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Abstract

Identifiability issues constitute a major obstacle
for Unsupervised Causal Representation Learning,
which aims at learning the ground-truth data gen-
erating mechanisms from unlabelled observations.
Insights about this problem are provided by the
field of Independent Component Analysis, studying
models that maps statistically independent latent
variables to observations via a deterministic, pos-
sibly nonlinear function. Indeed, several families of
spurious solutions fitting perfectly the data, but that
do not correspond to the ground truth factors, can
be constructed in generic nonlinear settings. How-
ever, recent work suggests that constraining the
function class of such models may promote iden-
tifiability. Specifically, function classes with con-
straints on their partial derivatives, gathered in the
Jacobian matrix, have been proposed, such as or-
thogonal coordinate transformations (OCT), which
impose orthogonality of the Jacobian columns. In
the present work, we prove that a subclass of these
transformations, conformal maps, is identifiable
and provide novel theoretical results suggesting
that OCTs have properties that prevent families
of spurious solutions to spoil identifiability in a
generic setting.

1 INTRODUCTION

Unsupervised representation learning methods can fit Latent
Variables Models (LVM) to complex real world data. While
those latent representations allow to create realistic novel
samples or represent the data in a compact way Kingma and
Welling [2014], Goodfellow et al. [2014], they are a priori
not related to the underlying ground truth generative factors
of the data. Recently, the desiderata has emerged to learn
causal representations that reflects the true underlying data-

generating factors and mechanisms, as they are expected to
help with various downstream tasks, e.g., out of distribution
generalisation Schölkopf et al. [2021], Bengio et al. [2013].

One principled framework for representation learning is
Independent Component Analysis (ICA) where one tries
to recover unobserved sources s ∈ Rd from observations
x = f(s) and one assumes that the components si are
independent. An important result is that for linear func-
tions f it is possible to recover s from observations x up
to certain symmetries, i.e., the model is identifiable Co-
mon [1994]. In contrast, for general non-linear models f is
highly non-identifiable Hyvärinen and Pajunen [1999]. This
has important consequences for representation learning, in
particular the learning of disentangled representations is
also unidentifiable without some access to the underlying
sources Locatello et al. [2019]. Notably, this makes theoret-
ical analysis of the large body of methods (see, e.g., Higgins
et al. [2017], Kim and Mnih [2018], Ridgeway and Mozer
[2018]) that enforces disentanglement difficult.

Several additional assumptions were suggested to make
the ICA problem identifiable. Broadly, there are two dir-
ections. First, some works imposed additional or different
restrictions on the distribution of the sources. One line of
research adds temporal structure by considering time series
data Harmeling et al. [2003], Hyvärinen and Morioka [2016,
2017]. More recently, Hyvärinen et al. [2019] proposed to
introduce an observed auxiliary variable u, e.g., a class label,
such that the source distribution has independent compon-
ents conditional on the auxiliary variable. They show that
under suitable assumptions on the distribution of u and s
arbitrary nonlinear mixing function can be identified. Sev-
eral recent works extended this approach Khemakhem et al.
[2020], Sorrenson et al. [2020], Yang et al. [2022].

Another possibility is to restrict the class of admissible func-
tions by considering more flexible classes than just linear
functions but not allowing arbitrary non-linear functions.
The general aim of this approach is to find sufficiently small
function classes such that ICA is identifiable in this class
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while making them as large as possible to allow flexible
representation of complex data and being applicable to real
world problems. So far results in this direction are rather
limited. It was shown that the post-nonlinear model is identi-
fiable Taleb and Jutten [1999]. Moreover, it has been shown
that ICA with conformal maps in dimension 2 is almost
identifiable Hyvärinen and Pajunen [1999] and that volume
preserving transformations are identifiable (in the auxili-
ary variable case, combining the two possible restrictions)
Yang et al. [2022]. The recent work Zheng et al. [2022] also
considers identifiability of nonlinear-ICA, however their
definition of identifiability differs from ours.

In this work we extend the previous works by proving new
identifiability results for unconditional ICA. Our main focus
is conformal maps (i.e., maps that locally preserve angles)
and Orthogonal Coordinate Transforms (OCT) (i.e., maps
satisfying that Df>Df is a diagonal matrix where Df
denotes the derivative of f ). OCTs, that will also call ortho-
gonal maps for simplicty, were recently introduced in the
context of representation learning in Gresele et al. [2021]
where they were motivated using the independence of mech-
anisms assumption from the causality literature. The main
focus of this work is to prove new identifiability and partial
identifiability results for this class of functions. Our main
contributions are the following.

• We prove that ICA with conformal maps is identifiable
in d ≥ 3.

• We define a new notion of local identifiability (Defin-
ition 5) and prove that ICA with orthogonal maps is
locally identifiable (Theorem 3). On the contrary we
show that ICA with volume preserving maps is not
identifiable not even in the local sense (Theorem 5).

• We introduce new tools to the ICA field: our results are
based on connections to rigidity theory, restricting the
global structure of functions based on local restrictions.
Moreover, in contrast to most earlier results that argue
locally using results from linear algebra we exploit the
global structure of partial differential equations related
to the identifiability problem.

2 SETTING

Independent component analysis deals with the problem of
identifying underlying sources when observing a mixture of
the sources. We will consider the following general setting:
there exists some random hidden vector of sources s ∈ Rd
and the observed data is generated by

x = f(s), ps(s) =

d∏
i=1

pi(si) (1)

where f : Rd → Rd is a smooth invertible function. The
condition on s means that its coordinates (often referred

to as factors of variation) are independent. Formally this
means that the distribution of s which we will denote by P
satisfies P ∈M1(R)⊗n whereM1(R) denotes the probab-
ility measures on R. The goal of ICA is to find an unmixing
function g : Rd → Rd such that g(x) has independent
components. Ideally, this should recover the true underlying
factors of variation and achieve Blind Source Separation
(BSS), i.e., g = f−1 up to certain symmetries. Identification
of the true generative factors of variations of an observed
data distribution is of interest also since these provide a
causal and interventional understanding of the data.

An important observation was that in the generality stated
above identification of s is not possible. In Hyvärinen and
Pajunen [1999] two general constructions of spurious solu-
tions were given, the well known Darmois construction and
a construction based on measure preserving transformations.
The latter one is closer to our work here and we will dis-
cuss those in more detail in Section 4 and Appendix B. In
a nutshell it is based on the observation that for measures
P with smooth density one can construct smooth Measure
Preserving Transformations (MPT), m : Rd → Rd (that
mix the different coordinates), i.e., maps that leave P in-
variant, such that m(s)

D
= s if s ∼ P.1 This implies that

all functions (f ◦m)−1 recover independent sources since
(f ◦m)−1(x)

D
= s making BSS impossible.

Thus it is a natural question whether additional assumptions
on the mixing function f or distribution of s allow us to
identify f . Let us define a framework for identifiability. We
assume data is generated according to (1) where f ∈ F
for some function class of invertible functions which we
will always assume to be diffeomorphisms2 and we assume
the source distribution P satisfies P ∈ P for some set of
probability distributions P ⊂ M1(R)⊗d. Finally, let S be
a group of transformations g : Rd → Rd that encodes
the allowed symmetries up to which the sources can be
identified as follows.

Definition 1. (Identifiability) We say that independent com-
ponent analysis in (F ,P) is identifiable up to S if for func-
tions f, f ′ ∈ F and distributions P,P′ ∈ P the relation

f(s)
D
= f ′(s′) where s ∼ P and s′ ∼ P′ (2)

implies that there is h ∈ S such that h = f ′−1 ◦ f on the
support of P′.

Note that we require the identity h = f ′−1 ◦ f only to hold
on the support of P because for complex classes F there
is in general no unique extension of f beyond the support
of P and without data the extension cannot be identified.

1We use the notation X
D
= Y to indicate that the two random

variables X and Y follow the same distribution
2A diffeomorphism is a differentiable bijective map with dif-

ferentiable inverse.



Figure 1: Illustration of the considered function classes. (a)
shows a standard coordinate frame, (b) a conformal map ap-
plied to this frame which preserves angles, (c) an orthogonal
map (polar coordinates) that preserve the orthogonality of
lines parallel to the coordinate axes but not all angles (see
red line), (d) a volume preserving map.

We do not always make this explicit in the following. Put
differently, identifiability means that given observations of
x = f(s) and knowledge of (F ,P), we can find g such that
g ◦ f ∈ S , in particular the reconstructed sources s′ = g(x)
and the true sources s are related by a symmetry transforma-
tion in S . In Appendix B we will discuss how to identify the
set S and how spurious solutions to the identification prob-
lem can be constructed. In the following it will be convenient
to use the notation f∗P which denotes the push-forward of
the measure P along the function f . For a formal definition
we refer to Appendix A but we note here that the distribu-
tion of f(s) equals f∗P if s ∼ P and (2) can be equivalently
written as f∗P = f ′∗P′.

We illustrate Definition 1 through the well known example
of linear maps

Flin = {f : Rd → Rd : f is linear and invertible}, (3)

i.e., x = As for some invertible matrix A ∈ Rn×n. We
further define

Plin = {P ∈M1(R)⊗d : at most one Pi Gaussian}, (4)
Slin = {PΛ : P permutation matrix and Λ diag. matrix}.

(5)

It is easy to check that S is a group. Then the following
identifiability result for Flin is well known.

Theorem 1. (Theorem 11 in Comon [1994]) The pair
(Flin,Plin) is identifiable up to Slin.

Moreover, this result is optimal as the ordering and scale of
the si cannot be identified and the restriction to at most one

Table 1: Overview of new identifiability results. Note that
Identifiable implies Locally identifiable and if Locally iden-
tifiable does not hold neither of the other two properties can
hold.

F Identifiable
(Def. 1)

Locally
identifiable

(Def. 5)
Linear 3 3

Conformal 3 (Thm. 2) 3
Orthogonal ? 3 (Thm. 3)

Volume pres. 7 7 (Thm. 5)
Nonlinear 7 7 (Lemma 1)

Gaussian component is required as rotations of Gaussians
are Gaussian. For completeness we provide a proof of this
result in Appendix C as this serves as a preparation for the
more involved Theorem 2 below. In the next sections we
discuss our results on identifiability of ICA for different
function classes. An illustration of the considered classes
can be found in Figure 1.

3 RESULTS FOR CONFORMAL MAPS

Our first main result is an extension of Theorem 1 to con-
formal maps. A conformal map is a map that locally pre-
serves angles, i.e. locally it looks like a scaled rotation. It can
be shown that this is equivalent to the following definition.

Definition 2. (Conformal map) We define for domains Ω ⊂
Rd the set of conformal maps byFconf = {f ∈ C1(Ω,Rd) :
Df(x) = λ(x)O(x)} where λ : Ω → R \ {0} is a scalar
function andO : Ω→ O(d) is a map to orthogonal matrices
(i.e., O(x)−1 = O(x)>).

For convenience we use the notation Diag(d) and Perm(d)
for d× d diagonal and permutation matrices, respectively.
We define signed permutation matrices by

Perm±(d) = {P ∈ Rd×d : Q ∈ Perm(d), Qij = |Pij |},
(6)

i.e. the set of matrices whose entry-wise absolute value is a
permutation. We define

Sconf = {x→ κPx+ a, P ∈ Perm±(d), a ∈ Rd, κ ∈ R}
(7)

and

Pconf = P⊗n1 ∩ Plin, where
P1 = {µ ∈M1(R), there is ∅ 6= O ⊂ R open,

s.t. µ has positive C2 density on O}.
(8)

While this condition might appear a bit technical it actually
only rules out pathological cases like the cantor measure or



densities which are nowhere differentiable and probably it
could be relaxed further. In particular P1 contains all prob-
ability measures with piecewise smooth densities. Then the
following identifiability for conformal maps in dimension
d > 2 holds.

Theorem 2. For d > 2, ICA with respect to the pair
(Fconf ,Pconf) is identifiable up to Sconf .

This means that we can identify conformal maps up to three
symmetries, namely constant shifts of the distributions, res-
caling of all coordinates by a constant factor, and permuta-
tions of the coordinates. The proof is in Appendix D. The
main ingredient in the proof is that conformal maps in di-
mension d > 2 are very rigid and can be characterized
explicitly as we will discuss in Appendix D.

4 RESULTS FOR ORTHOGONAL MAPS

Recently, in Gresele et al. [2021], the more general class of
OCTs was considered in the context of ICA. They referred
to orthogonal coordinates as IMA maps, referencing to in-
dependent mechanisms. This nomenclature was motivated
by the causality literature and we refer to their paper for
an extensive motivation and further results. As we focus on
theoretical results for this function class we stick to the more
common term of OCTs. Orthogonal coordinate transform-
ations are defined as the set of functions whose derivative
have orthogonal columns, i.e., the vectors ∂if and ∂jf are
orthogonal for i 6= j.

Definition 3. (OCT maps) We define for domains Ω ⊂ Rd
the set of OCT maps (orthogonal coordinates) by FOCT =
{f ∈ C1(Ω,Rd) : Df(x)>Df(x) ∈ Diag(d)}.

First, we note that we can only hope to identify a mechan-
ism f ∈ FOCT up to coordinate-wise transformations and
permutations. Therefore we set

SOCT = {g : Rd → Rd| g = P ◦ h P ∈ Perm±(d),

h(x) = (h1(x1), . . . , hd(xd))
> with h′i > 0}.

(9)

It is easy to see that SOCT is a group. We note that if
f ∈ FOCT and g ∈ SOCT then f ◦ g ∈ FOCT. Thus, in
particular f∗P = (f ◦ g)∗(g

−1)∗P. This implies that given
observations from f∗P we can identify f and P only up. to
g ∈ SOCT. More precisely, for any (sufficiently smooth) P′
there is f ′ such that f∗P = f ′∗P′ where we pick g such that
P′ = g−1

∗ P. 3

As the distribution of the si is not identifiable we will map
it to a fixed reference distribution where we will choose the

3This is possible if both distributions have compact connected
support where they have a smooth positive density. We ignore diffi-
culties associated with unbounded support or non-regular measures
here

Figure 2: Smooth invariant deformations. The blue grid
indicates the transformation f , while the green grid shows
the deformed map Φt. For Definition 5, the red line indicates
∂Ω, outside of the red box Φt is constant.

uniform distribution on (0, 1)d. We introduce the shorthand
Cd = (0, 1)d for the standard unit cube and denote by
ν the uniform (Lebesgue) measure on Cd. For fixed base
measure ν the symmetry group is reduced to permutations
and reflections, i.e., maps in P ∈ Perm±(d).

We conjecture that for ’typical’ pairs of f ∈ FOCT, P ∈
POCT ICA is identifiable with respect to SOCT (with a
suitable definition ofPOCT, e.g.,POCT = Pconf ). However,
we leave a precise statement for future work. We now prove
a weaker notion of local identifiability for OCTs.

Local Stability of OCTs. We now give partial results
towards identifiability of OCTs. While we do not prove
general identifiability for OCTs, we demonstrate their local
rigidity: OCTs cannot be continuously deformed to obtain
spurious solutions. This is in stark contrast to the general
nonlinear case which we will discuss for comparison below.
The result will be based on the following definition.

Definition 4. (Smooth invariant deformations) Consider a
family of differentiable transformations Φ ∈ C1((−T, T )×
Rd,Rd) for some T > 0 such that Φt = Φ(t, ·) is diffeo-
morphism. Let Pt ∈M1(R)⊗d for t ∈ (−T, T ) be a family
of probability measures. We call (Φt,Pt) a smooth invari-
ant deformation of the pair (f,P) if Φ0 = f , P0 = P and
(Φt)∗Pt = f∗P.

An illustration of this definition can be found in Figure 2.
Based on invariant deformations we can now define a local
identifiability property of ICA in a given function class.

Definition 5. (Local identifiability of ICA). Consider a
function class F . Let (Φt, ν) be a smooth invariant deforma-
tion of (f, ν) (i.e., Pt = ν is constant). Assume that Φt ∈ F
and there is an open set Ω ⊂ Cd with Ω̄ ⊂ Cd such that
Φt(x) = f(x) for x /∈ Ω. Then we say that ICA in F is loc-
ally identifiable at (f, ν) if under these assumptions Φt = f
for all t.

We call F locally identifiable if it is locally identifiable
at (f, ν) for all f ∈ F . Local identifiability of a function
class means that we cannot smoothly transform a function



f ∈ F to any other function f ′ ∈ F such that we stay in F
along the transformation path, the observational distribution
remains the same, and we fix the functions close to the
boundary of Cd. Note that this definition is local in two
ways. We consider smooth transformations of the ground
truth, i.e., small changes of the data generating function f
and in addition we assume that the changes are local in s,
i.e., sources s close to the boundary are kept invariant. An
extension to varying P is possible but not necessary in the
context of OCTs as explained above. We can show that local
identifiability holds true in FOCT.

Theorem 3. The function class FOCT is locally identifiable
at (f, ν) for all f ∈ FOCT.

Let us reiterate what this theorem shows (illustrated in
Fig. 2): we cannot smoothly and locally transform the func-
tion f such that (1) the observational distribution remains
invariant, i.e., equal to f∗ν, and (2) the deformed functions
remain OCTs. The proof, in Appendix E, introduces new
tools to the field of ICA. The main idea is to consider the
vector field X that generates the deformation Φt and then
rewrite the assumption as systems of partial differential
equations for X . The proof is then completed by showing
that the only solution of this system vanishes.

At a high level this result suggests that OCTs can be iden-
tified if we know f close to the boundary of the support
of s, e.g., by having, in addition to unlabelled data f(s),
labelled data (s, f(s)) for those s where one coordinate si
is extremal. Note that we actually do not show this result as
there might be further solutions which are not connected by
smooth transformations. We expect that this result can be
generalised substantially. In particular, we conjecture that
for “most” functions f the compact support condition can
be removed thus giving a stronger local identifiability result
up to the boundary of the support of s. As a partial result in
this direction we show the following theorem.

Theorem 4. Let f : Cd → Rd be given by f(x) = RDx,
where R ∈ O(d) and D = Diag(µ1, . . . , µd) with µi > 0
and µ−2

i are linearly independent over the rational numbers
Q. Suppose that (Φt, ν) (i.e., Pt = ν is constant) is a smooth
invariant deformation of (f, ν) and Φt is analytic in t. Then
Φt ∈ FOCT for all t implies that Φt = f on Cd, i.e., Φt is
constant in time.

The proof is in Appendix E and similar to Theorem 3. Note
that for random µi whose distribution have a bounded dens-
ity the condition is satisfied with probability one. Moreover,
we do not expect non-constant Φt to exist when we remove
the assumption on the µi but we are unable to show this.

Comparison with ICA for general nonlinear functions.
Let us emphasize that those results are non-trivial as they
establish a large difference between ICA with generic non-
linear maps and ICA with OCTs. To clarify this we state that

Figure 3: Illustration of radius dependent rotations as
defined in Lemma 1. The left figure shows the initial sources.
In the right figure a radius dependent volume preserving
transformation was applied (see Appendix B).

no result similar to Theorem 3 holds without the assump-
tion that Φt ∈ FOCT. Put differently, the function class
Fnonlinear is not locally identifiable.

Fact 1. Suppose f : Cd → Rd is a diffeomorphism on its
image. Then there are many smooth invariant deformations
(Φ,Pt) of (f, ν) such that Pt = ν and Φt|Ωc = f |Ωc for any
Ω ⊂ Cd open.

For completeness we provide a general construction that
is close to our proof of Theorem 3 in Appendix B in the
supplement. A very clear construction for this result was
given in Hyvärinen and Pajunen [1999].

Lemma 1 (Smoothly varying radius dependent rotations
(see Hyvärinen and Pajunen [1999])). Let R : R× R+ →
O(d) be a smooth function mapping to orthogonal matrices
and let a ∈ Cd. Assume that R(t, r) = id for r ≥
dist(a, ∂Cd). Then the map s → hR,a(t, s) = R(|s −
a|, t)(s−a) +a preserves the uniform measure ν on Cd for

all t so that f ◦ hR,a(t, s)
D
= f(s) for all t if s is distributed

according to ν.

An illustration of this construction is shown in Figure 3.
Clearly, by concatenation this allows us to create a vast
family of spurious solutions. Note that those families of
solutions are excluded when restricting to OCTs which is a
consequence of Theorem 3.

We summarize the results of this section informally (we
do not claim that the statements below regarding (infinite
dimensional) manifolds can be made rigorous). For a given
data generating mechanism (f0, ν) we expect that typic-
ally the set of all solutions MOCT = {f ∈ FOCT| f∗ν =
(f0)∗ν} ⊂ FOCT is a zero dimensional submanifold, i.e.,
consists of isolated spurious solutions and we prove this
when fixing the boundary (see Theorem 3) while the cor-
responding submanifold of general nonlinear spurious solu-
tions Mnonlinear = {f : Cd → Rd| f∗ν = (f0)∗ν} is infin-
ite dimensional even when requiring f(s) = f0(s) close to
the boundary of Cd.



5 RESULTS FOR VOLUME
PRESERVING MAPS

Let us finally consider volume preserving transformations.
Those are defined as the set of functions

Fvol = {f : Ω→ Rd | detDf(x) = 1 for all x ∈ Ω}.
(10)

Invertible volume preserving deformations have the prop-
erty that they preserve the standard (Lebesgue)-measure λ
in the sense that f∗λΩ = λf(Ω). Recently it was proposed
that volume preserving functions are a suitable function
class for ICA. Here we show that those functions are not
sufficiently rigid to allow identifiability of ICA in the uncon-
ditional case. Note that Lemma 1 and Fact 1 already show
how to construct spurious solutions for the case that the
base distribution is the uniform measure ν. However, for an
arbitrary distribution P this is slightly more difficult because
we need to find maps g that preserve P, i.e., g∗P = P, and
are volume preserving, i.e., preserve the standard measure.
Nevertheless, we have the following theorem.

Theorem 5. Let p be a twice differentiable probability dens-
ity with bounded gradient. Suppose that x = f(s) where the
distribution P of s has density p and f is a diffeomorphism
with detDf(x) = 1 for x ∈ Rd. Then there is a family of
functions ft : R× Rd → Rd with f0 = f and ft 6= f0 for
t 6= 0 such that detDft(x) = 1 and (ft)∗P = f∗P.

The proof and an illustration are in Appendix F.

6 DISCUSSION

ICA is long known to be identifiable for linear maps, baring
pathological cases, and highly non-identifiable for general
nonlinear ones. Surprisingly, similar results for function
classes of intermediate complexity remain scarce. In this
work we address this question with several identifiability
results for different function classes. Our first main result is
that ICA is identifiable in the class of conformal maps (up
to classical ambiguities). This considerably extends previ-
ous claims, limited to a specific 2D setting Hyvärinen and
Pajunen [1999], and ruling out several families of spurious
solutions Gresele et al. [2021]. On the negative side we show
that the ICA problem for volume preserving maps admits
a large class of spurious solutions. Finally, we show that
OCTs satisfy certain weaker notions of local identifiability.

While the main focus of current research after the seminal
work of Hyvärinen et al. [2019] is on the auxiliary variable
case, we think that a better understanding of unconditional
ICA is still an important challenge. Firstly, it is a funda-
mental research question that is, as illustrated by our results,
deeply rooted in functional analysis. Secondly there is high
application potential for completely unsupervised learning

without any auxiliary variables, as the corresponding data-
sets do not require labelling or specific experimental settings.
Thirdly, it is very likely that the techniques can be general-
ised to the auxiliary variable case.

In our proofs, we draw connections to methods and tech-
niques that, to the best of our knowledge, have not been used
in the context of ICA before. We relate the identifiability
problem in ICA to the rigidity of the considered function
class F and use tools from the theory of partial differential
equations. These techniques have been applied very success-
fully to the analysis of elastic solids Ciarlet [2021, 1997]
and we believe that there are many applications of these
methods in the field of ICA.

Another important open problem is assessing the type of con-
straints on ground truth mechanisms, encoded by function
classes, that are relevant for real world data. It is plausible
that those mechanisms are typically much more regular than
generic nonlinear functions. Recently, Gresele et al. [2021]
suggested, based on arguments from the causality literature
that FOCT is a natural class for representation learning (and
our results show it also has favourable theoretical proper-
ties), but this will require experimental confirmation on real
world data. To bridge the gap between theory and real world
applications, two questions of considerable interest are (1)
an analysis of undercomplete ICA (i.e., f : Rd → Rd′ with
d < d′) with restricted function classes which is completely
open and (2) identifiability results when we only know that
f is close to some function class F .

Finally, a central question from a machine learning per-
spective is the ability to design learning algorithms that can
train LVMs with identifiable function class constraints. In-
terestingly, Gresele et al. [2021] showed that OCT maps can
be learnt using a closed from regularized likelihood loss,
thereby providing, supported by our result, a full-fledged
identifiable nonlinear ICA framework.
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Function Classes for Identifiable Nonlinear Independent Component
Analysis

Supplementary Material

In the supplement we provide the proofs of our results and we discuss the relevant background.

A MATHEMATICAL BACKGROUND

For the convenience of the reader we collect some mathematical definitions and notations. All definitions can be found in
standard textbooks.

Pushforward of measures. For a measure µ on a (measurable) space X and a measurable map, f : X → Y the
pushforward measure f∗µ is defined by (f∗µ)(A) = µ(f−1(A)) for any measurable set A ⊂ Y . Here f−1(A) = {x ∈
X | f(x) ∈ A} denotes the preimage of A under f . Sometimes the pushforward measure is denoted by f#µ. Note that no
further restrictions on f are necessary, in particular f does not need to be invertible. One important property that we will use
frequently is the relation (g ◦ f)∗µ = f∗(g∗µ).

Note that if s ∼ P, i.e., s has distribution P then f(s) ∼ f∗P. Indeed, this is obvious as P (f(s) ∈ A) = P (s ∈ f−1(A)) =
P(f−1(A)). In the context of ICA it is convenient to mostly talk about distributions and push-forwards as we typically never
observe pairs (s, f(s)). For later usage we also recall the transformation formula for random variables. If f ∈ C1(Rn,Rn)
is an invertible diffeomorphism and Q = f∗P where P and Q have density p and q respectively then

q(y) = p(f−1(y))|DetDf−1(y)|. (11)

Note that the potentially more familiar version for random variables reads as follows. Let X and Y be random variables
satisfying Y = f(X), then their densities are related by

pY (y) = pX(f−1(y))|DetDf−1(y)|. (12)

Diffeomorphisms. Let U, V ⊂ Rd. A diffeomorphism from U to V is a bijective map f : U → V such that f ∈ C1(U, V )
and f−1 ∈ C1(V,U). Note that it is not sufficient to assume that f is bijective and in C1(U, V ), the classic counterexample
being f(x) = x3. A sufficient condition is that Df(x) is an invertible matrix for all x. Sometimes we loosely speak about
diffeomorphisms f : U → Rd which should be understood as f being a diffeomorphism on its image f(U).

Vector fields and flows Vector fields can be introduced nicely in the language of differential geometry. However, we think
that for the purpose of this paper it is more appropriate to give a more down to earth discussion focused on Rd. We refer to
Lee [2003] for a general introduction. A vector field is a map X : Rd → Rd. Our reason to consider vector fields is that they
can be used to describe smooth transformations of Rd. We will assume that X is Lipschitz continuous. We define the flow of
a vector field as a map Φ : R× Rd → Rd such that

Φ0(x) = x, ∂tΦt(x) = X(Φt(x)). (13)

Let us remark concerning the notation that it is convenient to put the t argument below, i.e., we write Φt(x) = Φ(t, x).
Moreover, when applying differential operators D they will by default only act on the spatial variable x, i.e., DΦt(x)
denotes the derivative of the function x→ Φt(x) for a fixed t. Note that the solutions of differential equations can exhibit
blow-up so Φt(x) might not be defined for all times t. However, when we assume that X is bounded the flow exists globally.

It can be shown that if X is k times differentiable then so is Φt and one can conclude that then Φt is a diffeomorphism
(Φ is bijective by the uniqueness of ordinary differential equations). We will also consider time-dependent vector fields
X : (−T, T )× Rd → Rd where the flows can be defined similarly, replacing X by Xt.

We are particularly interested in the action of flows on probability measures, i.e., we consider the measures (Φt)∗P for some
initial measure P. It can be shown that if the density of P is p then the density pt of (Φt)∗P satisfies the continuity equation

∂tpt + Div(ptXt) = 0 and p0 = p. (14)



Here Div denotes the divergence which is defined by Div f =
∑
i ∂ifi = TrDf . One important consequence is that the

flow of the vector field preserves the measure, i.e., (Φt)∗P iff Div(pXt) = 0 for all t. Moreover, the standard Lebesgue
measure in Rd is preserved if Div(Xt) = 0, i.e., divergence free vector fields generate volume preserving flows and vice
versa.

Additional notation. We at some places use the notation [n] = {1, . . . , n}. We also use the O notation. Recall that
f(x) = O(g(x)) as x→∞ means that there are constants x0 and C > 0 such that f(x) ≤ Cg(x) for x ≥ x0. Recall that
we introduced the notation Cd = (0, 1)c in the main part and we denoted by ν the uniform measure on Cd. We write iff as a
shorthand for ’if and only if’.

B MEASURE PRESERVING TRANSFORMATIONS AND SPURIOUS SOLUTIONS

In this section we review the construction of spurious solutions for the ICA problem. We assume that we consider ICA in the
class (F ,P) where F is a function class and P a class of probability measures. We are interested in understanding the set of
spurious solutions for a pair (f,P), i.e., the set of pairs (f ′,P′) ∈ F × P such that f∗P = f ′∗P′. We now note that if we can
construct h such that h∗P′ = P and set f ′ = f ◦ h we have f∗P = f ′∗P′. Next we define the subset of right composable
functions

FR = {f ∈ F| g ◦ f ∈ F for all g ∈ F} (15)

and similarly the subset of left-composable functions

FL = {f ∈ F| f ◦ g ∈ F for all g ∈ F}. (16)

We remark that if F is a group then obviously FL = FR = F and the problem reduces to finding measure preserving
transformations in F . The classes Flin, Fnonlinear, Fconf , and Fvolume are all groups. We will comment on FOCT below.

We note that if h ∈ FR satisfies h∗P′ = P then f ′ = f ◦ h ∈ F and f ′∗P′ = f∗P so this gives us a spurious solution. A
specific case is given by P = P′ in which case we are looking for measure preserving transformations (MPTs) h ∈ FR.
Note that such h for a certain P allows us to construct spurious solutions for all pairs (f,P) with arbitrary f .

This implies that if (F ,P) is identifiable with respect to S then any h as above satisfies h ∈ S (if P′ has full support, and
otherwise there is a h′ ∈ S such that h and h′ agree in the support of P′).

We consider an example. Let P be the distribution of the standard Gaussian and h = R for some R ∈ O(d). Then h ∈ Flin

and h∗P = P as the standard Gaussian is invariant under rotations. However, such a linear measure preserving transformation
does not exist for other P ∈M1(R)⊗d. This is the reason that Gaussian distributions are excluded for linear ICA.

Next we observe (as we discussed in the main part) that if the function class F is stable by right composition with arbitrary
component-wise transformation we can turn any admissible latent distribution into another one. This means we can fix a
reference measure (we will usually use ν) and then we can find (at least under suitable regularity assumptions) for P ∈
M1(R)⊗d maps hP→ν , hν→P ∈ FR such that hP→ν∗ P = ν, hν→P

∗ ν = P. If we can find an MPT h ∈ FR such that h∗ν = ν
mixing the coordinates we can then find spurious solutions for any pair (f,P) by considering f ′ = f ◦ hν→P ◦ h ◦ hP→ν
because then f ′∗P = f∗P and f ′ ∈ F by definition of FR.

For the class Fnonlinear such MPTs exist, we gave one construction in Lemma 1. In Appendix E we will sketch the proof of
this result and discuss another construction based on divergence free vector fields. For the class Fvolume we cannot arbitrarily
transform the input distribution. However, we can still find coordinate mixing MPTs for every P (with smooth density).
This will be proved in Appendix F. These constructions rule out any (meaningful) identifiability result for Fnonlinear and
Fvolume.

There is also a slightly different approach to construct spurious solutions for a pair (f,P). For any MPT h ∈ FL such
that h∗f∗P = f∗P, i.e., transformations that preserve the observational distribution Q = f∗P, the function h ◦ f defines a
spurious solution. Note that this gives spurious solutions for all pairs (f,P) such that f∗P follows the fixed distribution Q.
Note that because of their fine-tuning, such spurious solutions can arguably be considered pathological cases instead of key
non-identifiability issues. This is inline with how such solutions a considered in the case of linear ICA.

Let us finally have a closer look at FOCT. It is quite straightforward to see that

FLOCT = Fconf . (17)



In particular, all rotations are contained in FLconf . More interestingly, we have

FROCT = {f ∈ FOCT|Df(x) = P (x)Λ(x) for some P (x) ∈ Perm(d), Λ(x) ∈ Diag(d)}
= {f ∈ FOCT| f = P ◦ hwhere P ∈ Perm±(d) and h : Rd → Rd with

h(x) = (h1(x1), . . . , hd(xd))
> for some hi ∈ C1(R,R) with h′i > 0}.

(18)

The first step can be seen using the chain rule and the definition of FOCT. The second step follows from the fact that the
permutation P is necessarily constant for such a function. This again recovers the fact that OCTs can only be identified up
to permutations and coordinate-wise reparametrisations. However, we also conclude that all h ∈ FROCT act coordinate-wise
(up to a permutation), i.e., do not prevent BSS. This shows that for FOCT no completely generic spurious solution based on
a single MPT mixing the coordinates exists. This is different from Fnonlinear. We emphasize that this does not rule out the
existence of a fine-tuned spurious solution for every (or most) pairs (f,P) because then we only need to find h such that
h∗P = P and f ◦ h ∈ FOCT. The relation f ◦ h ∈ FOCT of course holds for h ∈ FROCT but there will, in general, be many
more h for a fixed f .

C PROOF OF THEOREM 1

We here, for completeness, give a proof of Theorem 1. While this result is well known we think that it makes sense to
include a condensed proof because it contains many of the key steps of the more involved proof for conformal maps in the
next section and it is not as well known as the proof based on Darmois-Skitovich Theorem which does not generalise to
nonlinear functions.

Proof of Theorem 1. We assume that x D= As
D
= A′s′. We first assume that the densities p : Rn → R and q : Rn → R

of s and s′ are C2 functions and p(x) > 0 for all x ∈ Rd. We denote their distributions by P and Q. By independence
of the components we can write p(x) =

∏
i pi(xi), q(x) =

∏
i qi(xi) for some C2 functions pi and qi. By assumption

we conclude that ((A′)−1A)∗P = Q. We denote B = ((A′)−1A)−1 = A−1A′ so that B−1
∗ P = Q and the transformation

formula for densities implies that

q(y) = p(By) |DetB| ⇒
∑
k

ln(qk(yk)) =
∑
k

ln(pk((By)k) + ln |DetB|. (19)

The main idea of the proof is to use the observation that for i 6= j and all y such that q(y) 6= 0

∂i∂j ln(q(y)) = ∂i∂j
∑
k

ln(qk(yk)) = 0 (20)

i.e., mixed second derivatives of the log density vanish. We plug (19) into this equation and get

∂i ln(q(y)) =
∑
k

Bki ln(pk)′((By)k), (21)

∂i∂j ln q(y) =
∑
k

BkjBki ln(pk)′′((By)k). (22)

We now denote x = By. Then we get (using that B is invertible) that for all x such that p(x) 6= 0

0 =
∑
k

BkjBki ln(pk)′′(xk). (23)

Varying one xk individually we conclude that each summand is constant which implies that eitherBkjBki = 0 for all i 6= j or
ln(pk)′′(xk) is constant. It is straightforward to see that the only probability distribution with ln(p)′′ = κ for some constant
κ are Gaussian distributions. Indeed, note that ln(p)′′ = κ for some constant implies that p(x) = exp(κx2/2 + c1x+ c2).
If p is the density of a probability distribution and in particular integrable we see that this implies κ < 0 and p is a Gaussian
density with κ = −σ−2. Note that by assumption at most one component of P is Gaussian, w.l.o.g., k = 1.

As pk is not a Gaussian for k > 1 and thus ln(pk)′′ not constant we conclude

BkjBki = 0 (24)



for i 6= j and all k > 1. Plugging this into (23) we obtain

0 = B1jB1i ln(p1)′′(x1). (25)

Note that if p1 is a Gaussian density then ln(p1)′′ = −σ−2 6= 0 so we conclude that in any case B1iB1j = 0 for i 6= j, i.e.,
(24) holds as well for k = 1.

In other words, at most one entry of every row of B is non-zero. This implies that B = PΛ for some P ∈ Perm(d) and
Λ ∈ Diag(d). This was to be shown.

Let us clarify what happens when there is more than one Gaussian component. In this case there might be multiple constant
non-zero terms in (23) whose contributions can cancel and we cannot conclude that (24) holds for all k. This recovers the
well known non-uniqueness for Gaussian variables.

It remains to extend the result to distributions whose density is not twice differentiable. By standardizing s and s′ we
can assume that B ∈ O(n). Indeed, when the covariances of s and s′ satisfy Σs = Σs′ = Idd then s = Bs′ implies
B>B = BTΣs′B = Σs = Id. Then s′ D= Bs implies that for an independent standard normal

B(s+N)
D
= s′ +BN

D
= s′ +N (26)

where we used that standard normal variables are invariant under orthogonal maps. Note that s + N ∈ Plin. Indeed,
(si, Ni) ⊥⊥ (sj , Nj) implies (si +Ni) ⊥⊥ (sj +Nj) for i 6= j. If si +Ni is Gaussian then si is Gaussian (consider, e.g.,
the Fourier transform) so s+N also has at most one Gaussian component. The density of s+N is smooth and pointwise
positive, so we can apply the reasoning above to s+N and s′ +N and conclude B ∈ Slin.

D PROOFS FOR THE RESULTS ON CONFORMAL MAPS

In this section we give the proofs for Section 3. First, we consider d > 2 and then the special case d = 2.

D.1 PROOF OF THEOREM 2

The proof of Theorem 2 uses similar ideas as the proof for Theorem 1, however, the calculations are more involved. The key
ingredient is the classification of all conformal maps in d > 2 given by Liouville.

Theorem 6 (Liouville). If Ω ⊂ Rn is an open connected set and f : Ω→ Rn is conformal, then

f(x) = b+ α
A(x− a)

|x− a|ε
(27)

where b, a ∈ Rn, α ∈ R, A ∈ O(n), and ε ∈ {0, 2}.

Originally this result was shown by Liouville Liouville [1850], a modern treatment is Iwaniec and Martin [2001]. In
particular, this shows that conformal maps are (up to translations) rotations or rotations followed by an inversion. in
Theorem 6. From there we see that we already dealt with the linear case in Theorem 1, so it is sufficient to focus on the case
of nonlinear transformations. In particular, the Theorem will be an easy consequence of the following lemma.

Lemma 2. Suppose g : Rd → Rd is a nonlinear Moebius transformation, i.e., a map as in (27) with ε = 2. Let s, s′ be

random variables whose distributions are in Pconf . Then s
D
6= g(s′).

Let us quickly show how it implies Theorem 2 before we prove this lemma.

Proof of Theorem 2. We use the same notation as in the proof of Theorem 1. We denote the distribution of s and s′ by P
and Q and we assume x D= f(s)

D
= f ′(s′) with f, f ′ : Rd → Rd conformal. This implies that (f ′−1f)∗P = Q. We denote

g = ((f ′)−1f)−1 = f−1f ′ so that P = g∗Q. We apply Liouville’s Theorem (recalled in Theorem 6) which implies that

g(y) = b+
αA(y − a)

|y − a|ε
(28)



where b, a ∈ Rd, α ∈ R, A ∈ O(d), ε ∈ {0, 2}. Using Lemma 2 we conclude that ε = 0 and g is linear. Then we can apply
Theorem 1 (using that Pconf ⊂ Plin) and conclude that αA = PΛ for a permutation matrix and a diagonal matrix Λ. Since
g is conformal we have that A is orthogonal and all eigenvalues have absolute value 1 which implies that Λii = ±α for
1 ≤ i ≤ d and thus A ∈Mperm,±(Rd×d).

To prove Lemma 2 we need one technical result that shows that local properties of the density pi (i.e., properties that hold
for xi ∈ Oi for some non-empty open sets Oi) in fact hold for all xi 6= 0. This will be based on the nonlinearity of the map
g combined with the factorisation p(x) =

∏
i pi(xi) of the densities. An illustration can be found below in Figure 4.

Lemma 3. Let O = O1 × . . .×Od ⊂ Rd and U = U1 × . . .× Ud ⊂ Rd where Oi and Ui are non-empty open sets. Let
g(x) = Ax/|x|2 for an orthogonal matrix A. Assume that g(O) = U . Then Ui is either (0,∞), (−∞, 0) (−∞, 0)∪ (0,∞),
or (−∞,∞). Moreover, if the i-th row of A is not equal to a (signed) standard basis vector then Ui = R.

Informally the result follows from the fact that coordinate planes {xi = c} are mapped to spheres by g except for c = 0.
We assume that the boundary of O and U is the union of subsets of hyperplanes. However, g(O) = U then implies
that the boundaries of O and U are mapped to each other. Since the boundaries of both sets are the union of subsets
of hyperplanes that are mapped to hyperplanes we conclude their boundaries must be a subset of the coordinate axes
hyperplanes Hi = {x : xi = 0} (because they would be mapped to spherical caps by g). For completeness, we give a
careful proof below. Let us highlight that this lemma essentially rules out counterexamples with finite support because we
can apply the lemma to the set {x ∈ Rd : p(x) > 0}. This is in contrast to the 2-dimensional case where conformal maps
between any two rectangles exist making the proof of the corresponding statement below more difficult.

We now prove Lemma 2.

Proof of Lemma 2. The proof is a bit lengthy, so we first give an informal overview of the main steps. As before, we
denote the distribution of s and s′ by P and Q. We argue by contradiction, so we assume that P = g∗Q. By assumption
g(x) = b+ αA(x− a)/|x− a|2. We now proceed in several steps that constrain the structure of g. Let us briefly describe
the steps of the proof.

In Step 1 and 2 we eliminate the trivial symmetries of the measure and show that the mild local regularity assumption on the
measures imply global regularity.

Then, in Steps 3 and 4 we derive in (38) a condition similar to (23) but more involved.

To exploit this condition we look in Steps 5 and 6 at certain limiting regimes where the terms become much simpler and
almost reduce to the condition of the linear case. This allows us to conclude that A is a permutation matrix in Step 7.

Using that A is a permutation matrix in (38) we get in Step 8 a much simpler relation that almost factorizes. This allows us
to derive a simple differential equation in Step 9 which restricts the potential densities to a simple parametric form. This
allows us to conclude.

Step 1: Elimination of trivial symmetries. First we show that we can assume a = b = 0 and α = 1. We denote the shifts
on Rd by Ta(x) = x+a and the dilationsDα(x) = αx. Then we can rewrite g = Tb ◦Dα ◦g0 ◦T−a with g0(x) = Ax/|x|2
and therefore (g0)∗(T−a)∗Q = (Dα−1 ◦ T−b)∗P. Since shifts and dilations preserve the class Pconf it is sufficient to show
the result for g = g0. To simplify the notation we drop the 0 in the following and just assume g(x) = Ax/|x|2.

Step 2: Support and smoothness of distributions. The goal of this step is to show that under the assumption of Lemma
2 the density of P and similarly of Q is positive and C2 away from the coordinate hyperplanes {xi = 0} for a union of
quadrants, while it vanishes on the remaining quadrants. This will be a consequence of Lemma 3. Let Ui = Int(suppPi).
By assumption, P ∈ Pconf which entails Ui 6= ∅. Then U = U1 × . . .× Un = Int(suppP). Define Oi similarly for Q. The
relation g∗Q = P implies g(O) = U . Applying Lemma 3 we conclude that U is the union of quadrants.

The same argument will imply that p is actually C2 away from the coordinate planes. We consider the interior of the
set of points where P has a twice differentiable and positive density and call it U ′. For x ∈ U ′ there is a density p in a
neighbourhood of x and it factorizes by the independence assumption. The relation

∂2
i p(x)/p(x) = ∂2

i pi(xi)/pi(xi) (29)

implies that then pi is twice differentiable at xi. Vice-versa, if all pi are twice differentiable at xi then p is twice differentiable
at x = (x1, . . . , xd). This implies that U ′ = U ′1 × . . .× U ′d for some open sets U ′i . By definition of Pconf the sets U ′i are



non-empty. Similarly, we define O′. The relation (12) for the densities p and q implies, together with the smoothness of
g, that g(O′) = U ′. Then we apply again Lemma 3 to conclude that p and q are C2 functions away from the hyperplanes
{xi = 0} and if the density is non-zero at a point in a quadrant then it is positive in the complete interior of the quadrant.

Finally, U ′i = R if the i-th row of A has more than one non-zero entry (again by Lemma 3). By definition this means that
pi ∈ C2(R) and pi(x) > 0 for such i and all x.

Let us emphasize here, that we already finished the proof of Lemma 2 for probability distributions with bounded support. This
is more difficult in dimension 2 because there are two-dimensional conformal functions mapping rectangles to rectangles.

A major step in the proof is to show that A is a permutation matrix under the assumptions of the lemma. We define the index
set I ⊂ [d] as the set of all indices i such that the i-th row of the matrix A has only one non-zero entry. Our goal is to show
that I = [d]. We have shown so far that pk is positive and twice differentiable if k /∈ I .

The proof in the linear case relied on the relation (23). We now derive a similar relation for non-linear Moebius transforma-
tions.

Step 3: Derivative formulas. For future reference we note (using A ∈ O(n)) that (for i 6= j)

(Dg(y))kj = ∂jgk(y) =

(
A

|y|2
− 2

Ay ⊗ y
|y|4

)
kj

=
Akj
|y|2
− 2

(Ay)kyj
|y|4

, (30)

(∂i∂jgk)(y) = −2
Akjyi +Akiyj

|y|4
+

8(Ay)kyiyj
|y|6

(31)

Det(Dg(y)) = Det
A

|y|2
Det

(
Id− 2

y ⊗ y
|y|2

)
= −|y|−2d. (32)

Step 4: Derivation of a condition for the densities We apply the same reasoning as in the proof of Theorem 1 to derive
partial differential equations for the density p. The condition s = g(s′), or equivalently g−1(s) = s′ and the density relation
(12) imply

q(y) = p(g(y))|Det∇g(y)|. (33)

This implies

q(y) = p (g(y)) |Det∇(Ay|y|−2)| = p (g(y)) |y|−2d (34)

⇒
∑
k

ln(qk(yk)) =
∑
k

ln(pk(gk(y)))− 2d ln(|y|). (35)

We calculate for i 6= j

∂i ln(q(y)) =
∑
k

(∂igk)(y)(ln pk)′(g(y))− 2d∂i ln(|y|),

0 = ∂j∂i ln(q(y)) = −2d∂j∂i ln(|y|) +
∑
k

(∂i∂jgk)(y)(ln pk)′(gk(y))

+
∑
k

(∂igk)(y)(∂jgk)(y)(ln pk)′′(gk(y)).

(36)

Evaluating the derivatives using (30) and (31) we get

0 = 4d
yiyj
|y|4

+
∑
k

(
8(Ay)kyiyj
|y|6

− 2
Akjyi +Akiyj

|y|4

)
ln(pk)′(gk(y))

+
∑
k

(
Akj
|y|2
− 2

(Ay)kyj
|y|4

)(
Aki
|y|2
− 2

(Ay)kyi
|y|4

)
ln(pk)′′(gk(y)).

(37)



Finally we express the variable y through x = g(y) = Ay|y|−2. Note that then |y| = |x|−1 and y = A−1x|x|−2. Plugging
this in the last equation we get

0 = 4d(A−1x)i(A
−1x)j

+
∑
k

(
8xk(A−1x)i(A

−1x)j − 2|x|2
(
Akj(A

−1x)i +Aki(A
−1x)j

))
ln(pk)′

+
∑
k

(
Akj |x|2 − 2xk(A−1x)j

) (
Aki|x|2 − 2xk(A−1x)i

)
ln(pk)′′

= 4dAmixmAljxl

+
∑
k

(
8xkAmixmAljxl − 2|x|2 (AkjAmixm +AkiAljxl)

)
ln(pk)′

+
∑
k

(
Akj |x|2 − 2xkAljxl

) (
Aki|x|2 − 2xkAmixm

)
ln(pk)′′

(38)

where we used A−1 = A> as A is orthogonal and we used Einstein summation convention to sum over indices that appear
twice (we kept the sum over k for better readability). Note that this expression is not homogeneous in x.

Step 5: Simplifications as xr → ∞. We fix an index 1 ≤ r ≤ d. The strategy is now to send xr → ∞ while keeping
the other coordinates bounded. We can assume by reflecting coordinates that the quadrant {xi > 0,∀i} is contained in the
support of P and p has a positive C2 density there. We can then rewrite (38)

0 = O(x2
r) + (8x3

rAriArj − 4x3
rArjAri) ln(pr)

′ +O(x2
r ln(pr)

′) +O(x3
r)

+ (Arjx
2
r − 2xrArjxr)(Arix

2
r − 2xrArixr) ln(pr)

′′ +O(x3
r ln(pr)

′′)

+
∑
k 6=r

AkjAkix
4
r ln(pk)′′ +O(x3

r)

= x4
r

∑
k

AkjAki ln(pk)′′ + 4x3
r ln(pr)

′ +O
(
x3
r(1 + ln(pr)

′′) + x2
r ln(pr)

′) .
(39)

We conclude that

0 =
∑
k

AkjAki ln(pk)′′ +
4AriArj ln(pr)

′

xr
+O

(
1 + ln(pr)

′′

xr
+

ln(pr)
′

x2
r

)
. (40)

By varying xk 6= xr this almost implies that AkjAki ln(pk)′′ = ck for some constant whenever pk > 0 and twice
differentiable. However, for this we need to show that the terms hidden in O(·) are really negligible, i.e. ln(pr)

′′ and
ln(pr)

′/xr are bounded as xr →∞ so that the remainder becomes o(1) which we will establish.

Note that if such a relation could be derived we could conclude, similarly to the linear case, that A is a permutation matrix.

Step 6: Boundedness of ln(pr)
′′ and ln(pr)

′/xr. Recall that I is the set of indices such that the i-th row of A has only
one non-zero entry. Let r /∈ I and pick j, i such that ArjAri 6= 0. Fix all coordinates xk except xr so that pk is positive and
twice differentiable at xk. Then we can express (40) as

ln(pr)
′′ +

4 ln(pr)
′

xr
= R(xr) (41)

where the remainder term R contains the remaining terms. The expression R of course depends on the other coordinates xk
for k 6= r but since they are considered fixed here we can view R as a function of xr alone.

Equation (40) then implies that there is M > 0 sufficiently large such that for xr > M the remainder term R(x) satisfies
for some constant c > 0.

|R(x)| ≤ 1

2
| ln(pr)

′′|+ | ln(pr)
′|

xr
+ c. (42)



Here the last constant term bounds the x−1
r contribution. Suppose ln(pr)

′ ≤ 0. Then we can bound

0 = ln(pr)
′′(xr) +

4 ln(pr)
′(xr)

xr
−R(xr)

≤ ln(pr)
′′(xr) +

1

2
| ln(pr)

′′(xr)|+
4 ln(pr)

′(xr)

xr
+
| ln(pr)

′(xr)|
xr

+ c

≤ ln(pr)
′′(xr) +

1

2
| ln(pr)

′′(xr)|+ c

(43)

We find that ln(pr)
′′ ≥ −2c (for ln(pr)

′′ > 0 this is clear, and otherwise we can absorb the absolute value part). We
conclude by integration that for all xr > M (note that the bound is trivially true if ln(pr)

′ > 0)

ln(pr)
′(xr) ≥ min(0, ln(pr)

′(M))− 2c(xr −M). (44)

Similarly we can bound for ln(pr)
′(xr) ≥ 0

0 = ln(pr)
′′(xr) +

4 ln(pr)
′(xr)

xr
−R(xr)

≥ ln(pr)
′′(xr)−

1

2
| ln(pr)

′′(xr)|+
4 ln(pr)

′(xr)

xr
− | ln(pr)

′(xr)|
xr

− c

≥ ln(pr)
′′(xr)−

1

2
| ln(pr)

′′(xr)| − c

(45)

implying ln(pr)
′′(xr) ≤ 2c for xr ≥M such that ln(pr)

′(xr) > 0. We obtain

ln(pr)
′(xr) ≤ max(0, ln(pr)

′(M)) + 2c(xr −M). (46)

Together the last two steps imply that | ln(pr)
′(xr)| ≤ C + Cxr for some C > 0 and xr > M . Going back to (41) we

conclude that there is C > 0 such that | ln(pr)
′′(xr)| ≤ C for xr > M . We conclude that for r /∈ I and all i 6= j

0 =
∑
k

AkjAki ln(pk)′′ +
4AriArj ln(pr)

′

xr
+O

(
x−1
r

)
. (47)

Step 7: A is a permutation matrix. If I = [n] we are done. So there is r /∈ I and using (47) we conclude by varying
xk 6= xr that

AkjAki ln(pk)′′ = c (48)

for some constant (depending on k, i, and j). Note that if we assumed that at most one pk is a Gaussian density we could
conclude as in the linear case. However, this assumption is not necessary, as we will now show.

By definition, AkjAki ln(pk)′′ = 0 for k ∈ I because there is only one non-zero entry in row k of A. We have seen in Step
2 that for k /∈ I the density pk ∈ C2(R) and is positive. By assumption, we can find i 6= j such that AkjAki 6= 0 for k /∈ I .
The relation (48) then implies for k /∈ I that ln(pk)′′(xk) = βk for some constant βk < 0 (pk is a probability density) and
all xk ∈ R. Then ln(pk)′(xk) = βkxk + γk for some constant γk. With xr →∞ we conclude from (47) that for r /∈ I

0 =
∑
k/∈I

AkjAkiβk + 4AriArjβr. (49)

Summing this over r /∈ I we get

0 =
∑
r/∈I

(∑
k/∈I

AkjAkiβk + 4AriArjβr

)
= (d− |I|+ 4)

∑
k/∈I

AkjAkiβk. (50)

Dividing (50) by d− |I|+ 4 and subtracting it from (49) we conclude that

AriArjβr = 0 (51)

for all r /∈ I and all i 6= j. Since βr is non-zero this implies that AriArj = 0 for i 6= j and thus r ∈ I , a contradiction. This
establishes I = [d] and thus A is a signed permutation matrix. By permuting and reflecting the coordinates of P we can
assume A = Id in the following.



Step 8: Simplifications in (38) for A = Id. First we remark that for A = Id the function g leaves the quadrants invariant.
It is thus sufficient to consider the case where p and q vanish outside {xi > 0 ∀i} and show that no solutions of s = g(s′)
exist under this condition. Using step 2 we can assume that pi(xi) > 0 for all xi > 0. In the following all domain are
assumed to be the positive half-line. For A = Id the condition (38) becomes for x = (x1, . . . , xd) such that xi > 0

0 = 4dxixj − 2|x|2xi ln(pj)
′ − 2|x|2xj ln(pi)

′ − 2|x|2xjxi(ln(pi)
′′ + ln(pj)

′′)

+
∑
k

8xkxixj ln(pk)′ +
∑
k

4x2
kxixj ln(pk)′′. (52)

Dividing this by 2xixj we obtain

0 = 2d− |x|2
(

ln(pj)
′

xj
+ ln(pj)

′′ +
ln(pi)

′

xi
+ ln(pi)

′′
)

+
∑
k

4xk ln(pk)′ + 2x2
k ln(pk)′′. (53)

We now assume that d > 2. Let i, j, and r be pairwise different. Using the last display with i, j and j, r and subtracting the
resulting equations we obtain

0 = |x|2
(

ln(pi)
′

xi
+ ln(pi)

′′ − ln(pr)
′

xr
− ln(pr)

′′
)
. (54)

Varying xr and xi independently and since i ∈ [n] is arbitrary we conclude that there is a constant κ such that

ln(pi)
′

xi
+ ln(pi)

′′ = κ (55)

for all i and xi > 0.

Step 9: Conclusion for n > 2. The solutions of the ODE y(x)/x+ y′(x) = κ are given by

α

x
+
κx

2
(56)

where α is any constant. We conclude that there are constants αj such that

ln(pj)(x) = αj ln(x)− κx
2

4
+ c⇒ pj(x) ∝ xαje−

−κx2
4 . (57)

This implies that

q(y) = p(y/|y|2)|y|−2d ∝
∏
j

y
αj
j

|y|2αj
e
−
−κy2j
4|y|4 |y|−2d. (58)

By applying the main argument to q we infer that qj has to have again the same structure as in (57) so we conclude that
κ = 0 and

∑
j αj = −d. Alternatively, one directly sees that q only factorizes as q(y) =

∏
qi(yi) if those conditions hold.

It is easy to see that those densities satisfy the assumptions. However, xα is never integrable so there are no probability
distributions satisfying the relations s = g(s′) This ends the proof for d > 2.

Step 10: Conclusion for d = 2. For n = 2 we cannot simplify (53) by considering indices i 6= j 6= k. Instead, we directly
exploit (53) to obtain a similar conclusion. Similarly to the argument in Step 6 it can be shown that ln(pr)

′′ and ln(pr)
′/xr

are bounded for xr away from 0. Then we consider x1 →∞ in (53) and divide by x2
1. We get (using {i, j} = {1, 2})

0 =

(
ln(p1)′

x1
+ ln(p1)′′ +

ln(p2)′

x2
+ ln(p2)′′

)
+ 4

ln(p1)′

x1
+ 2 ln(p1)′′ +O(x−1

1 ). (59)

By varying x2 we conclude just as for d > 2 that ln(p2)′

x2
+ ln(p2)′′ is constant. We conclude as before.

Let us now prove the geometric result from Lemma 3 above.



Figure 4: The black rectangle R on the left is mapped by a conformal map to the black shape g(R) on the right. When
mapping the smallest rectangle Π(g(R)) containing g(R) (green rectangle on the right) back to g−1(Π(g(R))) (green shape
on the left) we obtain a larger set.

Proof. The main idea of the proof is that a box contained in U after inversion is distorted so that its convex hull (contained
in O) is strictly bigger than the box image so that inverting backwards gives us a bigger box in U except for some special
cases. An illustration of this argument is shown in Figure 4. The formal argument below is slightly technical. An illustration
of the actual argument can be found in Figure 5.

To simplify the notation we write ι for the inversions x → x/|x|2. Then we get g = A ◦ ι = ι ◦ A. We consider
the projections πi : Rd → R projecting on the i-th coordinate. We consider a map Π on subsets of Rd defined by
Π(M) = π1(M)× . . .× πd(M). Let C denote the convex hull of a set. Let R ⊂ O be a (connected) box. Then g(R) ⊂ U
implies Π(g(R)) ⊂ Π(U) = U . Since g(R) is connected Π(g(R)) is convex and thus C(g(R)) ⊂ Π(g(R)). We conclude
that g−1(C(g(R)) ⊂ g−1(Π(g(R)) ⊂ g−1(U) ⊂ O. As A is linear we have A−1CA(M) = C(M) for any set M ⊂ Rd.
Thus, we get g−1(C(g(R)) = ιCι(R).

W.l.o.g. we now suppose that there is a box R = (x1, y1)× . . . (xd, yd) ⊂ O with 0 < xi < yi. We write x′ = (x2, . . . , xd),
y′ = (y2, . . . , yd). We consider the point

z =
1

2
ι((y1, x

′)>) +
1

2
ι((y1, y

′)>). (60)

Clearly z ∈ CιR. Then

ι(z) = ι

(
1

2
ι((y1, x

′)>) +
1

2
ι((y1, y

′)>)

)
∈ ιCι(R) (61)

We calculate

ι

(
1

2
ι((y1, x

′)>) +
1

2
ι((y1, y

′)>))

)
= ι

(
1

2

(y1, x
′)>

y2
1 + x′2

+
1

2

(y1, y
′)>

y2
1 + y′2

)

=

1
2

(y1,x
′)>

y21+x′2
+ 1

2
(y1,y

′)>

y21+y′2∥∥∥ 1
2

(y1,x′)>

y21+x′2
+ 1

2
(y1,y′)>

y21+y′2

∥∥∥2

(62)



Figure 5: The black rectangle R on the left is mapped by ι to the black shape g(R) on the right. The green shape on the right
shows the convex hull C(g(R)). The point z is defined as in the text and its image ι(z) lies outside R.

We bound (using x′2 < y′2)∥∥∥∥1

2

(y1, x
′)>

y2
1 + x′2

+
1

2

(y1, y
′)>

y2
1 + y′2

∥∥∥∥2

<
1

2

∥∥∥∥ (y1, x
′)>

y2
1 + x′2

∥∥∥∥2

+
1

2

∥∥∥∥ (y1, y
′)>

y2
1 + y′2

∥∥∥∥2

=
1

2

1

y2
1 + x′2

+
1

2

1

y2
1 + y′2

.

(63)

Together the last displays imply that

ι

(
1

2
ι((y1, x

′)>) +
1

2
ι((y1, y

′)>))

)
1

> y1. (64)

Let z1 be maximal such that (x1, z1) ⊂ O1. Then the reasoning above shows that z1 =∞. The same reasoning for the other
coordinates implies that R′ = (x1,∞) × . . . × (xd,∞) ⊂ O. By applying the same reasoning to sequences of boxes in
g(R) approaching the origin we conclude that U is the union of quadrants (and the same holds for O).

It remains to prove the last remark. As quadrants are invariant under ι we have ι(O) = O and conclude AO = U , or
equivalently A>U = O. It is sufficient to show that 0 ∈ Ui. For simplicity we assume R = (0,∞)d ⊂ U , the generalisation
to other quadrants is immediate. Since we assume that the i-th row vi = A>ei of A is not equal to a signed standard basis
vector it has at least two non-zero entries. Thus we can find w such that w · vi = 0 and all entries of w are non-zero. Since w
is orthogonal to the span of Aei there is a vector α such that A>α = w and αi = 0. By adding a suitable vector β we can
ensure that (β + α)i = 0, all entries of A>(α + β) are non-zero and (β + α)j > 0 for j 6= i. The second condition can
be satisfied by picking the entries of β one after another. The conditions (β + α)j > 0 for j 6= i and (β + α)i = 0 imply
that β + α ∈ U since we assumed (0,∞)d ⊂ U . But then A>(α+ β) ∈ O and since A>(α+ β) is strictly contained in a
quadrant (all entries are non-zero) we conclude that A>(α+ β) ∈ O and thus α+ β ∈ U . This implies (α+ β)i = 0 ∈ Ui.

E PROOFS FOR THE RESULTS ON OCTS

In this section we collect the missing proofs for Section 4.



E.1 PROOFS OF THEOREMS 3 AND 4

We now consider smooth deformations of a data generating mechanism x = f(s). For this it is helpful to phrase these as
flows generated by vector fields. For a brief review of these notions we refer to Appendix A and for an extensive introduction
we refer to any textbook on differential geometry. We now give a complete proof of Theorem 3.

Proof of Theorem 3. We define Ψt = (Φt)
−1. Then Φ0 = f−1. We denote the vector field that generates Ψt by X :

(0, 1)d → Rd, i.e., X satisfies

∂tΨt(x) = Xt(Ψt(x)). (65)

The assumption (Φt)∗ν = f∗ν implies ν = (Ψt)∗f∗ν. Then the continuity equation (14) implies that Div(Xt) = 0 on
(0, 1)d. By assumption, Φt ∈ FOCT, which means that

(DΦt)
>DΦt = Λt (66)

where Λt : (0, 1)d → Diag(d) maps to diagonal matrices. By definition of Ψ the flows Φ and Ψ are related by

Φ(t,Ψ(t, x)) = x (67)

for t ∈ (−T, T ), x ∈ f(Cd). Taking the derivative with respect to t we obtain the relation

0 = ∂tΦt(Ψ(t, x)) + (DΦt)(Ψ(t, x))∂tΨ(t, x) = ∂tΦt(Ψ(t, x)) + (DΦt)(Ψ(t, x))X(Ψ(t, x)) (68)

By setting s = Ψ(t, x) we conclude that

∂tΦt(s) = −DΦt(s)Xt(s) (69)

for s ∈ (0, 1)d. We now want to use this relation in combination with (66). We calculate using (69)

∂t(DΦt(s))ji = ∂i(∂tΦt(s))j = −∂i
(
DΦt(s)Xt(s)

)
j

= −
d∑
k=1

∂i ((DΦt(s))jk(Xt(s))k)

= −
d∑
k=1

(∂i∂kΦt)j(s)(Xt(s))k −
d∑
k=1

(DΦt)jk(s))(∂iXt(s))k

= −
d∑
k=1

(Xt(s))k∂k(DΦt(s))ji −
(
DΦt(s)DXt(s)

)
ji

(70)

This can be written concisely as

∂t(DΦt(s)) = −DΦt(s)DXt(s)−
d∑
k=1

(Xt(s))k∂kDΦt(s) (71)

This implies

∂tΛt = (∂tDΦt)
>DΦt + (∂tDΦt)

>DΦt

= −(DΦtDXt)
>DΦt − (DΦt)

>DΦtDXt

−
d∑
k=1

(Xt)k(∂kDΦt)
>DΦt −

d∑
k=1

(Xt)k(DΦt)
>(∂kDΦt)

= −(DXt)
>Λt − ΛtDXt −

d∑
k=1

(Xt)k∂kΛt.

(72)

Note that the left hand side and the last term are diagonal matrices as Λt(s) ∈ Diag(d) for all s ∈ Rd and t ∈ (−T, T ). We
conclude that for i 6= j the equation

0 = (ΛtDXt)ij + ((DXt)
>Λt)ij = (Λt)ii(DXt)ij + (DXt)ji(Λt)jj

= (Λt)ii∂j(Xt)i + (Λt)jj∂i(Xt)j
(73)



holds. Thus, we obtain a system of first order Partial Differential Equations (PDE) for Xt. We can now fix t and drop it from
the notation and we write Λj = Λjj . We also fix an i ∈ {1, . . . , d} in the following. Then we can rewrite (73) concisely as

Λi∂jXi + Λj∂iXj = 0 for i 6= j. (74)

We divide equation (74) by Λj apply ∂j and sum over j 6= i to obtain

∑
j 6=i

∂j

(
Λi
Λj
∂jXi

)
= −

∑
j 6=i

∂j∂iXj = −∂i DivX + ∂2
iXi = ∂2

iXi. (75)

This implies that Xi satisfies the wave equation

∂2
iXi −

∑
j 6=i

∂j(aj∂jXi) = 0 on (0, 1)d (76)

where aj = Λi/Λj . Note that by assumption aj ∈ C1((0, 1)d) and aj is positive because we assumed that Φt are
diffeomorphisms implying Λj > 0 (because DΦ is invertible). Now we use the assumption that Φt(s) = f(s) for
s /∈ Ω ⊂ (0, 1)d. This implies for such s that s = Ψt(Φt(s)) = Ψt(f(s)), i.e., Ψt(f(s)) is constant for s /∈ Ω ⊂ (0, 1)d.
Using the definition (69) we get that for such s the relation

0 = (∂tΨt)(Φt(s)) = X(Ψt(Φt(s)) = X(s). (77)

We conclude X(s) = 0 for s /∈ Ω.

Now we claim that this together with the PDE (76) implies that Xi vanishes everywhere. We pick ε > 0 such that
Ω ⊂ (ε, 1− ε)d. Then Xi solves the PDE (76) on (ε, 1− ε)d with vanishing boundary data and vanishing derivatives at the
boundary. Then the uniqueness of solutions for the Cauchy problem for hyperbolic PDE of second order which we stated in
Theorem 7 below implies that there is at most one solution. Note that the ellipticity condition in (82) follows by noting that
the functions aj are continuous and positive, and thus min(ε,1−ε)d aj > 0.

Since Xi = 0 clearly solves the PDE, we conclude that Xi = 0. This argument applies to all t and all i so we conclude that
Xt = 0 for all t, i.e., Xt vanishes everywhere. We conclude Ψt = Ψ0 and thus Φt = f . This ends the proof.

For reference, we now state the uniqueness result for second order hyperbolic partial differential equations. Let U ⊂ Rn
open, bounded and let UT = U × (0, T ). Consider the boundary problem

∂2
t u+ Lu = f in UT (78)

u = 0 in ∂U × [0, T ] (79)
u = g, ∂tu = h on U × {0} (80)

where f : UT → R and g, h : U → R are given functions which we assume to be C1 and g = 0 on ∂U . The function
u : UT → Rd is the unknown. The operator is assumed to be an elliptic operator given by

Lu = −
n∑

i,j=1

∂i(a
ij(x, t)∂ju) (81)

where we assume aij ∈ C1(ŪT ), aij = aji, and that there is θ > 0 such that

n∑
i,j=1

ξiξja
ij(x, t) ≥ θ|ξ|2 (82)

for all (x, t) ∈ UT and ξ ∈ Rn. Then the following result holds.

Theorem 7 (Theorem 4 in Section 7.2 in Evans [2010]). Under the assumptions above there is a unique weak solution u of
the system (78) with boundary values as in (79) and (80).



For our purposes it is not necessary to define weak solution let us just emphasize that any classical solution is a weak
solution so this implies uniqueness of classical solutions.

The key obstacle to improve upon this result and to remove the compact support condition on X is that the resulting PDE in
equation (76) is well posed for the Cauchy initial value problem but it is not well posed for the Dirichlet problem or for
mixed Dirichlet and Neumann boundary data. In particular, solutions are, in general, not unique. Furthermore, there are no
general uniqueness results for first order systems as in (73). Note that the existence of a non-trivial divergence free solution
X0 of (73) does not imply that a non-constant flow Φt exists because this is not sufficient to define the flow for positive
times. We now prove Theorem 4.

Proof of Theorem 4. The initial part of the proof proceeds as in the proof of Theorem 3 and we keep using the same notation.
We now investigate the boundary conditions for equation 76. Let us define Ψ′t by Ψ′0(s) = s and ∂tΨ′t(s) = Xt(Ψ

′
t(s)) so

that Ψt = Ψ′t ◦Ψ0 = Ψ′t ◦ f−1. We infer

ν = (Ψt)∗(Φt)∗ν = (Ψt)∗f∗ν = (Ψ′t)∗f
−1
∗ f∗ν = (Ψ′t)∗ν. (83)

So Ψ′t preserves ν and we conclude that Ψ′t((0, 1)d) = (0, 1)d. Let us denote by

Di = {x ∈ [0, 1]d|xi ∈ {0, 1}} (84)

the boundary hyperplanes and write D = ∂Cd = ∂(0, 1)d =
⋃
iDi. As Ψ′t maps (0, 1)d bijectively to itself we conclude

that

(Xt)i = 0 on Di. (85)

We now focus on t = 0 and use the shorthand X = X0. Then the differential equation (74) implies that

∂iXj = Λi/Λj∂jXi = 0 on Di. (86)

We conclude that the function Xi solves the following mixed Dirichlet and Neumann type boundary problem

∂2
iXi −

∑
j 6=i

∂j(aj∂jXi) = 0 on (0, 1)d (87)

∂jXi = 0 on Dj for j 6= i (88)
Xi = 0 on Di. (89)

Recall here that aj = Λi/Λj . So far we have not used any specific assumption except that Φt is a continuous deformation
and Φ0 ∈ FOCT. So the existence of non-trivial continuous deformations implies that a certain hyperbolic PDE has a
non-trivial solution. Unfortunately, this type of boundary value problem for hyperbolic equations is not well posed and has
not always a unique solution. We now show that in the specific setting of Theorem 4 uniqueness holds. In this case f is
linear and

Df = R Diag(µ1, . . . , µd) (90)

so

Λ = (Df)>Df = Diag(µ2
1, . . . , µ

2
d). (91)

This implies

aj = Λi/Λj = µ2
i /µ

2
j , (92)

in particular aj is constant. So the equation (87) becomes a constant coefficient hyperbolic equation which can be solved
explicitly.

We can now use Theorem 1 from Dunninger and Zachmanoglou [1967] (and a simple scaling argument) we conclude that
the system (87) has a unique solution which is Xi = 0 (actually this result is for Xi = 0 on ∂D but the proof is still valid).
To give an intuition, we note that separation of variable is possible in this setting and all solutions to the boundary value



problem (87) and (88) (i.e., without the boundary condition (89) for Di) can be expressed as a linear combination of the
form

Xi(s) = f(si)
∏
j 6=i

ϕj(sj) (93)

where ϕj are eigenfunctions of the problem ϕ′′j = λjϕj on (0, 1) and ϕ′j(0) = ϕ′j(1) = 0. It is easy to see that those are
given by cos(πmjt) where mj ∈ N0 and then ϕ′′j (sj) = π2m2

jϕj . Solving for f we find from (87) that f satisfies the ode

f ′′(si) =

∑
j 6=i

π2µ
2
i

µ2
j

m2
j

 f(si). (94)

Using now that Xi(0) = 0 (by (89)) we conclude f(0) = 0 and therefore

f(si) = C sin(παsi) (95)

where α =
√∑

j 6=im
2
jµ

2
i /µ

2
j , or equivalently

0 = α2µ−2
i −

∑
j 6=i

m2
jµ
−2
j . (96)

Now the condition Xi(s) = 0 for all s ∈ [0, 1]d with si = 1 is satisfied if and only if f(1) = 0 which holds iff α ∈ N0.
Note that this argument also implies to solutions that are sums of functions as in (93) by linear independence. Then the
assumption that µ−2

i are linearly independent over Q implies that α = 0 (and mj = 0) which implies Xi = 0. Note that this
argument only applies at t = 0 because it heavily relies on the explicit form of Φ0 = f . However, we can apply the same
reasoning to ∂ktXt inductively and then conclude using the assumption that Φt is analytic in t.

The complete argument goes as follows. We take the time derivative of equation (72) and get denoting Ẋt = ∂tXt and
Λ̇t = ∂tΛt

(DXt)
>Λ̇t + ΛtDXt + (DẊt)

>Λt + ΛtDẊt ∈ Diag(d). (97)

We have seen that DX0 = 0 so we infer

(DẊ0)>Λ0 + Λ0DẊ0 ∈ Diag(d) (98)

and Div Ẋt = ∂t DivXt = 0. The same arguments as before imply Ẋ0 = 0 on (0, 1)d. By induction all time derivatives of
X0 vanish and using this in (69) we conclude that the Taylor expansion of Φt(s) at t = 0 disappears and since we assumed
Φt to be analytic in t we conclude.

E.2 PROOFS FOR THE CONSTRUCTION OF SPURIOUS SOLUTIONS

Finally, we show how flows can be used to construct families of solutions to the ICA problem. This section contains the
technical results missing in the overview given in Appendix B.

The first construction was described in Lemma 1. Let us for completeness give a proof (we emphasize again that this result
is essentially taken from Hyvärinen and Pajunen [1999]).

Sketch of proof of Lemma 1. Note that it is sufficient to show that the maps hR,a are volume preserving for fixed t so we
ignore the time argument. It is easy to see that hR,a is bijective (the inverse is given hQ,a where Q(t, r) = R(t, r)−1). Then
we only need to show that DetDhR,a(s) = 1 for all s. We calculate (denoting r = |s− a|)

(DhR,a(s))ij = ∂j(hR,a)i = R(r)ij +
∑
k

(∂jR)ik(|s− a|)(s− a)k

= ∂j(hR,a)i = R(r)ij +
∑
k

(∂rR)ik(r)(s− a)k∂j |s− a|.
(99)



We conclude (writing R′ = ∂rR)

DhR,a(s) = R(r) +R′(r)(s− a)⊗∇|s− a| = R(r) +
1

|s− a|
R′(r)(s− a)⊗ (s− a). (100)

Then we obtain, using the matrix determinant lemma for rank 1 updates (Det(A+ u⊗ v) = (1 + u ·A−1v) DetA

DetDhR,a(s) =

(
1 +

1

|s− a|
(s− a)R(r)>R′(r)(s− a)

)
Det(R(r)). (101)

Now we use that R(r) ∈ O(d) so Det(R(r)) = 1 and R(r)−1 = R(r)>. Differentiating R(r)>R(r) = Idd with respect to
r we conclude that R(r)>R′(r) is skew which implies

(s− a)R(r)>R′(r)(s− a) = 0. (102)

We have therefore shown DetDhR,a(s) = 1, completing the proof.

Now we give another construction that also establishes Fact 1 based on suitable divergence free vector fields. All we need to
construct is divergence free vector fields with compact support. Consider any smooth function ϕ : Rd → R such that its
support is contained in Ω. Then we consider the vector fields Xij : Rd → Rd for 1 ≤ i < j ≤ d given by

Xij
i = ∂jϕ, Xij

j = −∂jϕ, Xij
k = 0 for k /∈ {i, j}. (103)

Then we get DivXij = ∂i∂jϕ− ∂j∂iϕ = 0. So those vector fields are divergence free and we conclude that the space

X = {X : Rd → Rd|supp(X) ⊂ Ω, DivX = 0} (104)

is infinite dimensional. Every X ∈ X generates a flow Φt defined by

∂tΦt = X(Φt), Φ0(s) = s. (105)

Using equation (14) we conclude that (Φt)∗ν = ν because ν has a constant density and the support condition of X ensures
that Φt((0, 1)d) = (0, 1)d. Then the family ft = f ◦ Φt has the property that (ft)∗ν = f∗ν. Note that this construction can
be easily generalised to source distributions P with differentiable density p. In this case the condition ΦtP = P is satisfied
when Div(pX) = 0. Clearly it is sufficient to consider X = Y/p where Y ∈ X (assuming that p > c for some c > 0 on Ω).

F PROOFS FOR THE RESULT ON VOLUME PRESERVING MAPS

Next we show that this construction can be generalised to volume preserving transformations and we prove Theorem 5. Note
that in the special case that the distribution of s is ν the construction above already works. This is a special case because the
condition (ft)∗ν = f∗ν already implies that ft is volume preserving as soon as f is volume preserving as the density of ν is
constant. So in this case the condition that ft is volume preserving and (ft)∗ν = f∗ν essentially agree which is not the case
for general base measures.

Proof of Theorem 5. We define a suitable vector field explicitly. Consider Xij : Rd → Rd for 1 ≤ i < j ≤ d defined by

Xij
k =


∂jp k = i

−∂ip k = j

0 k /∈ {i, j}.
(106)

An illustration of this vector field is given in Figure 6. We consider the family of functions ft = f ◦ Φijt where the flow
Φijt is defined by Φij0 (s) = s and ∂tΦ

ij
t (s) = X(Φijt (s)). Note that boundedness of ∇p and p ∈ C2 imply that Φt exists

globally and defines a diffeomorphism. We claim that Φijt satisfies Det Φijt (s) = 1 for all s and (Φijt )∗P = P. The former
condition means that Φij preserves the standard volume (Lebesgue-measure) which is the case if Div(Xij) = 0 while the
second relation is satisfied if Div(pXij) = 0 by equation (14). We calculate

DivXij = ∂i∂jp− ∂j∂ip = 0. (107)

We also find

Div(Xijp) = pDiv(Xij) +Xij · ∇p = ∂jp∂ip− ∂ip∂jp = 0. (108)

This ends the proof.



Figure 6: A sketch of the vector fields Xij for d = 2 constructed in the proof of Theorem 5. The closed lines are level lines
of the probability density (which is a Gaussian mixture here). Note that the vector field is parallel to the level lines and its
magnitude proportional to the norm of the gradient of the density.

To give an example, we consider d = 2 and P with rotation invariant density p(s) = p(|s|). Then X(s) = f(|s|)s⊥ where
s⊥ = (s2,−s1)> and the flow lines are circles around the origin where the speed depends on the radius through the
derivative of p(|s|). Let us add some remarks concerning this result.

Remark 1. 1. The constructed flows are non-trivial, i.e., not constant because the probability density cannot be constant
(as we assumed it to be C2) and thus Xij is not identically vanishing.

2. It is easy to see (e.g., through the example above) that the flows Φij will, in general, mix the coordinates i and j thus
this really shows that ICA is not identifiable for volume preserving maps.

3. While we construct a finite family of solutions they can be combined, e.g.,

f ′ = f ◦ Φi1j1t1 ◦ . . . · Φikjktk
(109)

to yield a large space of solutions.

4. By choosing coordinates cleverly, it is possible to construct a vector field X satisfying Div(X) = Div(pX) = 0 with
compact support. So even knowing f close to the boundary of the support of P is not sufficient to uniquely identify f .

5. While it is not possible to identify ICA using volume preserving transformations, it can be possible to identify f(s) for
certain values of f if P is known. If p has a unique maximum at s0 then x0 = f(s0) will be the point with the largest
density of x because volume preserving transformations transform the density trivially (see (12)).
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