most of
the masks are worthless. In conclusion, the model may fail to estimate E(Y |X �M) well in some
cases and thus limiting the interpretability.

4.2 MASK-NEUTRAL LEARNING WITH INSTANCE WEIGHTING

The second method is designed as a supplementary solution to address the shortcomings of random
attention pretraining. This method is based on instance weighting, which has been successfully
applied for mitigating sample selection bias (Zadrozny, 2004; Zhang et al., 2019), social prejudices
bias (Zhang et al., 2020a), and also for recovering the causal effects (Ertefaie & Stephens, 2010;
Winship & Morgan, 1999). The core idea of this method is that instead of learning a biased E(Y |X�
M), with instance weighting, we could recover a mask-neutral distribution where the masks are
unrelated to the labels. Thus the combinatorial shortcuts can be partially mitigated.
Generation of biased distributions from mask-neutral distributions We first define the mask-
neutral distribution and its relationship with the biased distribution to which ordinary attention mech-
anisms are trained. Considering the downstream part of the attention layers, which is estimating
E(Y |X�M), we assume that there is a mask-neutral distribution Q with domain X ⇥Y⇥M⇥S ,
where X is the feature space, Y is the (binary) label space4, M is the feature mask space and S is the
binary sampling indicator space. During the training procedure, the selective combination of masks
and features result in the combinatorial shortcuts. We assume for any given sample (x, y,m, s)
drawn independently from Q, it will be selected to appear in the training of attention mechanisms if
and only if s = 1, which results in the biased distribution P . We use P (·) to represent probabilities
of the biased distribution P , and Q(·) for the mask-neutral distribution Q, then we have

P (·) = Q(·|S = 1) . (1)

Ideally, we should have M ? (X,Y ) on Q to obtain unbiased E(Y |X � M) as discussed in
Section 3.1. However, when both sides are vectors, it will be intractable. Therefore, we take a step
back and only assume Y ? M on Q, i.e.,

Q(Y |M) = Q(Y ) . (2)

If S is completely at random, P will be consistent with Q. However, the attention layers are highly
selective, making that only some combinations of X and M are visible to the downstream model.
To further simplify the problem, we assume that M and Y control S. And for any given Y and M ,
the probability of selection is greater than 0, defined as

Q(S = 1|X,Y,M) = Q(S = 1|Y,M) > 0 . (3)
4We focus on binary classification problems in this paper, but the proposed methodology can be easily

extended to multi-class classifications.
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Additionally, we assume that the selection does not change the marginal probability of M and Y ,
i.e.,

P (M) = Q(M) , P (Y ) = Q(Y ) . (4)
In other words, we assume that although S is dependent on the combination of M and Y in Q, it is
independent on either M or Y only, i.e., Q(S|M) = Q(S) and Q(S|Y ) = Q(S).
The unbiased expectation of loss with instance weighting We show that, by adding proper in-
stance weights, we can obtain an unbiased estimation of the loss on the mask-neutral distribution Q,
with only the data from the biased distribution P .
Fact 1 (Unbiased Loss Expectation). For any function f = f(x � m), and for any loss L =

L
�
f(x�m), y

�
, if we use w = P (y)

P (y|m) as the instance weights, then

Ex,y,m⇠P

h
wL

�
f(x�m), y

�i
= Ex,y,m⇠Q

h
L
�
f(x�m), y

�i
.

Fact 1 shows that, by a proper instance-weighting method, the the downstream part of the attention
model can learn on the mask-neutral distribution Q, where Q(Y |M) = Q(Y ). Therefore, the
independence between M and Y is encouraged, then it will be hard for the classifier to approximate
Y solely by M . Thus, the classifier will have to use useful information from X , and have the
combinatorial shortcuts problem mitigated.

We present the proof for Fact 1 as follows.

Proof. We first present an equation with the weight w,

w =
P (y)

P (y|m)
=

Q(y)
Q(y|m,S = 1)

=
Q(y)

Q(S = 1|y,m)Q(y|m)/Q(S = 1|m)

=
Q(S = 1)

Q(S = 1|y,m)
=

Q(S = 1)
Q(x, y,m|S = 1)Q(S = 1)/Q(x, y,m)

=
Q(x, y,m)
P (x, y,m)

.

Then we have

Ex,y,m⇠P

h
wL

�
f(x�m), y

�i
=

Z
Q(x, y,m)
P (x, y,m)

L
�
f(x�m), y

�
dP (x, y,m)

=

Z
L
�
f(x�m), y

�
dQ(x, y,m) = Ex,y,m⇠Q

h
L
�
f(x�m), y

�i
.

Mask-neutral learning With Fact 1, we now propose mask-neutral learning for better interpretabil-
ity of attention mechanisms. As shown, by adding instance weight w = P (y)

P (y|m) to the loss function,
we can obtain unbiased loss of the mask-neutral distribution. As distribution P is directly observ-
able, estimating P (·) is possible. In practice, we could train a classifier to estimate P (Y |M) along
with the training of the attention layer, and optimize it and the attention layers, as well as the other
parts of models alternatively.

Compared with the random attention pretraining method, the instance weighting-based approach
concentrates more on the useful masks. Thus it will suffer less from the efficiency problem. Nev-
ertheless, the effectiveness of the instance weighting method relies on the assumptions as shown in
Equation (1)–(4). However, in some cases, the assumptions may not hold. For example, in Equa-
tion (3), we assume that given Y and M , S is independent on X . In other words, X controls S only
through Y . This assumption is necessary for simplifying the problem, while may not sometimes
hold when given Y and M , X can still influence S. Besides, the effectiveness of the method also
relies on an accurate estimation of P (Y |M), which may require careful tuning as the probability
P (Y |M) is dynamically changing along the training process of attention mechanisms.

5 EXPERIMENTS

In this section, we present the experimental results of the proposed methods. For simplicity, we de-
note random attention pretraining as Pretraining and mask-neutral learning with instance weight-

ing as Weighting. Firstly, we analyze the effectiveness of mitigating combinatorial shortcuts. Then,
we examine the effectiveness of improving interpretability.
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5.1 EXPERIMENTS FOR MITIGATING COMBINATORIAL SHORTCUTS

We applied the proposed methods to the experiments introduced in Section 3.2 to check whether we
can mitigate the combinatorial shortcuts. We summarize the results in Table 2.

Table 2: Effectiveness of the proposed methods for mitigating the combinatorial shortcuts.

No. Method Encoder Label Attention to default tokens
A B C D Total

(1)
Pretraining

Pooling pos 0.0% 4.6% 2.3% 0.0% 6.9%
(2) neg 0.0% 0.4% 20.2% 0.0% 20.6%
(3) RCNN pos 0.2% 1.1% 1.0% 0.3% 2.6%
(4) neg 2.3% 4.3% 6.3% 2.8% 15.7%
(5)

Weighting
Pooling pos 1.3% 2.5% 0.5% 2.2% 6.5%

(6) neg 3.3% 0.7% 1.5% 1.2% 6.7%
(7) RCNN pos 6.7% 1.4% 10.3% 2.1% 20.5%
(8) neg 4.6% 1.8% 12.5% 1.9% 20.8%

As presented, after applying Pretraining and Weighting, the percentage of attention weights assigned
to the default tokens were significantly reduced. Since that the default tokens do not provide useful
information but only serve as carriers for combinatorial shortcuts, the results reveal that our methods
have mitigated the combinatorial shortcuts successfully.

5.2 EXPERIMENTS FOR IMPROVING INTERPRETABILITY

In this section, using L2X (Chen et al., 2018) as an example and basis, we present the effectiveness
of mitigating combinatorial shortcuts for better interpretability. We first introduce the evaluation
scheme, then show the experimental results and discussions.

5.2.1 EVALUATION SCHEME

Here we present the evaluation scheme. Due to space constraints, We present details in Appendix A.
Evaluation protocol Our evaluation scheme was the same as L2X (Chen et al., 2018). L2X is an
instancewise feature selection model using hard attention that employs the Gumbel-softmax trick.
It tries to select a certain number of input components to approximate the model’s output to be ex-
plained with attention mechanisms. As discussed before, such a setting suffers from combinatorial
shortcuts. Thus the interpretability may be limited. Also, similar with (Liang et al., 2020), to further
enrich the information for the model explanation, we incorporate the original model’s outputs to be
explained, i.e.ŷ, as part of the query for feature selection. This trick can make it easier for the ex-
planation model to select the best features. As obtaining the outputs requires no further information
apart from samples’ features and the model to be explained, it does not hurt the model-agnostic prop-
erty of explanation methods nor require additional annotations. We adopt binary feature-attribution
masks to select features, i.e., top k values of the mask were set to 1, others are set to 0, then we treat
X �M as the selected features (Chen et al., 2018).
Evaluation metrics The same as Chen et al. (2018) and Liang et al. (2020), we performed a pre-
dictive evaluation that evaluates how accurate the original given model can approximate the original
model-outputs using the selected features, and we report the post-hoc accuracy. We repeat ten times
with different initialization for each method on each dataset and report the averaged results.
Datasets We report evaluations on four datasets: IMDB (Maas et al., 2011), Yelp P. (Zhang et al.,
2015), MNIST (LeCun et al., 1998), and Fashion-MNIST (F-MNIST) (Xiao et al., 2017). IMDB
and Yelp P. are two text classification datasets. IMDB is with 25,000 train examples and 25,000
test examples. Yelp P. contains 560,000 train examples and 38,000 test examples. MNIST and F-
MNIST are two image classification datasets. For MNIST, following Chen et al. (2018), we collected
a binary classification subset by choosing images of digits 3 and 8, with 11,982 train examples and
1,984 test examples. For F-MNIST, following Liang et al. (2020), we selected the data of Pullover
and Shirt with 12,000 train examples and 2,000 test examples.
Models to be explained The same as Chen et al. (2018) for IMDB and Yelp P., we implemented
CNN-based models and selected 10 and 5 words, respectively, for explanations. For MNIST and
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F-MNIST, we used the same CNN model as (Chen et al., 2018) and selected 25 and 64 pixels,
respectively (Liang et al., 2020).
Baselines We considered state-of-the-art model-agnostic baselines: LIME (Ribeiro et al., 2016),
CXPlain (Schwab & Karlen, 2019), L2X (Chen et al., 2018), VIBI (Bang et al., 2019), and
AIL (Liang et al., 2020). We also compared with model-specific baselines, i.e., Gradient (Simonyan
et al., 2013). Our methods follow the same paradigm as L2X, VIBI, and AIL. A brief introduction
to the baseline methods can be found in Appendix A.4.

5.2.2 EXPERIMENTAL RESULTS

Following the aforementioned evaluation scheme, we report the results in Table 3.

Table 3: Effectiveness of the proposed methods for improving interpretability. We report the post-
hoc accuracy scores with different methods.

No. Method IMBD Yelp P. MNIST F-MNIST
(1) Gradient (Simonyan et al., 2013) 85.6% 82.3% 98.2% 58.6%
(2) LIME (Ribeiro et al., 2016) 89.8% 87.4% 80.4% 75.6%
(3) CXPlain (Schwab & Karlen, 2019) 90.6% 97.7% 99.4% 59.7%
(4) L2X (Chen et al., 2018) 89.2% 88.2% 91.4% 77.3%
(5) VIBI (Bang et al., 2019) 90.8% 94.4% 98.3% 84.1%
(6) AIL (Liang et al., 2020)† 98.5% 99.3% 99.0% 97.8%
(7)

L2X with ŷ
– – 48.8% 77.8% 94.9% 85.3%

(8) Pretraining 97.1% 99.0% 66.3% 89.4%
(9) Weighting 94.3% 87.7% 99.8% 95.4%

†AIL utilizes additional information about the models to be explained, i.e., their gradients.

From the table, we find that directly adding ŷ to the query did not always improve the performance
by comparing Row (4) and (7). Interestingly, for the text classification datasets, adding ŷ led to
decreased performance, and meanwhile, Pretraining outperformed Weighting. For the image classi-
fication datasets, we had the exact opposite conclusion. We ascribe this phenomenon to the inherent
differences between the two tasks. Firstly, a single word in a sentence is much more informative
than a single pixel in an image. Secondly, the importance of words is more “continuous”, and in
contrast, the importance of pixels is more “discrete” and co-adapting. Intuitively, the function of
E(Y |X � M) is smoother and more comfortable to learn for text classification tasks than for im-
age classification tasks. As a result, as discussed in Section 4.1, it may be hard for Pretraining
to learn reasonable estimations of E(Y |X � M) efficiently for images. Thus the performance of
interpretability is limited, especially for MNIST, where the digital numbers are placed randomly
compared with F-MNIST, where the items are aligned better.

By comparing with the baselines (especially L2X with ŷ), we find that despite the simplicity, Pre-
training and Weighting can outperform most of the baselines and give comparable results with AIL,
which utilizes additional information (i.e., their gradients) of the models to be explained. We con-
clude that mitigating the combinatorial shortcuts can effectively improve the interpretability. We
present visualization examples of explanations in Appendix B.

6 CONCLUSION

Attention-based model interpretations have been popular for their convenience to integrate with
neural networks. However, many researchers find that attention sometimes yields non-interpretable
results, and there has been a debate on the interpretability of the attention mechanisms. In this paper,
we propose that the combinatorial shortcuts are one of the root causes hindering attention mecha-
nisms’ interpretability. We analyze the combinatorial shortcuts theoretically and design experiments
to show their existence. Furthermore, we propose two practical methods to mitigate combinatorial
shortcuts for better interpretability. Experiments show that the proposed methods effectively miti-
gate combinatorial shortcuts and improve the interpretability of attention mechanisms. The results
presented in this paper may help us better understand how attention mechanisms work.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proceedings of the International Conference on Learning Rep-

resentations, 2015.

Bing Bai, Guanhua Zhang, Ye Lin, Hao Li, Kun Bai, and Bo Luo. CSRN: Collaborative sequential
recommendation networks for news retrieval. arXiv preprint arXiv:2004.04816, 2020.

Seojin Bang, Pengtao Xie, Wei Wu, and Eric Xing. Explaining a black-box using deep variational
information bottleneck approach. arXiv preprint arXiv:1902.06918, 2019.

Tathagata Chakraborti, Anagha Kulkarni, Sarath Sreedharan, David E Smith, and Subbarao Kamb-
hampati. Explicability? legibility? predictability? transparency? privacy? security? the emerging
landscape of interpretable agent behavior. In Proceedings of the International Conference on

Automated Planning and Scheduling, volume 29(1), pp. 86–96, 2019.

Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. In International Conference on Ma-

chine Learning, pp. 883–892, 2018.

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and Walter
Stewart. RETAIN: An interpretable predictive model for healthcare using reverse time attention
mechanism. In Advances in Neural Information Processing Systems, pp. 3504–3512, 2016.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does BERT look
at? an analysis of BERT’s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP:

Analyzing and Interpreting Neural Networks for NLP, pp. 276–286, 2019.

Ashkan Ertefaie and David A Stephens. Comparing approaches to causal inference for longitudi-
nal data: Inverse probability weighting versus propensity scores. The International Journal of

Biostatistics, 6(2), 2010.

Wei Fan, Ian Davidson, Bianca Zadrozny, and Philip S Yu. An improved categorization of classifier’s
sensitivity on sample selection bias. In Proceedings of the Fifth IEEE International Conference

on Data Mining, pp. 605–608, 2005.

Kun Fu, Junqi Jin, Runpeng Cui, Fei Sha, and Changshui Zhang. Aligning where to see and what to
tell: Image captioning with region-based attention and scene-specific contexts. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 39(12):2321–2334, 2016.

Sarthak Jain and Byron C Wallace. Attention is not explanation. In Proceedings of the 2019 Con-

ference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pp. 3543–3556, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In
International Conference on Learning Representations, 2017.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural networks for text
classification. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp.
2267–2273, 2015.
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