
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ITERATIVE VECTORS: BOOST IN-CONTEXT LEARN-
ING WITHIN ACTIVATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning (ICL) has emerged as a standard paradigm for utilizing lan-
guage models. Although ICL is convenient due to the absence of backpropaga-
tion, selecting and processing appropriate demonstration examples can be difficult
and time-consuming, particularly when the number of examples is large. We pro-
pose to explore the potential of activation space through Iterative Vectors (IVs),
a technique designed to enhance in-context performance and necessitating only
forward inference passes. IVs are employed by first extracting and iteratively
steering activations within a language model, then applying them during infer-
ence with minimal computational and memory overhead. We evaluate IVs across
numerous tasks using four popular models and observe significant improvements.
Our findings suggest that activation steering can serve as a promising direction for
in-context learning, thereby opening new avenues for future research.

1 INTRODUCTION

Few-shot learning has long been a prominent research focus. Recently, language models (LMs) have
shown the capability to execute few-shot learning through in-context learning (ICL) (Brown et al.,
2020). In this approach, learning a new task involves conditioning on a few support examples and
predicting the most suitable tokens to complete a query input, all without the need for any parameter
updates. This method is appealing because it relies solely on inference, allowing for quick adaptation
to various downstream tasks.

However, it has been noted that despite its potential, the predictions of LMs can be highly volatile
when conditioned on prompts. The outcomes depend significantly on the templates, demonstra-
tions, their permutations, and can even ignore or violate the instructions of the prompt (Webson &
Pavlick, 2022; Min et al., 2022b). This finding is also corroborated in our experiments, wherein
adding more in-context examples does not always result in improvements. Instead, it introduces un-
certainty, which compromises LMs’ reliability and usability. Furthermore, in theory, the inference

Layer n

Layer 2

Layer 1

nice movie \n

...

great plot \n

...

+

<pred>

Activation Edit

Tr
an

sf
or

m
er

 D
ec

od
er

Extraction Application<pred>

+

+Vec n

Vec 2

Vec 1

Figure 1: A general illustration of how activation vectors improve ICL performance by extracting
and editing model activations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

time increases quadratically as more examples are appended to the query. When the examples are
lengthy, it may be unfeasible to accommodate them within the desired timeframe and the model’s
context length.

In this paper, we introduce Iterative Vectors (IVs) to offer a new perspective. As illustrated in
Figure 1, rather than staying in the discrete prompt space, IVs delve into the extensive activation
space of the model. This exploration reveals a largely uncharted area for developing new methods,
with our pioneering efforts to demonstrate how ICL can be enhanced from the representations within
the model.

IVs are generated by extracting the difference of attention activations from queries with and without
preceding examples during the inference process, with the goal of capturing the insights the model
learns from the input examples. These IVs are then iteratively reintroduced into the model, facilitat-
ing the formation of more stable and effective vectors while continuously incorporating information
from subsequent examples. Subsequently, these IVs can be utilized in future inference procedures.
This methodology does not impede the ICL framework and incurs minimal computational and mem-
ory overhead, thereby making our method more advantageous to use.

IVs can substantially enhance ICL performance. When evaluated across 4 models and 13 diverse
tasks, IVs outperformed standard ICL baselines by an average margin of 3.5%, and also exceeded
the performance of two other activation vector methods (Section 4). Furthermore, IVs demonstrate
significant time savings in achieving boosted one-shot performance (Section 4.1). They also effec-
tively scale with the quantity of demonstration shots preceding the query (Section 4.2). Whether
supplied with only a few or numerous examples for extraction, IVs consistently adapt to the given
task, maintaining a trajectory of improved performance (Section 4.3). Finally, through ablating
the hyperparameters of our method, we discovered an optimal interaction among them that maxi-
mizes performance, thereby affirming that each is an essential component of the methodology (Sec-
tion 4.4).

Our contributions are highlighted as follows:

1. We establish the evaluation framework for activation vectors in the ICL setting and adapt
two preliminary activation vector methods to this framework.

2. We propose a novel activation vector method specifically designed for ICL, termed Iterative
Vectors (IVs), which enhances ICL performance without the need for backpropagation.

3. Extensive experiments demonstrate that our method exhibits superior performance and un-
derscores the potential of activation vectors for ICL.

To the best of our knowledge, we are the first to investigate the application of activation vectors
on diverse real-world in-context learning tasks and to demonstrate their potential with in-context
examples during inference.

2 RELATED WORK

Some preliminary studies have investigated the manipulation of language models within the rep-
resentation space by utilizing lightweight vectors, which we refer to as activation steering with
activation vectors in this paper.

Activation steering methods contrasts with existing prompt tuning methods (Li & Liang, 2021;
Lester et al., 2021), which operates in a continuous parameter space but still as part of the prompt
and requires training via backpropagation. Again, unlike Parameter-Efficient Fine-Tuning (PEFT)
methods, e.g. LoRA (Hu et al., 2021), they does not seek to tune the parameters of the model but
rather modifies the activations during inference.

2.1 ACTIVATION VECTORS

Task Vectors (Hendel et al., 2023) are extracted from one layer of the model during ICL inference
and then applied to a zero-shot query to determine whether they can preserve task-relevant informa-
tion. Function Vectors (Todd et al., 2023), on the other hand, select activations from the top attention

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

heads, based on their causal effect in generating the correct response. These selected activations are
then averaged and introduced into a specific layer of the model.

Although these two methods align closely with our approach and share similar objectives, their
primary testing has been limited to straightforward synthetic tasks, such as identifying antonyms,
naming country capitals, and providing plural forms, rather than ICL tasks with demonstrations.
Consequently, the practical applicability of these vectors in real-world environments remains uncer-
tain.

In contrast, our objective is to conduct evaluations within a more realistic context by utilizing real-
world classification datasets. This approach aims to offer a more thorough assessment framework
for activation vectors. We have adapted and included these two methods for comparison to facilitate
the practical application of activation vectors beyond theoretical constructs.

2.2 GENERATIVE STEERING

Another research direction focuses on modifying LMs’ activations for generation and transfer pur-
poses. Latent Steering Vectors (Subramani et al., 2022) aim at sentence recovery and sentiment
transfer. Inference-Time Intervention (Li et al., 2023) involves probing each attention head and
guiding the model with the probe vector to enhance the truthfulness of the generated text. Stud-
ies by Turner et al. (2023) and Liu et al. (2024) address style and sentiment transfer by employing
positive and negative sentence pairs to extract contrastive guidance.

Despite their shared similarities in operating within the representation space, these methods either
necessitate training with backpropagation or are specifically tailored for generative or transfer tasks
between sentence pairs. Consequently, it is not immediately clear how they should be integrated into
the ICL setting, which we leave for future research.

3 METHOD

In this section, we begin by establishing the theoretical foundation of our method. Following this,
we outline the evaluation protocols to clearly define the relevant notations. Finally, we present our
method in detail.

3.1 THEORETICAL FOUNDATION

Given the significance of in-context learning, numerous theories have been proposed to explain its
underlying mechanisms, as evidenced by Xie et al. (2022); Chan et al. (2022); Ye et al. (2023);
Oswald et al. (2023). One particularly intriguing line of hypothesis posits that a pretrained LM
operates as a meta-optimizer, generating meta-gradients which it then applies to address ICL tasks.
We now present an overview of this concept.

First, let us revisit the dual form of the perceptron and apply it in the modern context of deep NNs
(Irie et al., 2022). Formally, assume a linear layer trained via gradient descent utilizing T training
inputs (x1, . . . ,xT) and their corresponding (backpropagated) error signals (e1, . . . , eT), where
xt ∈ Rdin and et ∈ Rdout . If standard gradient descent is applied, a loss function L produces the
error signal et = −ηt(∇yL)t, where ηt ∈ R is the learning rate, and yt = Wxt is the output of the
linear layer. Its weight matrix is given by

W = W0 +

T∑
t=1

et ⊗ xt, (1)

where W0 ∈ Rdout×din represents the initial value of the weights. This linear layer transforms an
input x ∈ Rdin into an output S1(x) ∈ Rdout :

S1(x) = Wx. (2)

Next, consider a composite layer S2 that stores T key-value pairs, (x1, e1), . . . , (xT , eT), repre-
sented by a key matrix X = (x1, . . . ,xT) ∈ Rdin×T and a value matrix E = (e1, . . . , eT) ∈

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Rdout×T , along with a weight matrix W0 ∈ Rdout×din . This layer transforms an input x ∈ Rdin

into an output S2(x) ∈ Rdout by

S2(x) = W0x+Attn(X,E,x), (3)

where the parameters of the unnormalized attention operator Attn(·) are, in order, the key, value,
and query.

It can be shown that S1 and S2 are equivalent by expanding the attention operation as

Attn(X,E,x) = EX⊤x =

(
T∑

t=1

et ⊗ xt

)
x. (4)

This expression elucidates that the forward operation of any linear layer in neural networks, trained
via gradient descent, can be interpreted as a key-value-query attention mechanism (Vaswani et al.,
2017). In this framework, the training data points act as the keys, the corresponding gradients serve
as the values, and the test input generates the query.

Utilizing the dual form, ICL can be interpreted as a meta-optimization process (Dai et al., 2023).
This was achieved by reversing the direction of the equivalence and breaking down the attention
key and value terms for the ICL query token into its zero-shot and demonstration components, as
formally expressed:

F̃ICL(q) =WZSLq + LinearAttn (WV X
′,WKX ′, q) (5)

=WZSLq +
∑
i

WV x
′
i

(
(WKx′

i)
T
q
)

(6)

=WZSLq +
∑
i

((WV x
′
i)⊗ (WKx′

i)) q (7)

≜WZSLq +∆WICLq (8)
=(WZSL +∆WICL) q. (9)

Here, WZSL = WV X (WKX)
T is the zero-shot activation from the static parameters of the model,

in which X denotes the input representations of query tokens before the current one, q. X ′ denotes
the input representations of the demonstration tokens.

In summary, under the relaxed normalization setting, a pretrained LM acts as a meta-optimizer.
Through forward computation, the LM generates meta-gradients from the demonstration examples,
which are then applied to the original parameters via attention, culminating in the formation of the
ICL inference capability.

This explanation provides an intuitive understanding of how the LM uses in-context examples, but
it also highlights why ICL performance can be unstable. Specifically, meta-gradients derived from
limited in-context examples may not fully capture the task and may not scale appropriately with the
original parameters.

For this reason, we propose Iterative Vectors to extract meta-gradients—specifically, the activations
induced by in-context examples—from the language model’s inference process to enhance its ac-
curacy and robustness. This would also allow us to apply these meta-gradients directly in future
inference tasks, eliminating the need to compute them afresh with ICL each time a query is eval-
uated. However, before proceeding, it is necessary to establish the notations employed to evaluate
activation vectors.

3.2 ACTIVATION VECTOR EVALUATION

We adhere to standard few-shot benchmarking protocols (Vinyals et al., 2016; Finn et al., 2017;
Snell et al., 2017) to define the activation vector evaluation setting. For a given split of an n-way
k-shot classification task T = {Ttrain, Tval, Ttest}, which comprises textual query-answer pairs (x, y),
an ICL episode 1 is sampled as:

E = [(x1, y1), . . . , (xn×k, yn×k), (xq, yq)] . (10)

1The term is borrowed from meta-learning, considering the meta-gradients at play.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Here, (xq, yq) represents the query and its label, preceded by the n× k support examples. To avoid
the impact of unbalanced samples, we uniformly sample k examples from each of the n classes and
shuffle them to mitigate any bias arising from sample permutation. We maintain a record of the
labels for each example, which can be accessed using Class(xi) ∈ {1, 2, . . . , n, q}.
The episode must first be converted into a pure text sequence before the language model LM(·) can
process it. This conversion is handled by a verbalizer, which uses a predefined prompt template
to instantiate the samples. The template contains two key components: the input-output separator
that links a question with its answer, and the example separator that joins the given support set. To
preserve the simplicity of the template, we have chosen to use one newline (\n) for the input-output
separator and three newlines for the example separator, as adopted in Min et al. (2022a).

When the language model LM(·) is provided with an episode E, it performs autoregressive inference
on each of the tokens within the verbalized episode. The clean prediction of the language model is
derived by applying the softmax function to the logits on the potential labels produced by the model,
as expressed in the following equation:

ŷclean = LM(E). (11)

In contrast, an edited run involves the use of an activation vector editor fedit. The specific method of
editing varies based on the chosen approach, and we express the general form as follows:

ŷedit = LM(E; fedit(V,P)), (12)

which depends on the set of vectors V extracted by an activation vector extractor, fext, with hyper-
parameters P:

V = fext(Ttrain;P). (13)

The extractor retrieves its target vectors V from Ttrain and identifies the optimal hyperparameters P∗

from Tval by maximizing the metric M:

P∗ = argmax
P

ME∼Tval (ŷedit, yE) (14)

V∗ = fext(Ttrain;P∗). (15)

For single-token classification tasks, macro-F1, micro-F1, and weighted-F1 scores can serve as the
metrics. The vectors V∗ and the optimal hyperparameters P∗ are then applied to the test set Ttest to
evaluate the final results ME∼Ttest (ŷedit, yq).

3.3 ITERATIVE VECTORS

We have demonstrated that attention layers significantly influence ICL, with demonstrations acting
as meta-gradients to help the model adapt to the task during inference. We first specify the extractor,
fext, for IV.

To extract the gradients, we construct two verbalized versions of a given n-way k-shot episode E.
The first version, E = [(x1, y1), . . . , (xn×k, yn×k), (xq, yq)], is the standard shuffled verbalization,
which serves as the complete episode. The second version, E0 = [(xq, yq)], is stripped of all
demonstrations, resulting in a zero-shot query that provides no information about the task.

Input-output separators are responsible for generating the label words, which gather information and
contribute to forming the final prediction (Wang et al., 2023), making the meta-gradients associated
with them particularly important. Given their significance, during inference on the two versions,
the extractor collects activations, Actl(xi), for the input-output separator of the i-th example in
the complete episode E, as well as Act0l (xq) of the query in the zero-shot query E0, across each
attention layer l of the LM.

Subsequently, we subtract the zero-shot activations from the complete activations. Since there are
no input-output separators for demonstrations in the zero-shot sequence, all activations from the
complete episode use the activations on the input-output separator of the query as the subtrahend:

∆Actl(xi) = Actl(xi)−Act0l (xq) (16)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Support 2

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

\n

\n

\n

\n

\n

\n

A

C

B

C

A

B

x sep. y
IO

A
V
G

A
V
G

A
V
G

A
layer 1...

layer N

B
layer 1...

layer N

Support 1

Support 3

Query

\n

\n

\n

\n

A

B

C

?

C
layer 1...

layer N

Iterative Vectors

Extraction Application
Query ?

Q
layer 1

layer N

...

\n

Figure 2: Illustration of the extraction and application of Iterative Vectors. For clarity, the subtraction
and iterative updates have been omitted.

When k > 1, we average the activations for each class, resulting in n vectors for each class, plus a
vector for the final query:

vj
l =

1

|Cj |
∑
i∈Cj

∆Actl(xi), (17)

vq
l = ∆Actl(xq) = Actl(xq)−Act0l (xq), (18)

where Cj = {i | Class(xi) = j}. This process yields the meta-gradients for a single episode

VE
l = {v1

l ,v
2
l , . . . ,v

n
l ,v

q
l }. (19)

By averaging over the training set, a preliminary version of activation vectors can be obtained, as
illustrated in Figure 2.

Vl =
1

|T |
∑
E∼T

VE
l (20)

f ′
ext(T ;P) = {Vl; l ∈ LM} (21)

Next, to better utilize the forward pass computation, we propose to apply the vectors during the
extraction phase, thus introducing the concept of Iterative Vectors. Specifically, we implement
a batch-like update strategy to emulate standard batched gradient updates, a method commonly
adopted to mitigate the instability associated with single-step gradients. After every b episodes out
of a total of t extraction episodes, the IVs extracted are averaged and used as activation vectors to
edit subsequent extractions dynamically.

V1 ←− f ′
ext(B1;P), Vi+1 edit with Vi

←−−−−−−−−
while extracting

f ′
ext(Bi+1;P) (22)

fext(Ttrain;P) =
1

n

n∑
i=1

Vi (23)

where Bi ∼ Ttrain represent the batches with size |Bi| = b, and n = t/b denotes the number of
batched updates executed.

This process brings us to the definition of the editor, fedit. For the l-th attention layer Attnl(·), we
have the corresponding extracted IVs, Vl. During inference, the editing is performed on each of the
input-output separators with the IVs from their corresponding classes:

EditAttnl(xi) = Attnl(xi) + α× v
Class(xi)
l . (24)

Here, two additional hyperparameters are introduced: the extraction strength α1 and the inference
strength α2, adopted during the iterative extraction and evaluation phases, respectively. In summary,
the hyperparameters for IVs are P = {k, b, α1, α2}.
Please refer to Appendix A for the pseudocode of our method, which provides a more detailed
perspective on the methodology. Additionally, more information on hyperparameters can be found
in Appendix F.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model Method abort. agnews athei. clima. emoti. femin. hate hilla. irony offen. senti. sst5 trec Avg.

gpt-j-6b

Clean 32.96 53.53 25.38 27.11 24.07 31.80 49.38 35.74 55.93 51.98 36.94 29.33 64.57 39.90
FV 37.29 51.53 32.86 21.19 17.78 37.87 38.84 30.96 55.09 51.16 41.81 31.91 67.02 39.64
TV 29.83 60.89 20.50 24.62 25.49 31.72 49.74 33.75 48.32 51.61 38.82 32.94 63.72 39.38
IV (Ours) 36.06 56.13 32.05 19.23 32.70 38.20 47.30 40.68 54.65 46.32 33.17 39.07 67.32 41.76

llama-2-7b

Clean 27.52 61.94 22.13 28.60 54.45 29.27 53.27 29.42 58.65 51.86 38.96 28.93 74.93 43.07
FV 25.11 67.56 14.58 23.70 58.66 31.01 52.57 32.26 60.44 54.89 42.40 30.89 71.29 43.49
TV 27.91 72.11 21.75 31.98 59.37 29.56 50.08 29.54 50.21 52.00 41.64 29.94 74.77 43.91
IV (Ours) 30.33 69.64 28.38 35.67 56.75 30.35 55.97 42.83 52.69 59.38 33.82 30.55 79.29 46.59

llama-3.1-8b

Clean 29.71 79.47 13.50 19.62 69.01 34.40 53.45 40.36 52.44 56.46 38.96 36.64 74.25 46.02
FV 29.21 83.84 15.27 18.87 68.94 34.65 55.34 34.13 55.34 56.77 47.73 36.81 72.51 46.88
TV 30.14 80.06 13.95 15.20 68.87 28.66 53.45 43.27 52.04 56.47 39.38 36.62 74.53 45.59
IV (Ours) 29.81 87.13 23.49 23.01 69.73 36.84 58.82 40.34 50.21 55.29 42.45 41.50 75.63 48.79

llama-2-13b

Clean 34.96 76.23 27.11 20.96 61.89 37.13 53.83 45.53 55.17 60.34 38.77 38.66 76.01 48.20
FV 36.55 77.37 27.25 19.71 66.73 43.35 50.57 51.16 51.26 58.94 46.15 42.72 72.57 49.56
TV 34.71 76.28 27.24 30.88 63.27 31.87 52.63 45.03 54.98 60.14 37.82 37.98 77.05 48.45
IV (Ours) 35.32 79.07 27.32 38.19 67.40 46.20 57.18 50.13 66.76 59.09 35.88 44.14 80.93 52.89

Table 1: Main experiment results with macro-F1 as the metric. “Clean” denotes a standard one-shot
ICL result. The models are GPT-J-6B (Wang & Komatsuzaki, 2021), Llama 2 (Touvron et al., 2023)
and Llama 3.1 (Dubey et al., 2024).

4 EXPERIMENTS

We apply our IVs to four popular models across 13 tasks. The results are presented in Table 1.
Details of all the datasets used in this paper can be found in Appendix B, while additional results
with the other two metrics are provided in Appendix C.

To provide additional proof of concept and comparative analysis, we include two recent activation
vector proposals: Function Vectors (Todd et al., 2023) and Task Vectors (Hendel et al., 2023). Al-
though these methods were not originally designed to operate under the ICL evaluation setting, we
adapted them to utilize the training set by averaging the activations. We search over their respec-
tive hyperparameters as well as the extraction shot k to ensure a fair comparison. Please refer to
Appendix D for an overview of their designs.

During testing, the model cannot ascertain the true class distribution of the test set due to the few-shot
setting, which is often imbalanced. Therefore, we adhere to one-shot during the main experiment,
which supplies the model with minimal yet sufficient information through a set of uniformly dis-
tributed demonstration examples. A discussion on zero-shot sequences can be found in Appendix E.

We evaluate over 200 episodes for both extraction (Ttrain) and hyperparameter search (Tval). For the
hyperparameters of IVs, we use a fixed iterative batch size of b = 10 and explore the extraction
strength and inference strength α1, α2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for all tasks. Regarding the ex-
traction shot k, we test k ∈ {1, 2, 3, 4} for both TVs and IVs. However, due to their design (see
Appendix D), FVs are excessively slow to extract, making it unfeasible to incorporate additional ex-
amples. Even when limited to k = 1, extracting FVs still takes about 20 times longer than extracting
IVs. We present an example of the extraction time required in Table 2.

All experiments were conducted using a predetermined random seed (42) to mitigate selection bias.
To ensure a robust representation of result distributions, the tests are averaged over a substantial
number of episodes, namely 10,000. All experiments can be performed on a single Nvidia RTX
A6000 GPU unless stated otherwise.

The results indicate that Iterative Vectors successfully achieve the goal, surpassing the baselines in
most tasks as well as in the overall average. Task Vectors have demonstrated acceptable perfor-
mance and can serve as a simple baseline for future research. Although Function Vectors achieve
relatively better results than Task Vectors, their high search time presents significant challenges for
optimization in practical ICL applications.

4.1 IVS SAVE INFERENCE TIME

All the aforementioned experiments require only a single demonstration during application, demon-
strating that activation vectors can significantly reduce inference time. To highlight this point, we
turn to the emoji dataset, a 20-class classification task (see Appendix B). Evaluating this dataset
with multi-shot demonstrations would be exceedingly time-consuming due to the rapid increase in
the length of the demonstration sequence.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Setting 1-shot 2-shot 3-shot 4-shot 1-shot + FV 1-shot + TV 1-shot + IV (ours)

Macro-F1 9.13 12.90 12.64 13.11 10.77 10.30 12.90
Inference Time (s) 1374 2434 3426 4506 1389 1384 1452
Extraction Time (min) - - - - 438.3 14.58 23.75

Table 2: Clean and activation vector results on the emoji dataset with model Llama-2-7b. Inference
time measurements are based on 10,000 episodes, while extraction is based on 200 episodes.

Dataset 2-shot 3-shot 4-shot 5-shot
Clean +IV Diff Clean +IV Diff Clean +IV Diff Clean +IV Diff

AG News 76.86 79.94 +3.08 80.55 82.49 +1.94 82.12 84.82 +2.70 82.47 85.84 +3.37
Rotten Tomatoes 70.28 87.50 +17.22 78.97 90.57 +11.60 83.74 90.74 +7.00 87.80 91.48 +3.68

Table 3: Multi-shot clean and IV results using the Llama-2-7b model. The displayed metric is
macro-F1.

We apply IV on this dataset and further fix the extraction shot at k = 1 rather than exploring the
range k = {1, 2, 3, 4} to further minimize the time required for hyperparameter search. The results,
presented in Table 2, clearly show that IVs substantially enhance performance with minimal time
expenditure, in stark contrast to higher-shot ICL cases, which required significantly more time.

4.2 IVS SCALE WITH IN-CONTEXT DEMONSTRATIONS

One might wonder why activation vectors are not applied to higher-shot settings. The primary
reason is that a key objective of using activation vectors is to reduce the inference time associated
with higher-shot scenarios. Nonetheless, we conducted experiments to evaluate their performance
with longer demonstrations.

For this study, we have chosen the AG News and Rotten Tomatoes datasets. This selection is based
on the observation that the language model under evaluation demonstrates progressively improved
performance as the number of examples increases, as illustrated in Table 3. Consequently, this poses
a more substantial challenge for the IVs to improve upon. However, the results demonstrate that IVs
scale effectively with the number of demonstration shots preceding the query. This suggests that
IVs can offer advantages even when initial performance levels are already high, and they integrate
seamlessly with the ICL framework.

In addition, one could contemplate a similar challenge using larger models. The results are compara-
ble; please refer to Table 8, where the improvement of IVs is once again evident with Llama-2-70b.

4.3 IVS IMPROVE WITH INCREASED EXTRACTION EPISODES

An important aspect to consider is the number of examples required for IVs to function effectively.
We conduct an experiment to test various numbers of extraction episodes, which in turn controls the
number of examples used to extract the IVs.

Another critical aspect is the stability of IVs when extracted from different numbers of episodes.
To evaluate this, we utilized hyperparameters obtained from prior searches in the main experiment
(k = 4, fixed b = 10, α1 = 0.3, α2 = 0.5), rather than optimizing hyperparameters for each
different episode count. The results are presented in Table 4.

The data shows that, although there are some fluctuations when the episode number is small, IVs
extracted from more than two episodes consistently enhance performance (higher than the clean
performance 62.15), even with fixed, potentially suboptimal hyperparameters. Overall, performance
improves as the number of examples increases, demonstrating IVs’ ability to extract and utilize a
greater number of examples, thereby exceeding the conventional limits of ICL.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Episodes 1 2 3 5 10 20 30 50 100 150 200

Macro-F1 40.64 54.44 62.72 66.17 64.27 63.01 65.05 66.77 68.14 69.71 69.62

Table 4: IV results with different number of extraction episodes, using a fixed set of hyperparame-
ters. The model utilized is Llama-2-7b, and the dataset is AG News.

0.
1

0.
3

0.
5

0.
7

0.
9Ex

tra
ct

io
n

St
re

ng
th

1

62.7 59.8 53.7 51.5 46.0

62.7 59.8 53.7 51.5 46.0

62.7 59.8 53.7 51.5 46.0

62.7 59.8 53.7 51.5 46.0

62.7 59.8 53.7 51.5 46.0

b = 0

62.7 58.4 53.1 49.5 43.9

62.0 57.0 52.6 45.5 42.3

61.9 57.9 54.0 49.6 46.6

65.8 64.7 64.9 63.0 64.4

66.0 65.5 65.3 57.4 34.7

b = 1

62.7 58.4 53.1 49.5 43.9

62.0 57.0 53.3 45.5 42.3

61.9 58.8 54.0 48.2 46.5

63.3 64.7 65.7 63.9 63.4

65.5 63.1 63.3 67.8 69.4

b = 3

62.7 58.4 53.1 49.5 43.9

62.0 57.0 53.3 45.5 42.3

61.9 58.8 54.8 49.1 46.1

64.0 64.5 64.7 61.7 62.0

65.5 63.4 62.9 66.8 72.8

b = 5

0.1 0.3 0.5 0.7 0.9
Inference Strength 2

0.
1

0.
3

0.
5

0.
7

0.
9Ex

tra
ct

io
n

St
re

ng
th

1

62.7 58.4 53.1 49.5 43.9

62.0 57.0 53.3 46.2 42.3

61.9 58.8 54.0 49.3 45.7

64.0 64.3 64.3 60.8 58.8

65.6 63.9 61.6 62.2 67.0

b = 10

0.1 0.3 0.5 0.7 0.9
Inference Strength 2

62.7 58.4 53.1 49.5 43.9

62.0 57.0 54.0 46.2 42.3

62.6 58.8 54.0 49.4 44.3

62.9 60.6 60.7 57.6 54.2

64.5 61.4 59.1 57.3 58.0

b = 20

0.1 0.3 0.5 0.7 0.9
Inference Strength 2

62.7 58.4 53.7 49.5 43.9

62.0 58.0 54.0 46.2 43.5

62.0 56.5 53.1 49.0 43.1

61.9 57.7 55.6 51.8 44.2

63.3 58.0 54.9 49.9 44.9

b = 50

0.1 0.3 0.5 0.7 0.9
Inference Strength 2

62.7 58.4 54.3 51.0 43.9

62.0 58.0 53.7 48.1 43.4

62.0 55.9 53.7 49.3 43.5

61.9 56.2 53.4 48.5 43.2

61.9 56.7 52.4 48.1 41.6

b = 100

47.5

50.0

52.5

55.0

57.5

60.0

62.5

60

61

62

63

64

65

56

58

60

62

64

66

68

55

60

65

70

60

62

64

66

60

61

62

63

64

65

60

61

62

63

64

65

45

50

55

60

Figure 3: Ablation study on the hyperparameters. The model utilized is Llama-2-7b, and the dataset
evaluated is the validation split of AG News, with macro-F1 serving as the metric. Note that b = 0
indicates no iterative refining and batching.

4.4 ABLATION STUDY

We present an ablation study on the hyperparameters of our method. In all previous experiments, the
extraction batch size is fixed at b = 10. In this study, we vary this parameter to observe its impact
on other hyperparameters. The results are presented in Figure 3.

To examine the hyperparameter search process, we focus on the validation phase, during which the
optimal hyperparameters are determined. When b = 0, the extracted vectors are not reintroduced
into the model, resulting in poor performance compared to other cases. Without editing during
extraction, the extraction strength α1 also becomes non-reactive. When b = 1, even though effective
batching is not present, reintroducing the extracted vectors into the model for refinement results in a
significant performance boost. This underscores the importance of Iterative Vectors.

As the batch size increases, the optimal hyperparameter pairs initially emerge in the bottom left cor-
ner, characterized by a high extraction strength α1 and a low inference strength α2. This suggests
that with a small batch size, the extracted vectors lack stability, making them unsuitable for infer-
ence. As the batch size continues to grow, the optimal inference strength α2 also increases, reaching
an effective combination. However, once the batch size becomes excessively large, it adversely
affects the hyperparameters.

These interactions underscore the importance and contribution of each hyperparameter to the overall
methodology. For a more comprehensive discussion, including guidance on tuning them, please
refer to Appendix F.

5 CONCLUSION

In our study, we have derived the Iterative Vectors (IVs) from an intuitive theoretical framework,
defined the evaluation protocols and subsequently conducted a series of experiments. Despite IVs’
simplicity, the results obtained are highly encouraging, indicating that activation vectors show sig-
nificant potential for further exploration.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

LIMITATIONS

This study examines the application of Iterative Vectors in the context of one-shot examples as
a compromise between inference time and in-context information. Although applying IVs to zero-
shot inference would be more efficient, a computational sequence of insufficient length might hinder
the model’s ability to effectively solve the given task. For additional discussion, please refer to
Appendix E.

We have opted for classification tasks wherein a single output token is sufficient to distinguish be-
tween the classes. The development and application of activation vectors in more complex tasks,
as well as in generative tasks, represent areas for future investigation. Nevertheless, it is worth not-
ing that the concept of IVs and the associated evaluation protocol can potentially be expanded to
encompass these more advanced applications.

REPRODUCIBILITY STATEMENT

We have provided a comprehensive set of pseudocode in Appendix A, which is crucial for imple-
menting our method. The datasets used are detailed in Appendix B.

Furthermore, we plan to release the complete code repository necessary for reproducing all of our
experiments to promote transparency and facilitate future research endeavors.

REFERENCES

Francesco Barbieri, Jose Camacho-Collados, Luis Espinosa Anke, and Leonardo Neves. TweetEval:
Unified Benchmark and Comparative Evaluation for Tweet Classification. In Trevor Cohn, Yulan
He, and Yang Liu (eds.), Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 1644–1650, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.findings-emnlp.148.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot Learners. In Advances in Neural Information
Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Stephanie C. Y. Chan, Adam Santoro, Andrew K. Lampinen, Jane X. Wang, Aaditya Singh, Pierre H.
Richemond, Jay McClelland, and Felix Hill. Data Distributional Properties Drive Emergent In-
Context Learning in Transformers, November 2022.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why Can GPT
Learn In-Context? Language Models Implicitly Perform Gradient Descent as Meta-Optimizers,
May 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The Llama 3 Herd of Models, August
2024.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards Revealing
the Mystery behind Chain of Thought: A Theoretical Perspective. Advances in Neural Informa-
tion Processing Systems, 36:70757–70798, December 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR,
2017.

Roee Hendel, Mor Geva, and Amir Globerson. In-Context Learning Creates Task Vectors. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pp. 9318–9333, Singapore, December 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.624.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In International
Conference on Learning Representations, October 2021.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. The Dual Form of Neural Networks Re-
visited: Connecting Test Time Predictions to Training Patterns via Spotlights of Attention. In
Proceedings of the 39th International Conference on Machine Learning, pp. 9639–9659. PMLR,
June 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The Power of Scale for Parameter-Efficient Prompt
Tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Can-
wen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément
Delangue, Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer,
Victor Mustar, François Lagunas, Alexander M. Rush, and Thomas Wolf. Datasets: A Commu-
nity Library for Natural Language Processing, September 2021.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-
Time Intervention: Eliciting Truthful Answers from a Language Model. Advances in Neural
Information Processing Systems, 36:41451–41530, December 2023.

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.

Sheng Liu, Haotian Ye, Lei Xing, and James Y. Zou. In-context Vectors: Making In Context Learn-
ing More Effective and Controllable Through Latent Space Steering. In Forty-First International
Conference on Machine Learning, June 2024.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to Learn
In Context. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
(eds.), Proceedings of the 2022 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pp. 2791–2809, Seattle,
United States, July 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.
naacl-main.201.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 11048–11064, Abu Dhabi, United Arab Emirates, December 2022b. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.emnlp-main.759.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers Learn In-Context by Gradient
Descent. In Proceedings of the 40th International Conference on Machine Learning, pp. 35151–
35174. PMLR, July 2023.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the 43rd Annual Meeting on Association for Com-
putational Linguistics, ACL ’05, pp. 115–124, USA, June 2005. Association for Computational
Linguistics. doi: 10.3115/1219840.1219855.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical Networks for Few-shot Learning. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive Deep Models for Semantic Compositionality Over a Sentiment
Treebank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven
Bethard (eds.), Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics.

Nishant Subramani, Nivedita Suresh, and Matthew Peters. Extracting Latent Steering Vectors from
Pretrained Language Models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio
(eds.), Findings of the Association for Computational Linguistics: ACL 2022, pp. 566–581,
Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
findings-acl.48.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function Vectors in Large Language Models. In The Twelfth International Conference on Learn-
ing Representations, October 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
July 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alexander Matt Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDi-
armid. Activation Addition: Steering Language Models Without Optimization, November 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In NIPS 2017, volume 30.
Curran Associates, Inc., 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and Daan Wierstra. Match-
ing Networks for One Shot Learning. In Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
Words are Anchors: An Information Flow Perspective for Understanding In-Context Learning,
December 2023.

Mengqiu Wang, Noah A. Smith, and Teruko Mitamura. What is the Jeopardy Model? A Quasi-
Synchronous Grammar for QA. In Jason Eisner (ed.), Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pp. 22–32, Prague, Czech Republic, June 2007. Association
for Computational Linguistics.

Albert Webson and Ellie Pavlick. Do Prompt-Based Models Really Understand the Meaning
of Their Prompts? In Proceedings of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, pp.
2300–2344, Seattle, United States, July 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.naacl-main.167.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An Explanation of In-context
Learning as Implicit Bayesian Inference, July 2022.

Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Ves Stoyanov, Greg Durrett, and Ramakanth Pasunuru.
Complementary Explanations for Effective In-Context Learning, June 2023.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level Convolutional Networks for Text Clas-
sification. In Advances in Neural Information Processing Systems, volume 28. Curran Associates,
Inc., 2015.

A PSEUDOCODE

We first define three utility functions used for the extraction and application of IVs, as indicated
in Algorithm 1. Subsequently, we outline the procedures for IV extraction in Algorithm 2 and
evaluation in Algorithm 3.

Regarding our hyperparameters, please refer to the extraction shot k, batch size b, and strength α1, as
specified in Algorithm 2. Additionally, consult the inference strength, denoted as α2, in Algorithm 3.

B DATASETS

A full list of all datasets utilized in this research, along with their corresponding access labels, is
detailed in Table 5. The datasets are obtained from HuggingFace (Lhoest et al., 2021).

AG News (Zhang et al., 2015) is a subdataset of AG’s corpus of news articles constructed by assem-
bling titles and description fields of articles from the 4 largest classes (“World”, “Sports”, “Busi-
ness”, “Sci/Tech”) of AG’s Corpus.

TweetEval (Barbieri et al., 2020) introduces an evaluation framework consisting of a series of
Twitter-specific classification tasks. We selected all single-token classification tasks from the
dataset.

14

https://github.com/kingoflolz/mesh-transformer-jax

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 1 Episodic Functions
1: function EXTRACT(sequence) ▷ Extracts activations from the LM
2: v ← ∅
3: run LM(sequence) with ▷ Hook into the LM with the following operations
4: for each layer in LM do ▷
5: p← the position of the input-output separator after the query
6: v ← v ∪ {Attn[p]} ▷ Store the activation of each attention layer
7: end for
8: end run
9: return v

10: end function
11: function APPLY(sequence, V, α) ▷ Apply IV to LM inference process
12: run logits← LM(sequence) with
13: for each layer in LM do
14: for each support sample in sequence do
15: p← the position of the input-output separator after the sample
16: c← the class of the sample
17: Attn[p]← Attn[p] + α× V[c] ▷ Edit the separators in the support sequence...
18: end for
19: p← the position of the input-output separator after the query
20: Attn[p]← Attn[p] + α× V[QUERY] ▷ ...as well as the query
21: end for
22: end run
23: return logits
24: end function
25: function APPLYANDEXTRACT(sequence, V, α) ▷ Apply the IV during extraction
26: v ← ∅
27: run LM(sequence) with
28: for each layer in LM do
29: if V ̸= ∅ then ▷ The first batch does not have V for editing
30: for each support sample in sequence do
31: p← the position of the input-output separator after the sample
32: c← the class of the sample
33: Attn[p]← Attn[p] + α× V[c] ▷ Edit (support)
34: end for
35: p← the position of the input-output separator after the query
36: Attn[p]← Attn[p] + α× V[QUERY] ▷ Edit (query)
37: end if
38: p← the position of the input-output separator after the query
39: v ← v ∪ {Attn[p]} ▷ Extract and append to list
40: end for
41: end run
42: return v
43: end function

The Rotten Tomatoes dataset (Pang & Lee, 2005) is a collection of movie reviews and ratings from
the Rotten Tomatoes website, often used for sentiment analysis and natural language processing
tasks.

The SST5 dataset, derived from the Stanford Sentiment Treebank (Socher et al., 2013), is a collec-
tion of movie reviews annotated with fine-grained sentiment labels, offering a five-class sentiment
classification task ranging from very negative to very positive.

Text Retrieval Conference Question Answering (TrecQA) (Wang et al., 2007) is a dataset created
from the TREC-8 (1999) to TREC-13 (2004) Question Answering tracks.

Our few-shot evaluation methodology employs episodic sampling to regulate the duration of both
extraction and inference processes, rather than relying solely on the absolute number of samples.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2 Extraction
Require: extraction shot: k, extraction batch size: b, extraction strength: α1

Ensure: extracted Iterative Vector: V
1: V← ∅ ▷ Initialize the variable to store the IV
2: ivs← ∅ ▷ An empty list to store IV for each episode
3: for the i-th episode do
4: support, query← RANDOMEPISODE(k) ▷ Sample a k-shot episode
5: order, support← SHUFFLE(support) ▷ Shuffle and remember the classes
6: sq seq← VERBALIZE(support ⊕ query) ▷ Convert to few-shot prompt
7: q seq← VERBALIZE(query) ▷ Convert to zero-shot prompt
8: sq vec← APPLYANDEXTRACT(sq seq, V, α1)
9: q vec← EXTRACT(q seq)

10: for each class of the task do
11: p← the position(s) where order is equal to class ▷ Collect by each class
12: v[class]← MEAN(sq vec[p] − q vec) ▷ Average over shots
13: end for
14: v[QUERY]← sq vec[QUERY] − q vec ▷ Collect the query as well
15: ivs← ivs ∪ {v} ▷ Append the current episode’s IV to the list
16: if i mod b = 0 then ▷ Check if the current episode is a multiple of batch size
17: V← MEAN(ivs) ▷ Update the IV to apply as the average over episodes
18: end if
19: end for

Algorithm 3 Evaluation
Require: evaluation shot k′, extracted Iterative Vector: V, inference strength: α2

Ensure: classification labels: results
1: results← ∅ ▷ An empty list to store results for each episode
2: for the i-th episode do
3: support, query← RANDOMEPISODE(k′) ▷ Sample an episode, typically with k′ = 1
4: support← SHUFFLE(support) ▷ Shuffle to avoid patterned few-shot sequence
5: sq seq← VERBALIZE(support ⊕ query) ▷ Convert to prompt
6: logits← APPLY(sq seq, V, α2) ▷ Run the LM with editing
7: results← results ∪ {ARGMAX(logits[labels])} ▷ Calculate the classification result
8: end for

Consequently, not all available samples are utilized during the experimental procedures. This aspect
underscores an additional dimension of efficiency inherent in activation vectors.

C ADDITIONAL RESULTS

We present the results of our main experiment on the other two metrics, namely micro-F1 and
weighted-F1, derived from our main experiment, in Table 6 and Table 7, respectively.

According to these evaluation criteria, IV outperforms both FV and TV in the majority of tasks,
consistently achieving a higher average score. The only exception occurs in the GPT-J-6B and
micro-F1 setting (Table 6), where FV demonstrates superior performance. We hypothesize that this
result indicates a bias of FV towards the majority classes in this specific model. This bias leads to an
increased micro-F1 score; however, it causes the macro-F1 score to drop below the clean baseline.

An additional experiment was conducted utilizing the Llama-2-70b model. Due to our computa-
tional budget constraints, it was not feasible to complete all tasks with a model of this scale. There-
fore, we opted to conduct a multi-shot experiment, as described in Section 4.2 (Table 3), to more
effectively showcase the efficacy of IV. The results are presented in Table 8.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Name Abbr. Used Huggingface Label
Abortion abor. tweet eval/stance abortion
AG News agnews ag news
Atheism athe. tweet eval/stance atheism
Climate clim. tweet eval/stance climate
Emoji - tweet eval/emoji
Emotion emot. tweet eval/emotion
Feminist femi. tweet eval/stance feminist
Hate hate tweet eval/hate
Hillary hill. tweet eval/stance hillary
Irony irony tweet eval/irony
Offensive offe. tweet eval/offensive
Rotten Tomatoes - rotten tomatoes
Sentiment sent. tweet eval/sentiment
SST 5 sst5 SetFit/sst5
TREC trec trec

Table 5: The datasets and tasks employed, along with their corresponding abbreviations used in the
result tables, and their respective labels as hosted on Hugging Face.

Model Task abort. agnews athei. clima. emoti. femin. hate hilla. irony offen. senti. sst5 trec Avg.

gpt-j-6b

Clean 39.17 57.97 30.49 30.92 31.91 37.70 49.39 40.33 59.86 63.22 38.73 32.62 68.23 44.66
FV 51.93 55.39 45.81 24.89 29.62 54.20 45.48 58.97 57.30 58.25 41.77 37.37 69.70 48.51
TV 51.52 65.86 23.72 32.84 32.85 37.64 49.74 37.89 48.32 60.05 40.23 35.60 64.75 44.69
IV (Ours) 60.02 61.30 44.59 20.49 37.36 49.05 48.32 55.29 56.30 46.94 34.48 40.08 67.32 47.81

llama-2-7b

Clean 28.69 63.40 24.90 34.88 57.31 30.25 53.64 30.05 62.22 53.67 40.02 43.08 77.33 46.11
FV 30.25 69.56 18.50 25.49 62.91 36.07 57.16 35.29 63.83 63.95 46.44 45.22 75.54 48.48
TV 29.31 72.97 24.50 62.14 62.52 30.47 50.09 30.14 52.86 53.53 41.07 43.28 77.10 48.46
IV (Ours) 35.88 72.45 39.17 58.46 58.96 40.03 58.46 48.83 53.01 63.59 36.25 46.67 76.83 52.97

llama-3.1-8b

Clean 39.18 80.64 18.14 21.26 74.06 47.17 53.66 48.14 53.96 60.12 39.01 45.25 69.69 50.02
FV 41.93 84.31 21.15 20.47 74.35 51.76 55.45 44.08 56.06 69.89 48.32 42.43 68.20 52.18
TV 39.07 81.12 18.55 20.21 74.47 40.21 53.47 50.33 53.67 60.35 39.13 43.04 69.62 49.48
IV (Ours) 44.25 87.30 36.33 22.33 77.70 56.57 58.84 56.07 52.23 69.20 42.83 48.85 70.24 55.60

llama-2-13b

Clean 52.57 77.96 42.78 20.36 65.42 55.94 54.00 56.83 55.19 63.56 41.41 44.44 78.56 54.54
FV 53.16 78.81 48.92 19.57 69.99 64.96 58.94 62.25 52.32 70.70 47.87 49.19 76.58 57.94
TV 51.34 78.07 43.22 49.38 67.27 47.60 53.22 56.05 55.05 62.82 39.70 43.86 76.16 55.67
IV (Ours) 55.67 80.33 46.74 65.56 71.03 58.84 58.67 63.13 66.96 73.80 36.74 47.90 77.47 61.76

Table 6: Main experiment results with micro-F1 as the metric. “Clean” denotes a standard one-shot
ICL result.

D COMPARISON OF METHODOLOGIES

We will begin with an introduction to the motivation and functioning of FV and TV. Following this,
we will offer comprehensive comparisons from various perspectives.

Function Vectors. Function Vectors (Todd et al., 2023) are inspired by the observation that in-
corporating activations extracted from few-shot tasks on the last token at specific layers can prompt
an LM to execute a task when applied to an unseen zero-shot prompt. To distill a more effective
hidden-state representation, the researchers limit their investigation to attention heads. This decision
is based on the heuristic that attention heads are the components used by transformers to transfer
information across different token positions. The researchers aim to identify attention heads that
have a causal influence on predicting the desired label for a given task. The method for calculating
this causal effect is outlined as follows:

1. Compute the average activation ātℓj of each attention head j at layer ℓ over task t.

2. Feed the ICL prompt p̃ti with shuffled labels into model f , and calculate the probability
assigned to the target label f(p̃ti).

3. Use one ātℓj to replace the activation of its corresponding attention head, conducting a
separate run for each instance. Subsequently, compute the edited probability for the target
label again as f(p̃ti|aℓj = ātℓj).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Model Task abort. agnews athei. clima. emoti. femin. hate hilla. irony offen. senti. sst5 trec Avg.

gpt-j-6b

Clean 42.61 53.69 34.82 34.83 22.48 40.34 49.46 42.14 58.64 62.47 33.50 31.82 68.12 44.22
FV 52.83 51.62 50.11 31.38 17.29 52.93 35.96 47.47 57.23 59.41 39.82 35.19 69.86 46.24
TV 49.48 61.07 26.01 34.19 22.74 40.30 49.79 39.49 48.21 60.68 34.78 35.52 65.18 43.65
IV (Ours) 56.37 56.16 48.98 15.48 33.59 50.39 46.26 52.34 56.49 48.88 32.98 40.08 68.38 46.64

llama-2-7b

Clean 30.58 62.03 27.50 38.72 57.45 31.75 53.83 27.79 61.15 56.07 35.33 34.46 77.58 45.71
FV 31.40 67.69 16.00 25.62 62.86 38.41 54.68 33.09 62.93 63.85 35.83 36.79 77.29 46.65
TV 31.43 72.23 27.39 60.09 62.70 32.06 50.00 27.66 52.57 55.85 39.36 35.39 77.27 48.00
IV (Ours) 38.90 69.75 44.22 59.10 59.02 41.32 57.46 50.01 51.86 65.18 27.70 36.94 78.22 52.28

llama-3.1-8b

Clean 40.92 79.57 15.32 13.97 73.77 47.66 53.04 48.62 50.70 62.16 36.04 40.44 70.66 48.68
FV 43.03 83.91 20.32 10.22 74.01 50.30 55.02 43.71 54.11 67.33 44.67 38.50 70.74 50.45
TV 41.06 80.17 16.45 9.35 73.86 41.34 53.33 51.20 50.23 62.30 36.09 39.41 70.65 48.11
IV (Ours) 44.98 87.18 39.73 11.41 76.67 53.66 58.70 54.28 48.05 66.34 38.88 44.27 72.86 53.62

llama-2-13b

Clean 51.80 76.36 45.57 19.77 65.73 53.00 53.46 55.25 54.99 65.44 33.47 41.63 79.10 53.51
FV 52.92 77.47 49.87 22.99 70.76 60.23 53.47 60.28 49.71 68.68 41.76 46.51 78.98 56.43
TV 51.32 76.43 45.95 51.92 67.44 46.91 51.91 54.67 54.63 64.78 32.12 41.10 77.07 55.10
IV (Ours) 53.93 79.17 48.74 63.85 71.40 59.55 58.32 58.96 67.31 69.96 35.51 46.82 79.27 60.98

Table 7: Main experiment results with weighted-F1 as the metric. “Clean” denotes a standard one-
shot ICL result.

Dataset 1-shot 2-shot 3-shot 4-shot
Clean +IV Diff Clean +IV Diff Clean +IV Diff Clean +IV Diff

AG News 86.96 88.17 +1.21 87.99 89.04 +1.05 87.87 88.84 +0.97 89.01 89.32 +0.31
Rotten Tomatoes 82.24 91.52 +9.28 91.29 92.38 +1.09 92.39 93.13 +0.74 92.50 92.69 +0.19

Table 8: Multi-shot clean and IV results using the Llama-2-70b model. The displayed metric is
macro-F1. Conducted on 3 Nvidia RTX A6000 GPUs.

4. The causal indirect effect on task t and the shuffled prompt p̃ti is calculated as

CIE(aℓj | p̃ti) = f(p̃ti | aℓj := ātℓj)− f(p̃ti). (25)

5. The average indirect effect is the average of the CIE across all tasks and prompts:

AIE(aℓj) =
1

|T |
∑
t∈T

1

|P̃t|

∑
p̃t
i∈P̃t

CIE(aℓj | p̃ti). (26)

6. Gather the attention heads with highest AIE over all layers to serve as the activation source,
forming set A.

The researchers represent the contribution ofA as a single vector by taking the sum of their average
outputs, over a task, which is called a Function Vector for task t:

vt =
∑

alj∈A
ātlj . (27)

To utilize FV, add it to the activation of the final token at a designated layer as the model processes
a prompt.

One significant issue with FV is that it necessitates an extensive search through all attention heads
of every layer, posing considerable scaling challenges as the model size grows. Theoretically, aside
from the extraction time attributed to the extraction shot k, the extraction time of FV increases
with an additional complexity of O(E × L × H). Here, E represents the number of extraction
episodes, L denotes the layer count of the LM, and H is the number of attention heads in each
layer. For example, GPT-J-6B has a total of 448 heads, while Llama-2-13B has 1600. This increase
alone more than triples the time required to extract the FVs, not to mention the slower computation
resulting from a longer prompt and a larger model size.

In contrast, Task Vector and our Iterative Vector do not encounter this issue and scale smoothly with
larger models. During our experiments, we had to restrict the extraction shot k for FV to maintain
practical search times and ensure fairness across all evaluated methods, as mentioned in Section 4.

Task Vectors. Task Vectors (Hendel et al., 2023) offer a mechanistic perspective on ICL. This
approach conceptualizes ICL as a two-step process: first, a parameter vector θ is computed from the
training sample, which is subsequently used to apply the “rule” defined by the vector to the query x.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

There are many possible realizations of the above framework. The researchers presume that a simple
way for a transformer to achieve this is for the initial L layers to compute θ. The remaining layers
would take θ and x as inputs to generate an output.

This provides a straightforward method to extract the language model’s knowledge of a task and sub-
sequently apply it. The process involves performing a forward pass of the transformer and utilizing
the previously extracted θ to patch the L-th layer of the final token.

However, the boundary that separates this artificially divided two-stage process in the LM remains
unclear and needs to be selected through empirical searching.

Comparison with Iterative Vectors. The theoretical attributes of our methodology, in comparison
to the baseline models, are as follows:

• FV and TV utilize their experiments to validate their respective hypotheses, rather than
basing their methods on theoretical foundations.

• Consequently, their editing processes are heuristic and rely on intuition.
• Our proposed method is grounded in the meta-gradients derived from the demonstrations

through the computation of the attention modules within the model.
• This approach not only identifies where to make edits (the attention layers) but also speci-

fies how to perform the edits (by performing meta-gradient updates via adding to the acti-
vations).

The extraction and editing process differs considerably for each method, as illustrated below:

• FV examines all attention heads and aggregates the activations of the top-performing ones
to obtain the vectors, which is highly time-consuming.

• TV simply identifies the optimal layer for the extraction and application of vectors.
• IV processes the activations from different classes separately, conducting aggregation and

application based on this separation. We also propose iterative updates and batched extrac-
tion for meta-gradients, which have been proven to significantly enhance performance.

The hyperparameters specific to each method (instead of the evaluation framework) are as follows:

• FV: the count of top heads |A| and the layer to apply the vector.
• TV: the layer to apply the vector.
• IV: extraction strength α1, inference strength α2, and iterative batch size b.

Please refer to Appendix F for a more detailed discussion on the hyperparameters of IV.

As a side note, we can see from the comparisons above that there is considerable flexibility in the
design of activation vectors. We hope that our efforts will serve as a catalyst for further exploration
and advancement in this line of inquiry, ultimately unlocking the full potential of activation vectors.

E CONCERNING ZERO-SHOT SEQUENCES

In both the FV and TV papers (Todd et al., 2023; Hendel et al., 2023), the vectors are utilized on
zero-shot sequences. This aims to demonstrate the effectiveness of activation vectors in guiding
the model as expected. The results confirm this: zero-shot sequences with activation vectors differ
significantly from clean zero-shot runs. However, there remains a noticeable gap between zero-shot
applications and standard few-shot ICL performance, which appears difficult to bridge. For instance,
in Figure 4 of the TV paper, all FV runs fall behind the few-shot runs across all models, despite the
tasks being simple synthetic ones.

Previous research has suggested reasons that may account for this disparity. Feng et al. (2023)
provide fundamental impossibility results, indicating that language models cannot solve increasingly
complex tasks in a single generation step. If we view the demonstration sequence as an extension
of the inference steps generated by the LM—since the model treats all previous tokens equally,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

whether generated or provided—then without demonstrations, the LM’s capabilities are significantly
impaired. A zero-shot attempt might not provide adequate computation for the language model to
effectively address a given task. Consequently, it might be overly optimistic to expect activation
vectors to circumvent all necessary computations.

Furthermore, Min et al. (2022b) demonstrated the importance of informing the LM about the label
space of the current task to enhance ICL performance. In a zero-shot scenario, the model might
struggle to focus its classification ability on the desired label, instead distributing it across the entire
vocabulary space, as noted by Holtzman et al. (2021). This adds an extra burden for the model to
extract meta-gradients and adjust accordingly.

Our early experiments on real-world tasks also confirmed that activation vectors do not perform well
in a zero-shot setting. While there are some improvements, they remain inferior compared to the
results achieved with even a one-shot approach. For synthetic experiments, these results may be
adequate; however, to make activation vectors effective for practical applications, we must achieve
better outcomes.

Consequently, we have decided to focus on enhancing few-shot performance rather than zero-shot.
Table 2 of the FV paper offers a compelling insight: FV is applied not only to zero-shot sequences
but also to “uninformative” sequences, which are essentially few-shot sequences with shuffled labels.
These shuffled sequences nearly double the performance compared to their zero-shot counterparts
on synthetic tasks, prompting us to begin our investigation from this point. However, since using
a shuffled sequence is not meaningful for our purposes, we employ a correct one-shot sequence
instead. The advantages of this approach include a basic guarantee of performance, along with the
presence of input-output separators in the support samples, which further facilitate the application
of the vectors.

Nonetheless, we hope our research will enhance future studies on activation vectors, enabling them
to more effectively address the zero-shot scenario. This would represent a significant, albeit chal-
lenging, advancement.

F HYPERPARAMETERS OF IV

In this paper, we introduce four hyperparameters: the extraction shot k, the extraction batch size b,
the extraction strength α1, and the inference strength α2. These notations have been used consis-
tently throughout the paper, including in formulas, pseudocode, and explanations. We now provide
a detailed discussion of each hyperparameter and its function, followed by a guide on how to tune
them effectively.

The extraction shot k controls the number of samples in a sequence during the extraction pro-
cess. This originates from the definition of an n-way k-shot episode (Eq. 10). During extraction,
a longer support sequence may enhance the model’s understanding of the task, thereby produc-
ing higher-quality meta-gradients. However, since adding more samples does not always improve
performance, and a larger k increases extraction time, we propose optimizing this hyperparameter
through a search process.

The extraction batch size b serves to replicate a typical batch size used during standard
training. As implemented in Algorithm 2, the preliminary vectors extracted are averaged every
b episodes to form the Iterative Vectors, which are subsequently incorporated into the extraction
process. Since we are extracting meta-gradients to be applied to the model’s hidden states, we pro-
pose utilizing them during the extraction process rather than waiting for its completion. Iterative
refinement enables each layer in the language model to be guided by meta-gradients, thereby influ-
encing subsequent layers to generate enhanced representations. This process aids in contrasting the
zero-shot sequence and provides improved meta-gradients.

In Section 4.4, we analyzed the impact of varying the parameter b on performance, as well as its
influence on other parameters. We found that an appropriate batch size can significantly enhance
performance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The extraction strength α1 denotes the magnitude with which meta-gradients are applied dur-
ing iterative extraction. Similarly, the inference strength α2 represents the magnitude with which
meta-gradients are applied during evaluation. These two parameters share the same notation because
they fundamentally represent the same concept, albeit applied in different phases.

In the application of vectors, all methods evaluated in this paper utilize vector addition. However,
the meta-gradients may not scale properly with the original parameters. Therefore, we propose
scaling them before incorporating them into the hidden states, a consideration not derived from nor
addressed in previous methods. During the iterative extraction phase, the scaling constant is α1,
whereas during evaluation, the constant is α2.

We differentiate the strength into two parameters because meta-gradients are less stable during the
iterative process. This instability can accumulate across layers and episodes, so we aim to apply a
lower strength during extraction, if necessary, to mitigate this issue.

Guide to tuning the hyperparameters. We recommend a higher value of k for tasks in which the
LM demonstrates greater proficiency. Exploring the range of k ∈ {1, 2, 3, 4} is both straightforward
and effective, as demonstrated in our experiments, assuming sufficient time is available.

Concerning batch size, we have demonstrated that it should neither be too large nor too small. We
recommend starting with b = 5 or b = 10. Methods for tuning typical batch sizes may also be
considered.

Regarding the strength parameters α1 and α2, we performed a comprehensive grid search within the
range [0.1, 0.9]. Future research is encouraged to employ more sophisticated search strategies, as
these parameters often cluster in a low-performance consecutive area (see Figure 3), which can be
pruned if properly identified.

21

	Introduction
	Related Work
	Activation Vectors
	Generative Steering

	Method
	Theoretical Foundation
	Activation Vector Evaluation
	Iterative Vectors

	Experiments
	IVs Save Inference Time
	IVs Scale with In-Context Demonstrations
	IVs Improve with Increased Extraction Episodes
	Ablation Study

	Conclusion
	Pseudocode
	Datasets
	Additional results
	Comparison of Methodologies
	Concerning Zero-Shot Sequences
	Hyperparameters of IV

