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Abstract

Existing multimodal large language models (MLLMs) often lack trace-
able and explainable mechanisms for visual-textual alignment, making
it challenging to understand how textual instructions shape multimodal
representations. To address this shortcoming, we propose an information-
theoretic framework that clarifies how MLLMs handle and transform both
text and visual inputs. In particular, we measure the visual information gain
that arises from textual instructions and multimodal encodings, thereby
illuminating how different modalities interact and contribute to the model’s
overall processing. Our framework decomposes the multimodal encoding
process into layer-wise mutual information measures for better explain-
ability, quantifying the visual contribution as the difference between un-
conditional and text-conditional mutual information. Specifically, inspired
by the Information Bottleneck framework, we introduce a Concept Bot-
tleneck that maps high-dimensional multimodal representations into an
interpretable space, enabling tractable variational upper bounds on the
mutual information between visual inputs and the model’s internal states.
Furthermore, we quantify the contextual contribution introduced by textual
cues via an InfoNCE mechanism that contrasts multimodal representations
computed with and without text guidance. This dual perspective, facil-
itated by tractable variational upper bounds, provides insight into how
visual information is encoded and filtered by textual instructions, while also
highlighting the contextual information induced and enhanced by MLLMs.
Empirical findings demonstrate underexplored dynamics of visual-textual
interaction within MLLMs, underscoring how textual instructions distinctly
shape visual representations and demonstrating how visual prompts, when
effectively paired with instructions, enhance multimodal understanding.

1 Introduction

Multimodal Large Language Models (MLLMs) have advanced in integrating multimodal
information, achieving impressive results in tasks such as question answering (Zhang et al.,
2023b; Wu et al., 2025c;b), captioning (Liu et al., 2025; Wu et al., 2024c), navigation (Wang
et al., 2025; Nguyen et al., 2024) and multimodal retrieval (Bao et al., 2025; Li et al., 2024;
Wu et al., 2025a; Huang et al., 2025; Wu et al., 2024a). However, understanding how textual
instructions shape multimodal representations within these models remains challenging
(Zhao et al., 2024; Wu et al., 2024b; Wang et al., 2024b). Prior works have attempted to analyze
multimodal alignment using attention-based visualization techniques (Yeh et al., 2024;
DeRose et al., 2021; Jaunet et al., 2022; Wu et al., 2021) and perturbation-based sensitivity
analyses (Lundberg & Lee, 2017; Ribeiro et al., 2016; Wu et al., 2025d).

While these methods provide insights into which visual features influence model outputs,
they lack a principled and quantifiable framework to distinguish the intrinsic contribution
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of visual inputs from the modifications introduced by textual guidance in multimodal
encoding. Consequently, they struggle to explain how visual information is retained,
transformed, or compressed by textual instructions. Recent works propose to capture
layer-wise information flow in text-only LLMs, detecting information deficiencies across
layers (Kim et al., 2024a; Wu et al., 2022). However, existing techniques fail to disentangle
retained visual content from text-driven refinements across different model layers, making it
difficult to trace the flow of multimodal information. Without a rigorous framework to track
these interactions, current explainability methods remain insufficient for systematically
understanding MLLMs. As shown in Figure 1, conventional similarity metrics either exhibit
monotonic trends or degenerate discriminative power in later layers, failing to reveal the
nuanced processing stages. More critically, they lack theoretical grounding for interpreting
multimodal interactions.

To address this limitation, we propose an information-theoretic framework to systemat-
ically quantify the interplay between visual and textual modalities in MLLMs. Inspired
by the Information Bottleneck principle (Zhu et al., 2025; Yang et al., 2024; Tishby et al.,
2000b; Wu et al., 2023), our framework leverages a Concept Bottleneck (Yamaguchi et al.,
2025; Lai et al., 2024; Koh et al., 2020a) that maps complex multimodal representations into
interpretable latent spaces, enabling a tractable measurement of visual information specifi-
cally retained, transformed, or enhanced by textual instructions. Furthermore, we leverage
an InfoNCE-based contrastive mechanism to distinguish the contributions of textual in-
structions explicitly, offering clearer insights into how textual contexts shape multimodal
processing.

Combining the above theoretical probes, we conduct comprehensive empirical studies re-
vealing underexplored dynamics of multimodal information processing within MLLMs (Luo
& Specia, 2024; Zhao et al., 2024; Zhuang et al., 2022). We uncover that visual information
evolves through multi-stage transformations shaped by textual instructions, concerning
task-specific contexts (Awal et al., 2025; Hu et al., 2023) and visual complexities (Mu et al.,
2024). In addition, we demonstrate that disruptive textual instructions significantly de-
grade the effectiveness of visual representation processing, highlighting the vulnerability of
MLLMs to linguistic distractions, which leads to potential hallucinations (Liu et al., 2024a).
We reveal that visual prompting significantly enhances representation quality only when
effectively paired with textual guidance (Nguyen et al., 2023; Wu et al., 2024d), emphasizing
the critical synergy between textual and visual cues. Finally, our analysis illustrates how
different types of instructions shape the multimodal interaction patterns within MLLMs,
offering novel insights into designing more robust and explainable multimodal systems. We
summarize our contributions as follows:

• We introduce an information-theoretic framework based on the Information Bottle-
neck principle to systematically quantify and analyze interactions between visual
and textual modalities across different layers of MLLMs.

• We leverage a Concept Bottleneck to enable interpretable and traceable analyses
of visual representations influenced by textual contexts, while an InfoNCE-based
metric is proposed to explicitly measure the contextual contributions of instructions.

• Our extensive empirical analyses provide insights into multimodal information
dynamics, revealing underexplored interactions between visual prompting, textual
instructions, and their combined effects on representation processing in MLLMs.

2 Related Works

2.1 Explainable Multimodal Large Language Models

Yu & Ananiadou (2025) study Llava’s VQA mechanism, showing visual embeddings encode
semantic features and proposing a tool to identify key image regions. Neo et al. (2024) use
ablations to show LLaVA localizes object info and aligns visual tokens with vocabulary
representations across layers. Zhang et al. (2024b) reveal that LLaVA integrates visual and
textual info in two stages, general and targeted, before final prediction. Qi et al. (2025) find
VLMs lack spatial awareness due to large embedding norms and proposes normalization
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Figure 1: Evaluation result of traditional diagnostic metrics.

to improve spatial reasoning. Zhang et al. (2024a) show shallow layers contain redundant
image features and introduce a truncation method to enhance interpretability and accuracy.
Unlike prior works that focus on attention patterns or token-level visual attribution, our
approach provides a quantifiable, layer-wise decomposition of visual information shaped
by textual cues, offering deeper traceability of multimodal interactions.

2.2 Information-Theoretic Approaches in Multimodal Large Language Models

Kim et al. (2024a) propose a layer-wise information framework to detect hallucinations
by tracking information flow across model layers. Wang et al. (2024c) analyze semantic
vs. linguistic input influence in NLP tasks, showing semantics dominate, especially in
sentiment classification. Federici et al. (2021) present an info-theoretic view of distribution
shifts, linking test error to data assumptions and generalization objectives. Ton et al. (2024)
quantify information gain at each CoT step, enabling unsupervised detection of faulty
reasoning in LLMs. Zhang et al. (2025) introduce Entro-duction, using entropy and its
variance to dynamically guide reasoning depth in multi-step tasks. While existing methods
use information-theoretic tools to detect failures or assess influence, our framework uniquely
quantifies visual information gain conditioned on textual instructions, enabling fine-grained
analysis of how MLLMs encode, transform, and align modalities.

3 An Information-theoretic View

A central goal of this section is to develop traceable and explainable mechanisms for
analyzing how MLLMs integrate and process visual and textual information. To this end,
we introduce a framework that provides a principled and quantifiable way to measure how
visual signals are filtered, retained, or transformed in the presence of textual instructions.

3.1 Multimodal Encoding in MLLMs

In a multimodal large language model, given image input V, the text instruction T provides
contextual guidance that influences the processing of the visual information. The image is
first processed by an image encoder f based on a Vision Transformer (ViT) and a multimodal
projector (Liu et al., 2023), which encode the input image as image tokens f (V). These
image tokens are subsequently concatenated with language tokens derived from the text
input T, before input into the branch of the large language model backbone π,(

X(l)
)N

l=1
= gπ ([ f (V), T]) , (1)

where gπ is the multi-layer Transformer that encodes multimodal inputs as intermediate
multimodal representations X(l) for each layer l. In addition, we denote the encoded visual
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representations as X(l)
| f (V)| ∈ X(l), while the multimodal representations as X(l)

| f (V),T| ∈ X(l),
at the last token position of the image and the multimodal token sequences, respectively.

3.2 Multimodal Information Flow in MLLMs

Following the information bottleneck (IB) framework (Tishby et al., 2000a; Shwartz-Ziv &
Tishby, 2017), we design the layer-wise measurement

F (l)
V = I

(
X(l)
| f (V),T|; V

)
− I
(

X(l)
| f (V),T|; V | T

)
(2)

to capture the portion of visual information in the layer-l representation, specifically ex-
tracted in the presence of textual context. Intuitively, although X(l)

| f (V),T| may encode a
rich set of visual details, not all of these details are pertinent once the textual context is

taken into account. By subtracting the conditional mutual information I
(

X(l)
| f (V),T|; V | T

)
that quantifies the extraneous visual information given the text (Tishby et al., 2000a), we
isolate those visual features that are enhanced by the accompanying text. This metric thus
reflects the model’s ability to filter out irrelevant visual noise while preserving features that
contribute meaningfully to a multimodal understanding.

To formally track the quantities of the mutual information and the prompt-conditional
mutual information in equation 2, we first propose to leverage Concept Bottleneck (Koh
et al., 2020b) as a variational information bottleneck (in Lemma 3.1) to track each layer’s
multimodal representations in a list of candidate visual concepts, which are unbiased to
the MLLM. Then, we quantify the mutual information terms in equation 2 by deriving
the variational upper bound in the visual conceptual space for the unconditional mutual
information (in Lemma 3.2) and the prompt-conditional mutual information (in Lemma 3.3).

Lemma 3.1 (Concept Bottleneck for Mutual Information via Variational IB) Let X(l)
| f (V),T|

be the layer-l representation obtained when both the visual input V and the text instruction T are
provided. Define the intermediate concept vector by Ĉ = fCB

(
X(l)
| f (V),T|

)
, where fCB(·) is a concept

bottleneck function (Koh et al., 2020b; Kim et al., 2018). A variational encoder q(Ĉ | V) maps
the visual input V to a latent concept distribution, where such concept vector as its unbiased prior
distribution r(Ĉ) over the concept space. In addition, the conditional prior r(Ĉ | T) approximates
the aggregated posterior of Ĉ conditioned on the text instruction T.

Then, the mutual information is approximated by the following variational upper bounds.

Lemma 3.2 (Variational Upper Bound for Mutual Information) Given the variational en-
coder q(Ĉ | V) and prior r(Ĉ), the mutual information between the concept representation and the
visual input is upper-bounded by

I
(

X(l)
| f (V),T|; V

)
≤ EV

[
KL
(

q(Ĉ | V) ∥ r(Ĉ)
)]

. (3)

Lemma 3.3 (Variational Upper Bound for Conditional Mutual Information) Assume that
samples can be grouped by text instruction, and let r(Ĉ | T) denote a variational approximation to
the distribution of Ĉ given T. Then, the conditional mutual information is upper-bounded as

I
(

X(l)
| f (V),T|; V | T

)
≤ ET

[
EV|T

[
KL
(

q(Ĉ | V) ∥ r(Ĉ | T)
)]]

. (4)

Thus, we define the aligned visual information by integrating equation 3 and equation 4:

F (l)
V ≤ EV

[
KL
(
q(Ĉ | V) ∥ r(Ĉ)

)]
− ET

[
EV|T

[
KL
(
q(Ĉ | V) ∥ r(Ĉ | T)

)]]
. (5)

By employing the concept bottleneck representation Ĉ within this variational framework, we
obtain an interpretable estimate of both the mutual information I(Ĉ; V) and the conditional
mutual information I(Ĉ; V | T), thereby quantifying the extent to which visual features are
aligned with and enhanced by the textual instruction.
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3.3 Induced Contextual Information from MLLMs

In multimodal large language models (MLLMs), the text instruction T does more than
provide textual guidance to the visual encoder; it also induces higher-level task-related
contextual information into the LLM’s internal representations. To quantify this induced
contextual information, we define the task-related mutual information as the difference
between the mutual information computed over multimodal representations (obtained when
the text is present) and the mutual information computed over baseline representations
(obtained without text). Formally, we write:

F (l)
T = I

(
X(l)
| f (V),T|; X(L)

| f (V),T|

)
− I
(

X(l)
| f (V)|; X(L)

| f (V)|

)
,

where X(l)
| f (V),T| and X(L)

| f (V),T| denote the layer-l and the final layer L representations com-

puted with the text instruction T, respectively, and X(l)
| f (V)| and X(L)

| f (V)| denote the corre-
sponding representations when the textual guidance is absent. This formulation isolates
the additional contextual information that is induced by the LLM’s language processing
branch. To estimate these mutual information terms in practice, we adopt an InfoNCE-based
approach. Recall that InfoNCE provides a tractable lower bound for mutual information by
contrasting positive pairs against negative pairs. We define two losses for a mini-batch of N
samples.

Lemma 3.4 (InfoNCE Lower Bound for Task-Related Mutual Information) For a mini-
batch of N samples, let X(l),i

| f (V),T| and X(L),i
| f (V),T| denote the layer-l and layer-L representations

computed with the text instruction T for the i-th sample, and similarly let X(l),i
| f (V)| and X(L),i

| f (V)| denote
the corresponding baseline representations computed without T. With a similarity function s(·, ·)
and a temperature parameter τ > 0, we define

L(l)
| f (V),T| = − 1

N

N

∑
i=1

log exp

(
s
(
X(l),i
| f (V),T|, X(L),i

| f (V),T|
)

τ

)
− log

N

∑
j=1

exp

(
s
(
X(l),i
| f (V),T|, X(L),j

| f (V),T|
)

τ

) ,

(6)

L(l)
| f (V)| = − 1

N

N

∑
i=1

log exp

(
s
(
X(l),i
| f (V)|, X(L),i

| f (V)|
)

τ

)
− log

N

∑
j=1

exp

(
s
(
X(l),i
| f (V)|, X(L),j

| f (V)|
)

τ

) ,

(7)
which provide lower bounds on the mutual information between the multimodal representations,

I
(

X(l)
| f (V),T|; X(L)

| f (V),T|

)
≥ log N −L(l)

| f (V),T|, I
(

X(l)
| f (V)|; X(L)

| f (V)|

)
≥ log N −L(l)

| f (V)|. (8)

Finally, by the estimation of the above InfoNCE lower bounds (detailed in Appendix B), we
provide an estimate for the task-related mutual information:

F (l)
T ≥

[
log N −L(l)

| f (V),T|

]
−
[

log N −L(l)
| f (V)|

]
= L(l)

| f (V)| −L(l)
| f (V),T|. (9)

This result quantifies the benefit of the contexts in injecting task-related information into the
model. In particular, a lower L(l)

| f (V),T|, indicating higher mutual information in the presence

of T, relative to the baseline loss L(l)
| f (V)| suggests that the text instruction effectively aligns

and enriches the representations, thereby enhancing the multimodal understanding of the
task.

4 Experiments

To validate our framework, we instantiate the two core metrics, F (l)
V and F (l)

T , introduced in
Section 3. These metrics allow us to systematically probe how visual and textual modalities
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interact across layers in MLLMs. We conduct extensive experiments to investigate how these
interactions manifest across different tasks, input settings, and instruction types, addressing
the following research questions (RQs), each targeting a specific aspect of traceability and
explainability in multimodal processing:

• RQ1: How do textual instructions shape visual information processing?

• RQ2: How do textual instructions influence the multimodal information flow?

• RQ3: How do visual prompts interact with textual instructions in MLLMs?

• RQ4: How do multimodal representations vary across different instructions?

Datasets. We assess the behavioral differences of MLLMs in processing various types of
data based on several image-to-text datasets. Specifically, we employ the Visual Question
Answering-v2 (VQA-v2) (Goyal et al., 2017) and AOKVQA (Schwenk et al., 2022) datasets
to investigate MLLMs’ performance in Visual QA challenges. Additionally, we use image
data from VQA (Antol et al., 2015) to implement and train our FV and FT evaluators.
We leverage the validation set of COCO-caption (Chen et al., 2015) and the Fine-grained
Hallucination Evaluation Framework (Hal-Eval) (Jiang et al., 2024) to explore MLLMs’
behavior in Visual Captioning challenges.

Models. We use LLaVA-1.5 (Liu et al., 2024b) with 7B parameters and Qwen-2.5-VL (Bai
et al., 2023) with 3B parameters to extract the visual hidden states information with dif-
ferent settings on various datasets. we use YOLO11-large (Khanam & Hussain, 2024) to
annotate object distribution prior to detecting objects on the images. We further illustrate
the implementation details in Appendix A.

4.1 (RQ1) How do textual instructions shape visual information processing?

We examine the internal layer-wise processing of MLLMs, specifically focusing on how
textual guidance shapes visual representations (Wu et al., 2024e; Niu et al., 2024). Using
explainable metrics (FV , FT), we analyze the transformation of these representations across
layers and investigate variations influenced by task type, visual complexity, and textual
precision (Awal et al., 2025; Hu et al., 2023; Mu et al., 2024). Intuitively, an increase in FV
indicates that visual information is being injected or actively processed by the MLLMs,
causing the representations to differ significantly from their initial margin-based states.
The metric FV measures relevant visual information retained after considering textual
context. A decrease indicates effective filtering of irrelevant visual details. The metric FT
reflects task-related contextual information injected by textual instructions. While filtering
visual information, the model integrates task-specific contextual information from the text,
enhancing multimodal representations and increasing FT . The interplay between FV and
FT represents a balancing act. As the model filters out irrelevant visual complexity (lowering
FV), it simultaneously injects relevant textual information, increasing FT . This dynamic
maintains effective multimodal understanding, optimizing task performance.

Finding 1. Multimodal encoding process presents 4 stages. When examining the layer-
to-layer representation transformation, we observe that the visual representation is not
processed in a straightforward manner with a monotonous trend. Instead, the information
undergoes a complex processing sequence across multiple stages, which we categorize as
follows: (1) Information Pre-processing: an increase in FV and a stable FT ; (2) Information
Filtering: a decrease in FV and stable or decrease in FT ; (3) Contextual Information Injection
and Multimodal Mixture: an increase in FV and increase or stable FT ; (4) Information
Compression: a decrease in FV and increase in FT , as is shown in Figure 2c, 2d, 3.

We further validate this staged processing through targeted interventions. As shown in
Figure 4, masking image tokens causes the characteristic dynamics of Stages 1-3 to collapse
into monotonic trends, while Stage 4 remains unaffected. This demonstrates that: (1) The
first three stages are indeed visual-dependent processes, and (2) The final compression stage
operates primarily on textual representations, consistent with its role in response generation.
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Figure 2: FV and FT across different layers in LLaVA-1.5-7b.
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Figure 3: FV and FT across layers in Qwen-2.5-VL-3b.
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Finding 2. In captioning tasks, multimodal information processing and compression
dynamically interplay across various layers of MLLMs. As shown in Figure 2b, 3a, we
detect two peaks in the metric FV : around layer 12 and 22 in LLaVA or around 15 and 25 in
Qwen. On COCO-caption which excludes imprecise answers, FV increases before layer 12
in LLaVA and layer 15 in Qwen, as is on Figure 2b, 3a, while FT remains stable or decreases,
as is on Figure 2d, 3b. This indicates that the MLLMs are processing visual information
from images rather than injecting information to align it with the output results. Between
layer 12 to 18 in LLaVA or layer 15 to 21 in Qwen, both FV and FT decrease, suggesting
an information filtering process by the MLLMs, as the visual representation becomes more
concrete (FV) while the injected information (FT) does not contribute towards generating a
text response. From layers 19 to 22 in LLaVA and 22 to 25 in Qwen, both FV increase and
FT increase or remain stable, indicating information injection or multimodal mixture by
the MLLMs, which alters the visual representation while incorporating more contextual
information for output generation. Finally, the decrease in FV and the increase in FT suggest
information compression, solidifying the visual information towards the textual output.
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Finding 3. In QA tasks, MLLMs show an extended Information Pre-processing Stage
compared to captioning tasks. We observe two less evident or delayed peaks compared to
captioning tasks: around layers 18 and 29 in LLaVA and layer 16 and 25 in Qwen, as shown
in Figure 2b, 3a. The delayed decrease in FV , especially for LLaVA, suggests an extended
Information Pre-processing Stage, indicating an extension of information processing to
generate a specific response.

Finding 4. LLaVA exhibit greater reliance on injected contextual information in QA tasks
than more advanced Qwen. In QA tasks, the overall increasing trend of LLaVA’s FV ,
as illustrated in Figure 2b, suggests that the visual representation increasingly diverges
from its original state. This elevated FV , coupled with reduced and delayed information
compression, indicates a more extensive injection of contextual information and common
sense from the MLLM, as well as a corresponding decrease in response certainty. In contrast,
Qwen maintains a more stable four-stage trend, as depicted in Figure 3a, highlighting its
superior effectiveness in information injection and greater certainty in responses.

Finding 5. Complex visual and inconsistent textual inputs influence MLLMs’ efficiencies
of information processing in certain stages. HAL-Eval and AOKVQA exhibit higher
visual complexity than COCO-caption and VQA, and they provide imprecise answer can-
didates. We differentiate between imprecise and precise answer candidates to compare
the differences in FV and FT influenced by the textual precision. We observe that the
FV valley around layer 18 in LLaVA and 21 in Qwen is less pronounced, as illustrated in
Figures 2b and 3a. This finding suggests that both information filtering and injection are
less intensive when MLLMs overly depend on imprecise answer texts while neglecting the
visual representation. In the case of AOKVQA, both LLaVA and Qwen exhibit lower FV
prior to the first peak, specifically before layer 12 in LLaVA and 15 in Qwen, as shown in
Figures 2b and 3a. Moreover, the FT values before layer 12 in LLaVA and layer 15 in Qwen
are higher than those observed in VQA, as shown in Figures 2d and 3b. This indicates an
early task-related contextual information injection during the information pre-processing
stage influenced by the complexities of visual and inconsistent textual inputs.

4.2 (RQ2) How do disruptive textual instructions influence multimodal information?

We investigate the hallucinations and errors in MLLMs (Li et al., 2023a), which happen
mostly when model focuses excessively on the current segment of generated content while
ignoring input visual information (Wang et al., 2024a; Lee et al., 2024) and when model prior-
itizing language patterns to produce fluent yet inaccurate content in visual-text tasks (Wang
et al., 2023). Based on this, we construct several prompts to trigger these two kinds of
errors in MLLMs, which is the ”Excessive Text Focusing” and ”Language Patterns Priority”
in Figure 5. We refer to these prompts that trigger errors as “disruptive prompts”. By
comparing multimodal representation changes across layers using original POPE (Li et al.,
2023b) queries and these disruptive prompts with LLaVA, we aim to quantify their effects
on visual information processing and textual guidance within the models.

Finding 6. Disruptive prompts impairs visual information processing. With disruptive
prompts, the visual representation peaks of QA tasks in FV become less significant, as
shown in Figure 2b, indicating a diminished visual information processing and reduced
contextual information injection. The peak of FV around layer 22 in Figure 2b diminishes
in the Language Patterns Priority prompts pattern, suggesting less contextual information
injection by MLLMs. Furthermore, when prompts that trigger excessive focus on text are
added, there is almost no change in FV , indicating a neglect of the visual representation.

Finding 7. Disruptive prompts impairs contextual information injection of MLLMs.
Based on the trend of FT in Figure 5b, we observe that the difference in FT between
layer 0 and the final layer is smaller when disruptive prompts are applied, indicating
that less contextual information aligns with the final response are injected by the MLLMs.
Additionally, we note a fluctuation in FT before layer 12. This fluctuation of FT prior to
layer 12, combined with the reduced difference in FT and a stable FV in Figure 5a across
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layers, indicates that MLLMs are overly focused on the disruptive textual instructions while
neglecting the provided image and visual-to-text question.
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Figure 5: Impacts of disruptive prompts on LLaVA FV and FT across different layers.

4.3 (RQ3) How do visual prompts interact with textual instructions in MLLMs?
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(a) LLaVA FV on POPE
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(b) LLaVA FT on POPE
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(c) LLaVA FV on HAL-Eval
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(d) LLaVA FT on HAL-Eval

Figure 6: Impacts of visual prompt and textual instruction combination on FV and FT .

We investigate the influence of explicit visual prompting (e.g., bounding boxes and digit
annotations on detectable objects) on multimodal representations within MLLMs (Zhang
et al., 2023a; Yan et al., 2025; Lin et al., 2024; Wu et al., 2024e). We compare four settings:
original POPE queries without visual prompted images (baseline), original POPE queries
with visual prompted images, textual queries correctly referencing visual prompts, and
textual queries incorrectly referencing visual prompts, which are denoted as ”No visual
prompt”, ”Only visual prompt” (means having visual prompt without text reference),
”Correct Text Reference” and ”Wrong Text Reference” in Figure 6 respectively. We aim to
quantify the distinct and combined impacts of visual and textual instructions on visual
information processing across different layers in MLLMs.

Finding 8. The impact of textual instructions is more significant than that of visual
prompts on multimodal information processing. Results in Figure 6 shows that textual
prompting alters the trends of FV and FT across different layers, whereas adding visual
prompts does not. Additionally, the differences induced by changing textual prompting
on FV and FT are more significant than those results from changing visual prompting.
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Simply adding visual prompts without referencing them through textual instructions does
not yield a noticeable impact on visual representation processing. This difference is even
less significant in POPE compared to HAL-Eval. This phenomenon suggests that textual in-
structions dominate visual information processing during inference, indicating that MLLMs
are considerably more sensitive to language prompts than to visual prompts.

Finding 9. Textual references to visual prompts significantly enhance contextual informa-
tion injection from MLLMs. As show in Figure 6a and 6c, before layer 22, regardless of
whether we add visual prompts or refer to these visual prompts through textual instructions,
FV shows similar trends across layers. This indicates that the impact of visual prompting
manifests in the later stages of MLLMs inference. Considering FV after layer 22 where
we previously denote as information injection and compression, when visual prompts
are referred by textual instructions, there is a rapid increase in FV . This indicates a more
significant contextual information injection from MLLMs happens when visual prompts are
referred by textual reference.

4.4 (RQ4) How do key words in instructions influence MLLM knowledge injection?

0 5 10 15 20 25 30
Layer Index

0.2

0.0

0.2

0.4

0.6

0.8

T "Is" questions
"What" questions
"Can" questions
"Why" questions
"Where" questions

Figure 7: Impacts of instruction types on LLaVA FT .

To investigate the influence of dif-
ferent instructions on represen-
tations in MLLMs (Yan et al.,
2024; Kim et al., 2024b; Xia et al.,
2024; Qin et al., 2024), we cate-
gorized queries from the VQA-
v2 dataset into distinct types
based on their keyword prompts
(e.g., ”Is,” ”What,” ”Can,” ”Why,”
”Where”). By comparing vi-
sual representation transforma-
tions across these question cate-
gories based on FV and FT in Figure 7, we evaluated how specific linguistic structures and
query intents influence visual information processing within MLLMs.

Finding 10: Our analysis shows that different types of textual instructions result in dis-
tinct patterns of contextual information injection in MLLMs. The processing behavior
of visual representations by MLLMs is influenced by keywords in instructions that deter-
mine the type of instructions. We select several representative instruction types from those
lists in VQA-v2 dataset and use LLMs to infer responses based on these different types of
instructions. For ”Why” and ”Can” questions, MLLMs inject more contextual information
aligned with the response, as indicated by FT . Conversely, MLLMs inject less contextual
information when answering ”Where” questions compared to ”Why” and ”Can” questions,
but more contextual information than when responding to ”What” and ”Is” questions.

5 Conclusion

In this work, we introduced an information-theoretic framework to systematically analyze
and quantify the interactions between visual and textual modalities in MLLMs. Our metrics
provided tractable and interpretable measures for visual information gain and textual
contextual contributions across different model layers. Our empirical findings revealed
four distinct stages of multimodal representation processing, highlighting the dynamic
interplay between visual and textual instructions. We demonstrate that textual instructions
dominate visual information processing, with disruptive prompts significantly impairing
both visual encoding and contextual information injection. Furthermore, our analysis
underscored the critical synergy between visual and textual instructions, showing that
effective multimodal understanding relies heavily on their alignment. These insights not
only advance our understanding of MLLMs’ internal mechanisms but also offer practical
guidance for designing more robust and explainable multimodal systems.
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A Implementation Details

A.1 Extracted Visual Information

We employ a three-layer Concept Encoder (CE) to encode features extracted from the l-th
layer of LLMs, denoted as X(l)

It
, into concept bottleneck information Ĉl . This CE is trained on

hidden state information of LLaVA on the MSCOCO-2014 dataset, which represent q(Ĉ | V).
The concept bottleneck information Ĉl in this context is represented as a 80-dimensional
vector, corresponding to 80 object classes detectable in MSCOCO-2014 using YOLOv11. The
vector is normalized, with each dimension reflecting the importance score of the respective
object. On each dataset YOLOv11 is firstly applied to generate the object distribution prior,
denoted as r(Ĉ). To implement margin on text, we use TF-IDF to vectorize and classify the
texts input of MLLMs into several clusters and margin the expectation of KL on each cluster.

A.2 Induced Contextual Information from MLLMs

We trained two MLPs for vector similarity evaluation, denoted as s
(
., .
)
. When multiple

hidden state representations are extracted from same image-text samples, the similarity
between the them should be high. In our context, we assess information similarity in
MLLMs at each decode layers with the last decode layer. There are two settings for FT
evaluation, task-aware similarity and baseline similarity, where task-aware similarity is
evaluated with MLLMs given instruction texts and baseline similarity is evaluated with
MLLMs only given system tokens and image tokens.

B Approximation of InfoNCE

To robustly track the similarity function s(·, ·) in high-dimensional representations, we first
apply a low-rank projection that maps the original representations into a joint embedding
space. Specifically, for any representation X (i.e., X(l),i

T , X(L),i
T , X(l),i

0 , or X(L),i
0 ), we define a

projection function:
fproj(X) = W⊤X + b,

where W ∈ Rd×dj is a learnable projection matrix with dj ≪ d and b ∈ Rdj is a bias
term. The low-rank projection serves to distill the most salient features from the original
representations and align them in a common, lower-dimensional space. The similarity
function is then computed as the inner product in this joint space:

s(x, y) = ⟨ fproj(x), fproj(y)⟩ = fproj(x)⊤ fproj(y),

which reduces computational complexity and enforces a structured joint distribution, ensur-
ing the computed similarities accurately reflect the alignment between the representations.
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