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ABSTRACT

Sequential decision-making in high-dimensional continuous action spaces, partic-
ularly in stochastic environments, faces significant computational challenges. We
explore this challenge in the traditional offline RL setting, where an agent must
learn how to make decisions based on data collected through a stochastic behav-
ior policy. We present Latent Macro Action Planner (L-MAP), which addresses
this challenge by learning a set of temporally extended macro-actions through
a state-conditional Vector Quantized Variational Autoencoder (VQ-VAE), effec-
tively reducing action dimensionality. L-MAP employs a (separate) learned prior
model that acts as a latent transition model and allows efficient sampling of plau-
sible actions. During planning, our approach accounts for stochasticity in both the
environment and the behavior policy by using Monte Carlo tree search (MCTS).
In offline RL settings, including stochastic continuous control tasks, L-MAP ef-
ficiently searches over discrete latent actions to yield high expected returns. Em-
pirical results demonstrate that L-MAP maintains low decision latency despite
increased action dimensionality. Notably, across tasks ranging from continuous
control with inherently stochastic dynamics to high-dimensional robotic hand ma-
nipulation, L-MAP significantly outperforms existing model-based methods and
performs on-par with strong model-free actor-critic baselines, highlighting the ef-
fectiveness of the proposed approach in planning in complex and stochastic envi-
ronments with high-dimensional action spaces.

1 INTRODUCTION

Planning-based reinforcement learning (RL) has achieved remarkable success in domains with dis-
crete, low-dimensional action spaces, such as board games and video games (Silver et al., 2017;
Schrittwieser et al., 2020; Ye et al., 2021), and continuous control tasks (Hubert et al., 2021; Schrit-
twieser et al., 2021). However, extending these methods to high-dimensional continuous action
spaces, especially in stochastic environments, presents significant challenges. Many environments
are inherently stochastic or appear stochastic to agents with limited capacity to model complex
dynamics. For example, in autonomous driving, the behavior of other vehicles and pedestrians in-
troduces substantial uncertainty that must be processed in real time (Carvalho et al., 2014). Recent
planning-based offline RL approaches like Trajectory Transformer (Janner et al., 2021) face signifi-
cant latency issues when trying to model and respond to these stochastic behaviors (Li et al., 2023).
Similarly, in robotic manipulation, sensor noise introduces randomness that requires fast adaptive
responses (Yang et al., 2023). In such cases, deterministic models often fail to capture the necessary
randomness and intricacies (Antonoglou et al., 2022). Moreover, the vast and uncountable nature of
continuous action spaces makes traditional planning approaches inefficient when operating directly
in the raw action space (Jiang et al., 2023). These inefficiencies are further exacerbated in stochastic
settings, leading to “large and long” planning problems where agents must manage numerous con-
tinuous variables over extended time horizons. This results in the curse of dimensionality and the
curse of history, significantly hindering effective decision-making (Hubert et al., 2021).

In this paper, we posit that planning in such challenging settings could greatly benefit from temporal
abstractions, i.e., representations of multi-step primitive behaviors such as macro actions (Dietterich,
2000; Sutton et al., 1999; Barto & Mahadevan, 2003). By leveraging these abstractions, planners
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Figure 1: (a) Overview of planning over the pre-constructed search space. (b)As the number of
MCTS iterations increases (10, 50, 100 from left to right), using a pre-constructed search space with
MCTS achieves better performance with lower decision latency.

can navigate high-dimensional continuous action spaces more efficiently, potentially mitigating the
curse of dimensionality and reducing decision-making latency in stochastic environments. This pa-
per considers the standard setting where an agent can access a set of trajectories (i.e., a sequence
of state, action, and reward traces) collected through a fixed behavior policy. Given this setting, we
propose the Latent Macro Action Planner (L-MAP), which constructs a lower dimensional repre-
sentation of temporally extended primitive actions by using a state-conditioned Vector Quantized
Variational AutoEncoder (VQ-VAE) (van den Oord et al., 2017). The encoder integrates the current
state and macro-action to generate a discrete latent code. Subsequently, we employ a Transformer to
autoregressively model the distribution of these latent codes , conditioned on the current state (and
the behavior policy). This Transformer facilitates a two-step inference process: initially, given a
state, it enables the sampling of probable latent macro-actions under the behavior policy, effectively
acting as a prior policy. Subsequently, conditioned on both the state and the sampled macro-action,
it generates subsequent latent codes that encapsulate information about expected returns and poten-
tial next states. This dual functionality of the Transformer enables efficient exploration of promising
action trajectories while forming a compact representation of the plausible trajectories during plan-
ning.

As shown in Fig.1a, leveraging these models, we build a latent search space that serves as a struc-
tured initialization for planning, encapsulating likely trajectories based on the learned environment
dynamics . To address stochasticity and optimize decision-making, we integrate Monte Carlo Tree
Search (MCTS) with progressive widening to efficiently navigate this latent space. Initially, the
search concentrates on the prebuilt latent space, facilitating rapid decision-making grounded in
learned abstractions. If additional computation time becomes available, we progressively widen
the search tree to extend the search beyond the prebuilt latent space incrementally. This dynamic ex-
pansion strategy enables our method to balance rapid planning using learned abstractions with more
exhaustive exploration when computational resources permit. Upon selecting a latent macro-action,
we operate in a polling control mode (He et al., 2011; Gabor et al., 2019) wherein MCTS returns
only the first primitive action of the recommended macro-action. This approach allows for recovery
from locally suboptimal decisions by performing planning at each time step.

We evaluate L-MAP extensively in the offline RL setting across a diverse range of tasks. In stochas-
tic MuJoCo environments (Rigter et al., 2023), L-MAP consistently outperforms both model-based
baselines like Trajectory Transformer (TT) (Janner et al., 2021) and Trajectory Autoencoding Plan-
ner (TAP) (Jiang et al., 2023), as well as model-free methods such as Conservative Q-Learning
(CQL) (Kumar et al., 2020) and Implicit Q-Learning (IQL) (Kostrikov et al., 2022). This demon-
strates L-MAP’s robust capability in handling stochastic dynamics. For deterministic MuJoCo tasks,
L-MAP shows comparable or superior performance to these baselines, highlighting that our planning
approach effectively accounts for stochasticity in the behavior policy, leading to competitive perfor-
mance even in deterministic environments. Notably, L-MAP scales effectively to high-dimensional
tasks, as evidenced by its strong performance on the challenging Adroit hand manipulation tasks.
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Furthermore, L-MAP’s use of temporal abstraction enables lower latency decision-making com-
pared to methods like TT. These results underscore L-MAP’s versatility and effectiveness across
various types of control problems, from stochastic to deterministic environments, and from low to
high-dimensional action spaces.

2 PRELIMINARIES

We consider a continuous state and action space Markov Decision Process (MDP) defined by
{S,A, P, r}, where S ⊆ Rn is the state space, A ⊆ Rl is the action space, P : S × A → ∆(S) is
the transition function, and r : S × A → R is the reward function. To manage the complexity of
these continuous spaces, we introduce macro actions, which are fixed-length sequences of primitive
actions. A macro action m ∈ M is defined as m = ⟨at, . . . , at+L−1⟩, where each ai ∈ A and L is
the length of the macro action. Our goal is to compute an optimal macro-level policy π∗ : S → Pm

that maximizes the expected discounted return Eπ [R(s, π(s))].

Trajectory Representation: Consider a trajectory τ of length T = κ · L (κ ∈ N+),
which is composed of a sequence of states st ∈ S , fixed-size macro actions mt ∈ M,
and corresponding return-to-go estimates Rt =

∑T
i=t γ

i−tri, formally represented as τ =
(R1, s1,m1, RL+1, sL+1,mL+1, . . . , R(κ−1)L+1, s(κ−1)L+1,m(κ−1)L+1).

3 METHOD

Planning in continuous action space is hard and computationally challenging, and full enumera-
tion of all possible actions is infeasible. Discretizing the action space is one way to address this
challenge, but in practice, enumerating a large set of discrete actions can also be challenging, partic-
ularly for online approaches. Sample-based methods offer an efficient approach for handling large
and complex domains. These methods sample a subset of actions rather than exhaustively enu-
merating all possibilities, reducing computational costs while computing optimal policies or value
functions (Hubert et al., 2021). Building on these insights, we propose the Latent Macro Action
Planner (L-MAP), which learns temporal abstractions in the form of macro-actions and plans using
a latent transition model that serves as both a prior policy and a transition model.

3.1 DISCRETIZING STATE-MACRO ACTION SEQUENCES WITH VQ-VAE

A key insight from prior work is that a learned state-conditioned discretization can be used to con-
struct a discretization scheme with relatively few discrete actions while maintaining high granu-
larity (Jiang et al., 2023; Luo et al., 2023). As shown in Fig.2, Our approach leverages a learned
state-conditioned discretization to enable planning in a lower-dimensional discrete space. Specifi-
cally, our encoder processes sequences of state and macro-actions as input. For example, each token
is defined as xt = (Rt, st,mt) and its subsequent token as xt+L = (Rt+L, st+L,mt+L). The
encoder function is defined as:

fenc (xt = (Rt, st,mt), xt+L = (Rt+L, st+L,mt+L)) = (zt, zt+L), (1)

where the transition chunk size is two, resulting in two latent codes assigned per chunk. To elaborate,
the encoder first concatenates the input return-to-go estimates, states, and macro actions into two
transition vectors. It then applies a sequence model, in our case, a causal Transformer, producing
two latent feature vectors for each chunk of transitions.

In stochastic environments, executing the same macro-action m from state s can yield different
returns R, introducing variability that complicates the vector quantization in VQ-VAE, i.e., note that
using the full token xt = (Rt, st,mt) directly can result in different latent codes z for identical
(st,mt) pairs solely due to differences in Rt. This challenge can cause the latent space to become
fragmented and reflect return variability more than the underlying structure of available actions.
Consequently, the agent might overestimate the returns during decision-making by emphasizing
latent codes associated with higher observed returns, neglecting the true distribution of the primitive
actions and their expected returns.

To address this issue, we aim to focus the vector quantization process primarily on representations
of the state s and macro-actions m, while still preserving the ability to reconstruct the return R. A
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Figure 2: An overview of our VQ-VAE model that discretizes state-macro action sequences

simple approach to achieve this would be to mask the return signal R in the input (i.e., only include
s and m) and train a model to reconstruct the full token (i.e., R, s and m). We tested this approach
in initial experiments but received poor convergence, indicating that the model was not effectively
capturing the necessary information to reconstruct x.

To tackle this challenge, our approach involves creating two versions of each token xt: the full
input xt = (Rt, st,mt) and a masked version xmask

t = (mask, st,mt), where Rt is masked out. The
encoder processes both xt and xmask

t to generate two embeddings, ze(xt) and ze(x
mask
t ), respectively.

We use ze(x
mask
t ) for vector quantization to obtain the quantized latent code zq(x

mask
t ). To ensure

that the codebook embeddings incorporate information from the full input, including Rt, we update
the embedding et of the quantized latent code towards ze(xt). We modify the loss function by
introducing an additional term that encourages the embedding from the masked input to be close
to that from the full input. Specifically, we used the embedding from the full input ze(x) as the
learning target for the embedding of the masked input ze(xmask). The modified loss function is:

L = log p(x | zq(xmask))+ ∥sg[ze(x)]− e∥22 +β∥ze(xmask)− sg[e]∥22 + ∥ze(xmask)− ze(x)∥22 (2)

where sg denotes the stopgradient operator and the additional term
∥∥ze(xmask)− ze(x)

∥∥2
2

acts as a
regularizer that aligns the embeddings of the masked and full inputs.

Incorporating macro-actions within each token is critical, as it enables the model to capture tempo-
ral dependencies across multiple time steps without the need for downsampling. This approach is
particularly important in stochastic settings, where downsampling techniques that aggregate states
(as in Jiang et al. (2023)) can obscure the stochasticity imposed by the environment’s dynamics. The
decoder takes the initial state and latent codes as inputs, and outputs the reconstructed trajectories:

fdec (st, zt, zt+L) = (x̂t = (R̂t, ŝt, m̂t), x̂t+L = (R̂t+L, ŝt+L, m̂t+L)). (3)

The decoding process can be seen as the inverse of the encoding process, except that the initial state
st is merged into the embeddings of the codes with a linear projection before decoding.

Latent Transition Model: Following the discretization process, the subsequent step involves mod-
eling sequences of latent codes in an autoregressive manner using a causal Transformer. The Prior
Transformer is conditioned on the initial state st, achieved by adding the state feature to all token
embeddings. Primarily, it functions as a transition model in the latent space, enabling the sampling
of the next latent code zi+1 conditioned on the current code zi and state s. This transition, repre-
sented as T : S × Z → Z , implicitly captures the full R × S × M → R × S × M transition
in the original space, as each z encodes information about the return-to-go, state and macro-action.
Additionally, p(z | s) acts as a prior policy for efficient action sampling, allowing rapid selection
of probable macro-actions based on learned behaviors from the offline dataset. By operating in the
learned latent space, the model potentially reduces computational complexity compared to modeling
transitions in the original state-action space, especially for high-dimensional environments. The dis-
crete nature of the latent space allows for efficient sampling, which can be beneficial for downstream
tasks such as planning.
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3.2 PLANNING WITH A LATENT MACRO ACTION MODEL

Planning in high-dimensional environments using learned discrete representations introduces un-
certainties from multiple sources. First, the representation learning process introduces uncer-
tainty due to the non-injective mapping from the high-dimensional state-action space to a lower-
dimensional latent space. This can result in many-to-one correspondences, where multiple distinct
high-dimensional inputs map to the same latent representation, creating apparent stochasticity even
in deterministic environments. Second, the environment itself may be inherently stochastic.

We argue that taking expectations over latent transitions is beneficial in mitigating all these sources
of uncertainty, regardless of whether the environment is deterministic or stochastic. By considering
the expected outcomes over multiple latent transitions, we can average out the randomness intro-
duced by the non-injective mapping and inherent stochasticity, leading to more reliable planning
decisions. This insight applies broadly to planning methods that employ models with non-injective
mapping characteristics. Building on this insight, we employ Monte Carlo Tree Search (MCTS)
as our planning algorithm to mitigate the impact of stochasticity arising from non-injective map-
pings and potential environmental randomness. MCTS iteratively explores the latent space and
takes expectations over transitions, allowing for robust planning in the presence of uncertainty.

... ... ...

Dec

...

...

...
... ... ...

Figure 3: Pre-construction of the latent
search space by sampling and evaluating la-
tent macro-action codes, caching the top-
k candidates, and recursively expanding the
planning tree for efficient macro-level plan-
ning.

Pre-constructing the Latent Search Space Our ap-
proach leverages a learned latent transition model to
generate and evaluate macro actions for planning ef-
ficiently. Starting from an initial state s0, we sam-
ple M latent codes z, each representing a poten-
tial macro action. For each sampled latent code z,
we sample N subsequent latent codes z′ to simulate
possible future trajectories, capturing the outcomes
of these macro actions. We obtain the correspond-
ing state-action transitions and return estimates by
decoding these latent pairs (z, z′) conditioned on s.

To construct the planning tree efficiently, we cache
the initial state s0 along with the top-k latent codes
z (and their associated information) based on the de-
coded returns, where k = λ × M and λ ∈ (0, 1]
controls the expansion ratio of the tree. The cached
latent codes represent the most promising macro ac-
tions to consider from the initial state. The latent
codes z′ are then decoded to obtain a set of recon-
structed tokens, i.e., (R, s,m). For each of these
states s, we sample B latent codes z′′, representing
potential macro actions from s (note that B and M
are exogenously defined hyper-parameters).

This process is recursively applied, allowing us to
expand the planning tree while controlling its growth
through the parameter λ. By focusing on the most
promising macro actions at each state, we maintain
a compact and informative planning structure that efficiently explores the state-action space at a
macro level.

Selection. Starting from the cached tree structure, MCTS iteratively expands and evaluates nodes,
allowing for a more comprehensive exploration of the state-action space. For each state s in the
tree, MCTS selects one of the top-k cached latent codes z based on the Upper Confidence Bounds

for Trees (UCT) (Kocsis & Szepesvári, 2006): UCT(s, z) = Q(s, z) + c
√

log(N(s))
N(s,z) where Q(s, z)

represents the value of executing macro action z in state s (estimated through the decoded return-
to-go), N(s) denotes the number of times state s has been visited, N(s, z) denotes the number of
times macro actionz has been chosen in state s, and c is an exploration coefficient.

Progressively Widening the State Space for Search: Despite these powerful abstraction tech-
niques, the search space remains challenging due to the underlying high-dimensional nature of the
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Figure 4: Illustration of our MCTS process for macro-level planning. The algorithm iteratively
selects actions using the UCT policy, applies progressive widening to balance exploration and ex-
ploitation, performs parallel expansion of multiple macro actions and their potential outcomes, and
backpropagates estimated Q-values to efficiently explore and refine the planning tree.

original state space, residual stochastic characteristics of transitions in the abstracted space, and
the complexity of long-horizon planning scenarios. If we were to apply MCTS directly to this ab-
stracted space, we would encounter two main issues: inefficient utilization of our pre-built search
space, with the search potentially diverging prematurely into unexplored regions, and difficulty in
building sufficiently deep trees for high-quality long-term decision-making, particularly in areas of
high stochasticity or uncertainty (Couëtoux et al., 2011). Therefore, we use progressive widening
to extend MCTS to incrementally expand the search tree. It balances the exploration of new states
with the exploitation of already visited states based on two hyperparameters: α ∈ [0, 1] and ϵ ∈ R+.
Let |C(s, z)| denote the number of children for the state-action pair (s, z). The key idea is to al-
ternate between adding new child nodes and selecting among existing child nodes, depending on
the number of times a state-action pair (s, z) has been visited. A new state is added to the tree if
|C(s, z)| < ϵ ·N(s, z)α, where N(s, z) is the number of times the state-action pair has been visited.
The hyperparameter α controls the propensity to select among existing children, with α = 0 lead-
ing to always selecting among existing child and α = 1 leading to vanilla MCTS behavior (always
adding a new child). In this way, we could enhance our approach by efficiently utilizing the pre-built
search space, prioritizing the exploration of promising macro actions while allowing for incremen-
tal expansion of the search tree. This technique enables our method to make quick decisions in an
anytime manner, leveraging the cached information, and further refine the planning tree if additional
time is available.

Expansion. In our approach, the expansion phase differs from standard MCTS by performing par-
allel expansion of multiple nodes from a leaf node. From the leaf node, a set of B latent codes
{z(i)}Bi=1 is sampled, each representing a distinct macro action, drawn from a latent transition model
p(z | s) to ensure diverse action space coverage. For each sampled macro action z(i), N subsequent
latent codes {z′(i,j)}Nj=1 are sampled according to z′(i,j) ∼ p(z′ | z(i), s), for j = {1, . . . , N},
modeling potential outcomes and capturing the stochastic nature of macro actions. These latent
transitions are then decoded to obtain the resulting next states {s′(i,j)}Nj=1 for each macro action.
Finally, the search tree is expanded by adding all L child nodes {(s′(i,j), z′(i,j))}Nj=1 for each macro
action z(i) to the current leaf node s. This breadth-wise expansion enables simultaneous exploration
of multiple promising macro actions, enhancing the diversity and comprehensiveness of the search
and facilitating efficient exploration in complex environments.

Backpropagation. Following the expansion phase, where multiple macro actions are expanded
simultaneously, the backpropagation step updates the estimated Q-values based on the return-to-go
as shown in Fig.4.

4 EXPERIMENTS

The empirical evaluation of L-MAP consists of three sets of tasks from D4RL (Fu et al., 2020):
gym locomotion control, AntMaze, and Adroit. We compare L-MAP to a range of prior offline RL
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algorithms, including both model-free actor-critic methods (Kumar et al., 2020; Kostrikov et al.,
2022) and model-based approaches (Rigter et al., 2023; Jiang et al., 2023; Janner et al., 2021).
Our work is conceptually most related to the Trajectory Transformer (TT; Janner et al. (2021)) and
the Trajectory Autoencoding Planner (TAP; Jiang et al. (2023)), which are model-based planning
methods that predict and plan in continuous state and action spaces. These two baselines serve as
our main points of comparison for deterministic environments.

To demonstrate L-MAP’s ability to make performant decisions in stochastic environments, we com-
pare it with One Risk to Rule Them All (1R2R; Rigter et al. (2023)), a risk-averse model-based
algorithm designed for stochastic domains, and model-free actor-critic methods Conservative Q-
Learning (CQL; Kumar et al. (2020)) and Implicit Q-Learning (IQL; Kostrikov et al. (2022)). We
evaluate L-MAP on Stochastic MuJoCo tasks (Rigter et al., 2023), which serve as a proof of concept
in the stochastic continuous control domain.

We then test L-MAP on Adroit, which presents a challenge with its high state and action dimen-
sionality. Finally, we evaluate L-MAP on AntMaze, a sparse-reward continuous-control problem.
In this task, L-MAP achieves similar performance to TT, surpassing model-free methods. Through
these diverse evaluations, we aim to demonstrate L-MAP’s versatility and effectiveness across dif-
ferent types of control problems, including stochastic environments, high-dimensional spaces, and
sparse-reward scenarios. Additionally, we conduct an ablation study to analyze the impact of key
components in L-MAP; detailed results of this study can be found in Appendix A.

Hyperparameters As for the L-MAP-specific hyperparameters, we set our macro action length to
3. The planning horizon in the raw action space is set to 9 for gym locomotion tasks and 15 for
Adroit tasks. These horizons are either smaller or equal to those used in TT and TAP. Our choice of
parameters is to ensure a control rate of approximately 10 Hz for locomotion tasks. For each task,
we conduct experiments with 3 different training seeds, and each seed is evaluated for 20 episodes.

Stochastic Mujoco On the Stochastic MuJoCo tasks, with results presented in Table 1, L-MAP
consistently outperforms the model-based baselines, TAP and TT, across all datasets and en-
vironments, demonstrating its superior capacity to handle stochasticity in continuous control tasks.
Notably, L-MAP achieves the highest performance in multiple datasets for both the Hopper and
Walker2D environments. When compared to 1R2R, a risk-averse model-based algorithm specifi-
cally designed for stochastic domains, L-MAP shows competitive or superior results in most cases.
An exception is the Medium-Replay-High Hopper dataset, where 1R2R attains a higher score. This
suggests that while L-MAP exhibits robustness across a variety of stochastic settings, there are spe-
cific scenarios where risk-averse strategies like 1R2R may hold an advantage. Additionally, L-MAP
generally outperforms the model-free methods, CQL and IQL. However, CQL surpasses L-MAP in
the Medium-Expert-Mod Hopper dataset. It is worth noting that L-MAP is the only method among
all baselines that achieves performance comparable to CQL in this specific setting.

Table 1: Results for Stochastic MuJoCo.

Model-Based Model-Free
Dataset Type Env L-MAP TAP TT 1R2R CQL IQL
Medium-Expert-Mod Hopper 106.11 ± 2.16 40.86 ± 5.42 56.10 ± 3.33 52.19 ± 8.37 106.17 ± 2.16 60.61 ± 3.46
Medium-Expert-Mod Walker2D 93.43 ± 1.41 91.40 ± 1.42 80.93 ± 2.60 56.48 ± 7.51 91.44 ± 1.44 86.66 ± 1.84
Medium-Mod Hopper 55.07 ± 3.06 43.64 ± 2.25 44.49 ± 2.47 65.24 ± 3.31 49.92 ± 3.00 56.00 ± 3.60
Medium-Mod Walker2D 52.94 ± 1.57 44.46 ± 1.82 43.61 ± 2.15 65.16 ± 2.84 49.38 ± 2.02 48.82 ± 2.31
Medium-Replay-Mod Hopper 52.30 ± 2.65 38.10 ± 3.22 37.85 ± 1.19 22.82 ± 2.08 40.53 ± 1.52 49.12 ± 3.38
Medium-Replay-Mod Walker2D 51.44 ± 1.65 43.49 ± 2.27 27.43 ± 3.33 52.23 ± 2.22 40.24 ± 1.67 40.77 ± 2.72
Medium-Expert-High Hopper 66.93 ± 3.46 37.31 ± 3.66 58.04 ± 3.60 37.99 ± 2.71 68.03 ± 3.94 44.83 ± 2.58
Medium-Expert-High Walker2D 97.18 ± 2.08 91.09 ± 2.78 50.01 ± 3.51 32.38 ± 4.55 83.18 ± 3.70 68.61 ± 3.33
Medium-High Hopper 55.32 ± 3.56 43.93 ± 2.66 41.26 ± 5.53 33.99 ± 0.92 45.21 ± 2.97 49.69 ± 2.47
Medium-High Walker2D 68.87 ± 2.21 52.20 ± 2.76 59.84 ± 5.03 32.13 ± 4.51 61.49 ± 3.24 47.53 ± 3.05
Medium-Replay-High Hopper 58.05 ± 3.36 48.69 ± 2.97 39.24 ± 2.16 68.25 ± 3.78 51.70 ± 3.09 43.27 ± 2.78
Medium-Replay-High Walker2D 65.87 ± 3.07 55.15 ± 3.29 16.55 ± 2.17 65.63 ± 3.41 50.33 ± 3.88 45.13 ± 2.38

Mean 68.63 52.53 46.28 48.71 61.47 53.42

D4RL MuJoCo On the deterministic MuJoCo tasks, particularly when compared to established
model-free approaches such as CQL and IQL, L-MAP demonstrates notable performance in en-
vironments like Walker2D and Hopper, matching or exceeding these baselines even in dense
reward scenarios as shown in Table 2. This highlights L-MAP’s effectiveness across various task
structures. When compared to TT, L-MAP consistently delivers comparable results. However, L-
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MAP offers a significant practical advantage: its use of temporal abstraction enables lower la-
tency decision-making for equivalent planning horizons, resulting in improved efficiency during
deployment. Furthermore, L-MAP generally outperforms TAP, suggesting that even in determinis-
tic environments, the expectation-based planning approach proves advantageous by accounting for
stochasticity in the behavior policy. This leads to more robust policies and, consequently, superior
results.

Table 2: Normalised results for D4RL MuJoCo-v2 following the protocol of Fu et al. (2020)

Model-Based Model-Free
Dataset Type Env L-MAP TAP TT 1R2R CQL IQL
Medium-Expert HalfCheetah 92.14 ± 0.26 86.40 ± 2.22 95.0 ± 0.2 93.99 ± 1.40 91.6 86.7
Medium-Expert Hopper 105.74 ± 2.24 85.55 ± 3.83 110.0 ± 2.7 57.40 ± 6.06 105.4 91.5
Medium-Expert Walker2D 109.35 ± 0.08 105.32 ± 2.03 101.9 ± 6.8 73.18 ± 6.29 108.8 109.6
Medium HalfCheetah 45.50 ± 0.10 44.73 ± 0.39 46.9 ± 0.4 73.45 ± 0.15 44.4 47.4
Medium Hopper 73.90 ± 1.91 69.14 ± 2.33 61.1 ± 3.6 55.49 ± 3.99 58.0 66.3
Medium Walker2D 80.31 ± 1.20 51.75 ± 3.30 79.0 ± 2.8 55.69 ± 4.97 72.5 78.3
Medium-Replay HalfCheetah 38.45 ± 0.80 40.83 ± 0.72 41.9 ± 2.5 63.85 ± 0.19 45.5 44.2
Medium-Replay Hopper 91.18 ± 0.56 80.92 ± 3.79 91.5 ± 3.6 89.67 ± 1.92 95.0 94.7
Medium-Replay Walker2D 81.04 ± 2.62 72.32 ± 3.26 82.6 ± 6.9 90.67 ± 1.98 77.2 77.2

Mean 79.73 70.77 78.88 72.60 77.60 77.32

Adroit Control In the Adroit robotic control tasks, which are characterized by their high-
dimensional state and action spaces, our proposed method, L-MAP, demonstrates strong and
competitive performance as shown in Table 3. Across the Human, Cloned, and Expert datasets,
L-MAP exhibits notable effectiveness compared to both model-based approaches (TAP and TT) and
model-free methods (CQL, IQL, and Behavior Cloning (BC)1).

In the Human dataset, which includes suboptimal human demonstrations, L-MAP achieves the high-
est score in the Door environment and performs well in other tasks. Although IQL leads in the Pen
task and CQL leads in the Hammer and Relocate tasks, L-MAP maintains competitive results, par-
ticularly surpassing TT and BC in most environments. This suggests that L-MAP effectively utilizes
suboptimal data to make robust decisions in complex settings. For the Cloned dataset, which con-
tains a mix of optimal and suboptimal trajectories, L-MAP secures top performance in the Pen and
Relocate tasks. In the Expert dataset, comprised of optimal demonstrations, L-MAP attains the
highest scores in the Pen and Relocate environments while remaining competitive in the Hammer
and Door tasks. Overall, L-MAP achieves the highest average score of 51.40 across all datasets and
environments, and 18.79 across non-expert datasets, highlighting its effectiveness in handling vary-
ing levels of data optimality. Furthermore, the experimental results indicate that L-MAP effectively
manages the complexities of high-dimensional Adroit environments. Incorporating more action in-
formation into the single token does not detract from performance; instead, it appears to enhance the
model’s ability to learn nuanced temporal dependencies required for successful task execution.

AntMaze In the AntMaze environments—a set of sparse-reward continuous-control tasks where an
agent must navigate a robotic ant to a target location, L-MAP demonstrates strong and competitive
performance as shown in Table 4. These tasks are particularly challenging due to the sparse rewards
and the presence of suboptimal trajectories that lead to various goals other than the target position
used during testing.

Similar to TAP, our approach integrates goal positions into the observation space, allowing it to
condition trajectory generation on specific goals. This conditioning narrows the focus of sampled
trajectories towards the target direction, simplifying the planning process. Instead of using the
IQL critic for value estimation, L-MAP leverages Monte Carlo planning to provide refined value
estimates. This alternative approach avoids the additional computational cost of sampling with a
separate Q-network, as required by TT (+Q).

Our method achieves an average success rate of 83.33% across all AntMaze environments, which
is comparable to the 84.00% average of TT (+Q). Notably, L-MAP outperforms TT (+Q) in the

1We included Behavior Cloning (BC) as an additional baseline since the original 1R2R method was not
evaluated for Adroit tasks.
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Table 3: Adroit robotic hand control results.

Model-Based Approaches Model-Free Approaches
Dataset Type Env L-MAP TAP TT CQL IQL BC
Human Pen 76.26 ± 8.58 66.86 ± 8.41 36.4 37.5 71.5 34.4
Human Hammer 1.71 ± 0.12 1.57 ± 0.09 0.8 4.4 1.4 1.5
Human Door 11.24 ± 1.11 9.51 ± 1.10 0.1 9.9 4.3 0.5
Human Relocate 0.09 ± 0.02 0.06 ± 0.01 0.0 0.2 0.1 0.0

Cloned Pen 60.68 ± 7.88 46.44 ± 7.54 11.4 39.2 37.3 56.9
Cloned Hammer 2.43 ± 0.29 1.32 ± 0.12 0.5 2.1 2.1 0.8
Cloned Door 13.22 ± 1.34 13.45 ± 1.43 −0.1 0.4 1.6 −0.1
Cloned Relocate 0.15 ± 0.13 −0.23 ± 0.01 −0.1 −0.1 −0.2 −0.1

Expert Pen 126.60 ± 5.60 112.16 ± 6.57 72.0 107.0 – 85.1
Expert Hammer 127.16 ± 0.29 128.79 ± 0.52 15.5 86.7 – 125.6
Expert Door 105.24 ± 0.10 105.86 ± 0.08 94.1 101.5 – 34.9
Expert Relocate 107.57 ± 0.76 106.21 ± 1.61 10.3 95.0 – 101.3

Mean (All) 51.40 49.33 20.08 40.32 14.76 36.73
Mean (Non-Expert) 18.79 17.37 6.13 11.70 14.76 11.74

Table 4: Performance comparison on AntMaze environments. This evaluation demonstrates that our
approach can achieve comparable performance to TT with a separate Q network, while being more
efficient during sampling and decision-making.

Dataset Environment BC CQL IQL TT (+Q) TAP L-MAP
Umaze AntMaze 54.6 74.0 87.5 100.0 ± 0.0 78.33 ± 5.32 93.33 ± 3.22
Medium-Play AntMaze 0.0 61.2 71.2 93.3 ± 6.4 43.33 ± 6.40 75.00 ± 6.85
Medium-Diverse AntMaze 0.0 53.7 70.0 100.0 ± 0.0 30.00 ± 5.92 88.33 ± 4.14
Large-Play AntMaze 0.0 15.8 39.6 66.7 ± 12.2 63.33 ± 6.22 78.33 ± 5.32
Large-Diverse AntMaze 0.0 14.9 47.5 60.0 ± 12.7 66.67 ± 6.09 81.67 ± 5.00
Mean 10.92 43.92 55.16 84.00 56.33 83.33

more complex Large-Play and Large-Diverse environments, achieving success rates of 78.33% and
81.67% respectively, compared to TT (+Q)’s 66.7% and 60.0%. This indicates that L-MAP is partic-
ularly effective in larger mazes where navigation complexity is higher. While TT (+Q) attains per-
fect success rates in smaller environments like Umaze and Medium-Diverse, L-MAP still performs
exceptionally well with success rates of 93.33% and 88.33% in these settings. This consistency
suggests that our method is robust across different scales of environment complexity.

5 RELATED WORK

Recent advancements in reinforcement learning focus on learning temporally extended action prim-
itives to reduce decision-making horizons and improve learning efficiency. Both model-free and
model-based methods leverage temporal abstraction to manage task complexity.

Model-free methods such as CompILE (Kipf et al., 2019), RPL (Gupta et al., 2019), OPAL (Ajay
et al., 2021), ACT (Zhao et al., 2023), and PRISE (Zheng et al., 2024) leverage temporal abstraction
in various ways. For instance, CompILE learns latent codes representing variable-length behavior
segments, enabling cross-task generalization. RPL employs a hierarchical policy architecture to
simplify long-horizon tasks by decomposing them into sub-policies. OPAL introduces a continuous
space of primitive actions to reduce distributional shift in offline RL, enhancing policy robustness.
PRISE applies sequence compression to learn variable-length action primitives, improving behavior
cloning by capturing essential behavioral patterns. These approaches demonstrate the versatility
of temporal abstraction in addressing different challenges in reinforcement learning, particularly in
managing the complexity inherent in sequential decision-making.

From a model-based perspective, recent work has treated reinforcement learning as a sequence mod-
eling problem, utilizing Transformer architectures to model entire trajectories of states, actions, re-
wards, and values. This approach is exemplified by methods like Trajectory Transformer (TT) (Zhou
et al., 2020), and TAP (Jiang et al., 2023). TAP, in particular, shares conceptual similarities with
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our proposed method, L-MAP, in its use of efficient planning solutions for complex action spaces.
These sequence modeling approaches have shown promise in capturing long-term dependencies and
handling the variability in trajectories, but they often face challenges in stochastic environments
where the outcome is not solely determined by the agent’s actions. As highlighted by Paster et al.
(2022), reinforcement learning via supervised learning methods may replicate suboptimal actions
that accidentally led to good outcomes due to environmental randomness. To address this issue, they
proposed ESPER, a solution inspired by the decision transformer framework (Chen et al., 2021).
ESPER mitigates the influence of stochasticity on policy learning in discrete action spaces by clus-
tering trajectories and conditioning on average cluster returns.

From a theoretical perspective, several foundational works have studied continuous-space RL via
Hamilton-Jacobi-Bellman equations. For example, Kim et al. (2021) grounded Q-learning and DQN
in this theory, characterizing optimal control without explicit optimization, Munos (2000) estab-
lished convergence results using viscosity solutions, and Han et al. (2017) employed deep learning
to solve high-dimensional PDEs via backward stochastic differential equations. While providing
crucial theoretical foundations, these works focused on deterministic environments or required per-
fect knowledge about the dynamics of the environment.

Our approach also has interesting connections to robust RL, though with key distinctions. While
robust MDPs (Iyengar, 2005; Nilim & Ghaoui, 2005) deal with varying transition kernels chosen
adversarially from uncertainty sets, our work focuses on learning and planning with a fixed tran-
sition kernel in an offline setting where environmental stochasticity is captured through learned
models. Early robust RL addressed planning with known dynamics in tabular settings (Xu & Man-
nor, 2010), and generalizing to continuous, high-dimensional spaces is challenging (Lim & Autef,
2019). Our temporal abstraction could complement robust RL by providing structured transition
functions, potentially integrating classical robust RL planning into high-dimensional environments.

From a planning perspective, our work relates to methods like MuZero (Schrittwieser et al., 2020),
stochastic MuZero (Antonoglou et al., 2022), and Vector Quantized Models for Planning (Ozair
et al., 2021), which primarily operate in discrete action spaces and online settings, limiting their
applicability to continuous control tasks in offline RL. MuZero Unplugged (Schrittwieser et al.,
2021) extended MuZero to the offline setting and adapted to low-dimensional continuous action
spaces using factorized policy representations (Tang & Agrawal, 2020). However, scaling to high-
dimensional action spaces is challenging due to computational infeasibility and imprecise action
selection (Luo et al., 2023). Additionally, MuZero Unplugged focuses on deterministic environ-
ments and may struggle in highly stochastic continuous settings.

Our method, L-MAP, extends these concepts to high-dimensional continuous action spaces by ef-
fectively handling stochasticity and complexity. Using an encoder to group similar state-macro-
action pairs and reconstructing return-to-go estimates via a decoder within the VQ-VAE framework,
L-MAP captures essential dynamics while abstracting unnecessary details. This approach models
future returns more accurately in stochastic settings. Combined with planning algorithms, L-MAP
refines expected return estimates, bridging the gap between temporal abstraction techniques and ro-
bust performance in stochastic environments. Our latent code representation and transition model
reduce the need to learn separate policy, dynamics, and value components in the offline setting,
increasing planning efficiency and accounting for environmental stochasticity, thereby enhancing
generalization across complex tasks.

6 DISCUSSION AND LIMITATIONS

In conclusion, we introduced the Latent Macro Action Planner (L-MAP), which leverages temporal
abstractions learned with a state-conditioned VQ-VAE to construct a discrete latent space of macro-
actions. This approach enables efficient planning in high-dimensional continuous action spaces
within stochastic environments. Future directions include exploring transfer learning to handle new
tasks by training on diverse datasets, and adapting L-MAP to online learning scenarios for contin-
uous improvement to tackle more complex challenges. These efforts aim to enhance generalization
and efficiency in complex, real-world settings.
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Vector quantized models for planning. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pp. 8302–8313. PMLR, 2021.
URL http://proceedings.mlr.press/v139/ozair21a.html.

Keiran Paster, Sheila A. McIlraith, and Jimmy Ba. You can’t count on luck: Why de-
cision transformers and rvs fail in stochastic environments. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
fe90657b12193c7b52a3418bdc351807-Abstract-Conference.html.

Marc Rigter, Bruno Lacerda, and Nick Hawes. One risk to rule them all: A risk-sensitive
perspective on model-based offline reinforcement learning. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
f49287371916715b9209fa41a275851e-Abstract-Conference.html.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nat.,
588(7839):604–609, 2020. doi: 10.1038/S41586-020-03051-4. URL https://doi.org/
10.1038/s41586-020-03051-4.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 27580–27591, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/e8258e5140317ff36c7f8225a3bf9590-Abstract.html.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

13

https://api.semanticscholar.org/CorpusID:174799876
https://api.semanticscholar.org/CorpusID:174799876
https://proceedings.mlr.press/v229/luo23a.html
https://doi.org/10.1023/A:1007686309208
https://doi.org/10.1023/A:1007686309208
https://api.semanticscholar.org/CorpusID:1537485
https://api.semanticscholar.org/CorpusID:1537485
http://proceedings.mlr.press/v139/ozair21a.html
http://papers.nips.cc/paper_files/paper/2022/hash/fe90657b12193c7b52a3418bdc351807-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/fe90657b12193c7b52a3418bdc351807-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f49287371916715b9209fa41a275851e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f49287371916715b9209fa41a275851e-Abstract-Conference.html
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://proceedings.neurips.cc/paper/2021/hash/e8258e5140317ff36c7f8225a3bf9590-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e8258e5140317ff36c7f8225a3bf9590-Abstract.html
https://arxiv.org/abs/1712.01815


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, Febru-
ary 7-12, 2020, pp. 5981–5988. AAAI Press, 2020. doi: 10.1609/AAAI.V34I04.6059. URL
https://doi.org/10.1609/aaai.v34i04.6059.
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Figure 5: Results of ablation studies, where the height of the bar is the mean normalized scores on
high noise gym locomotion control tasks.

A ABLATION STUDY

We present analyses and ablations of key hyperparameters such as macro action length, planning
horizon, the use of pUCT (Silver et al., 2017) versus UCT, and the effect of our customized VQ-
VAE loss function. Figure 5 summarizes the results from ablation studies conducted on high-noise
stochastic MuJoCo tasks.

Macro Action Length

We tested macro action lengths L = 1, L = 3, and L = 5 to evaluate their impact on L-MAP’s
performance. The highest mean score of 68.7 was achieved with L = 3. Increasing L to 5 reduced
the mean score to 64.57, while decreasing it to 1 further dropped it to 59.39. This indicates that
a macro action length of 3 optimally balances temporal abstraction and adaptability. A moderate
length allows the model to capture important action sequences while remaining responsive to en-
vironmental changes. Shorter lengths may fail to model temporal dependencies effectively, while
longer lengths may hinder quick adaptation in stochastic environments.

Planning Horizon

We assessed the effect of planning horizon by varying the number of planning steps in L-MAP.
Reducing the planning horizon to 3 steps (expanding a single latent variable) decreased the mean
score to 57.51, compared to 68.7 with the default longer planning horizon. This demonstrates that a
longer planning horizon significantly enhances performance by enabling the model to better antici-
pate future events and handle uncertainty in high-noise stochastic environments.

Tree Search Algorithm: UCT vs. pUCT

We compared standard UCT and pUCT as tree search algorithms in L-MAP. UCT achieved a mean
score of 68.7, slightly outperforming pUCT, which scored 66.4. While both methods are effective,
UCT performs marginally better in this context. A possible explanation is that pUCT leverages a
learned prior policy to guide exploration, making it sensitive to the quality of the prior. If the prior
policy is suboptimal, pUCT may be less effective due to this dependency.

VQ-VAE Loss Function We compared our loss function with the standard loss function without
masking (mean scores: 68.7 vs 57.7). Our approach outperforms the standard loss by focusing
primarily on state and action during vector quantization. This results in less skewed reconstructed
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returns and a more coherent latent space, accurately capturing action and state distributions. Conse-
quently, the model generates more reliable latent representations for reconstruction.

Progressive Widening

We evaluated the impact of progressive widening on MAP’s performance. Removing progressive
widening led to a significant drop in the mean score from 68.70 to 54.77. This substantial decrease
demonstrates the importance of controlled state space expansion during planning for a large search
space. Progressive widening enables MAP to balance between exploiting existing states in the pre-
built search space and incrementally adding new states. Without progressive widening, the search
suffers from excessive branching, making it difficult to build sufficiently deep trees for meaningful
planning in areas of high stochasticity.

Parallel Expansion

We assessed the contribution of parallel expansion by comparing L-MAP’s performance with and
without this feature. Removing parallel expansion reduced the mean score from 68.7 to 62.75,
yielding performance similar to reducing the planning horizon to six steps. This comparison reveals
that parallel expansion primarily affects the algorithm’s ability to efficiently explore the search space.
Given the same number of MCTS iterations, removing parallel expansion results in less exploration
of possible trajectories, reducing the algorithm’s planning capability to that of a shorter horizon.
This demonstrates that parallel expansion is crucial for maximizing the effectiveness of each MCTS
iteration by enabling broader simultaneous exploration of potential outcomes.

B ADDITIONAL STOCHASTIC ENVIRONMENT EXPERIMENTS: HIV
TREATMENT AND CURRENCY EXCHANGE

Table 5: Results for HIV Treatment and Currency Exchange.

Model-Based Approaches Model-Free Approaches
Env L-MAP TAP TT 1R2R CQL IQL
HIV 59.08± 1.96 54.95± 1.98 54.46± 3.30 56.45± 2.17 59.74 ± 1.11 34.1± 1.2
Currency 106.78 ± 5.00 89.72± 3.90 79.28± 2.61 78.52± 2.08 93.96± 1.69 89.41± 2.83

The HIV Treatment environment, originally introduced by Ernst et al. (2006), simulates treatment
planning where an agent controls two drug types (RTI and PI) in a 6-dimensional state space rep-
resenting cell and virus concentrations. The stochasticity arises from varying drug efficacy at each
step. The Currency Exchange environment, based on the Optimal Liquidation problem (Almgren &
Chriss, 2001; Bao & Liu, 2019), involves converting currency under stochastic exchange rates that
follow an Ornstein-Uhlenbeck process. Both environments were adapted by Rigter et al. (2023) to
the offline RL setting, with datasets collected using partially trained and random policies respec-
tively.

For the HIV Treatment domain, L-MAP and CQL achieve comparable strong performance (59.08
± 1.96 and 59.74 ± 1.11 respectively), outperforming other baselines. In the Currency Exchange
environment, L-MAP substantially outperforms all other approaches, achieving a score of 106.78
± 5.00 compared to the next best performer CQL at 93.96 ± 1.69. This superior performance
demonstrates L-MAP’s versatility across different types of stochastic environments.

C LATENT SPACE ANALYSIS

To empirically demonstrate the uncertainties introduced by non-injective mappings, behavior pol-
icy, and environmental stochasticity, we generate heatmaps representing the transition probabil-
ities between latent codes. We focus on the Hopper environment and consider three datasets:
medium-expert, medium, and medium-replay, in both deterministic and stochastic settings.
The heatmaps are constructed by encoding the state-macro-action pairs into latent codes using our
learned representation and visualizing the transition probabilities between these codes.
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(a) Medium expert (b) Medium (c) Medium replay

Figure 6: Heatmaps for Deterministic Hopper Environment (Top 50 Frequent Latent Codes). In
each heatmap, the intensity of the color at position (i, j) represents the probability of transitioning
from the current latent code zt = i to the next latent code zt+1 = j. The accompanying histograms
display the frequency of each latent code occurring across the dataset with the learned encoder as
the current (zt, right histogram) and next (zt+1, top histogram) codes. The observed spread in the
heatmaps indicates that, despite the deterministic nature of the environment, transitions from a single
zt lead to multiple zt+1.

(a) Medium Expert (b) Medium (c) Medium Replay

Figure 7: Heatmaps for Stochastic Hopper Environment (Top 50 Frequent Latent Codes). The ob-
served spread in the heatmaps indicates that inherent environmental stochasticity further contributes
to transitions from a single zt leading to multiple zt+1.

C.1 DETERMINISTIC ENVIRONMENT HEATMAPS

In analyzing the heatmaps for deterministic environments as shown in Fig. 6, it becomes evident
that transitions from a current latent code zt to multiple next latent codes zt+1 are not strictly deter-
ministic. This observed spread in transitions originates from two primary sources: the non-injective
nature of the learned representation and the stochasticity of the behavior policy employed dur-
ing data collection.

First, the non-injective mapping of the encoder function fenc may result in multiple distinct high-
dimensional state-macro-action pairs being mapped to the same latent code as shown in the his-
tograms of Fig.6. Specifically, for different state-macro-action pairs x

(1)
t = (s

(1)
t ,m

(1)
t ) and

x
(2)
t = (s

(2)
t ,m

(2)
t ), it is possible that:

fenc(x
(1)
t ) = fenc(x

(2)
t ) = zt,

even though x
(1)
t ̸= x

(2)
t . Consequently, their corresponding next state-macro-action pairs x(1)

t+1 and
x
(2)
t+1 may differ, potentially leading to different next latent codes upon encoding:

z
(1)
t+1 = fenc(x

(1)
t+1), z

(2)
t+1 = fenc(x

(2)
t+1), with z

(1)
t+1 ̸= z

(2)
t+1.

Second, because the behavior policy πb used for data collection may be stochastic, it introduces
variability in the selection of macro-actions at both the current and subsequent time steps. Given a
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state st, the behavior policy determines the macro-action mt as follows:

mt ∼ πb(m | st).

This stochastic selection can result in different macro-actions m(1)
t and m

(2)
t being chosen from the

same state st, which naturally introduces stochasticity. Note that even if the encoder maps both
x
(1)
t = (st,m

(1)
t ) and x

(2)
t = (st,m

(2)
t ) to the same latent code zt:

fenc(x
(1)
t ) = fenc(x

(2)
t ) = zt.

the next states s(1)t+1 and s
(2)
t+1 might differ, even though the environment dynamics Tenv are determin-

istic, i.e.,

s
(1)
t+1 = Tenv(st,m

(1)
t ), s

(2)
t+1 = Tenv(st,m

(2)
t ), with s

(1)
t+1 ̸= s

(2)
t+1.

These different next states lead to different next state-macro-action pairs:

x
(1)
t+1 = (s

(1)
t+1,m

(1)
t+1), x

(2)
t+1 = (s

(2)
t+1,m

(2)
t+1).

Upon encoding, they may yield different next latent codes:

z
(1)
t+1 = fenc(x

(1)
t+1), z

(2)
t+1 = fenc(x

(2)
t+1), with z

(1)
t+1 ̸= z

(2)
t+1.

Therefore, even in a deterministic environment, the combination of a non-injective encoder and
a stochastic behavior policy introduces variability in the latent transitions. The heatmaps for de-
terministic environments empirically demonstrate this spread, showing that each zt does not map
deterministically to a single zt+1 but rather to a distribution of possible next latent codes.

C.2 STOCHASTIC ENVIRONMENT HEATMAPS

The heatmaps for stochastic environments as shown in Fig. 7 exhibit a more pronounced spread in
transition probabilities. This inherent environmental stochasticity means that for a given st and mt,
there are multiple possible next states st+1, leading to a wider distribution of next latent codes zt+1

upon encoding. When combined with the non-injective mapping of the encoder and the stochasticity
of the behavior policy, the uncertainties in the latent transitions are further amplified.

C.3 THE IMPACT OF L1 REGULARIZATION ON REPRESENTATION FIDELITY

(a) L1 norm (b) L2 norm

Figure 8: Transition Probability Heatmaps for Medium-Replay Datasets from the Stochastic Hopper
Environment (Top 50 Frequent Latent Codes). Left: Heatmap depicting transition probabilities when
embeddings are regularized using the L1 norm. Right: Heatmap illustrating transition probabilities
under L2 norm regularization.

The heatmaps shown in Fig.8 reveal distinct patterns between transition probabilities for latent codes
encoded by encoders trained with L1 and L2 norm regularization in the latent space. The L2 norm
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demonstrates more distributed transition probabilities, with multiple moderate-probability transi-
tions (shown as light blue dots) for each current state, indicating the encoder preserves more granu-
lar information. In contrast, the L1 norm exhibits highly deterministic transitions for certain latent
codes, shown by the predominantly dark purple background with the bright yellow spot approach-
ing probability 1.0. This suggests that the encoder trained with L1 regularization tends to collapse
dissimilar inputs into the same latent code, leading to less nuanced representations.

D ANALYSIS OF PERFORMANCE TRENDS WITH INCREASING
STOCHASTICITY

Table 6: Hopper Environment Results with Increasing Stochasticity

Model-Based Model-Free
Dataset Type Env L-MAP TAP TT 1R2R CQL IQL
Deterministic
Medium-Expert Hopper 105.74 ± 2.24 85.55 ± 3.83 110.0 ± 2.7 57.40 ± 6.06 105.4 91.5
Medium Hopper 73.90 ± 1.91 69.14 ± 2.33 61.1 ± 3.6 55.49 ± 3.99 58.0 66.3
Medium-Replay Hopper 91.18 ± 0.56 80.92 ± 3.79 91.5 ± 3.6 89.67 ± 1.92 95.0 94.7

Mean (Deterministic) 90.27 78.54 87.53 67.52 86.13 84.17

Moderate Stochasticity
Medium-Expert-Mod Hopper 106.11 ± 2.16 40.86 ± 5.42 56.10 ± 3.33 52.19 ± 8.37 106.17 ± 2.16 60.61 ± 3.46
Medium-Mod Hopper 55.07 ± 3.06 43.64 ± 2.25 44.49 ± 2.47 65.24 ± 3.31 49.92 ± 3.00 56.00 ± 3.60
Medium-Replay-Mod Hopper 52.30 ± 2.65 38.10 ± 3.22 37.85 ± 1.19 22.82 ± 2.08 40.53 ± 1.52 49.12 ± 3.38

Mean (Moderate Stochasticity) 71.16 40.87 46.15 46.75 65.54 55.24

High Stochasticity
Medium-Expert-High Hopper 66.93 ± 3.46 37.31 ± 3.66 58.04 ± 3.60 37.99 ± 2.71 68.03 ± 3.94 44.83 ± 2.58
Medium-High Hopper 55.32 ± 3.56 43.93 ± 2.66 41.26 ± 5.53 33.99 ± 0.92 45.21 ± 2.97 49.69 ± 2.47
Medium-Replay-High Hopper 58.05 ± 3.36 48.69 ± 2.97 39.24 ± 2.16 68.25 ± 3.78 51.70 ± 3.09 43.27 ± 2.78

Mean (High Stochasticity) 60.10 43.31 46.18 46.74 54.98 45.93

This section examines how L-MAP and baseline methods respond to increasing levels of stochas-
ticity in the Hopper environment. Table 6 presents the performance metrics across deterministic,
moderate, and high stochasticity settings.

In the deterministic setting, L-MAP achieves a mean score of 90.27, indicating strong performance
and outperforming all other model-based methods. Among the baselines, TT attains a mean of
87.53, TAP achieves 78.54, and 1R2R scores 67.52. The model-free methods CQL and IQL also
perform well, with mean scores of 86.13 and 84.17, respectively. The high scores across all methods
suggest that the deterministic environment poses minimal challenges, allowing both L-MAP and the
baselines to excel.

As the environment introduces moderate stochasticity, L-MAP’s mean performance decreases to
71.16, reflecting a reduction of approximately 21% from its deterministic performance. The model-
based baselines experience larger declines; TAP’s mean drops to 40.87 (a 48% reduction), TT’s to
46.15 (a 47% reduction), and 1R2R’s to 46.75 (a 31% reduction). The model-free methods also
suffer performance losses; CQL’s mean decreases to 65.54 (a 24% reduction), and IQL’s to 55.24 (a
34% reduction). Despite the reductions, L-MAP maintains a higher mean score than all baselines
in this setting, indicating better resilience to moderate stochasticity among both model-based and
model-free methods.

In the setting of high stochasticity, L-MAP’s mean further decreases to 60.10, representing a total
reduction of about 33% from the deterministic case. The model-based baselines continue to show
declining trends; TAP’s mean falls to 43.31 (a 45% reduction), TT’s to 46.18 (a 47% reduction),
and 1R2R’s to 46.74 (a 31% reduction). The model-free methods also see further decreases; CQL’s
mean drops to 54.98 (a 36% reduction), and IQL’s to 45.93 (a 45% reduction). While all methods
experience performance degradation, L-MAP consistently outperforms the model-based baselines
TAP and TT, and maintains an edge over the model-free methods CQL and IQL. The performance
of L-MAP shows relatively better robustness among the baselines.

The overall trend indicates that increasing stochasticity adversely affects all methods, but L-MAP’s
performance diminishes at a slower rate compared to the other model-based methods. These results

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

suggest that L-MAP is more robust to stochastic variations in the environment than most of the
baseline methods, particularly the model-based ones.

E PLANNING HYPERPARAMETERS

For all environments, we utilize the following hyperparameters for sampling during the search pro-
cess: α = 0.1 and ϵ = 1, which determine the exploration rate of progressive widening; and set
the number of Monte Carlo Tree Search (MCTS) iterations to 100. Detailed parameters for each
environment are presented in Table 7.

Table 7: Planning Hyperparameters

Environment M N B λ γ

Stochastic MuJoCo 32 4 4 0.5 0.99
D4RL MuJoCo 32 4 4 0.5 0.99
Adroit 10 2 4 0.5 0.99
AntMaze 16 2 4 0.5 0.998
Currency 32 4 4 0.5 0.99
HIV Treatment 5 4 4 1.0 0.99

F DETAILED DISCUSSION OF KEY METHOD COMPONENTS AND
OBJECTIVES

In this section, we provide a comprehensive discussion of the key components of our method and
their respective objectives. Each component addresses specific challenges in decision-making within
stochastic continuous environments, working together to enable efficient planning.

Temporal Abstraction (Key Objective: Efficiency and Action Space Reduction). Macro-actions
provide an essential abstraction for managing high-dimensional continuous action spaces by com-
pressing extended action sequences into single units. The latent macro-action space can be signif-
icantly smaller than the raw action space since it captures only plausible actions from the dataset,
reducing decision complexity while maintaining adaptability.

Continuous-to-Discrete Mapping (Key Objective: Dimensionality Reduction). We achieve di-
mensionality reduction through a state-conditioned VQ-VAE (Vector Quantized Variational Autoen-
coder). This core component discretizes the continuous state-macro-action space into a discrete
latent representation, building on prior works (Jiang et al., 2023; Luo et al., 2023) that recognize
learned state-conditioned discretization can maintain high granularity with relatively few discrete
actions.

Latent Prior Model (Key Objective: Efficient Sampling and Transition Modeling). The learned
state-conditioned prior serves dual purposes: efficiently sampling plausible macro-actions and mod-
eling transitions in the latent space, which is crucial for planning initialization.

Planning (Key Objective: Heuristic Sequential Search in the Latent Space). We propose a mod-
ified Monte Carlo Tree Search (MCTS) algorithm that uses the learned prior to seed the initial search
space and employs progressive widening to balance between exploitation of promising actions and
exploration of alternatives, enabling effective decision optimization in the latent space.
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