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ABSTRACT

In-context learning (ICL) has emerged as a standard paradigm for utilizing lan-
guage models. Although ICL is convenient due to the absence of backpropaga-
tion, selecting and processing appropriate demonstration examples can be difficult
and time-consuming, particularly when the number of examples is large. We pro-
pose to explore the potential of activation space through Iterative Vectors (IVs),
a technique designed to enhance in-context performance and necessitating only
forward inference passes. IVs are employed by first extracting and iteratively
steering activations within a language model, then applying them during infer-
ence with minimal computational and memory overhead. We evaluate IVs across
numerous tasks using four popular models and observe significant improvements.
Our findings suggest that activation steering can serve as a promising direction for
in-context learning, thereby opening new avenues for future research.

1 INTRODUCTION

Few-shot learning has long been a prominent research focus. Recently, language models (LMs) have
shown the capability to execute few-shot learning through in-context learning (ICL) (Brown et al.,
2020). In this approach, learning a new task involves conditioning on a few support examples and
predicting the most suitable tokens to complete a query input, all without the need for any parameter
updates. This method is appealing because it relies solely on inference, allowing for quick adaptation
to various downstream tasks.

However, it has been noted that despite its potential, the predictions of LMs can be highly volatile
when conditioned on prompts. The outcomes depend significantly on the templates, demonstra-
tions, their permutations, and can even ignore or violate the instructions of the prompt (Webson &
Pavlick, 2022; Min et al., 2022b). This finding is also corroborated in our experiments, wherein
adding more in-context examples does not always result in improvements. Instead, it introduces un-
certainty, which compromises LMs’ reliability and usability. Furthermore, in theory, the inference

Layer n

Layer 2

Layer 1

nice movie \n

... ... ...

great plot \n

...

+

<pred>

Activation Edit

Tr
an

sf
or

m
er

 D
ec

od
er

Extraction Application<pred>

+

+Vec n

Vec 2

Vec 1

Figure 1: A general illustration of how activation vectors improve ICL performance by extracting
and editing model activations.
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time increases quadratically as more examples are appended to the query. When the examples are
lengthy, it may be unfeasible to accommodate them within the desired timeframe and the model’s
context length.

In this paper, we introduce Iterative Vectors (IVs) to offer a new perspective. As illustrated in
Figure 1, rather than staying in the discrete prompt space, IVs delve into the extensive activation
space of the model. This exploration reveals a largely uncharted area for developing new methods,
with our pioneering efforts to demonstrate how ICL can be enhanced from the representations within
the model.

IVs are generated by extracting the difference of attention activations from queries with and without
preceding examples during the inference process, with the goal of capturing the insights the model
learns from the input examples. These IVs are then iteratively reintroduced into the model, facilitat-
ing the formation of more stable and effective vectors while continuously incorporating information
from subsequent examples. Subsequently, these IVs can be utilized in future inference procedures.
This methodology does not impede the ICL framework and incurs minimal computational and mem-
ory overhead, thereby making our method more advantageous to use.

IVs can substantially enhance ICL performance. When evaluated across 4 models and 13 diverse
tasks, IVs outperformed standard ICL baselines by an average margin of 3.5%, and also exceeded
the performance of two other activation vector methods (Section 4). Furthermore, IVs demonstrate
significant time savings in achieving boosted one-shot performance (Section 4.1). They also effec-
tively scale with the quantity of demonstration shots preceding the query (Section 4.2). Whether
supplied with only a few or numerous examples for extraction, IVs consistently adapt to the given
task, maintaining a trajectory of improved performance (Section 4.3). Finally, through ablating
the hyperparameters of our method, we discovered an optimal interaction among them that maxi-
mizes performance, thereby affirming that each is an essential component of the methodology (Sec-
tion 4.4).

Our contributions are highlighted as follows:

1. We establish the evaluation framework for activation vectors in the ICL setting and adapt
two preliminary activation vector methods to this framework.

2. We propose a novel activation vector method specifically designed for ICL, termed Iterative
Vectors (IVs), which enhances ICL performance without the need for backpropagation.

3. Extensive experiments demonstrate that our method exhibits superior performance and un-
derscores the potential of activation vectors for ICL.

To the best of our knowledge, we are the first to investigate the application of activation vectors
on diverse real-world in-context learning tasks and to demonstrate their potential with in-context
examples during inference.

2 RELATED WORK

Some preliminary studies have investigated the manipulation of language models within the rep-
resentation space by utilizing lightweight vectors, which we refer to as activation steering with
activation vectors in this paper.

Activation steering methods contrasts with existing prompt tuning methods (Li & Liang, 2021;
Lester et al., 2021), which operates in a continuous parameter space but still as part of the prompt
and requires training via backpropagation. Again, unlike Parameter-Efficient Fine-Tuning (PEFT)
methods, e.g. LoRA (Hu et al., 2021), they does not seek to tune the parameters of the model but
rather modifies the activations during inference.

2.1 ACTIVATION VECTORS

Task Vectors (Hendel et al., 2023) are extracted from one layer of the model during ICL inference
and then applied to a zero-shot query to determine whether they can preserve task-relevant informa-
tion. Function Vectors (Todd et al., 2023), on the other hand, select activations from the top attention
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heads, based on their causal effect in generating the correct response. These selected activations are
then averaged and introduced into a specific layer of the model.

Although these two methods align closely with our approach and share similar objectives, their
primary testing has been limited to straightforward synthetic tasks, such as identifying antonyms,
naming country capitals, and providing plural forms, rather than ICL tasks with demonstrations.
Consequently, the practical applicability of these vectors in real-world environments remains uncer-
tain.

In contrast, our objective is to conduct evaluations within a more realistic context by utilizing real-
world classification datasets. This approach aims to offer a more thorough assessment framework
for activation vectors. We have adapted and included these two methods for comparison to facilitate
the practical application of activation vectors beyond theoretical constructs.

2.2 GENERATIVE STEERING

Another research direction focuses on modifying LMs’ activations for generation and transfer pur-
poses. Latent Steering Vectors (Subramani et al., 2022) aim at sentence recovery and sentiment
transfer. Inference-Time Intervention (Li et al., 2023) involves probing each attention head and
guiding the model with the probe vector to enhance the truthfulness of the generated text. Stud-
ies by Turner et al. (2023) and Liu et al. (2024) address style and sentiment transfer by employing
positive and negative sentence pairs to extract contrastive guidance.

Despite their shared similarities in operating within the representation space, these methods either
necessitate training with backpropagation or are specifically tailored for generative or transfer tasks
between sentence pairs. Consequently, it is not immediately clear how they should be integrated into
the ICL setting, which we leave for future research.

3 METHOD

In this section, we begin by establishing the theoretical foundation of our method. Following this,
we outline the evaluation protocols to clearly define the relevant notations. Finally, we present our
method in detail.

3.1 THEORETICAL FOUNDATION

Given the significance of in-context learning, numerous theories have been proposed to explain its
underlying mechanisms, as evidenced by Xie et al. (2022); Chan et al. (2022); Ye et al. (2023);
Oswald et al. (2023). One particularly intriguing line of hypothesis posits that a pretrained LM
operates as a meta-optimizer, generating meta-gradients which it then applies to address ICL tasks.
We now present an overview of this concept.

First, let us revisit the dual form of the perceptron and apply it in the modern context of deep NNs
(Irie et al., 2022). Formally, assume a linear layer trained via gradient descent utilizing T training
inputs (x1, . . . ,xT ) and their corresponding (backpropagated) error signals (e1, . . . , eT ), where
xt ∈ Rdin and et ∈ Rdout . If standard gradient descent is applied, a loss function L produces the
error signal et = −ηt(∇yL)t, where ηt ∈ R is the learning rate, and yt = Wxt is the output of the
linear layer. Its weight matrix is given by

W = W0 +

T∑
t=1

et ⊗ xt, (1)

where W0 ∈ Rdout×din represents the initial value of the weights. This linear layer transforms an
input x ∈ Rdin into an output S1(x) ∈ Rdout :

S1(x) = Wx. (2)

Next, consider a composite layer S2 that stores T key-value pairs, (x1, e1), . . . , (xT , eT ), repre-
sented by a key matrix X = (x1, . . . ,xT ) ∈ Rdin×T and a value matrix E = (e1, . . . , eT ) ∈
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Rdout×T , along with a weight matrix W0 ∈ Rdout×din . This layer transforms an input x ∈ Rdin

into an output S2(x) ∈ Rdout by

S2(x) = W0x+Attn(X,E,x), (3)

where the parameters of the unnormalized attention operator Attn(·) are, in order, the key, value,
and query.

It can be shown that S1 and S2 are equivalent by expanding the attention operation as

Attn(X,E,x) = EX⊤x =

(
T∑

t=1

et ⊗ xt

)
x. (4)

This expression elucidates that the forward operation of any linear layer in neural networks, trained
via gradient descent, can be interpreted as a key-value-query attention mechanism (Vaswani et al.,
2017). In this framework, the training data points act as the keys, the corresponding gradients serve
as the values, and the test input generates the query.

Utilizing the dual form, ICL can be interpreted as a meta-optimization process (Dai et al., 2023).
This was achieved by reversing the direction of the equivalence and breaking down the attention
key and value terms for the ICL query token into its zero-shot and demonstration components, as
formally expressed:

F̃ICL(q) =WZSLq + LinearAttn (WV X
′,WKX ′, q) (5)

=WZSLq +
∑
i

WV x
′
i

(
(WKx′

i)
T
q
)

(6)

=WZSLq +
∑
i

((WV x
′
i)⊗ (WKx′

i)) q (7)

≜WZSLq +∆WICLq (8)
=(WZSL +∆WICL) q. (9)

Here, WZSL = WV X (WKX)
T is the zero-shot activation from the static parameters of the model,

in which X denotes the input representations of query tokens before the current one, q. X ′ denotes
the input representations of the demonstration tokens.

In summary, under the relaxed normalization setting, a pretrained LM acts as a meta-optimizer.
Through forward computation, the LM generates meta-gradients from the demonstration examples,
which are then applied to the original parameters via attention, culminating in the formation of the
ICL inference capability.

This explanation provides an intuitive understanding of how the LM uses in-context examples, but
it also highlights why ICL performance can be unstable. Specifically, meta-gradients derived from
limited in-context examples may not fully capture the task and may not scale appropriately with the
original parameters.

For this reason, we propose Iterative Vectors to extract meta-gradients—specifically, the activations
induced by in-context examples—from the language model’s inference process to enhance its ac-
curacy and robustness. This would also allow us to apply these meta-gradients directly in future
inference tasks, eliminating the need to compute them afresh with ICL each time a query is eval-
uated. However, before proceeding, it is necessary to establish the notations employed to evaluate
activation vectors.

3.2 ACTIVATION VECTOR EVALUATION

We adhere to standard few-shot benchmarking protocols (Vinyals et al., 2016; Finn et al., 2017;
Snell et al., 2017) to define the activation vector evaluation setting. For a given split of an n-way
k-shot classification task T = {Ttrain, Tval, Ttest}, which comprises textual query-answer pairs (x, y),
an ICL episode 1 is sampled as:

E = [(x1, y1), . . . , (xn×k, yn×k), (xq, yq)] . (10)

1The term is borrowed from meta-learning, considering the meta-gradients at play.
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Here, (xq, yq) represents the query and its label, preceded by the n× k support examples. To avoid
the impact of unbalanced samples, we uniformly sample k examples from each of the n classes and
shuffle them to mitigate any bias arising from sample permutation. We maintain a record of the
labels for each example, which can be accessed using Class(xi) ∈ {1, 2, . . . , n, q}.
The episode must first be converted into a pure text sequence before the language model LM(·) can
process it. This conversion is handled by a verbalizer, which uses a predefined prompt template
to instantiate the samples. The template contains two key components: the input-output separator
that links a question with its answer, and the example separator that joins the given support set. To
preserve the simplicity of the template, we have chosen to use one newline (\n) for the input-output
separator and three newlines for the example separator, as adopted in Min et al. (2022a).

When the language model LM(·) is provided with an episode E, it performs autoregressive inference
on each of the tokens within the verbalized episode. The clean prediction of the language model is
derived by applying the softmax function to the logits on the potential labels produced by the model,
as expressed in the following equation:

ŷclean = LM(E). (11)

In contrast, an edited run involves the use of an activation vector editor fedit. The specific method of
editing varies based on the chosen approach, and we express the general form as follows:

ŷedit = LM(E; fedit(V,P)), (12)

which depends on the set of vectors V extracted by an activation vector extractor, fext, with hyper-
parameters P:

V = fext(Ttrain;P). (13)

The extractor retrieves its target vectors V from Ttrain and identifies the optimal hyperparameters P∗

from Tval by maximizing the metric M:

P∗ = argmax
P

ME∼Tval (ŷedit, yE) (14)

V∗ = fext(Ttrain;P∗). (15)

For single-token classification tasks, macro-F1, micro-F1, and weighted-F1 scores can serve as the
metrics. The vectors V∗ and the optimal hyperparameters P∗ are then applied to the test set Ttest to
evaluate the final results ME∼Ttest (ŷedit, yq).

3.3 ITERATIVE VECTORS

We have demonstrated that attention layers significantly influence ICL, with demonstrations acting
as meta-gradients to help the model adapt to the task during inference. We first specify the extractor,
fext, for IV.

To extract the gradients, we construct two verbalized versions of a given n-way k-shot episode E.
The first version, E = [(x1, y1), . . . , (xn×k, yn×k), (xq, yq)], is the standard shuffled verbalization,
which serves as the complete episode. The second version, E0 = [(xq, yq)], is stripped of all
demonstrations, resulting in a zero-shot query that provides no information about the task.

Input-output separators are responsible for generating the label words, which gather information and
contribute to forming the final prediction (Wang et al., 2023), making the meta-gradients associated
with them particularly important. Given their significance, during inference on the two versions,
the extractor collects activations, Actl(xi), for the input-output separator of the i-th example in
the complete episode E, as well as Act0l (xq) of the query in the zero-shot query E0, across each
attention layer l of the LM.

Subsequently, we subtract the zero-shot activations from the complete activations. Since there are
no input-output separators for demonstrations in the zero-shot sequence, all activations from the
complete episode use the activations on the input-output separator of the query as the subtrahend:

∆Actl(xi) = Actl(xi)−Act0l (xq) (16)
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Figure 2: Illustration of the extraction and application of Iterative Vectors. For clarity, the subtraction
and iterative updates have been omitted.

When k > 1, we average the activations for each class, resulting in n vectors for each class, plus a
vector for the final query:

vj
l =

1

|Cj |
∑
i∈Cj

∆Actl(xi), (17)

vq
l = ∆Actl(xq) = Actl(xq)−Act0l (xq), (18)

where Cj = {i | Class(xi) = j}. This process yields the meta-gradients for a single episode

VE
l = {v1

l ,v
2
l , . . . ,v

n
l ,v

q
l }. (19)

By averaging over the training set, a preliminary version of activation vectors can be obtained, as
illustrated in Figure 2.

Vl =
1

|T |
∑
E∼T

VE
l (20)

f ′
ext(T ;P) = {Vl; l ∈ LM} (21)

Next, to better utilize the forward pass computation, we propose to apply the vectors during the
extraction phase, thus introducing the concept of Iterative Vectors. Specifically, we implement
a batch-like update strategy to emulate standard batched gradient updates, a method commonly
adopted to mitigate the instability associated with single-step gradients. After every b episodes out
of a total of t extraction episodes, the IVs extracted are averaged and used as activation vectors to
edit subsequent extractions dynamically.

V1 ←− f ′
ext(B1;P), Vi+1 edit with Vi

←−−−−−−−−
while extracting

f ′
ext(Bi+1;P) (22)

fext(Ttrain;P) =
1

n

n∑
i=1

Vi (23)

where Bi ∼ Ttrain represent the batches with size |Bi| = b, and n = t/b denotes the number of
batched updates executed.

This process brings us to the definition of the editor, fedit. For the l-th attention layer Attnl(·), we
have the corresponding extracted IVs, Vl. During inference, the editing is performed on each of the
input-output separators with the IVs from their corresponding classes:

EditAttnl(xi) = Attnl(xi) + α× v
Class(xi)
l . (24)

Here, two additional hyperparameters are introduced: the extraction strength α1 and the inference
strength α2, adopted during the iterative extraction and evaluation phases, respectively. In summary,
the hyperparameters for IVs are P = {k, b, α1, α2}.
Please refer to Appendix A for the pseudocode of our method, which provides a more detailed
perspective on the methodology. Additionally, more information on hyperparameters can be found
in Appendix F.
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Model Method abort. agnews athei. clima. emoti. femin. hate hilla. irony offen. senti. sst5 trec Avg.

gpt-j-6b

Clean 32.96 53.53 25.38 27.11 24.07 31.80 49.38 35.74 55.93 51.98 36.94 29.33 64.57 39.90
FV 37.29 51.53 32.86 21.19 17.78 37.87 38.84 30.96 55.09 51.16 41.81 31.91 67.02 39.64
TV 29.83 60.89 20.50 24.62 25.49 31.72 49.74 33.75 48.32 51.61 38.82 32.94 63.72 39.38
IV (Ours) 36.06 56.13 32.05 19.23 32.70 38.20 47.30 40.68 54.65 46.32 33.17 39.07 67.32 41.76

llama-2-7b

Clean 27.52 61.94 22.13 28.60 54.45 29.27 53.27 29.42 58.65 51.86 38.96 28.93 74.93 43.07
FV 25.11 67.56 14.58 23.70 58.66 31.01 52.57 32.26 60.44 54.89 42.40 30.89 71.29 43.49
TV 27.91 72.11 21.75 31.98 59.37 29.56 50.08 29.54 50.21 52.00 41.64 29.94 74.77 43.91
IV (Ours) 30.33 69.64 28.38 35.67 56.75 30.35 55.97 42.83 52.69 59.38 33.82 30.55 79.29 46.59

llama-3.1-8b

Clean 29.71 79.47 13.50 19.62 69.01 34.40 53.45 40.36 52.44 56.46 38.96 36.64 74.25 46.02
FV 29.21 83.84 15.27 18.87 68.94 34.65 55.34 34.13 55.34 56.77 47.73 36.81 72.51 46.88
TV 30.14 80.06 13.95 15.20 68.87 28.66 53.45 43.27 52.04 56.47 39.38 36.62 74.53 45.59
IV (Ours) 29.81 87.13 23.49 23.01 69.73 36.84 58.82 40.34 50.21 55.29 42.45 41.50 75.63 48.79

llama-2-13b

Clean 34.96 76.23 27.11 20.96 61.89 37.13 53.83 45.53 55.17 60.34 38.77 38.66 76.01 48.20
FV 36.55 77.37 27.25 19.71 66.73 43.35 50.57 51.16 51.26 58.94 46.15 42.72 72.57 49.56
TV 34.71 76.28 27.24 30.88 63.27 31.87 52.63 45.03 54.98 60.14 37.82 37.98 77.05 48.45
IV (Ours) 35.32 79.07 27.32 38.19 67.40 46.20 57.18 50.13 66.76 59.09 35.88 44.14 80.93 52.89

Table 1: Main experiment results with macro-F1 as the metric. “Clean” denotes a standard one-shot
ICL result. The models are GPT-J-6B (Wang & Komatsuzaki, 2021), Llama 2 (Touvron et al., 2023)
and Llama 3.1 (Dubey et al., 2024).

4 EXPERIMENTS

We apply our IVs to four popular models across 13 tasks. The results are presented in Table 1.
Details of all the datasets used in this paper can be found in Appendix B, while additional results
with the other two metrics are provided in Appendix C.

To provide additional proof of concept and comparative analysis, we include two recent activation
vector proposals: Function Vectors (Todd et al., 2023) and Task Vectors (Hendel et al., 2023). Al-
though these methods were not originally designed to operate under the ICL evaluation setting, we
adapted them to utilize the training set by averaging the activations. We search over their respec-
tive hyperparameters as well as the extraction shot k to ensure a fair comparison. Please refer to
Appendix D for an overview of their designs.

During testing, the model cannot ascertain the true class distribution of the test set due to the few-shot
setting, which is often imbalanced. Therefore, we adhere to one-shot during the main experiment,
which supplies the model with minimal yet sufficient information through a set of uniformly dis-
tributed demonstration examples. A discussion on zero-shot sequences can be found in Appendix E.

We evaluate over 200 episodes for both extraction (Ttrain) and hyperparameter search (Tval). For the
hyperparameters of IVs, we use a fixed iterative batch size of b = 10 and explore the extraction
strength and inference strength α1, α2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for all tasks. Regarding the ex-
traction shot k, we test k ∈ {1, 2, 3, 4} for both TVs and IVs. However, due to their design (see
Appendix D), FVs are excessively slow to extract, making it unfeasible to incorporate additional ex-
amples. Even when limited to k = 1, extracting FVs still takes about 20 times longer than extracting
IVs. We present an example of the extraction time required in Table 2.

All experiments were conducted using a predetermined random seed (42) to mitigate selection bias.
To ensure a robust representation of result distributions, the tests are averaged over a substantial
number of episodes, namely 10,000. All experiments can be performed on a single Nvidia RTX
A6000 GPU unless stated otherwise.

The results indicate that Iterative Vectors successfully achieve the goal, surpassing the baselines in
most tasks as well as in the overall average. Task Vectors have demonstrated acceptable perfor-
mance and can serve as a simple baseline for future research. Although Function Vectors achieve
relatively better results than Task Vectors, their high search time presents significant challenges for
optimization in practical ICL applications.

4.1 IVS SAVE INFERENCE TIME

All the aforementioned experiments require only a single demonstration during application, demon-
strating that activation vectors can significantly reduce inference time. To highlight this point, we
turn to the emoji dataset, a 20-class classification task (see Appendix B). Evaluating this dataset
with multi-shot demonstrations would be exceedingly time-consuming due to the rapid increase in
the length of the demonstration sequence.
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Setting 1-shot 2-shot 3-shot 4-shot 1-shot + FV 1-shot + TV 1-shot + IV (ours)

Macro-F1 9.13 12.90 12.64 13.11 10.77 10.30 12.90
Inference Time (s) 1374 2434 3426 4506 1389 1384 1452
Extraction Time (min) - - - - 438.3 14.58 23.75

Table 2: Clean and activation vector results on the emoji dataset with model Llama-2-7b. Inference
time measurements are based on 10,000 episodes, while extraction is based on 200 episodes.

Dataset 2-shot 3-shot 4-shot 5-shot
Clean +IV Diff Clean +IV Diff Clean +IV Diff Clean +IV Diff

AG News 76.86 79.94 +3.08 80.55 82.49 +1.94 82.12 84.82 +2.70 82.47 85.84 +3.37
Rotten Tomatoes 70.28 87.50 +17.22 78.97 90.57 +11.60 83.74 90.74 +7.00 87.80 91.48 +3.68

Table 3: Multi-shot clean and IV results using the Llama-2-7b model. The displayed metric is
macro-F1.

We apply IV on this dataset and further fix the extraction shot at k = 1 rather than exploring the
range k = {1, 2, 3, 4} to further minimize the time required for hyperparameter search. The results,
presented in Table 2, clearly show that IVs substantially enhance performance with minimal time
expenditure, in stark contrast to higher-shot ICL cases, which required significantly more time.

4.2 IVS SCALE WITH IN-CONTEXT DEMONSTRATIONS

One might wonder why activation vectors are not applied to higher-shot settings. The primary
reason is that a key objective of using activation vectors is to reduce the inference time associated
with higher-shot scenarios. Nonetheless, we conducted experiments to evaluate their performance
with longer demonstrations.

For this study, we have chosen the AG News and Rotten Tomatoes datasets. This selection is based
on the observation that the language model under evaluation demonstrates progressively improved
performance as the number of examples increases, as illustrated in Table 3. Consequently, this poses
a more substantial challenge for the IVs to improve upon. However, the results demonstrate that IVs
scale effectively with the number of demonstration shots preceding the query. This suggests that
IVs can offer advantages even when initial performance levels are already high, and they integrate
seamlessly with the ICL framework.

In addition, one could contemplate a similar challenge using larger models. The results are compara-
ble; please refer to Table 8, where the improvement of IVs is once again evident with Llama-2-70b.

4.3 IVS IMPROVE WITH INCREASED EXTRACTION EPISODES

An important aspect to consider is the number of examples required for IVs to function effectively.
We conduct an experiment to test various numbers of extraction episodes, which in turn controls the
number of examples used to extract the IVs.

Another critical aspect is the stability of IVs when extracted from different numbers of episodes.
To evaluate this, we utilized hyperparameters obtained from prior searches in the main experiment
(k = 4, fixed b = 10, α1 = 0.3, α2 = 0.5), rather than optimizing hyperparameters for each
different episode count. The results are presented in Table 4.

The data shows that, although there are some fluctuations when the episode number is small, IVs
extracted from more than two episodes consistently enhance performance (higher than the clean
performance 62.15), even with fixed, potentially suboptimal hyperparameters. Overall, performance
improves as the number of examples increases, demonstrating IVs’ ability to extract and utilize a
greater number of examples, thereby exceeding the conventional limits of ICL.
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Episodes 1 2 3 5 10 20 30 50 100 150 200

Macro-F1 40.64 54.44 62.72 66.17 64.27 63.01 65.05 66.77 68.14 69.71 69.62

Table 4: IV results with different number of extraction episodes, using a fixed set of hyperparame-
ters. The model utilized is Llama-2-7b, and the dataset is AG News.
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Figure 3: Ablation study on the hyperparameters. The model utilized is Llama-2-7b, and the dataset
evaluated is the validation split of AG News, with macro-F1 serving as the metric. Note that b = 0
indicates no iterative refining and batching.

4.4 ABLATION STUDY

We present an ablation study on the hyperparameters of our method. In all previous experiments, the
extraction batch size is fixed at b = 10. In this study, we vary this parameter to observe its impact
on other hyperparameters. The results are presented in Figure 3.

To examine the hyperparameter search process, we focus on the validation phase, during which the
optimal hyperparameters are determined. When b = 0, the extracted vectors are not reintroduced
into the model, resulting in poor performance compared to other cases. Without editing during
extraction, the extraction strength α1 also becomes non-reactive. When b = 1, even though effective
batching is not present, reintroducing the extracted vectors into the model for refinement results in a
significant performance boost. This underscores the importance of Iterative Vectors.

As the batch size increases, the optimal hyperparameter pairs initially emerge in the bottom left cor-
ner, characterized by a high extraction strength α1 and a low inference strength α2. This suggests
that with a small batch size, the extracted vectors lack stability, making them unsuitable for infer-
ence. As the batch size continues to grow, the optimal inference strength α2 also increases, reaching
an effective combination. However, once the batch size becomes excessively large, it adversely
affects the hyperparameters.

These interactions underscore the importance and contribution of each hyperparameter to the overall
methodology. For a more comprehensive discussion, including guidance on tuning them, please
refer to Appendix F.

5 CONCLUSION

In our study, we have derived the Iterative Vectors (IVs) from an intuitive theoretical framework,
defined the evaluation protocols and subsequently conducted a series of experiments. Despite IVs’
simplicity, the results obtained are highly encouraging, indicating that activation vectors show sig-
nificant potential for further exploration.
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LIMITATIONS

This study examines the application of Iterative Vectors in the context of one-shot examples as
a compromise between inference time and in-context information. Although applying IVs to zero-
shot inference would be more efficient, a computational sequence of insufficient length might hinder
the model’s ability to effectively solve the given task. For additional discussion, please refer to
Appendix E.

We have opted for classification tasks wherein a single output token is sufficient to distinguish be-
tween the classes. The development and application of activation vectors in more complex tasks,
as well as in generative tasks, represent areas for future investigation. Nevertheless, it is worth not-
ing that the concept of IVs and the associated evaluation protocol can potentially be expanded to
encompass these more advanced applications.

REPRODUCIBILITY STATEMENT

We have provided a comprehensive set of pseudocode in Appendix A, which is crucial for imple-
menting our method. The datasets used are detailed in Appendix B.

Furthermore, we plan to release the complete code repository necessary for reproducing all of our
experiments to promote transparency and facilitate future research endeavors.
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A PSEUDOCODE

We first define three utility functions used for the extraction and application of IVs, as indicated
in Algorithm 1. Subsequently, we outline the procedures for IV extraction in Algorithm 2 and
evaluation in Algorithm 3.

Regarding our hyperparameters, please refer to the extraction shot k, batch size b, and strength α1, as
specified in Algorithm 2. Additionally, consult the inference strength, denoted as α2, in Algorithm 3.

B DATASETS

A full list of all datasets utilized in this research, along with their corresponding access labels, is
detailed in Table 5. The datasets are obtained from HuggingFace (Lhoest et al., 2021).

AG News (Zhang et al., 2015) is a subdataset of AG’s corpus of news articles constructed by assem-
bling titles and description fields of articles from the 4 largest classes (“World”, “Sports”, “Busi-
ness”, “Sci/Tech”) of AG’s Corpus.

TweetEval (Barbieri et al., 2020) introduces an evaluation framework consisting of a series of
Twitter-specific classification tasks. We selected all single-token classification tasks from the
dataset.
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Algorithm 1 Episodic Functions
1: function EXTRACT(sequence) ▷ Extracts activations from the LM
2: v ← ∅
3: run LM(sequence) with ▷ Hook into the LM with the following operations
4: for each layer in LM do ▷
5: p← the position of the input-output separator after the query
6: v ← v ∪ {Attn[p]} ▷ Store the activation of each attention layer
7: end for
8: end run
9: return v

10: end function
11: function APPLY(sequence, V, α) ▷ Apply IV to LM inference process
12: run logits← LM(sequence) with
13: for each layer in LM do
14: for each support sample in sequence do
15: p← the position of the input-output separator after the sample
16: c← the class of the sample
17: Attn[p]← Attn[p] + α× V[c] ▷ Edit the separators in the support sequence...
18: end for
19: p← the position of the input-output separator after the query
20: Attn[p]← Attn[p] + α× V[QUERY] ▷ ...as well as the query
21: end for
22: end run
23: return logits
24: end function
25: function APPLYANDEXTRACT(sequence, V, α) ▷ Apply the IV during extraction
26: v ← ∅
27: run LM(sequence) with
28: for each layer in LM do
29: if V ̸= ∅ then ▷ The first batch does not have V for editing
30: for each support sample in sequence do
31: p← the position of the input-output separator after the sample
32: c← the class of the sample
33: Attn[p]← Attn[p] + α× V[c] ▷ Edit (support)
34: end for
35: p← the position of the input-output separator after the query
36: Attn[p]← Attn[p] + α× V[QUERY] ▷ Edit (query)
37: end if
38: p← the position of the input-output separator after the query
39: v ← v ∪ {Attn[p]} ▷ Extract and append to list
40: end for
41: end run
42: return v
43: end function

The Rotten Tomatoes dataset (Pang & Lee, 2005) is a collection of movie reviews and ratings from
the Rotten Tomatoes website, often used for sentiment analysis and natural language processing
tasks.

The SST5 dataset, derived from the Stanford Sentiment Treebank (Socher et al., 2013), is a collec-
tion of movie reviews annotated with fine-grained sentiment labels, offering a five-class sentiment
classification task ranging from very negative to very positive.

Text Retrieval Conference Question Answering (TrecQA) (Wang et al., 2007) is a dataset created
from the TREC-8 (1999) to TREC-13 (2004) Question Answering tracks.

Our few-shot evaluation methodology employs episodic sampling to regulate the duration of both
extraction and inference processes, rather than relying solely on the absolute number of samples.
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Algorithm 2 Extraction
Require: extraction shot: k, extraction batch size: b, extraction strength: α1

Ensure: extracted Iterative Vector: V
1: V← ∅ ▷ Initialize the variable to store the IV
2: ivs← ∅ ▷ An empty list to store IV for each episode
3: for the i-th episode do
4: support, query← RANDOMEPISODE(k) ▷ Sample a k-shot episode
5: order, support← SHUFFLE(support) ▷ Shuffle and remember the classes
6: sq seq← VERBALIZE(support ⊕ query) ▷ Convert to few-shot prompt
7: q seq← VERBALIZE(query) ▷ Convert to zero-shot prompt
8: sq vec← APPLYANDEXTRACT(sq seq, V, α1)
9: q vec← EXTRACT(q seq)

10: for each class of the task do
11: p← the position(s) where order is equal to class ▷ Collect by each class
12: v[class]← MEAN(sq vec[p] − q vec) ▷ Average over shots
13: end for
14: v[QUERY]← sq vec[QUERY] − q vec ▷ Collect the query as well
15: ivs← ivs ∪ {v} ▷ Append the current episode’s IV to the list
16: if i mod b = 0 then ▷ Check if the current episode is a multiple of batch size
17: V← MEAN(ivs) ▷ Update the IV to apply as the average over episodes
18: end if
19: end for

Algorithm 3 Evaluation
Require: evaluation shot k′, extracted Iterative Vector: V, inference strength: α2

Ensure: classification labels: results
1: results← ∅ ▷ An empty list to store results for each episode
2: for the i-th episode do
3: support, query← RANDOMEPISODE(k′) ▷ Sample an episode, typically with k′ = 1
4: support← SHUFFLE(support) ▷ Shuffle to avoid patterned few-shot sequence
5: sq seq← VERBALIZE(support ⊕ query) ▷ Convert to prompt
6: logits← APPLY(sq seq, V, α2) ▷ Run the LM with editing
7: results← results ∪ {ARGMAX(logits[labels])} ▷ Calculate the classification result
8: end for

Consequently, not all available samples are utilized during the experimental procedures. This aspect
underscores an additional dimension of efficiency inherent in activation vectors.

C ADDITIONAL RESULTS

We present the results of our main experiment on the other two metrics, namely micro-F1 and
weighted-F1, derived from our main experiment, in Table 6 and Table 7, respectively.

According to these evaluation criteria, IV outperforms both FV and TV in the majority of tasks,
consistently achieving a higher average score. The only exception occurs in the GPT-J-6B and
micro-F1 setting (Table 6), where FV demonstrates superior performance. We hypothesize that this
result indicates a bias of FV towards the majority classes in this specific model. This bias leads to an
increased micro-F1 score; however, it causes the macro-F1 score to drop below the clean baseline.

An additional experiment was conducted utilizing the Llama-2-70b model. Due to our computa-
tional budget constraints, it was not feasible to complete all tasks with a model of this scale. There-
fore, we opted to conduct a multi-shot experiment, as described in Section 4.2 (Table 3), to more
effectively showcase the efficacy of IV. The results are presented in Table 8.
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Name Abbr. Used Huggingface Label
Abortion abor. tweet eval/stance abortion
AG News agnews ag news
Atheism athe. tweet eval/stance atheism
Climate clim. tweet eval/stance climate
Emoji - tweet eval/emoji
Emotion emot. tweet eval/emotion
Feminist femi. tweet eval/stance feminist
Hate hate tweet eval/hate
Hillary hill. tweet eval/stance hillary
Irony irony tweet eval/irony
Offensive offe. tweet eval/offensive
Rotten Tomatoes - rotten tomatoes
Sentiment sent. tweet eval/sentiment
SST 5 sst5 SetFit/sst5
TREC trec trec

Table 5: The datasets and tasks employed, along with their corresponding abbreviations used in the
result tables, and their respective labels as hosted on Hugging Face.

Model Task abort. agnews athei. clima. emoti. femin. hate hilla. irony offen. senti. sst5 trec Avg.

gpt-j-6b

Clean 39.17 57.97 30.49 30.92 31.91 37.70 49.39 40.33 59.86 63.22 38.73 32.62 68.23 44.66
FV 51.93 55.39 45.81 24.89 29.62 54.20 45.48 58.97 57.30 58.25 41.77 37.37 69.70 48.51
TV 51.52 65.86 23.72 32.84 32.85 37.64 49.74 37.89 48.32 60.05 40.23 35.60 64.75 44.69
IV (Ours) 60.02 61.30 44.59 20.49 37.36 49.05 48.32 55.29 56.30 46.94 34.48 40.08 67.32 47.81

llama-2-7b

Clean 28.69 63.40 24.90 34.88 57.31 30.25 53.64 30.05 62.22 53.67 40.02 43.08 77.33 46.11
FV 30.25 69.56 18.50 25.49 62.91 36.07 57.16 35.29 63.83 63.95 46.44 45.22 75.54 48.48
TV 29.31 72.97 24.50 62.14 62.52 30.47 50.09 30.14 52.86 53.53 41.07 43.28 77.10 48.46
IV (Ours) 35.88 72.45 39.17 58.46 58.96 40.03 58.46 48.83 53.01 63.59 36.25 46.67 76.83 52.97

llama-3.1-8b

Clean 39.18 80.64 18.14 21.26 74.06 47.17 53.66 48.14 53.96 60.12 39.01 45.25 69.69 50.02
FV 41.93 84.31 21.15 20.47 74.35 51.76 55.45 44.08 56.06 69.89 48.32 42.43 68.20 52.18
TV 39.07 81.12 18.55 20.21 74.47 40.21 53.47 50.33 53.67 60.35 39.13 43.04 69.62 49.48
IV (Ours) 44.25 87.30 36.33 22.33 77.70 56.57 58.84 56.07 52.23 69.20 42.83 48.85 70.24 55.60

llama-2-13b

Clean 52.57 77.96 42.78 20.36 65.42 55.94 54.00 56.83 55.19 63.56 41.41 44.44 78.56 54.54
FV 53.16 78.81 48.92 19.57 69.99 64.96 58.94 62.25 52.32 70.70 47.87 49.19 76.58 57.94
TV 51.34 78.07 43.22 49.38 67.27 47.60 53.22 56.05 55.05 62.82 39.70 43.86 76.16 55.67
IV (Ours) 55.67 80.33 46.74 65.56 71.03 58.84 58.67 63.13 66.96 73.80 36.74 47.90 77.47 61.76

Table 6: Main experiment results with micro-F1 as the metric. “Clean” denotes a standard one-shot
ICL result.

D COMPARISON OF METHODOLOGIES

We will begin with an introduction to the motivation and functioning of FV and TV. Following this,
we will offer comprehensive comparisons from various perspectives.

Function Vectors. Function Vectors (Todd et al., 2023) are inspired by the observation that in-
corporating activations extracted from few-shot tasks on the last token at specific layers can prompt
an LM to execute a task when applied to an unseen zero-shot prompt. To distill a more effective
hidden-state representation, the researchers limit their investigation to attention heads. This decision
is based on the heuristic that attention heads are the components used by transformers to transfer
information across different token positions. The researchers aim to identify attention heads that
have a causal influence on predicting the desired label for a given task. The method for calculating
this causal effect is outlined as follows:

1. Compute the average activation ātℓj of each attention head j at layer ℓ over task t.

2. Feed the ICL prompt p̃ti with shuffled labels into model f , and calculate the probability
assigned to the target label f(p̃ti).

3. Use one ātℓj to replace the activation of its corresponding attention head, conducting a
separate run for each instance. Subsequently, compute the edited probability for the target
label again as f(p̃ti|aℓj = ātℓj).
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Model Task abort. agnews athei. clima. emoti. femin. hate hilla. irony offen. senti. sst5 trec Avg.

gpt-j-6b

Clean 42.61 53.69 34.82 34.83 22.48 40.34 49.46 42.14 58.64 62.47 33.50 31.82 68.12 44.22
FV 52.83 51.62 50.11 31.38 17.29 52.93 35.96 47.47 57.23 59.41 39.82 35.19 69.86 46.24
TV 49.48 61.07 26.01 34.19 22.74 40.30 49.79 39.49 48.21 60.68 34.78 35.52 65.18 43.65
IV (Ours) 56.37 56.16 48.98 15.48 33.59 50.39 46.26 52.34 56.49 48.88 32.98 40.08 68.38 46.64

llama-2-7b

Clean 30.58 62.03 27.50 38.72 57.45 31.75 53.83 27.79 61.15 56.07 35.33 34.46 77.58 45.71
FV 31.40 67.69 16.00 25.62 62.86 38.41 54.68 33.09 62.93 63.85 35.83 36.79 77.29 46.65
TV 31.43 72.23 27.39 60.09 62.70 32.06 50.00 27.66 52.57 55.85 39.36 35.39 77.27 48.00
IV (Ours) 38.90 69.75 44.22 59.10 59.02 41.32 57.46 50.01 51.86 65.18 27.70 36.94 78.22 52.28

llama-3.1-8b

Clean 40.92 79.57 15.32 13.97 73.77 47.66 53.04 48.62 50.70 62.16 36.04 40.44 70.66 48.68
FV 43.03 83.91 20.32 10.22 74.01 50.30 55.02 43.71 54.11 67.33 44.67 38.50 70.74 50.45
TV 41.06 80.17 16.45 9.35 73.86 41.34 53.33 51.20 50.23 62.30 36.09 39.41 70.65 48.11
IV (Ours) 44.98 87.18 39.73 11.41 76.67 53.66 58.70 54.28 48.05 66.34 38.88 44.27 72.86 53.62

llama-2-13b

Clean 51.80 76.36 45.57 19.77 65.73 53.00 53.46 55.25 54.99 65.44 33.47 41.63 79.10 53.51
FV 52.92 77.47 49.87 22.99 70.76 60.23 53.47 60.28 49.71 68.68 41.76 46.51 78.98 56.43
TV 51.32 76.43 45.95 51.92 67.44 46.91 51.91 54.67 54.63 64.78 32.12 41.10 77.07 55.10
IV (Ours) 53.93 79.17 48.74 63.85 71.40 59.55 58.32 58.96 67.31 69.96 35.51 46.82 79.27 60.98

Table 7: Main experiment results with weighted-F1 as the metric. “Clean” denotes a standard one-
shot ICL result.

Dataset 1-shot 2-shot 3-shot 4-shot
Clean +IV Diff Clean +IV Diff Clean +IV Diff Clean +IV Diff

AG News 86.96 88.17 +1.21 87.99 89.04 +1.05 87.87 88.84 +0.97 89.01 89.32 +0.31
Rotten Tomatoes 82.24 91.52 +9.28 91.29 92.38 +1.09 92.39 93.13 +0.74 92.50 92.69 +0.19

Table 8: Multi-shot clean and IV results using the Llama-2-70b model. The displayed metric is
macro-F1. Conducted on 3 Nvidia RTX A6000 GPUs.

4. The causal indirect effect on task t and the shuffled prompt p̃ti is calculated as

CIE(aℓj | p̃ti) = f(p̃ti | aℓj := ātℓj)− f(p̃ti). (25)

5. The average indirect effect is the average of the CIE across all tasks and prompts:

AIE(aℓj) =
1

|T |
∑
t∈T

1

|P̃t|

∑
p̃t
i∈P̃t

CIE(aℓj | p̃ti). (26)

6. Gather the attention heads with highest AIE over all layers to serve as the activation source,
forming set A.

The researchers represent the contribution ofA as a single vector by taking the sum of their average
outputs, over a task, which is called a Function Vector for task t:

vt =
∑

alj∈A
ātlj . (27)

To utilize FV, add it to the activation of the final token at a designated layer as the model processes
a prompt.

One significant issue with FV is that it necessitates an extensive search through all attention heads
of every layer, posing considerable scaling challenges as the model size grows. Theoretically, aside
from the extraction time attributed to the extraction shot k, the extraction time of FV increases
with an additional complexity of O(E × L × H). Here, E represents the number of extraction
episodes, L denotes the layer count of the LM, and H is the number of attention heads in each
layer. For example, GPT-J-6B has a total of 448 heads, while Llama-2-13B has 1600. This increase
alone more than triples the time required to extract the FVs, not to mention the slower computation
resulting from a longer prompt and a larger model size.

In contrast, Task Vector and our Iterative Vector do not encounter this issue and scale smoothly with
larger models. During our experiments, we had to restrict the extraction shot k for FV to maintain
practical search times and ensure fairness across all evaluated methods, as mentioned in Section 4.

Task Vectors. Task Vectors (Hendel et al., 2023) offer a mechanistic perspective on ICL. This
approach conceptualizes ICL as a two-step process: first, a parameter vector θ is computed from the
training sample, which is subsequently used to apply the “rule” defined by the vector to the query x.
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There are many possible realizations of the above framework. The researchers presume that a simple
way for a transformer to achieve this is for the initial L layers to compute θ. The remaining layers
would take θ and x as inputs to generate an output.

This provides a straightforward method to extract the language model’s knowledge of a task and sub-
sequently apply it. The process involves performing a forward pass of the transformer and utilizing
the previously extracted θ to patch the L-th layer of the final token.

However, the boundary that separates this artificially divided two-stage process in the LM remains
unclear and needs to be selected through empirical searching.

Comparison with Iterative Vectors. The theoretical attributes of our methodology, in comparison
to the baseline models, are as follows:

• FV and TV utilize their experiments to validate their respective hypotheses, rather than
basing their methods on theoretical foundations.

• Consequently, their editing processes are heuristic and rely on intuition.
• Our proposed method is grounded in the meta-gradients derived from the demonstrations

through the computation of the attention modules within the model.
• This approach not only identifies where to make edits (the attention layers) but also speci-

fies how to perform the edits (by performing meta-gradient updates via adding to the acti-
vations).

The extraction and editing process differs considerably for each method, as illustrated below:

• FV examines all attention heads and aggregates the activations of the top-performing ones
to obtain the vectors, which is highly time-consuming.

• TV simply identifies the optimal layer for the extraction and application of vectors.
• IV processes the activations from different classes separately, conducting aggregation and

application based on this separation. We also propose iterative updates and batched extrac-
tion for meta-gradients, which have been proven to significantly enhance performance.

The hyperparameters specific to each method (instead of the evaluation framework) are as follows:

• FV: the count of top heads |A| and the layer to apply the vector.
• TV: the layer to apply the vector.
• IV: extraction strength α1, inference strength α2, and iterative batch size b.

Please refer to Appendix F for a more detailed discussion on the hyperparameters of IV.

As a side note, we can see from the comparisons above that there is considerable flexibility in the
design of activation vectors. We hope that our efforts will serve as a catalyst for further exploration
and advancement in this line of inquiry, ultimately unlocking the full potential of activation vectors.

E CONCERNING ZERO-SHOT SEQUENCES

In both the FV and TV papers (Todd et al., 2023; Hendel et al., 2023), the vectors are utilized on
zero-shot sequences. This aims to demonstrate the effectiveness of activation vectors in guiding
the model as expected. The results confirm this: zero-shot sequences with activation vectors differ
significantly from clean zero-shot runs. However, there remains a noticeable gap between zero-shot
applications and standard few-shot ICL performance, which appears difficult to bridge. For instance,
in Figure 4 of the TV paper, all FV runs fall behind the few-shot runs across all models, despite the
tasks being simple synthetic ones.

Previous research has suggested reasons that may account for this disparity. Feng et al. (2023)
provide fundamental impossibility results, indicating that language models cannot solve increasingly
complex tasks in a single generation step. If we view the demonstration sequence as an extension
of the inference steps generated by the LM—since the model treats all previous tokens equally,
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whether generated or provided—then without demonstrations, the LM’s capabilities are significantly
impaired. A zero-shot attempt might not provide adequate computation for the language model to
effectively address a given task. Consequently, it might be overly optimistic to expect activation
vectors to circumvent all necessary computations.

Furthermore, Min et al. (2022b) demonstrated the importance of informing the LM about the label
space of the current task to enhance ICL performance. In a zero-shot scenario, the model might
struggle to focus its classification ability on the desired label, instead distributing it across the entire
vocabulary space, as noted by Holtzman et al. (2021). This adds an extra burden for the model to
extract meta-gradients and adjust accordingly.

Our early experiments on real-world tasks also confirmed that activation vectors do not perform well
in a zero-shot setting. While there are some improvements, they remain inferior compared to the
results achieved with even a one-shot approach. For synthetic experiments, these results may be
adequate; however, to make activation vectors effective for practical applications, we must achieve
better outcomes.

Consequently, we have decided to focus on enhancing few-shot performance rather than zero-shot.
Table 2 of the FV paper offers a compelling insight: FV is applied not only to zero-shot sequences
but also to “uninformative” sequences, which are essentially few-shot sequences with shuffled labels.
These shuffled sequences nearly double the performance compared to their zero-shot counterparts
on synthetic tasks, prompting us to begin our investigation from this point. However, since using
a shuffled sequence is not meaningful for our purposes, we employ a correct one-shot sequence
instead. The advantages of this approach include a basic guarantee of performance, along with the
presence of input-output separators in the support samples, which further facilitate the application
of the vectors.

Nonetheless, we hope our research will enhance future studies on activation vectors, enabling them
to more effectively address the zero-shot scenario. This would represent a significant, albeit chal-
lenging, advancement.

F HYPERPARAMETERS OF IV

In this paper, we introduce four hyperparameters: the extraction shot k, the extraction batch size b,
the extraction strength α1, and the inference strength α2. These notations have been used consis-
tently throughout the paper, including in formulas, pseudocode, and explanations. We now provide
a detailed discussion of each hyperparameter and its function, followed by a guide on how to tune
them effectively.

The extraction shot k controls the number of samples in a sequence during the extraction pro-
cess. This originates from the definition of an n-way k-shot episode (Eq. 10). During extraction,
a longer support sequence may enhance the model’s understanding of the task, thereby produc-
ing higher-quality meta-gradients. However, since adding more samples does not always improve
performance, and a larger k increases extraction time, we propose optimizing this hyperparameter
through a search process.

The extraction batch size b serves to replicate a typical batch size used during standard
training. As implemented in Algorithm 2, the preliminary vectors extracted are averaged every
b episodes to form the Iterative Vectors, which are subsequently incorporated into the extraction
process. Since we are extracting meta-gradients to be applied to the model’s hidden states, we pro-
pose utilizing them during the extraction process rather than waiting for its completion. Iterative
refinement enables each layer in the language model to be guided by meta-gradients, thereby influ-
encing subsequent layers to generate enhanced representations. This process aids in contrasting the
zero-shot sequence and provides improved meta-gradients.

In Section 4.4, we analyzed the impact of varying the parameter b on performance, as well as its
influence on other parameters. We found that an appropriate batch size can significantly enhance
performance.
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The extraction strength α1 denotes the magnitude with which meta-gradients are applied dur-
ing iterative extraction. Similarly, the inference strength α2 represents the magnitude with which
meta-gradients are applied during evaluation. These two parameters share the same notation because
they fundamentally represent the same concept, albeit applied in different phases.

In the application of vectors, all methods evaluated in this paper utilize vector addition. However,
the meta-gradients may not scale properly with the original parameters. Therefore, we propose
scaling them before incorporating them into the hidden states, a consideration not derived from nor
addressed in previous methods. During the iterative extraction phase, the scaling constant is α1,
whereas during evaluation, the constant is α2.

We differentiate the strength into two parameters because meta-gradients are less stable during the
iterative process. This instability can accumulate across layers and episodes, so we aim to apply a
lower strength during extraction, if necessary, to mitigate this issue.

Guide to tuning the hyperparameters. We recommend a higher value of k for tasks in which the
LM demonstrates greater proficiency. Exploring the range of k ∈ {1, 2, 3, 4} is both straightforward
and effective, as demonstrated in our experiments, assuming sufficient time is available.

Concerning batch size, we have demonstrated that it should neither be too large nor too small. We
recommend starting with b = 5 or b = 10. Methods for tuning typical batch sizes may also be
considered.

Regarding the strength parameters α1 and α2, we performed a comprehensive grid search within the
range [0.1, 0.9]. Future research is encouraged to employ more sophisticated search strategies, as
these parameters often cluster in a low-performance consecutive area (see Figure 3), which can be
pruned if properly identified.
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